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Abstract— This paper presents a CMOS implementation of a
layered CNN concurrent with 32x32 photosensors with locally
programmable integration time for adaptive image capture. The
network is arranged in two layers containing feedback and
control templates, inter-layer connections and programmable
ratio of time constants. There are also feedforward connections
to a third layer, which is faster, and devoted exclusively for
combining the outputs of the other two. A more robust and
linear multiplier block has been employed to reduce irregular
analog wave propagation ought to asymmetric synapses. Global
and local adaptation circuits are included on-chip. The predicted
computing power per power consumption, 240MOPS/mW, is
amongst the largest reported, what renders this kind of devices
as especially adequate for portable applications of artificial
vision.

Index Terms— Vision chips, CNN, parallel processing.

1. INTRODUCTION

For the most of us humans, vision is the dominant sensory
modality in the acquisition of information from the

environment. For this to be possible, nature has
developed one of the most efficient devices intended for
adaptive image capture and real-time image processing: the
retina [1]. Meanwhile, the struggle to bring artificial vision to
fairly inaccessible places continues. This is mainly ought to
the difficulties to handle extraordinary amount of data
contained in the visual stimuli with the help of conventional
microprocessors. Even if such data flow can be managed, it is
done at the expense of considerable physical profile and
energy consumption. This concern might not be a problem in
machine vision applications in industrial environments.
However, in applications like robotic vision [2], sensor
networks for ambient intelligence [3] or retinal prosthesis for
the blind [4], power efficient computation and the use of the
simplest and the least hardware possible are mandatory. Here
is where conventional digital processors, with a serial
processing scheme, fail to meet the specifications. As can be
seen in Fig. 1, general purpose processors are not very energy
efficient. DSP's and hardware accelerated processors perform
better, but the real boost in performance is obtained by the
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adaptation of the architecture to the nature of the stimuli. This
is quite common in biological sensory organs, that exploit the
high level of parallelism present in aggregates of neural cells.
In order to realize an efficient VLSI implementation of array
processing, analog and mixed-signal circuits represent a good
alternative. The number of operations per second in analog
chips has been calculated assuming peak performance is
during a convolution, what renders the formula in [7]:

OPsconv _ (Nadd + Nprod)Ncells (1)
z-conv(]v bits + 1) 1n2

Therefore, the number of OPS is the ratio between the total
number of additions and products realized in parallel in the
chip, and the time it takes to the chip to settle to the final
result of the convolution within the required accuracy. Back
to Fig. 1, using analog circuits at the elementary processing
units avoids A/D conversion at the pixel level, and, for
moderate accuracy requirements, they occupy less area and
consume less power than their digital counterparts.

In the following sections the CACE2 vision chip, the
details of the elementary processing unit, and the extended
features of the chip are explained.

II. CACE2 SYSTEM DESCRIPTION

The CACE2 system architecture is intended to be
implemented in single chip, constituting a complete vision
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system on a chip (VSoC). Its operation will be controlled by
an embedded microprocessor, the CACE2 MCU (Fig. 2). At
this point, this architecture has been implemented in 2 chips:
image capture and early vision tasks are realized by a
specialized peripheral, the CACE2 APAP, which is the chip
reported here, and an FPGA containing the CACE2 MCU.
The APAP consists in an analog/mixed-signal parallel array
processor of 32x32 cells. Each cell is equipped with
programmable spatio-temporal dynamics, local support for
analog and logic in-pixel arithmetic operations, local analog
and logic memories and a photosensor with extensions for
adaptive image capture (Fig. 3). It follows the architecture of
the CNN-UM [9]: an analog programmable array controlled
by signals common to all of them and stored in its internal
switch configuration registers (SCR’s). From the point of
view of the network topology, each cell incorporates two
nodes of a CNN, belonging to layers of different time
constants, and a third node for combining their outputs. This
network supports complex dynamic phenomena expressed by
a set of coupled reaction-diffusion equations [10].

In this first prototype of the system, the CACE2 MCU has
been implemented in a FPGA, together with the necessary
peripherals for booting up the system, program and data
storage and communication. The SCR’s of the APAP are
allocated within the address space of the MCU. The
programmability and control of the network dynamics, the
calibration and biasing of the analog and mixed-signal
building blocks, the adaptive image capture mechanisms, are
controlled by the MCU via the signals stored in the SCR’s.
Access to them is directed by the address bus (A-bus). The
access mode, either reading or writing, is indicated by the
control bus (C-bus). The data bus (D-bus) is employed for
sending or receiving parameters. Each SCR must be properly
updated to manage the intra- and inter-cell connectivity of the
processing elements, the sequences of signals that control the

array operation and the codes of the internally generated
analog references employed for mixed-signal circuits
operation. The array processor counts also with a secondary
data bus (8-bits wide) employed for image 1/0. This bus is
directly connected to the system memory via an access
controller (DMA) which is also activated by the MCU when
required by the software program.

III. CNN PROCESSING UNIT

The type of signal processing realized by the CACE2 APAP
is based on the dynamic evolution of a 3x32x32 CNN. This
behavior is described in terms of the input (uy), state (x;) and
output (y;) variables. Each layer, &, of the array follows the
evolution law expressed by:

T dx;’t(t) =—g[x, 0]+ 2[A, ®y,+B,, ®u,] +Zk @

The symbol ® stands for the linear convolution between the
feedback and feedforward templates, with the output and
input matrices of layer, n, where n can be 1, 2 or 3:
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where » is the neighbourhood radius. In this particular
implementation, t; and t, are comparable while t; is much
smaller than the others. If the full-signal-range CNN model is
employed [11], the output and state variables can be
identified. In this conditions, each matrix element in Eq. (3) is
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Fig. 2. Functional diagram of the CACE2 system
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Fig. 3. Conceptual diagram of the basic cell.

obtained from the multiplication of the state (or input)
variable by a programmable weight. These operators,
responsible for multiplying the state (or input) variable by a
programmable weight, are termed synapses or synaptic blocks
in this context. They are basically four quadrants multipliers
in which linearity with the state (or input) variable and a
symmetric characteristic are strongly desired. The effect of
varying the programmed weights is to modify the network
dynamics, and thus, changing the type of processing realized
by the array.
Continuing with the evolution law, there is a losses term:

m[x, (i, ) -1]+m, if x.(i,/)>1
mx, (i, /) it [x (<1 @

glx, (i /)] = lim i
mo[xk(iaj)+ 1]_mc

m,—>0

and the activation function, to generate the output:
N D | .. -
)= 0= il L G- )}

In both equations, m,. can be 0 or 1 for hard or sigmoidal type
nonlinearity, respectively.

The physical realization of the elementary processing unit
of the CNN starts with the selection of the appropriate format
for the representation of the signals. On one side, voltages
can be easily delivered to neighbouring areas by connecting
wires to high-impedance nodes. Therefore, input, output and
state variables are chosen to be represented by the matrices of
voltages V,, V, and V,, respectively. On the other side, signal
addition can be easily realized in the form of currents wired
together to a virtual ground. Hence, the summands in the
second member of Eq. (2) should be represented by currents.
And then, this sum of currents will be integrated in the state
capacitor to obtain the instantaneous value of the state
variable voltage:

N0

G =G IV, O+ 31G 1, BY,, 4Gy OV, I ()

As can be seen, the elements of the feedback and
feedforward templates, Ay (ij) and Byg(ij), are now
programmable linear transconductances, Gyy,(ij) and
G (ij), that multiplied by input and output voltages render
the neighbourhood contributions in the form of currents.
Thus, the synaptic block is a transconductor whose output
current is proportional, in the ideal case, to the product of the
state (or input) variable and the weight. The double
transformation implicit in Eq. (6), V-I and then I-V, allows
for a compact realization of the processing node, achieving
higher cell densities, meaning an array size of practical
interest and, besides, a tolerable fill factor.

The accuracy of these terms is very important to
accomplish a correct operation of the network, since the
synapse offsets, as well as every mismatch on ideally
symmetric weights, are integrated in the state capacitor.
Precisely, in the implementation of four-quadrant multipliers,
one of the common difficulties is to maintain the symmetry
with respect to the origin of the weights. A mismatch in
weights having the same absolute value but opposite signs
can modify the dynamic routes of the cells in the network,
ending in displaced equilibrium points, and thus, distorting
the prescribed processing. The main linearity concerns are
found in the V-I conversion, as linear current integration, and
thus I-V transformation, can be provided by available highly
linear double-poly capacitors. In this design, we have
employed a linearized OTA in order to generate the unitary
current contribution. Though the elementary transconductor
achieving V-I conversion has a larger number of transistors
than the single-transistor synapse in [12], advantages in the
linearity with the state (or input) variable and symmetry of
the V-I characteristic justify its use. In addition, the
supporting circuitry can be simplified resulting in a more
robust implementation finally without any area penalty.

The schematics in Fig. 4 represent the core of the
elementary dynamic processor. Operating in closed loop
(when the switch controlled by Loop' is on), it implements
the evolution law described by Eq. (6). The weighted V-I
conversion of the state voltage is carried at several stages.
The single-to-differential V-to-I conversion is realized by a
linearized transconductor (left-side of the schematics), these
current signals are replicated and scaled by several
programmable current mirrors to generate the contributions
towards the neighbors and itself (at the center and right sides)
and the current signals from the neighbors and self-feedback
are added and integrated in the state capacitor, when feedback
loop is closed (by the block at the center).

The transconductor responsible of transforming the state
capacitor voltage V, into a differential current is a source
degenerated differential pair with diode-connected loads. It is
based on a linearized OTA [13]. The operation of this circuit



)b (Y
o
*ﬁ Mli
¥p

iy
5,

VotV Vo

! w; \
MI2 | = |
Vpi
L Tout /
1 e )

~

Cs

sloqubleN

||H

sioqybleN
woi4
=
(=3
Z/
S/
g
)
i
|
|
|
\
-\

wep wey

\ m
e wey wiy Wiy Wi \ Vwdy Wy wdy
A )
N

oy

1

Fig. 4. Schematic of the linearized OTA and synaptic blocks

alone is inherently symmetric if working in fully-differential
mode, representing an enhancement from what have been
achieved by previous implementations. This symmetry
though is broken by using a single-ended input voltage, but
still the resulting V-I characteristic maintains symmetry levels
beyond those of other implementations. The benefits of a
differential representation were not significant to be worth
handling with double capacitor area and a complex signal
routing.

The implementation of the weights is based on geometrical
relations between transistors. This has the advantage of being
less influenced by process parameter variations both inter-
and intra-die. It has also the drawback of only permitting the
use of a discrete set of weight values, namely -4, -2, -1, 0, 1,
2 and 4. Opposite-sign contributions are obtained by crossing
the wires conveying the currents to the collecting nodes, thus,
achieving by architecture a symmetric operation.

Finally, the sum of all the currents coming from the
neighborhood is injected into the target state capacitor. But
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Fig. 5. Output current vs. state voltage of the OTA-based synapse.

before that, differential to single-ended current conversion is
realized with the help of a current mirror. It is important to
mention that the achievable output resistances using self-
biased or externally biased Cascode current mirrors are not
sufficient to ensure the necessary independence from the
output voltage. In other words, the resulting error in the
copied current, because of the finite output resistance of the
mirror, was beyond the predicted errors due to parameters
mismatch. Therefore, gain boosting of the Cascode devices is
needed to reduce this effect. The accuracy of the current
replication in this mirror is crucial for achieving the required
linearity and symmetry in the V-I characteristic. Also, we
have employed 0.5/2.0 transistors for the current mirrors,
ensuring enough matching.

As a result, the output current has a high linearity. The
transconductance relative error in large signal is kept below
0.7%. Concerning the symmetry of the characteristic, the
difference of the output currents corresponding to weights
with the same absolute value but opposite sign is zero on
average because offset cancellation, the standard deviation,
obtained by Monte Carlo simulation, being 2% of the
absolute value of the individual currents. Compared to
previous implementations, in terms of linearity of the V-I
characteristic of the multipliers, this circuit performs one
order of magnitude better for comparable area and power
consumption. This is not always required for the correct
operation, i. e. convergence of the network dynamics to the
correct equilibrium points, but decisive for linear diffusion.

Functional operation of the complete cell, including the
local memories and the switching tree that allows
communication with the outside of the array, has been
verified by simulation. A small network composed of 3x3
cells —actually a 5x5 network if the boundary cells are
considered— has been programmed to implement different
image processing templates. Fig. 6(a) displays the state



variables of the cells of the 3x3 network when programmed to
realize connected component detection in the horizontal
direction. From the simulations, it can be seen that the time
constant of the cells is designed to be under 100ns.

IV. EXTENDED CHIP FEATURES

A.  True resistive grid

One of the most useful tools for focal-plane image
processing is the diffusive propagation of the pixel values.
This is achieved by a Gaussian lowpass filter, which for a
discretized image grid, can be realized by the convolution of
the original image with a spatial mask. The evolution law
implemented at every node of the CNN can support this
diffusive dynamics by appropriately setting the correct
interconnection weights in the feedback template. The main
drawback of implementing this operator and others using
symmetric weights, in a VLSI structure designed for fully-
programmable CNN dynamics is mismatch in generating
current contributions. Because of the local computation of the
contributions to the neighborhood, the amount of current
being injected from cell C(i,/) into neighboring cell C(i+1,),
for instance, does not match in absolute value the current
being injected from cell C(i+1,5) back into the state capacitor
of cell C(i,j). The consequence of this is easy to derive, the
supposedly symmetric diffusion is converted into an unruled
propagation of the pixel values.

Special care has been put in counteracting the effects of
mismatch by design. This is, resizing the transistors in order
to avoid excessive deviation from the nominal in the
generation of the unitary current contributions. Apart from
this, the prototype chip includes a true resistive grid
concurrent with the CNN array. Each cell contains two
resistors, made of high-resistivity poly-Si, that can be
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connected to the state capacitor in order to form a rectangular
resistive grid. The time constant of this grid is between 0.2-
1.0ps, and it is not correlated to the CNN time constant,
neither can be controlled by the user. The operation of the
resistive network is illustrated in Fig. 6(b). Here the 3x3 array
of cells is programmed to evolve with null templates, using
only the grid of poly resistors. In less than 2ps, the state
voltages of all cells converge to the global average. This is
not fast, and it becomes worse when the size of the network
increases, but it is convenient from the point of view of the
control of the algorithm to count with a diffusion mechanism
that runs slower than the switch configuration updating
signals.

B. Adaptive image capture

Adaptive image capture in the CACE2 APAP is based in
the local and global control of the photosensors' gain.
Operating in photocurrent integration mode, the voltage
representing the value of the pixel depends on the integration
time, i. e. for the same power of the incident light over the
sensor surface, a larger integration time will allow the same
photogenerated current to discharge the sensing capacitance
for a longer time, resulting in a larger voltage excursion form
the reset value. In this chip, each pixel has a reset transistor
governed either by a global signal —automatic adaptation of
the integration time is off— or by a comparator driven by a
local reset control voltage and a global time-evolving
reference. The local support for this comparison is explained
in [14]. Its main function is to adapt the local gain of the
photosensor. As they are integrating sensors, this gain
adjustment is achieved via the adaptation of the local
integration time according to a locally derived voltage level.
In order to do that, the global reference will be an inverse
voltage ramp that is delivered to every sensor in the array.
When the inverse ramp crosses —with negative slope— the
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Fig. 6. Simulation of the evolution of a reduced (3x3) array with local memory update, offset cancellation and reset processes.



local threshold, the integration of the photocurrent starts. In
this way, the darker the pixel then the larger integration time
that will be allocated for that pixel for the next capture —the
algorithm relies in the correlation between the values for the
same pixel in different frames in a sequence.
Correspondingly, the brighter the pixel, the less time it will
have in the next capture.

Concerning the global adaptation mechanism, the inverse
ramp is centered in a predicted average integration time
value. Therefore, if the previous image capture resulted in an
over-exposed picture, the average voltage will be below the
middle point of the pixels’ voltage range. If the previous
image is under-exposed, the average voltage will be above
this point. The algorithm programmed into the chip corrects
the time extent of the ramp accordingly in order to have
smaller exposures for brightness saturated images and larger
exposures for extremely dark pictures. This is achieved by
comparing the average voltage of the pixels with upper and
lower thresholds. If the resulting average falls between these
thresholds, the only corrections introduced are due to local
adaptation. If the voltage falls above/below the upper/lower
limit, a digital circuit triggered by these comparators, corrects
the frequency division realized onto the systems master clock,
employed to generate the inverse ramp, in the proper sense.
This ends in a wider/narrower ramp shape until the average
pixel voltage falls between the two thresholds.

V. CHIP DATA AND CONCLUSIONS

The prototype chip has been designed and fabricated in a
CMOS 0.35um. The die size is 7.6mm x 7.6mm. Fig. 7
displays a microphotograph of the chip. Table I shows a
survey of chip data. These features are predicted from the
simulation results. The chip in now under test, in order to
confirm the expected performance.
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Fig. 7. Microphotograph of the CACE2 prototype.



