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Abstract. For a given planar convex compact set K, consider a bisection {A,B} of K (i.e.,

A ∪ B = K and whose common boundary A ∩ B is an injective continuous curve connecting two

boundary points of K) minimizing the corresponding maximum diameter (or maximum width) of

the regions among all such bisections of K.

In this note we study some properties of these minimizing bisections and we provide analogous

to the isodiametric (Bieberbach, 1915), the isominwidth (Pál, 1921), the reverse isodiametric

(Behrend, 1937), and the reverse isominwidth (González Merino & Schymura, 2018) inequalities.

1. Introduction

The siblings Alice and Bob are deeply sad due to the loss of their uncle Charlie, who recently

passed away. Soon, they will be awarded with his heritage, consisting of a countryside piece of

ground. They have to divide this terrain into two connected pieces of ground, which must be equal

according to some even rule or fairness. In this paper, we will try to solve their issues, when the

rule is either that the diameter or the minimum width of each of the pieces of ground is as small

as possible (and so, the largest distance in the two pieces is minimized, or the eventual use of an

agrarian harvester is optimized).

Let K2 be the family of planar convex bodies (recall that, as usual, a convex body is a convex

compact set). Throughout this paper, for a given compact set A ⊂ R2, we will denote its area

(or 2-dimensional Lebesgue measure) by A(A), its diameter (largest Euclidean distance between

two points in A) by D(A), and its (minimum) width (shortest distance between two parallel lines

containing A between them) by w(A).

For a given K ∈ K2, a bisection of K will be a decomposition into two closed regions K1,

K2 ⊂ K, such that K = K1 ∪K2 and K1 ∩K2 = l([−1, 1]), where l : [−1, 1] → K is an injective and

continuous curve with endpoints l(−1), l(1) in the boundary bd(K) of K. Let B(K) be the set of all

the bisections of K. Let us denote the infimum of the maximum bisecting diameter of K ∈ K2 by

(1) DB(K) := inf
{K1,K2}∈B(K)

max{D(K1),D(K2)}.

In some sense, DB(K) can be understood, for each K ∈ K2, as the optimal value for the diameter

functional when considering bisections of K. In this work, we shall study the bisections which

provide DB(K), obtaining also an isodiametric-type inequality relating DB(K) and A(K).
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Our motivation mainly emanates from a paper by Miori et al [MPS]. That paper focuses on

bisections into two regions of equal area minimizing the maximum bisecting diameter in the setting

of centrally symmetric planar convex bodies. Among other results, they prove that for every set of

this family, there always exists a minimizing bisection determined by a line segment [MPS, Prop. 4],

and describe in [MPS, Th. 5] the optimal set for this problem (that is, the set of fixed area with the

minimum possible value for the maximum bisecting diameter). Moreover, for general planar convex

bodies they also demonstrate that the minimum value for that functional when considering bisections

by line segments is attained by a centrally symmetric set [MPS, Th. 6]. Then, Proposition 1 below

follows from these results (although it is not explicitly stated in [MPS]): for a givenK ∈ K2, consider

D̃B(K) = inf
{K1,K2}∈B̃(K)

max{D(K1),D(K2)},

where

B̃(K) = {{K1,K2} ∈ B(K) : K1 ∩K2 is a line segment, A(K1) = A(K2)}.
Notice that B̃(K) contains the bisections ofK determined by a line segment providing two equal-area

regions. In [MPS] the authors consider the set

Q =

{
(x1, x2) ∈ R

2 : − 1√
5
≤ x1 ≤ 1√

5
and

(
x1 ±

1√
5

)2

+ x2
2 ≤ 1

}
,

proving that D̃B(Q) is given by the bisection of Q with subsets Q ∩ {(x1, x2) ∈ R2 : x2 ≥ 0} and

Q ∩ {(x1, x2) ∈ R
2 : x2 ≤ 0} (an image of this optimal set can be seen in [MPS, pg. 469]).

Proposition 1. Let K ∈ K2. Then

(2)
A(K)

D̃B(K)2
≤ 2

(
arctan 2− arctan

1

2

)
,

with equality if K = Q.

Observe that the inequality (2) is an isodiametric-type inequality, in the sense of the classical

isodiametric inequality of Bieberbach [Bi]: given K ∈ K2, we have that

A(K) ≤ π

4
D(K)2,

with equality if and only if K is an Euclidean disk.

Our Theorem 2 below is an extension of Proposition 1. On the one hand, we consider arbitrary

bisections, determined by curves which are not necessarily line segments. And on the other hand,

we allow the regions of the bisections to have different areas. In other words, we focus on B(K)

instead of B̃(K). This makes our approach completely general in this setting. In Section 3 we shall

prove the following:

Theorem 2. Let K ∈ K2. Then,

(3)
A(K)

DB(K)2
≤ 2

(
arctan 2− arctan

1

2

)
,

with equality if and only if K = Q. Moreover, DB(Q) is given by the bisection of Q with subsets

Q ∩ {(x1, x2) ∈ R2 : x2 ≥ 0} and Q ∩ {(x1, x2) ∈ R2 : x2 ≤ 0}.

Surprisingly enough, the optimal set in the general situation, described in Theorem 2, is still the

same set as in Proposition 1. This fact strengthens the idea that central symmetry is an inherent
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property for this optimization problem. On the other hand, we would like to emphasize that the

argument exhibited in [MPS, Th. 6] cannot be applied under the general conditions of Theorem 2.

Finally, it is worth mentioning that the questions regarding the maximum bisecting diameter

(treated firstly in [MPS]) have originated several works in the last years. In [CS] we can find some

improvements for the centrally symmetric case, and some related problems for divisions into three

or more regions have been studied in [CSS2, C]. Moreover, we also point out that these questions

have been partially treated in surfaces of R3 [CMSS, CSS].

Apart from studying the diameter, we also consider in this work the analogous problem for the

width functional (which is, in some sense, the geometric functional reverse to the diameter). Recall

that by replacing the diameter with the width in the classical isodiametric inequality, Pál showed

that

(4) A(K) ≥ 1√
3
w(K)2,

with equality if and only if K is an equilateral triangle [Pal]. Our aim is obtaining a similar

isominwidth inequality for bisections of a planar convex body. For this purpose, given K ∈ K2, we

can define, analogously to DB(K), the infimum of the maximum bisecting width by

wB(K) := inf
{K1,K2}∈B(K)

max{w(K1),w(K2)}.

We will prove in Section 4 the following inequality.

Theorem 3. Let K ∈ K2. Then,

(5)
A(K)

wB(K)2
≥ 4√

3
,

with equality if and only if K is an equilateral triangle T . Moreover, wB(T ) is attained by the

bisection of T determined by a line segment passing through the midpoints of two edges of T .

Remark 4. Notice that the quotients A(K)/D̃B(K)2, A(K)/DB(K)2 and A(K)/wB(K)2 are in-

variant under dilations and rigid motions, due to the corresponding homogeneity of the area, the

diameter and the width functionals and the invariance under rigid motions.

Another interesting geometric question in this setting regards the reverse inequalities for these

problems (see [Beh, B, CDT] and references therein). In the case of the isodiametric quotient, such

inequality cannot be stated directly, since for an arbitrary planar convex body K with non-empty

interior, the isodiametric quotient A(K)/D(K)2 cannot be bounded from below by any constant

different from 0 (it suffices to consider very thin rectangles with area approaching zero). However,

Behrend treated this problem finding such lower bound for the family of sets in K2 that maximizes

that quotient in their affine class. More precisely, we will say that K ∈ K2 is in Behrend position if

A(K)

D(K)2
= sup

φ∈End(R2)

A(φ(K))

D(φ(K))2
,

where End(R2) denotes the set of affine endomorphisms of R2 [Beh]. Therefore, if K is in Behrend

position, the above quotient achieves the maximum value among all the affine transformations of K.

This approach allows to obtain an interesting reverse isodiametric inequality: for every K ∈ K2 in

Behrend position, we have that

(6) A(K) ≥
√
3

4
D(K)2,
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with equality if and only if K is an equilateral triangle [Beh]. Moreover, if we restrict K to be

centrally symmetric (that is, K = x−K for some x ∈ R2), then

(7) A(K) ≥ 1

2
D(K)2,

with equality if and only if K is a square ([Beh], see also [GMS]).

Following these ideas (also used by Ball for obtaining a reverse isoperimetric inequality [B]), we

will establish an analogous inequality to (6) for the infimum of the maximum bisecting diameter. In

order to do this, we will say that K ∈ K2 is in Behrend-bisecting position if

(8)
A(K)

DB(K)2
= sup

φ∈End(R2)

A(φ(K))

DB(φ(K))2
.

In Section 5 we give some necessary conditions for a set K to be in Behrend-bisecting position, and

our Theorem 5 shows a reverse isodiametric inequality for minimizing bisections, which is not sharp

in general.

Theorem 5. Let K ∈ K2 be in Behrend-bisecting position. Then

(9)
A(K)

DB(K)2
≥

√
3

4
.

Moreover, the restriction to centrally symmetric sets in Behrend-bisecting position allows to

improve inequality (9), as shown in our Theorem 6.

Theorem 6. Let K ∈ K2 be centrally symmetric and in Behrend-bisecting position. Then

(10)
A(K)

DB(K)2
≥

√
3

2
.

The same spirit of the previous results leads us to study a reverse isominwidth inequality for

minimizing bisections, of type A(K)/wB(K)2 ≤ α, for some α ∈ R. We will follow an approach

similar to [GMS], considering again affine classes of sets in K2. In this sense, recall that K ∈ K2 is

in isominwidth optimal position if

A(K)

w(K)2
= inf

φ∈End(R2)

A(φ(K))

w(φ(K))2
.

The restriction to these suitable affine representatives of planar convex bodies yields, as in the case

of the diameter functional, to the following result: for any set K ∈ K2 in isominwidth optimal

position, it holds that

(11) A(K) ≤ w(K)2,

with equality if and only if K is a square [GMS, Th. 5.4]. Our aim is obtaining an analogous

inequality to (11) for the infimum of the maximum bisecting width for sets in a certain special

position. Thus, given K ∈ K2, we shall say that K is in isominwidth-bisecting position if

(12)
A(K)

wB(K)2
= inf

φ∈End(R2)

A(φ(K))

wB(φ(K))2
.

We will derive in Section 6 some necessary conditions for K to be in isominwidth-bisecting position,

concluding with the following result.
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Theorem 7. Let K ∈ K2 be in isominwidth-bisecting position. Then

(13)
A(K)

wB(K)2
≤ 4,

with equality if and only if K is a square C. Moreover, wB(C) is given by the bisection determined

by a segment parallel to an edge of C dividing C into two equal-area subsets.

We now establish some notation used throughout this paper. The vectors of the canonical basis

of R2 will be e1 = (1, 0) and e2 = (0, 1). Given two points x, y ∈ R2, [x, y] will denote the line

segment with endpoints x, y. For every K ∈ K2, Ext(K) will stand for the set of extreme points of

K, i.e., if x ∈ Ext(K), then x ∈ [y, z] ⊂ K implies x = y or x = z. For any planar compact set A, we

denote by conv(A) and span(A) the convex hull and the linear hull of A, respectively. Moreover, if

A is a planar set, we denote by A⊥ the orthogonal complement of A. For K ∈ K2 and u ∈ R2 \ {0},
the Steiner symmetrization su(K) of K with respect to span(u) is defined as the only symmetric

set with respect to span(u) such that each segment (tu + u⊥) ∩ su(K) has the same length than

(tu+ u⊥) ∩K, for every t ∈ R [BF, SY]. It is well known that su(K) ∈ K2 and

(14) A(su(K)) = A(K), D(su(K)) ≤ D(K).

The paper is organized as follows. In Section 2 we obtain some general properties of the minimizing

bisections for the maximum bisecting diameter and the maximum bisecting width. In particular,

Lemma 8 shows that there always exists a minimizing bisection given by a line segment, which allows

to focus only on this type of bisections along this work. In Section 3 we prove Theorem 2, determining

the corresponding optimal set (of fixed area) for the maximum bisecting diameter by a constructive

argument. Section 4 is devoted to show Theorem 3, which follows directly from Lemma 14. Finally,

Sections 5 and 6 treat the reverse inequalities under the approach of affine representatives of planar

convex bodies. In Section 5 we demonstrate Theorem 5, which requires a detailed study concerning

the Behrend-bisecting position, and Section 6 contains the proof of Theorem 7.

2. Properties of minimizing bisections

In this section we will obtain some interesting properties for the minimizing bisections of the two

functionals we are considering. Lemma 8 shows that there is always one of these bisections given by

a line segment, extending [MPS, Prop. 4], and Lemma 10 proves that minimizing bisections always

provide, in some sense, two regions which are in equilibrium. Besides, we also show in Lemma 9 that

the infimum in (1) is actually a minimum.

Lemma 8. Let K ∈ K2 and ρ > 0. For any bisection of K with maximum bisecting diameter (or

width) equal to ρ, there exists another bisection of K given by a line segment with maximum bisecting

diameter (or width) smaller than or equal to ρ.

Proof. Consider {K1,K2} ∈ B(K) determined by an injective continuous curve γ : [−1, 1] → K

with γ(±1) ∈ bd(K). Suppose that max{D(K1),D(K2)} = ρ (or max{w(K1),w(K2)} = ρ). Call

M1 := bd(K) ∩ K1 and M2 := bd(K) ∩ K2. Since Mi ⊂ Ki, i = 1, 2, then D(Mi) ≤ D(Ki) and

w(Mi) ≤ w(Ki), i = 1, 2.

Notice that the line segment [γ(−1), γ(1)] will determine conv(Mi), i = 1, 2. We claim that

D(Mi) = D(conv(Mi)), i = 1, 2. On the one hand, Mi ⊂ conv(Mi) implies that D(Mi) ≤
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D(conv(Mi)). And on the other hand, it is not difficult to check that Ext(conv(Mi)) ⊂ Mi, be-

cause Mi is compact. Furthermore, since the diameter is always attained by extreme points, then

D(conv(Mi)) = D(Ext(conv(Mi))) ≤ D(Mi).

On the other hand, we also have w(Mi) = w(conv(Mi)), i = 1, 2, as a direct consequence of the fact

that Mi is contained between two parallel lines if and only if conv(Mi) is contained between those

lines.

Note that conv(M1), conv(M2) are two subsets of K providing a bisection of K, satisfying

max{D(conv(M1)),D(conv(M2))} ≤ max{D(K1),D(K2)} = ρ,

as well as

max{w(conv(M1)),w(conv(M2))} ≤ max{w(K1),w(K2)} = ρ.

Thus, we conclude that {conv(M1), conv(M2)} is a bisection of K given by a line segment with

maximum bisecting diameter (or width) smaller than or equal to ρ. �

Lemma 9. Let K ∈ K2. Then

DB(K) = min
{K1,K2}∈B(K)

max{D(K1),D(K2)},

and

wB(K) = min
{K1,K2}∈B(K)

max{w(K1),w(K2)}.

Proof. We will focus on DB(K), since the case of wB(K) is analogous. Note that Lemma 8 allows

to consider only bisections by line segments in order to compute DB(K). Then, in view of (1), let

{[ai, bi]}i∈N ⊂ K be a sequence of line segments providing bisections of K, each of them with subsets

{K1,i, K2,i}, such that

DB(K) = lim
i→∞

max{D(K1,i),D(K2,i)}.

Since {K1,i}i∈N ⊂ K is an absolutely bounded sequence, Blaschke Selection Theorem [Sch,

Th. 1.8.7] implies the existence of a convergent subsequence (which we assume without loss of

generality to be the sequence itself), so there exists K1 ∈ K2 such that K1 ⊂ K and lim
i→∞

K1,i = K1

in Hausdorff metric. Analogously, there exists K2 ∈ K2 such that K2 ⊂ K and lim
i→∞

K2,i = K2. In

particular, we also obtain that lim
i→∞

[ai, bi] = [a, b], for certain a, b ∈ K, with [a, b] = K1 ∩K2. Since

the diameter is a continuous functional in Hausdorff metric, we have that lim
i→∞

D(Kj,i) = D(Kj),

j = 1, 2, thus concluding that DB(K) = max{D(K1),D(K2)}, as stated. �

Lemma 10. Let K ∈ K2. There exists a bisection {K1,K2} of K minimizing the maximum bisecting

diameter (or width) of K such that DB(K) = D(K1) = D(K2) (or wB(K) = w(K1) = w(K2)).

Proof. This is a consequence of the continuity of the diameter and the width functionals. Taking

into account Lemmas 8 and 9, let {K1,K2} be a bisection of K minimizing the maximum bisecting

diameter (or width), determined by the line segment L = K1 ∩ K2. Fix u ∈ L⊥ \ {0}, and let

t1 < 0 < t2 be such that K ∩ (tu + L) 6= ∅ when and only when t ∈ [t1, t2]. Moreover let Kt
1 =

K ∩ {su+ L : s ∈ [t1, t]} and Kt
2 = K ∩ {su+ L : s ∈ [t, t2]} for every t ∈ [t1, t2], so that K0

i = Ki,

i = 1, 2. In particular, we have that K ∩ (tiu+ L) ⊂ bd(K), i = 1, 2, and thus Kt2
1 = Kt1

2 = K.
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For i = 1, 2, let fi, gi : [t1, t2] → [0,D(K)] be such that f1(t) = D(Kt
1), f2(t) = D(Kt

2), and

g1(t) = w(Kt
1), g2(t) = w(Kt

2). By direct inclusion of sets, we have that f1 and g1 are non-

decreasing, whereas f2 and g2 are non-increasing. Moreover, these four functions are continuous,

with f1(t2) = D(K) = f2(t1) and g1(t2) = w(K) = g2(t1).

If f1(0) = f2(0) (resp., g1(0) = g2(0)), then {K1,K2} is a minimizing bisection with DB(K) =

D(K1) = D(K2) (resp., wB(K) = w(K1) = w(K2)), as desired. Otherwise, let us suppose without

loss of generality that f1(0) < f2(0) = D(K2) = DB(K) (resp., g1(0) < g2(0) = w(K2) = wB(K)).

Since

f1(t2) = D(K) ≥ D(Kt2
2 ) = f2(t2),

(resp., g1(t2) ≥ g2(t2)), Bolzano Theorem implies that there exists t0 ∈ [0, t2] such that f1(t0) =

f2(t0) (resp., g1(t0) = g2(t0)). By using the monotonicity of the functions, we have that

D(K1) = f1(0) ≤ f1(t0) = f2(t0) ≤ f2(0) = D(K2) = DB(K)

and

w(K1) = g1(0) ≤ g1(t0) = g2(t0) ≤ g2(0) = w(K2) = wB(K),

thus D(Kt0
1 ) = D(Kt0

2 ) ≤ DB(K) (resp., w(Kt0
1 ) = w(Kt0

2 ) ≤ wB(K)), and hence {Kt0
1 ,Kt0

2 } is a

minimizing bisection of K providing subsets of equal diameters (or widths), as desired. �

Remark 11. A minimizing bisection {K1,K2} with subsets of equal diameters as in Lemma 10

might be degenerate, that is, K1 or K2 might be a line segment. For instance, let T ∈ K2 be

an equilateral triangle of vertices pi, i = 1, 2, 3. Then {T , [p1, p2]} is a minimizing bisection with

DB(T ) = D(T ) = D([p1, p2]). This is not the case for the minimizing bisections with subsets of

equal width, which have to split any convex set into two non-degenerate subsets, since the width of

a line segment is 0.

3. The isodiametric inequality

In this section we will prove our Theorem 2, providing an isodiametric inequality for the maximum

bisecting diameter. As we will see, the proof is constructive, yielding the corresponding optimal set

taking into account the previous Lemma 12.

Lemma 12. There exists a maximizer K0 ∈ K2 of the quotient
A(K)

DB(K)2
, with DB(K0) provided by

a line segment [(−a, 0), (a, 0)], a > 0, such that K0 is symmetric with respect to the orthogonal line

L = {(x1, x2) ∈ R2 : x1 = 0}.

Proof. By continuity, there exists a maximizer K̃ ∈ K2 of A(K)/DB(K)2. By Lemma 8, we can

suppose without loss of generality that DB(K̃) is given by a bisection {K1,K2} of K̃, with K1 =

K̃∩H+, K2 = K̃∩H−, K1∩K2 = [(−a, 0), (a, 0)], for some a ∈ [0,D(K)/2], whereH+ = {(x1, x2) ∈
R2 : x2 ≥ 0} and H− = {(x1, x2) ∈ R2 : x2 ≤ 0}.

By applying Steiner symmetrization se2 with respect to the vertical line span(e2), we easily get

that se2(K̃) = se2(K1)∪se2(K2) and se2(K1)∩se2(K2) = [(−a, 0), (a, 0)]. Denoting byK0 := se2(K̃)

and K0,i := se2(Ki), we have by (14) that A(K0,i) = A(Ki) and D(K0,i) ≤ D(Ki), i = 1, 2, and so

A(K0) = A(K̃) and DB(K0) ≤ DB(K̃). Since K̃ is a maximizer of A(K)/DB(K)2, then necessarily

K0 is also a maximizer, which possesses the desired symmetry by construction. �
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Proof of Theorem 2. Let K̃ ∈ K2 be a maximizer of the isodiametric quotient A(K)/DB(K)2.

We will prove that there exists another convex set K0 whose quotient is strictly greater than

A(K̃)/DB(K̃)2 whenever K̃ is different from K0 (up to dilations and rigid motions, see Remark 4),

which implies that the maximizer must be precisely K0.

Let us suppose without loss of generality that {K1,K2} is a bisection of K̃ providing DB(K̃),

with K1 = K̃ ∩ H+, K2 = K̃ ∩ H−, K1 ∩K2 = [(−a, 0), (a, 0)], for some a ∈ [0,DB(K̃)/2], where

H+ = {(x1, x2) ∈ R2 : x2 ≥ 0} and H− = {(x1, x2) ∈ R2 : x2 ≤ 0}, being K̃ symmetric with respect

to the vertical line L = {x ∈ R2 : x1 = 0}, in view of Lemma 12. Moreover, we can also suppose by

Lemma 10 that D(K1) = D(K2) = DB(K̃).

Since K̃ is convex and compact, and (a, 0) ∈ bd(K̃), then there exists a supporting line M+

to K̃ at (a, 0). Due to the symmetry of K̃, the symmetric line of M+ with respect to L is also a

supporting line at (−a, 0), namely M−. By flipping the situation if necessary, we can suppose that

the slope of M+ is non-negative, and so M+ = {(x1, x2) ∈ R2 : x2 = m(x1 − a)}, for some m ≥ 0.

Additionally, call B± = B((±a, 0),DB(K̃)) the closed balls of centers (±a, 0) and radius DB(K̃).

Since D(Ki) = DB(K̃) and (±a, 0) ∈ Ki, it follows that Ki is necessarily contained in the symmetric

lens B+ ∩B−, for i = 1, 2.

Note that K2 is always contained in the triangle T determined by M+, M−, and the hor-

izontal line {(x1, x2) ∈ R2 : x2 = 0}. Then D(T ) = max{2a, d} ≥ D(K2) = DB(K̃), where

d = d((a, 0), (0,−ma)) = a
√
1 +m2. We will distinguish two possibilities.

If 2a > d, then 2a = D(T ) ≥ DB(K̃) (and so DB(K̃) = 2a). In this case, it is straightforward

checking that the area of B+ ∩B− equals DB(K̃)2
4π − 3

√
3

6
, and so

(15)
A(K̃)

DB(K̃)2
≤ A(B+ ∩B−)

DB(K̃)2
=

4π − 3
√
3

6
.

On the other hand, if 2a ≤ d, then d = D(T ) ≥ DB(K̃), which implies thatm ≥
√
DB(K̃)2 − a2/a.

Let us estimate the isodiametric quotient of K̃ in this case.

Let R(a,m) be the planar region contained between M+, M−, B+ and B−, with the dependance

on a and m explained above. Since K̃ ⊆ R(a,m), then A(K̃) ≤ A(R(a,m)). Moreover, let R(a,+∞)

be the planar region contained between B+, B− and the vertical lines passing through (±a, 0). Let us

check that A(R(a,m)) < A(R(a,+∞)), for every m ≥
√
DB(K̃)2 − a2/a (and 2a ≤ d). Due to the

symmetry of these regions, we can focus on the corresponding areas contained in {(x1, x2) ∈ R2 : x1 ≥
0}. The only region R1 (resp., R2) contained in R(a,m) (resp., R(a,+∞)) which is not in R(a,+∞)

(resp., R(a,m)) is the one contained between M+, (a, 0) + L, B−, and {(x1, x2) ∈ R
2 : x2 ≥ 0}

(resp., {(x1, x2) ∈ R2 : x2 ≤ 0}). It can be checked that the condition m ≥
√
DB(K̃)2 − a2/a

implies that the rotation centered at (a, 0) of angle π maps strictly R1 onto R2, and so A(R(a,m)) <

A(R(a,+∞)). Note also that the construction of R(a,+∞) implies that DB(R(a,+∞)) = DB(K̃)

(the bisection of R(a,+∞) given by the subsets R+ = R(a,+∞) ∩H+ and R− = R(a,+∞) ∩H−

satifies D(R+) = D(R−) = DB(K̃), see [MPS]).
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Let us now compute the maximum value for A(R(a,+∞))/DB(K̃)2, when a > 0. It is straight-

forward checking that

A(a) : = A(R(a,+∞)) = 4

∫ a

0

√
DB(K̃)2 − (x + a)2 dx

= 2

(
2a

√
DB(K̃)2 − 4a2 − a

√
DB(K̃)2 − a2 +DB(K̃)2 arctan

(
2a√

DB(K̃)2 − 4a2

)

−DB(K̃)2 arctan

(
a√

DB(K̃)2 − a2

))
.

For simplicity, call b = a/DB(K̃) (which corresponds to a normalization for having DB(K̃) equal to

1 by an appropriate dilation). Then, well-known properties of dilations gives

A(b) = 2

(
2b
√
1− 4b2 − b

√
1− b2 + arctan

(
2b√

1− 4b2

)
− arctan

(
b√

1− b2

))
,

which attains its maximum value (as a function on b) only at b = 1/
√
5, and so, for any b > 0,

A(b) ≤ A(1/
√
5) = 2

(
arctan 2− arctan

1

2

)
.

Thus
A(K̃)

DB(K̃)2
≤ A(R(a,+∞))

DB(K̃)2
≤ 2

(
arctan 2− arctan

1

2

)
,

which gives a bound greater than the one obtained in (15), yielding the desired inequality (3).

Moreover, equality above only holds for R(1/
√
5,+∞), which coincides with Q by definition. �

Remark 13. The reader will realize that the line segment [(−a, 0), (a, 0)] does not give a minimizing

bisection of R(a,m) above for some values of the parameters a,m. Indeed, in every step of the proof

of Theorem 2, we replace the set by another one with greater (or equal) area. This process starts

with K̃ and ends with Q = R(1/
√
5,+∞), and the corresponding horizontal line segment provides a

minimizing bisection for both sets, whereas in the middle of the process, that line segment does not

give necessarily a minimizing bisection of R(a,m) in general. For instance, for K = R(a,
√
3), with

DB(K) > 2a, the bisection determined by the line segment [(−a, 0), (a, 0)] is not minimizing, since

it can be improved by a different line segment (placed slightly above).

4. The isominwidth inequality

In this section we will consider the problem analogous to the one studied in Section 3, but for

the width functional. We will start proving that wB(K) = w(K)/2, for any K ∈ K2, by using the

following celebrated result by Bang on Tarski’s plank problem [Ba]: for K ∈ K2, and p, q ∈ bd(K),

let {K1,K2} be the bisection given by the line segment [p, q]. Then

(16) w(K1) + w(K2) ≥ w(K).

Lemma 14. Let K ∈ K2. Then wB(K) = w(K)/2.

Proof. Let L1, L2 be two parallel supporting lines of K such that d(L1, L2) = w(K), and let

u ∈ S
1 be an orthogonal vector to these lines. Consider p, q ∈ bd(K) such that [p, q] = K ∩ L,

where L is parallel to Li and lies at distance w(K)/2 from each line Li, i = 1, 2. Moreover, let

{K1,K2} be the bisection determined by the line segment [p, q]. Note that L and Li are supporting
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lines of Ki, for i = 1, 2, and so w(Ki) ≤ w(K)/2. Thus max{w(K1),w(K2)} ≤ w(K)/2, and

hence wB(K) ≤ w(K)/2. On the other hand, in view of Lemmas 8, 9 and 10, let {K̃1, K̃2} be

a minimizing bisection for the maximum bisecting width, given by a line segment and satisfying

wB(K) = w(K̃1) = w(K̃2). Then, (16) implies that w(K) ≤ w(K̃1) + w(K̃2) = 2wB(K), and so

wB(K) ≥ w(K)/2, yielding the desired equality. �

Now we are able to prove immediately the main result of this section, which is Theorem 3,

providing a sharp upper bound for wB.

Proof of Theorem 3. By Lemma 14 and Pal’s inequality (4) we directly have that

A(K)

wB(K)2
= 4

A(K)

w(K)2
≥ 4√

3
.

Moreover, in order to have equality, we must have equality in (4), hence implying that K is an

equilateral triangle. �

5. The Behrend-Bisecting position and the reverse isodiametric inequality

As commented in the Introduction, we will now focus on a reverse isodiametric inequality for

the maximum bisecting diameter. The following definitions and results arise mainly from the ideas

in [Beh]. For every K ∈ K2, let

DK := {u ∈ S
1 : ∃x ∈ K such that x+D(K)[0, u] ⊂ K}

be the set of diametrical directions of K (that is, the directions for which D(K) is attained). More-

over, we will say that u ∈ S1 is a bisector of K if u is the direction of a line segment providing a

minimizing bisection {K1,K2} of K with D(K1) = D(K2). We will denote by BK the set of bisectors

of K. Note that BK contains the directions which determine suitable minimizing bisections by line

segments for DB.

The next result establishes that the supremum in the definition of the Behrend-bisecting position

(8) is actually a maximum.

Lemma 15. Let K ∈ K2 with non-empty interior. Then there exists φ ∈ End(R2) such that φ(K)

is in Behrend-bisecting position.

Proof. After a suitable translation of K, we can suppose that rB2
2 ⊆ K for some r > 0. Let ρ > 0

be such that

ρ = sup
φ∈End(R2)

A(φ(K))

DB(φ(K))2
.

Since A and D2
B are homogeneous functionals of degree two, we can suppose without loss of generality

that | det(φ)| = 1 and

(17) inf
φ∈End(R2)

| det(φ)|=1

DB(φ(K)) =
1√
ρ
.

By definition of infimum, consider a sequence {φi}i∈N ⊂ End(R2) such that

DB(φi(K)) → 1√
ρ
when i → ∞.
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In particular, there exists C > 0 such that DB(φi(K)) ≤ C for every i ∈ N. Since (0, 0) ∈ φi(K) and

D(φi(K)) ≤ 2DB(φi(K)) ≤ 2C for all i ∈ N, then {φi(K)}i∈N is an absolutely bounded sequence

(since (0, 0) ∈ φi(K), we actually have that φi(K) ⊆ 2C B2
2). Hence the Blaschke Selection Theorem

[Sch, Th. 1.8.7] implies that there exists a subsequence (which will be denoted as the original one)

such that φi(K) → K0 when i → ∞, for some K0 ∈ K2. Let us furthermore observe that if

φi = (aijk)1≤j,k≤2 ∈ R2×2, since rB2
2 ⊆ K and φi(K) ⊆ 2C B2

2, then it is not difficult to check that

|aijk| ≤ 2C/r for every 1 ≤ j, k ≤ 2 and i ∈ N. Thus {φi}i∈N is bounded, and so there exists a

subsequence (which will be denoted again as the original one) such that φi → φ0 when i → ∞, for

some φ0 ∈ End(R2). Moreover, | det(φ0)| = 1, with φi(K) → K0 = φ0(K) when i → ∞. We will

now prove that DB(φ0(K)) = 1/
√
ρ, which will imply that φ0(K) is in Behrend-bisecting position,

as desired.

First of all, since each φi is linear and regular, we have that φi is bijective. Let ui ∈ Bφi(K), and

let xi ∈ K, µi > 0 be such that the line segment φi(xi) + µi[0, ui] ⊂ φi(K) provides a minimizing

bisection of φi(K), for each i ∈ N. Let φ(Ki
1), φ(K

i
2) be the subsets of that bisection, satisfying

DB(φi(K)) = D(φi(K
i
1)) = D(φi(K

i
2)) for every i ∈ N. Since φi is a bijection, we will have that

{Ki
1,K

i
2} is a bisection of K and moreover, we can consider yi ∈ K such that φi(yi) = φi(xi)+µi ui,

for every i ∈ N. Since {[xi, yi]}i∈N ⊂ K is again absolutely bounded, we can suppose that [xi, yi] →
[x0, y0], when i → ∞. Let {K0

1 ,K
0
2} be the bisection given by [x0, y0]. Since K

i
j → K0

j when i → ∞,

then φi(K
i
j) → φ0(K

0
j ) when i → ∞, for j = 1, 2. Therefore D(φ0(K

0
j )) = 1/

√
ρ, for j = 1, 2, and so

DB(K0) ≤ 1/
√
ρ. But if this inequality is strict, we get a contradiction with (17), so equality must

hold, which finishes the proof. �

The proof of the following characterization of the Behrend position for a convex set can be found

in [GMS] (equivalence (ii) was already proved by Behrend [Beh]).

Proposition 16. Let K ∈ K2. The following statements are equivalent.

(i) K is in Behrend position.

(ii) For every u ∈ S1, there exists v ∈ DK such that |uT v| ≤ 1/
√
2.

(ii’) For every u ∈ S1, there exists v ∈ DK such that |uT v| ≥ 1/
√
2.

(iii) There exist ui ∈ DK and λi ≥ 0, i = 1, 2, 3, such that

3∑

i=1

λi(ui u
T
i ) = I2, where I2 denotes

the identity matrix of degree two.

Next result establishes the analogous in Proposition 16 to (i) implies (ii) or (iii). We borrow most

of the ideas from the proof of [GMS, Lemma 3.2].

Lemma 17. Let K ∈ K2 be in Behrend-bisecting position. For every u ∈ S1 and every w ∈ BK ,

being {Kw
1 ,K

w
2 } the corresponding minimizing bisection of K, we have that

(i) there exists v ∈ DKw

1
∪DKw

2
such that |uT v| ≥ 1/

√
2, and

(ii) there exists v ∈ DKw

1
∪DKw

2
such that |uT v| ≤ 1/

√
2.

Proof. We start proving (i). Let us suppose that for every v ∈ DKw

1
∪ DKw

2
then |uT v| < 1/

√
2.

Hence every v ∈ DKw

1
∪DKw

2
has an angle θ with the line u⊥ satisfying

θ =
π

2
− arccos(uT v) = arcsin(uT v) < arcsin

1√
2
=

π

4
,
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and so cos2 θ > 1/2. More precisly, since K is compact (as well as Kw
i , for i = 1, 2), there exists

δ > 0 such that for every v ∈ DKw

1
∪DKw

2
making angle θ with respect to u⊥, we have

(18) cos2 θ >
1

2
(1 + δ).

After a suitable rotation of K, we can suppose that u = e1. For small ε > 0, consider the endomor-

phism of R2 determined by the matrix

Aε :=

(
1 0

0 1− ε

)
.

Using elementary trigonometry and calculus, we can see that the length of any line segment ℓ,

making angle θ with u⊥, varies under Aε according to the formula

(19) ||Aεℓ|| = ||ℓ||
√
1− 2 ε cos2 θ + ε2 cos2 θ = ||ℓ||(1− ε cos2 θ +O(ε2)).

Let K ′ = AεK and (Kw
i )

′ = AεK
w
i , for i = 1, 2 (since Aε is bijective, then {(Kw

1 )
′, (Kw

2 )
′} is a

bisection of K ′). As Aǫ is close to the identity matrix for small ε, and K, Kw
1 , K

w
2 are compact sets,

for every v′ ∈ D(Kw

1
)′ ∪ D(Kw

2
)′ with angle θ′ with u⊥ it is possible to choose δ′ > 0 small enough

such that

(20) cos2 θ′ >
1

2
(1 + δ′).

Let Aε(ℓ) be the line segment in K ′ with ||Aε(ℓ)|| = max{D((Kw
1 )′),D((Kw

2 )′)}, being ℓ the

corresponding line segment in K, with angle θ′′ with u⊥. Then, equation (20) implies that there

exists δ′′ such that

cos2 θ′′ >
1

2
(1 + δ′′),

since A−1
ε is also close to the identity matrix.

Thus, taking into account (19) and the fact that w ∈ BK , we have

DB(K
′) ≤ max{D((Kw

1 )′),D((Kw
2 )′)} = ||Aε(ℓ)||

= ||ℓ||(1 − ε cos2 θ +O(ε2)) ≤ max{D(Kw
1 ),D(Kw

2 )} (1− ε cos2 θ +O(ε2))

= DB(K) (1− ε cos2 θ +O(ε2)),

and so, since A(K ′) = A(AεK) = (1− ε)A(K), we conclude that

A(K ′)

DB(K ′)2
≥ A(K)

DB(K)2
1− ε

(1− ε cos2 θ′′ +O(ε2))2

≥ A(K)

DB(K)2
1− ε

1− 2 ε cos2 θ′′ +O(ε2)

>
A(K)

DB(K)2
1− ε

1− (1 + δ′′)ε+O(ε2)
>

A(K)

DB(K)2
,

for ε small enough, contradicting the fact that K is in Behrend-bisecting position.

On the other hand, (ii) follows directly from (i), since (ii) holds for u ∈ S1 if (i) holds for

u′ ∈ S1 ∩ u⊥ (and viceversa). �

Remark 18. In contrast with Proposition 16, the necessary condition in Lemma 17 for K to be

in Behrend-bisecting position is not sufficient. In order to clarify this, we will show a two-fold

counterexample. First, we will compute the minimizing bisection for the class of isosceles triangles
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whose different angle θ belongs to [0, π/3]. In particular, some of those triangles satisfy the thesis

of Lemma 17, but they have different isodiametric quotient and hence that thesis is not sufficient

for asserting that the set is in Behrend-bisecting position. Second, we will compute the isodiametric

quotient for the isosceles triangles whose different angle θ belongs to [π/3, π]. From both examples,

we find out that surprisingly the isosceles triangle with different angle equal to arccos(
√

2/3) (see

details below) is the only one maximizing the isodiametric quotient. Moreover, its isodiametric

quotient equals 4/(3
√
3). For the sake of completeness, we will also prove that the previous isosceles

triangle is the only triangle in Behrend-bisecting position (and thus not even the equilateral triangle

is in Behrend-bisecting position).

1. Let Kθ ∈ K2 be the isosceles triangle with different angle θ ∈ [0, π/3]. Let p1 be the vertex

of angle θ, and let p2, p3 be the other two vertices. Given any minimizing bisection {Kθ
1 ,K

θ
2} of

Kθ determined by a line segment, we can suppose that p1 ∈ Kθ
1 and p2, p3 ∈ Kθ

2 (otherwise, the

diameter of one of the subsets will be equal to D(Kθ), and so the bisection will not be minimizing).

By a suitable rescaling, we can suppose without loss of generality that p2 = (1, 0), p3 = (−1, 0), and

p1 = (0, tan((π−θ)/2)). The distance from qλ = (1−λ) p1+λ p2 to p1 equals λ
√

1 + tan((π − θ)/2)2,

whereas to p3 equals
√
(1 + λ)2 + (1− λ)2 tan((π − θ)/2)2. Since the bisection is minimizing, these

two distances must coincide, and so the value of λ must be equal to

λm = λm(θ) =
1 + tan(π−θ

2 )2

2
(
tan(π−θ

2 )2 − 1
) .

An analogous reasoning for the points of the edge p1 p3 yields that the only minimizing bisection by

a line segment is given by the horizontal segment

[(−λm, (1− λm) tan(
π − θ

2
)), (λm, (1− λm) tan(

π − θ

2
))].

In this case,

λm

(
± 1,− tan

(
π − θ

2

))
∈ DKθ

1

and

(
± (λm + 1), (1− λm) tan

(
π − θ

2

))
∈ DKθ

2

.

It can be checked that for θ ∈ [π/6, π/3], the triangles Kθ satisfy the thesis in Lemma 17, by a

direct analysis of the positions of the vectors of DKθ

1

∪DKθ

2

. However, not all of those triangles are

in Behrend-bisecting position. Note that the isodiametric quotient

A(Kθ)

DB(Kθ)2
=

tan(π−θ
2 )

λ2
m(1 + tan(π−θ

2 )2)
= 2 cos2(θ) sin(θ)

attains its maximum value in the interval [0, π/3] only when θ = θM = arccos(
√

2/3) (≈ 35.26◦)

with maximum value
A(KθM )

DB(KθM )2
=

4

3
√
3
.

2. Let Kθ ∈ K2 be the isosceles triangle with different (largest) angle θ ∈ [π/3, π]. Let p1 be the

vertex of angle θ, and let p2, p3 be the other two vertices. For any minimizing bisection {Kθ
1 ,K

θ
2}

of Kθ determined by a line segment, we can now suppose that p1, p2 ∈ Kθ
1 and that p3 ∈ Kθ

2 ,

and so d(p1, p2) ≤ DB(K
θ). In particular, if we consider the bisection given by the line segment

[p1, (1/2)(p2+p3)], then D(Kθ
1 ) = D(Kθ

2 ) = d(p1, p2), and so DB(K
θ) = d(p1, p2). Call a = d(p1, p2)

and b = d(p2, p3). Then, basic computations show that b = 2 a sin(θ/2) and

A(Kθ)

DB(Kθ)2
=

1
2 (2 a sin(

θ
2 ))
√
a2 − a2 sin( θ2 )

2

a2
= sin

(
θ

2

)
cos

(
θ

2

)
=

sin θ

2
,
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and hence
A(Kθ)

DB(Kθ)2
≤ A(K

π

2 )

DB(K
π

2 )2
=

1

2
,

which is smaller than the maximum value 4/(3
√
3) from the previous case.

3. Let K ∈ K2 be a general triangle. We can assume that K = conv{p1, p2, p3} for some pi ∈ R2,

i = 1, 2, 3, with D(K) = d(p1, p2). Let αi > 0 be the angle at vertex pi, for i = 1, 2, 3, with

α1 ≤ α2 ≤ α3. For any minimizing bisection {K1,K2} of K, we can suppose that p1 ∈ K1 and

that p2, p3 ∈ K2 (otherwise, the bisection will not be minimizing). Call qλ = (1 − λ)p1 + λp3, and

let λm ∈ [0, 1] be such that the distance d1 from qλm
to p1 is the same than to p2. Analogously,

consider rµ := (1 − µ)p1 + µp2, and let µm ∈ [0, 1] be such that the distance d2 from rµm
to p1 is

the same than to p3. In this case, and since the distance from p1 to p3 is not larger than to p2,

we clearly have that d1 ≥ d2, and hence the line segment with endpoints qλm
and rµm

provides a

minimizing bisection of K, with subsets K1 = conv{p1, qλm
, rµm

} and K2 = conv{p2, p3, qλm
, rµm

}
satisfying that D(K1) = D(K2) = d1. Let p′3 be the point in the ray from p1 to p3 which is at the

same distance from p1 than p2, and consider the isosceles triangle K ′ = conv{p1, p2, p′3}. Then we

clearly have that K ⊆ K ′. Moreover, the bisection minimizing the diameter of K ′ is given again by

the line segment with endpoints qλm
and (1 − λm)p1 + λmq2, with DB(K

′) = DB(K) = d1. Hence

A(K)

DB(K)2
≤ A(K ′)

DB(K ′)2
,

which implies that the isodiametric quotient of K is always maximized by the isodiametric quotient

of an isosceles triangle whose different angle is not larger than π/3 (because α1 ≤ π/3). Taking

into account the previous results (and the fact that any planar triangle can be obtained by applying

an appropriate endomorphism to K), we conclude that the unique triangle in Behrend-bisecting

position is the isosceles triangle with different angle equal to θM = arccos(
√

2/3).

In view of Remark 18, and taking into account the results from [Beh], it is natural to conjecture

the following optimal reverse isodiametric bisecting inequality.

Conjecture 19. Let K ∈ K2 be in Behrend-bisecting position. Then

A(K)

DB(K)2
≥ 4

3
√
3
,

with equality if and only if K is the isosceles triangle with different angle equal to arccos(
√
2/3).

The following proof is strongly inspired in the original proof of Behrend [Beh] for showing (6).

Corollary 20. Let K ∈ K2 be in Behrend-bisecting position. Given w ∈ BK , let {Kw
1 ,K

w
2 } be

the corresponding minimizing bisection of K. Then, there exist u1, u2 ∈ DKw

1
∪ DKw

2
such that

|uT
1 u2| ≤ 1/2.

Proof. By applying a proper rotation, we can assume that e1 ∈ DKw

1
∪ DKw

2
. Then, for e2 ∈ S1,

by Lemma 17 (i), there exists u = (cosα, sinα) ∈ DKw

1
∪ DKw

2
such that |eT2 u| ≥ 1/

√
2, which

implies that α ∈ [π/4, 3π/4]. We can assume that α ∈ [π/4, π/2], by reflecting K with respect to

span{e2} if necessary. If α ≥ π/3, then |eT1 u| ≤ 1/2, which proves the statement for u1 = e1 and

u2 = u. So assume that α < π/3, and note that, taking into account the previous argument, we can

suppose that (cosµ, sinµ) /∈ DKw

1
∪ DKw

2
for µ ∈ [π/3, 2π/3]. Consider the vector ũ = (cos(π/3 +

π/4), sin(π/3+π/4)) ∈ S1. Again by Lemma 17 (i), there exists v = (cos β, sinβ) ∈ DKw

1
∪DKw

2
such
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that |ũTv| ≥ 1/
√
2. This necessarily implies that 2π/3 < β ≤ π/3 + π/2 = 5π/6 < π. In particular,

the angle between u and v is at least 2π/3− π/3 = π/3 and at most 5π/6 − π/4 = 7π/12 < 2π/3,

and thus we have that |uTv| ≤ 1/2, as desired. �

We are now able to prove Theorem 5.

Proof of Theorem 5. Since K is in Behrend-bisecting position, for a given w ∈ BK , there exist

u1, u2 ∈ DKw

1
∪DKw

2
such that |uT

1 u2| ≤ 1/2, by Corollary 20, where {Kw
1 ,K

w
2 } is the corresponding

minimizing bisection. Since D(Kw
1 ) = D(Kw

2 ) = DB(K), there exist x1, x2 ∈ K such that x1 +

DB(K)[0, u1], x2 + DB(K)[0, u2] ⊂ K (observe that each of these segments is contained in Kw
1 or

Kw
2 ).

Now we use an argument from the proof of [GMS, Th. 3.4]. Since K is convex, then C :=

conv{x1 + DB(K)[0, u1], x2 + DB(K)[0, u2]} is contained in K, and so A(C) ≤ A(K). In this

situation, a result by Groemer [Gro] (see [BH, Th. 2]) states that A(C) is minimal if both segments

have a common point, and thus, straightforward computations give

A(K) ≥ A(C) ≥ A(conv{DB(K)[0, u1],DB(K)[0, u2]})

=
DB(K)2

2

√
1− (uT

1 u2)2 ≥
√
3

4
DB(K)2,

which completes the proof. �

5.1. The centrally symmetric case. As in [Beh], we will also focus on the centrally symmetric

case (considering always the origin as center of symmetry), pursuing an isodiametric inequality for

bisections in this setting. The following result was proven in [MPS].

Lemma 21. ([MPS, Prop. 4]) Let K ∈ K2 be centrally symmetric. Then there exists a minimizing

bisection {K1,K2} of K such that

• K1 ∩K2 = [−p, p], for some p ∈ bd(K).

• K1 = −K2.

The above Lemma 21 allows to obtain a necessary condition for a given centrally symmetric body

to be in Behrend-bisecting position.

Lemma 22. Let K ∈ K2 be centrally symmetric and in Behrend-bisecting position. For every

w ∈ BK with {Kw
1 ,−Kw

1 } as the corresponding minimizing bisection of K, we have that Kw
1 and

−Kw
1 are in Behrend position.

Proof. Since K is in Behrend-bisecting position and w ∈ BK , Lemma 17 (ii) implies that for every

u ∈ S1, there exists v ∈ DKw

1
∪D−Kw

1
= DKw

1
= D−Kw

1
, such that |uT v| ≤ 1/

√
2. By Proposition

16, we obtain that Kw
1 is in Behrend position, as well as −Kw

1 . �

We can now prove Theorem 6, which establishes an isodiametric inequality for bisections in the

centrally symmetric case.

Proof of Theorem 6. Let {K1,K2} be a minimizing bisection of K. We can suppose by Lemma 21

that K2 = −K1. As K is centrally symmetric and in Behrend-bisecting position, Lemma 22 yields
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that K1 (and also K2 = −K1) is in Behrend position. Thus (6) implies that

(21)
A(K)

DB(K)2
=

A(K1) + A(K2)

DB(K)2
=

A(K1)

D(K1)2
+

A(K2)

D(K2)2
≥

√
3

4
+

√
3

4
=

√
3

2
.

�

Remark 23. As we did in Remark 18, we will study the isodiametric quotient for the affine class of

the square, i.e., the parallelograms, in order to determine which of them are in Behrend-bisecting

position. We will find out that the only one in Behrend-bisecting position is the rectangle [−1, 1]×
[−2, 2] (up to dilations and rigid motions, see Remark 4). This means that the parallelogram

formed by two equilateral triangles touching in a common edge is not in Behrend-bisecting position,

which implies that the necessary condition in Lemma 22 is not sufficient (recall that the equilateral

triangles are in Behrend position). Moreover, this suggests that the inequality from Theorem 6 is

not sharp.

Let K ⊂ R2 be a parallelogram (which is centrally symmetric), and let [−p, p] be a line segment

determining a minimizing bisection {K1,K2} ofK, for some p ∈ bd(K). IfK is in Behrend-bisecting

position, then K1 (and K2 = −K1) is in Behrend position, by Lemma 22. We will distinguish two

possibilities:

1. Assume that p is a vertex of K. Then K1 and K2 are triangles. Since the only triangle in

Behrend position is the equilateral one, then the only candidate in this case is the parallelogram P

formed by two congruent equilateral triangles joined by a common edge, with isodiametric quotient

A(P )/DB(P )2 =
√
3/2, in view of (21).

2. Assume that p is not a vertex of K. Then K1 is a quadrangle with two parallel edges that

can be seen as K1 = conv{p1, p2, p3, p4}, where pi ∈ R2, i = 1, . . . , 4, which is in Behrend position.

Proposition 16 implies that there exist at least two different vectors v1, v2 ∈ DK1
, and so K1 contains

at least two different diametrical segments. Since K1 is a quadrangle with two parallel edges, then

necessarily one of the diagonals of K1, namely [p1, p3], is a diametrical segment. Denote by h1 (resp.

h2) the distance from p2 (resp. p4) to [p1, p3]. Then h1 + h2 ≤ d(p2, p4) ≤ D(K1), and

A(K1) =
1

2
D(K1) (h1 + h2) ≤

D(K1)
2

2
.

Since K2 = −K1, we will also have that A(K2) ≤ D(K2)
2/2. Then

A(K)

DB(K)2
=

A(K1) + A(K2)

DB(K)2
=

A(K1)

D(K1)2
+

A(K2)

D(K2)2
≤ 1

2
+

1

2
= 1.

Moreover, we have equality above if and only if h1 + h2 = D(K1). This is equivalent to the fact

that [p2, p4] is orthogonal to [p1, p3], i.e., when K1 (and thus K2) is a square. This implies that

K = K1 ∪K2 is a rectangle of the form [−1, 1]× [−2, 2].

Finally, since the isodiametric quotient of the parallelogram P (consisting of two joined equilateral

triangles) is equal to
√
3/2, whereas the corresponding one for the rectangle [−1, 1]× [−2, 2] equals

1, we conclude that the only parallelogram in Behrend-bisecting position is that rectangle.

The previous Remark 23 naturally leads us to the following conjecture.

Conjecture 24. Let K ∈ K2 be centrally symmetric and in Behrend-bisecting position. Then

A(K)

DB(K)2
≥ 1,
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with equality if and only if K = [−1, 1]× [−2, 2].

6. The isominwidth-bisecting position and the reverse isominwidth inequality

In this section we will establish a reverse isominwidth inequality, following the same scheme as

in Section 5. In order to obtain such an inequality, we will focus on the planar convex bodies in

isominwidth-bisecting position, defined by equality (12). Our first observation is that the infimum

in (12) is actually a minimum, and so for any given K ∈ K2 there exists an affine representative in

isominwidth-bisecting position (we will omit the proof of this fact since it is completely analogous

to Lemma 15). Notice also that wB(K) = w(K)/2 by Lemma 14, and so

min
φ∈End(R2)

A(φ(K))

wB(φ(K))2
= 4 min

φ∈End(R2)

A(φ(K))

w(φ(K))2
.

This allows us to obtain the following characterization for the isominwidth-bisecting position (see

[GMS, Th. 5.3] for other equivalences).

Corollary 25. Let K ∈ K2. The following statements are equivalent:

(i) K is in isominwidth-bisecting position.

(ii) K is in isominwidth optimal position.

Finally, we can prove Theorem 7.

Proof of Theorem 7. By Corollary 25, K is in isominwidth optimal position, and by using (11) we

conclude that
A(K)

wB(K)2
= 4

A(K)

w(K)2
≤ 4.

The equality case follows directly from the corresponding equality case in (11). �
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