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a b s t r a c t

The Navier–Stokes-α equations belong to the family of LES (Large Eddy Simulation) models whose
fundamental idea is to capture the influence of the small scales on the large ones without computing all
the whole range present in the flow. The constant α is a regime flow parameter that has the dimension
of the smallest scale being resolvable by the model. Hence, when α = 0, one recovers the classical
Navier–Stokes equations for a flow of viscous, incompressible, Newtonian fluids. Furthermore, the
Navier–Stokes-α equations can also be interpreted as a regularization of the Navier–Stokes equations,
where α stands for the regularization parameter.

In this paper we first present the Navier–Stokes-α equations on bounded domains with no-slip
boundary conditions by means of the Leray regularization using the Helmholtz operator. Then we
study the problem of relating the behavior of the Galerkin approximations for the Navier–Stokes-α
equations to that of the solutions of the Navier–Stokes equations on bounded domains with no-slip
boundary conditions. The Galerkin method is undertaken by using the eigenfunctions associated with
the Stokes operator. We will derive local- and global-in-time error estimates measured in terms of
the regime parameter α and the eigenvalues. In particular, in order to obtain global-in-time error
estimates, we will work with the concept of stability for solutions of the Navier–Stokes equations in
terms of the L2 norm.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

LES models have rapidly emerged as successful turbulent mod-
ls for simulating dynamics of fluid flows at high Reynolds num-
ers (Re). These are widely used to solve intensive problems
n a great variety of application areas in natural and technical
ciences. The starting point is the physical fact that the larger
cales of turbulent flows contain most of the kinetic energy of the
ystem, which is transferred to smaller scales via the nonlinear
erm by an inertial and essentially inviscid mechanism. This pro-
ess continues creating smaller and smaller scales until forming
ddies in which the viscous dissipation of energy finally takes
lace. Therefore, the small-scale dynamics can sometimes have
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an influence on large-scale structures and hence affect the overall
behavior of a fluid flow in many physical phenomena. But com-
puting all of the degrees of freedom required to describe a flow in
its entirety at a high Reynolds number turns out to be impossible
to achieve due to considerable limitations in computing power.
It is conjectured by Kolmogorov’s scaling theory that the number
of degrees of freedom required by a direct numerical simulation
of the Navier–Stokes equations is of the order of Re

9
4 . This theory

assumes that the turbulent fluid flow is universal, isotropic and
statistically homogeneous for the small-scale structures at high
Reynolds numbers. LES approaches avoid such a situation by com-
puting large-scale turbulent structures in the fluid flow while the
effect of the small-scale ones are modeled. In the literature there
exist several ways of separating large scales from small ones.
Some examples are regularization techniques such as the Navier–
Stokes-α equations and closely related models [1–5], nonlinear
viscosity methods such as the Smagorinsky model [6], spectral
eddy-viscosity methods such as the Kraichnan model [7], and
sub-grid methods such as variational multi-scale models [8–10].

The emphasis of this work is focused on the Navier–Stokes-α
equations. They can be derived in three different ways.

(i) Firstly, these equations appeared as a generalization of

the Euler-α equations by adding an ad hoc viscous term
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[1–3] whose explicit form was motivated by physical ar-
guments in absence of boundaries. The Euler-α equations
were derived from Lagrangian averaging and asymptotic
expansions in Hamilton’s principle to the turbulence in the
flow being statistically homogeneous and isotropic [11,12].
The viscous term can be also derived from a stochastic
interpretation of the Lagrangian flow maps for domains
with boundary [13,14].

(ii) Secondly, the Navier–Stokes-α equations can be seen as
a Leray regularization of the Navier–Stokes equations by
using the Helmholtz operator [15]. In order to get the
resulting system of PDEs to be Galilean invariant, the con-
vective term must be written in its rotational form. On
the other hand, the property of being Galilean invariant
does not hold for other α-models such as the Leray-α
equations [15].
In general, the Leray regularization approach supplies sys-
tems of PDEs which are well-posed, as occurs with the
Navier–Stokes-α equations. That is, the fundamental math-
ematical questions of existence, uniqueness and stability
for the Navier–Stokes-α equations are known; in particular
uniqueness is even proved for three-dimensional domains.
Unfortunately, the uniqueness question of global-in-time
solutions of the three-dimensional Navier–Stokes equa-
tions has not been solved yet. This issue is intimately
related to the one of whether or not the Navier–Stokes
equations are a suitable model for turbulent fluids.

(iii) Finally, the Rivlin–Ericksen continuum theory of differ-
ential type gives similar models to the Navier–Stokes-α
equations for describing dynamics of a number of non-
Newtonian fluids (such as water solution of polymers).
These fluids are characterized because its stress-deformation
response does not depend only on the constitutively in-
determinate pressure and the stretching tensor but also
certain other kinematic tensors called the Rivlin–Ericksen
stress tensors. Among fluids of different type, one finds
the grade-n fluids whose stress tensor is a polynomial of
degree n in the first n Rivlin–Ericksen stress tensor. We
refer to [16–19] and the references therein for the deriva-
tion of the grade-n fluid equations and further physical
background on the continuum theory of differential type.
Surprisingly, the grade-two fluid equations resemble the
Navier–Stokes-α equations except for the viscous dissipa-
tion being weaker in the former [20,21]. It seems to be
that the grade-two fluid equations do not in fact provides
the correct dissipation for approximating turbulent phe-
nomena near the wall but instead they present the same
hyperstress as in the Navier–Stokes-α equations [13,14].
That is, the inviscid case of the grade-two fluid equations
coincides with the Euler-α equations.

A key property determining the long time behavior of many
volutionary partial differential equations is the dissipation of
nergy. In particular, dissipativity is central to the existence of
global attractor. The concept of the global attractor is closely

elated to that of turbulence. In a nutshell, the global attractor is
compact set in the phase space that absorbs all the trajectories
tarting from any bounded set after a certain time. Therefore,
he global attractor retains the long-time behavior of the whole
ynamics of the fluid flow. Unsurprisingly, the dimension of the
lobal attractor is related to the number of degrees of freedom
eeded to capture the smallest dissipative structures of the flow
ccording to Kolmogorov’s theory.
In this work we are interested in the properties of the Navier–

tokes-α equations in the limit as α approaches zero. In particu-
ar, we will study the properties of the Galerkin solutions of the
avier–Stokes-α equations and their relations with the solutions
 m

2

of the Navier–Stokes equations. The Galerkin approximation is
performed by using the eigenfunctions associated to the Stokes
operator. We will show local- and global-in-time error estimates3
in the L∞(0, T ; L2(Ω)) norm, for 0 < T < ∞ and T = ∞, between
the Galerkin approximation of the Navier–Stokes-α equations
and the solution of the Navier–Stokes equations in terms of the
eigenvalues and the parameter α. It is widely believed that global-
in-time error estimates should not hold without assuming any
additional property of the solution of the Navier–Stokes equa-
tions. Even if one assumes global-in-time bounds for the solution
being approximated, the best general error estimates predict an
asymptotically increasingly accurate approximation (growth) as
time goes to ∞. In order to avoid such an undesirable circum-
stance one must introduce the concept of stability for solutions of
the Navier–Stokes equations related to the decay of perturbations
at infinite. This way we will be able to prove that the Galerkin
solution approximates the exact solution uniformly in time, even
if such a solution reaches the global attractor, without losing
accuracy.

The remainder of this paper is organized as follows. We
present the Navier–Stokes-α equations on bounded domains with
no-slip boundary conditions by means of the Leray regularization
using the Helmholtz operator in Section 2. In Section 3, we
introduce some short-hand notation and cite some useful known
results. In Section 4, we give a brief overview of the mathematical
results presented in this paper. Section 5 studies local-in-time er-
ror estimates. This is broken into two subsections. In Section 5.1,
local-in-time a priori energy estimates are established for the
Galerkin approximations and for the solution to be approximated
of the Navier–Stokes equations as a consequence of passing to
the limit. Then Theorem 11 is proved in Section 5.2. Section 6
is devoted to demonstrating global-in-time error estimates. We
again broke this section into four subsections. In Section 6.1,
global-in-time a priori energy estimates for the Galerkin approx-
imations are showed. In Section 6.2 the notion of perturbations
in the L2(Ω) sense is introduced. Auxiliary results are presented
in Section 6.3. Then Theorem 12 is demonstrated in Section 6.4.
In Section 7 we end up with several concluding remarks.

2. The model

The Navier–Stokes equations for the flow of a viscous, incom-
pressible, Newtonian fluid can be written as{

∂tu − ν∆u + (u · ∇)u + ∇p = f in Ω × (0, T ),
∇ · u = 0 in Ω × (0, T ), (1)

with Ω being a bounded domain of Rd, d = 2 or 3, and with
0 < T < +∞ or T = +∞. Here u : Ω × (0, T ) → Rd represents
the incompressible fluid velocity and p : Ω × (0, T ) → R

represents the fluid pressure. Moreover, f is the external force
density which acts on the system, and ν > 0 is the kinematic
fluid viscosity.

These equations are supplemented by the no-slip boundary
condition

u = 0 on ∂Ω × (0, T ), (2)

and the initial condition

u(0) = u0 in Ω. (3)

Next we will present the Navier–Stokes-α equations on
bounded domains by using the Leray approach with the Helmholtz
regularization [15]. First of all, we write

(u · ∇)u = −u × (∇ × u) +
1
2
∇(u · u).

3 By abuse of nomenclature, we use local- and global-in-time estimates to
ake reference to estimates on [0, T ] for 0 < T < ∞ and T = ∞, respectively.



J.V. Gutiérrez-Santacreu and M.A. Rojas-Medar Physica D 448 (2023) 133724

T{

a

t
K
m
t
T
t

n
p
S

α

u
a
S
n
b
t
s
e
d
a

p
L
i
t
t
T
α

e
O

hen system (1) reads as

∂tu − ν∆u − u × (∇ × u) + ∇p′
= f in Ω × (0, T ),

∇ · u = 0 in Ω × (0, T ),

where p′
= p+

1
2∇(u ·u). Next we apply the Leray regularization

with the Helmholtz operator to find{
∂tu − ν∆u − v × (∇ × u) + ∇p′

= f in Ω × (0, T ),
∇ · u = 0 in Ω × (0, T ),

(4)

where v is defined as⎧⎨⎩ v − α2∆v + ∇π = u in Ω × (0, T ),
∇ · v = 0 in Ω × (0, T ),

v = 0 on ∂Ω × (0, T ),
(5)

with α > 0 being the regularization parameter.
In the definition of the pair (v, π ) we observe the first dif-

ference between the periodic and non-periodic case. For periodic
domains, this null-space of the Laplacian is only made of constant
functions; therefore, working in mean-free spaces, one finds that
π ≡ 0. Hence, the Stokes and Laplace operators do coincide, apart
from the domain of definition. Instead, for non-periodic domains,
the pseudo-pressure π is used to rule out a much wider class of
functions; so the Stokes and Laplace operators are different.

System (4)–(5) together with (2) and (3) is called the Cauchy
problem for the Navier–Stokes-α equations on boundary domains
with no-slip boundary conditions. It is clear that if one considers
α = 0, one recovers the Cauchy problem for the Navier–Stokes
equations.

One may rewrite (4) in terms of v only, by a direct substitution,
and so one finds the original Navier–Stokes-α system of PDEs:⎧⎨⎩∂t (v − α2∆v) − ν∆(v − α2∆v) − v

×(∇ × (v − α2∆v)) + ∇p′′
= f in Ω × (0, T ),

∇ · v = 0 in Ω × (0, T ),

(6)

where p′′
= p′

+ ∂tπ + ∆π . Observe that ∇ × ∇π = 0 have been
used.

In [1–3,22] system (6) was derived on domains that do not
have a boundary. For that reason, system (6) is typically studied
in the absence of boundary conditions (e.g. in the d-dimensional
torus Ω = Td or the whole space Ω = Rd). This sort of
domains are less physical interest but provide sometimes a con-
venient slightly simplified model which decouples the equations
from the boundary and makes easier somewhat the mathematical
analysis. But, boundaries are of importance in many engineering
applications.

A key reason that system (4)–(5) is preferred over system
(6) on bounded domains is the fact that system (6) needs to be
completed with an extra boundary condition for −∆u due to
the presence of the bi-Laplacian operator. At this point we need
to make two observations regarding such a boundary condition
because some care must be taken in choosing it. Introducing
a boundary condition for −∆u may lead to either the initial
boundary-value problem for (6) being ill-posed or phenomena
near the wall being unrealistic. For instance, one may consider
homogeneous Dirichlet boundary conditions for both v and ∆v,
i.e.,

v = 0 and − ∆v = 0 on ∂Ω × (0, T ). (7)

These boundary conditions give rise to an overdetermined prob-
lem [23] due to the incompressibility condition. It is well to
highlight, here, that the boundary conditions to be imposed for

(4) and (5) are u = v = 0 on ∂Ω × (0, T ) or equivalently

3

v = Av = 0 on ∂Ω × (0, T ), where A stands for the Stokes
operator. The reader is referred to [13,14] for a detailed discussion
of the boundary conditions for the Navier–Stokes-α equations on
bounded domains. It is important to observe that system (4)–(5)
is totally equivalent to the one presented in [13,14].

As discussed in Section 1, there is a connection between the
Navier–Stokes-α equations and the grade-two fluid equations,
which are (6) with −ν∆v rather than −ν∆(v − α2∆v), derived
from the continuum mechanical principle of material frame-
indifference [17]. In this context, the constant α is a material
parameter measuring the elastic response of the fluid. The sign
of α is determined by applying the Clausius–Duhem inequality
together with the fact that the free energy must have a stationary
point in equilibrium [18] so that the grade-two fluids are com-
patible with thermodynamics. We refer the reader to [19] for a
detailed discussion on the sign of α. In this case, there is no need
of any extra boundary condition for −∆u.

2.1. Previous works

Rautmann [24] initialized the study of error estimates for the
spectral Galerkin approximations of the Navier–Stokes equations.
His results were local in time since the bounds have no mean-
ing as time goes to infinity. Heywood [25] noted that further
assumptions were necessary in order to yield global-in-time error
estimates. This additional assumption concerns stability of the
solution of the Navier–Stokes equations. Heywood formulated
the stability condition in terms of the H1(Ω) norm and gave
global-in-time error estimates in the same norm. Later Salvi [26]
obtained global-in-time error estimates in the L2(Ω)-norm by
ssuming stability in the same norm.
Similar programs to that of this work were performed for

he density-dependent Navier–Stokes equations [27] and the
azhikhov–Smagulov equations [28]. Global-in-time error esti-
ates for the Galerkin approximations were derived in H1(Ω) for

he velocity under the assumption of stability in the H1(Ω) norm.
he density, in both models, plays an important role in defining
he concept of stability.

Foias et al. proved the global-in-time existence and unique-
ess of regular solutions to the Navier–Stokes-α equations with
eriodic boundary conditions in [29]. Later in [13] Marsden and
hkoller established the same results on domains with boundary.
The first convergence analysis between the Navier–Stokes-
and Navier–Stokes equations as α approaches to zero was

ndertaken in [29]. There it was established that there exists
subsequence for which the regular solutions of the Navier–

tokes-α equations converge strongly in the L2loc(0, ∞; L2(T3))
orm to a weak solution of the Navier–Stokes equations. On
ounded domains with homogeneous Dirichlet boundary condi-
ion, local and global convergences uniform in time in H1(Ω) from
econd grade fluids toward strong solutions of the Navier–Stokes
quations were shown in [30] by assuming some smallness con-
itions for initial data where some of them remain meaningless
s α goes to zero.
In these above-mentioned works no convergence rate was

rovided. In this sense, in [31], the convergence rate in the
1(0, T ; L2(T3)) norm was proved to be of order O(α) for small
nitial data in Besov-type function spaces in which global exis-
ence and uniqueness of solutions for the Navier–Stokes equa-
ions can be established. But this convergence rate deteriorates as
goes to ∞. In [32] the convergence rate of solutions of various
-regularization models to weak solutions of the Navier–Stokes
quations is given in the L∞(0, T ; L2(T2)) norm being of order of
(α(log 1

α
)
1
2 ). In addition to these results, error estimates for the

Galerkin approximation of the Leray-α equations were presented
in the L∞(0, T ; L2(T2)) norm being of order of O( 1 (log λ )

1
2 ),
λn+1 n+1
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nder the assumption α2λn+1 < 1, where λn+1 is the (n +

1)th eigenvalue of the Stokes operator. In particular, the relation
between the eigenvalue λn+1 and the regularization parameter α

means that the dimension of smaller scales, which is captured
by the Navier–Stokes-α equations, and the number of degrees
of freedom needed to compute the Galerkin approximations are
related. The situation would be more favorable if we could avoid
such a relation since one can independently approximate either
a solution of the Navier–Stokes equations or a solution of the
Navier–Stokes-α equations. This fact is connected with the reg-
ularity of the solution being approximated as we will see in this
work. As a result of improving such regularity, the logarithmic
factor is removed. In this direction, one can found in [33,34] more
recently that the convergence rate is of order O(α) and O(α

3
2 ),

espectively. It seems that the fact of not dealing with boundary
onditions is crucial in [34] so as to obtain superconvergence.
The existence of the global attractor for the Navier–Stokes-
equations, as well as estimates for the Hausdorff and fractal

imensions, in terms of the physical parameters of the equations,
ere established in [29]. Vishik et al. [35] proved the convergence
f the trajectory attractor of the Navier–Stokes-α equations to
he trajectory attractor of the three-dimensional Navier–Stokes
quations as α approaches zero.
Some algorithms [36,37] have been developed for dealing with

he numerical approximation of system (4)–(5). It seems that
mposing the divergence-free ∇·u = 0 in system (4)–(5) performs
etter in numerical experiments [36,38] than system (6).

.2. The contribution of this paper

Let us highlight the main contribution of this paper and how it
iffers from existing work. Principally we compare our work with
hose of [32–34].

(1) The framework in the present paper is that of the Navier–
Stokes equations on two-dimensional bounded domains
with non-slip boundary conditions. Here one finds the first
difference with the works of [32–34] which is carried out
on the two-dimensional torus with periodic boundary con-
ditions.

(2) We directly derive a local-in-time estimate for the error
uα
n −u in the L∞(0, T ; L2(Ω)) norm with uα

n and u being the
Galerkin approximation of the Navier–Stokes-α equations
and the solution to the Navier–Stokes equations, respec-
tively. Instead, in [32], this error estimate is obtained in
two steps. First, the convergence rate for u−uα is obtained
where uα is the solution to the Navier–Stokes-α equations.
Then the error estimate for uα

n − u is proved.
(3) Our local-in-time error estimate takes the form

∥uα
n (t) − u(t)∥2

≤ K (t)(λ
−

1
2

1 α2
+ λ

−
3
2

n+1),

with K being a function with exponential growth in time
and depending only on problem data. This error estimate is
only optimal with respect to the regularization parameter
α. In order for such error estimates to be optimal with
respect to λn+1, i.e.,

∥uα
n (t) − u(t)∥2

≤ K (t)(λ
−

1
2

1 α2
+ λ−2

n+1),

one needs to impose a better time regularity. See Section 7
for more details.
In [32], under the assumption α2λn+1 < 1, the local-in-
time error estimate is of the form

∥uα
n (t) − u(t)∥2

≤ 2(∥u(t) − uα(t)∥2
+ ∥uα(t) − uα

n (t)∥
2)

≤ K1(t)α2 log
1

+ K2(t)
1
2 log λn+1,
α λn+1

4

with K1 being a function with exponential growth in time
and depending only on problem data. This error estimate
result turns out to be suboptimal with respect to α and
λn+1. The relation between α and λn+1 avoids approximat-
ing independently either a solution of the Navier–Stokes-
α or the Navier–Stokes equations through the Galerkin
approximation uα

n . Furthermore, the above-mentioned im-
provement on the convergence rate being optimal is not
achieved in [32] with a better time regularity.

(4) It is clear that local-in-time error estimates are mean-
ingless for large time. For that reason, our second result
is a global-in-time error estimate which we prove with
the help of the stability of solutions of the Navier–Stokes
equations. As far as we are concerned, this sort of results
is the first time that are addressed in the literature for the
Navier–Stokes-α equations.

(5) It is not clear how to adapt the proofs of [33] on Td (d =

2 or 3) and those of [34] on T2 to the Navier–Stokes-
α equations for bounded domains, above all, because we
have a comparatively different framework. However we
get optimal convergence rate for α and furthermore our
proof has capacity to be considered in dimension 3 as
in [33]; see Section 7. It would be very interesting to
investigate if the results of [34] keep for bounded domains
with Dirichlet boundary conditions. Thus we would know
if the boundary conditions may affect the approximation
of turbulent fluid flows by the Navier–Stokes-α equations.
Another important issue is when they are discretized.

3. Notation and preliminaries

In this section we shall collect some standard notation and
preparatory results that will be used throughout this work.

(H1) Let Ω be a bounded domain of R2 whose boundary ∂Ω

is of class C2,1, i.e., the boundary ∂Ω has a finite covering
such that in each set of the covering the boundary ∂Ω is
described by an equation xN = F (x1, . . . , xN−1) in some
orthonormal basis, with F being a Hölder-continuous func-
tion of order 2 with exponent 1, and the domain Ω is on
one side of the boundary, say xN > F (x1, . . . , xN−1).

We denote by Lp(Ω), with 1 ≤ p ≤ ∞, and Hm(Ω), with
m ∈ N, the usual Lebesgue and Sobolev spaces on Ω provided
with the usual norm ∥ · ∥Lp(Ω) and ∥ · ∥Hm(Ω) with respect to
Lebesgue measure. In the L2(Ω) space, the inner product and
norm are denoted by (·, ·) and ∥ · ∥, respectively. Let C∞

0 (Ω) be
functions defined on Ω and having continuous derivatives of any
order with compact support in Ω . Boldfaced letters will be used
to denote vector spaces and their elements. We will use C , with or
without subscripts, to denote generic constants independent of all
problem data. Moreover, E and K stand for constants depending
on all problem data.

We now give several function spaces developed in the theory
of Navier–Stokes. Thus we denote as

ϑ = {v ∈ C∞

0 (Ω) : ∇ · v = 0 in Ω}.

Then the spaces H and V are the closure in the L2(Ω) and H1(Ω)
norm, respectively, characterized by

H = {u ∈ L2(Ω) : ∇ · u = 0 in Ω, u · n = 0 on ∂Ω},

V = {u ∈ H1(Ω) : ∇ · u = 0 in Ω, u = 0 on ∂Ω},

where n is the outward unit normal vector to ∂Ω . This charac-
terization is valid under (H1).

Let −∞ ≤ a < b ≤ +∞ and let X be a Banach space. Then
Lp(a, b; X) denotes the space of the equivalence class of Bochner-∫ b p
measurable, X-valued functions on (a, b) such that a ∥f (s)∥Xds <
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M
X

(

a

L

P
s

P
p

L

∥

M

∥

∥

∥

˜

a

for 1 ≤ p < ∞ or ess sups∈(a,b) ∥f (s)∥X < ∞ for p = ∞.
oreover, H1(a, b; X) is the space of the equivalence class of
-valued functions such that (

∫ b
a ∥f (s)∥2

X + ∥
d
ds f (s)∥

2
Xds)

1/2 < ∞.
We let P : L2(Ω) → H be the Helmholtz–Leray orthogonal

projection operator and let A : D(A) ⊂ H → H be the Stokes
operator defined as A = −P∆ where D(A) = V ∩ H2(Ω).

The next lemma is about the stability of the Helmholtz–Leray
operator. See [39, p. 18].

Lemma 1. For u ∈ H1(Ω), ∥Pu∥H1(Ω) ≤ ∥u∥H1(Ω).

The following two lemmas collect some properties of the
Stokes operator A. For a proof, see e.g. [40, Chapter 4].

Lemma 2. It follows that:

(i) The operator A is bijective, self-adjoint, and positive definite.
(ii) The operator A−1 is injective, self-adjoint, and compact in H .
(iii) There exist a set of eigenvalues {λn}

∞

n=1 and a basis of eigen-
functions {wn}

∞

n=1 satisfying

(a) Awn = λnwn with wn ∈ D(A) ∩ H2(Ω).
(b) 0 < λ1 < · · · ≤ λn ≤ λn+1 ≤ · · · .
(c) limn→∞ λn = ∞.
(d) There exists a constant C > 0 such that λn ≥ Cnλ1.

Let β > 0. Define the operator Aβ
: D(Aβ ) ⊂ H → H such that

Aβu =

∞∑
n=1

λβ
n (u, wn)wn,

where

D(Aβ ) = {u ∈ H;

∞∑
n=1

λ2β
n |(u, wn)|2 < ∞}.

Moreover, the space D(Aβ ) is endowed with the inner product

(Aβu, Aβv) =

∞∑
n=1

λ2βunvn,

where un = (u, wn) and vn = (v, wn), and the associated norm

∥Aβu∥
2

=

∞∑
n=1

λ2β
n |(u, wn)|2.

In particular, D(A1/2) = V and D(A) = H2(Ω) ∩ V hold.

Lemma 3. The set {wn}
∞

n=1 is an orthogonal basis of the spaces
H , D(A

1
2 ), D(A), and D(A

3
2 ) endowed with the inner products (·, ·),

A
1
2 ·, A

1
2 ·), (A·, A·), and (A

3
2 ·, A

3
2 ·), respectively.

It is well-known that the Stokes operator is a maximal mono-
tone operator. Its resolvent (I+α2A)−1 is well-defined for all α >

0 and satisfies some properties useful in further developments.
We state such properties as a lemma below. See [41, Chap. 5] for
a proof.

Lemma 4. It follows that:

(i) The operator (I + α2A)−1
: H → D(A) is bounded, linear and

self-adjoint with

∥(I + α2A)−1
∥L(H),D(A) ≤ 1. (8)

(ii) The operator A
1
2 (I + α2A)−1

: H → D(A
1
2 ) is linear and

bounded with

∥A
1
2 (I + α2A)−1

∥ 1 ≤ 1 (9)

L(H,D(A 2 )) B

5

and

∥(α2A)
1
2 (I + α2A)−1

∥L(H) ≤ 1. (10)

(iii) The operator (α2A)(I+α2A)−1
: H → H is linear and bounded

with

∥(α2A)(I + α2A)−1
∥L(H) ≤ 1. (11)

(iv) Furthermore, there holds

I − (I + α2A)−1
= α2A(I + α2A)−1

= α2(I + α2A)−1A. (12)

The next lemma provides equivalence of norms between ∥Aβ
·∥

nd ∥ · ∥Hm(Ω).

emma 5 (Poincaré). If u ∈ D(A
3
2 ), then

∥u∥ ≤ λ
−

1
2

1 ∥A
1
2 u∥ ≤ λ−1

1 ∥Au∥ ≤ λ
−

3
2

1 ∥A
3
2 u∥. (13)

where λ1 is the first eigenvalue of the Stokes operator.
Moreover, there exist two constants C1, C2 > 0 such that

C1∥A
1
2 u∥ ≤ ∥u∥H1(Ω) ≤ C2∥A

1
2 u∥ for all u ∈ D(A

1
2 ),

C1∥Au∥ ≤ ∥u∥H2(Ω) ≤ C2∥Au∥ for all u ∈ D(A),
C1∥A

3
2 u∥ ≤ ∥u∥H3(Ω) ≤ C2∥A

3
2 u∥ for all u ∈ D(A

3
2 ).

Let us define V n = span{w1, . . . ,wn} as the finite vector space
spanned by the first n ∈ N eigenfunctions associated to the Stokes
operator. Thus we consider Pn : H → V n to be the orthogonal
projection operator with respect to the L2(Ω) inner product and

⊥
n := I − Pn to be the projection onto V⊥

n , the L2(Ω) orthogonal
pace to V n.
The following lemma shows elementary properties for Pn and

⊥
n that will be used frequently. We refer the reader to [24] for a
roof.

emma 6. Given u ∈ H , it follows that

Pnu∥ ≤ ∥u∥. (14)

oreover, if u ∈ D(A
1
2 ), then

P⊥

n u∥
2

≤
1

λn+1
∥A

1
2 P⊥

n u∥
2, (15)

A
1
2 Pnu∥ ≤ ∥A

1
2 u∥. (16)

In addition, if u ∈ D(A), then

∥A
1
2 P⊥

n u∥
2

≤
1

λn+1
∥AP⊥

n u∥
2 and ∥P⊥

n u∥
2

≤
1

λ2
n+1

∥AP⊥

n u∥
2,

(17)

APnu∥ ≤ ∥Au∥. (18)

Let u, v ∈ ϑ. Then we define B(u, v) as

B(u, v) = P((u · ∇)v)

and B̃(u, v) as

B(u, v) = −P(u × (∇ × v)).

Using the fact that

(u · ∇)v + (∇u)Tv = −u × (∇ × v) + ∇(u · v)

nd applying the Helmholtz–Leray operator, we get the relation

⋆ ˜
(u, v) + B (u, v) = B(u, v), (19)
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here we have denoted B⋆(u, v) = P((∇u)Tv). Moreover, we have
the relation

(B⋆(u, v), w) = (B(w, v), u) (20)

for all u, v, w ∈ V .
Next we review some needed inequalities and continuity

properties of the operators B and B̃.

Lemma 7. The bilinear operator B is continued as follows. There
exists a constant C > 0 scale invariant such that

(i) For all u ∈ D(A
1
2 ), v ∈ D(A

1
2 ) and w ∈ D(A

1
2 ),

⟨B(u, v), w⟩
D(A−

1
2 ),D(A

1
2 )

≤ C∥u∥
1
2 ∥A

1
2 u∥

1
2 ∥A

1
2 v∥∥A

1
2 w∥

1
2 ∥w∥

1
2 .

(21)

(ii) For all u ∈ D(A
1
2 ), v ∈ D(A) and w ∈ H ,

(B(u, v), w) ≤ C∥u∥
1
2 ∥A

1
2 u∥

1
2 ∥A

1
2 v∥

1
2 ∥Av∥

1
2 ∥w∥. (22)

(iii) For all u ∈ H , v ∈ D(A
1
2 ), and w ∈ D(A),

⟨B(u, v), w⟩D(A−1),D(A) ≤ C∥u∥∥A
1
2 v∥∥w∥

1
2 ∥Aw∥

1
2 . (23)

(iv) For all u ∈ D(A), v ∈ D(A
1
2 ), and w ∈ H ,

(B(u, v), w) ≤ C∥u∥
1
2 ∥Au∥

1
2 ∥A

1
2 v∥∥w∥. (24)

(v) For all u ∈ H , v ∈ D(A
1
2 ), and w ∈ D(A

1
2 ),

⟨B(u, v), w⟩
D(A−

1
2 ),D(A

1
2 )

= −⟨B(u, w), v⟩
D(A−

1
2 ),D(A

1
2 )

. (25)

In particular,

⟨B(u, v), v⟩
D(A−

1
2 ),D(A

1
2 )

= 0. (26)

Lemma 8. The bilinear operator B̃ is continued as follows. There
exists a constant C > 0 scale invariant such that

(i) For all u ∈ D(A
1
2 ), v ∈ D(A), and w ∈ H ,

(̃B(u, v), w) ≤ C∥u∥
1
2 ∥A

1
2 u∥

1
2 ∥A

1
2 v∥

1
2 ∥Av∥

1
2 ∥w∥. (27)

(ii) For all u ∈ D(A
1
2 ), v ∈ D(A

1
2 ) and w ∈ D(A

1
2 ),

⟨̃B(u, v), w⟩
D(A−

1
2 ),D(A

1
2 )

≤ C∥u∥
1
2 ∥A

1
2 u∥

1
2 ∥A

1
2 v∥∥A

1
2 w∥

1
2 ∥w∥

1
2 .

(28)

(iii) For all u ∈ H and v ∈ D(A
1
2 ),

(̃B(u, v), u) = 0. (29)

emark 9. Gagliardo–Nirenberg’s inequality and Agmon’s in-
equality are used to prove the inequalities of Lemmas 7 and
8. In two-dimensional domains, these inequalities are scaling
invariant; therefore, the inequalities of Lemmas 7 and 8 inherit
the invariance property. See e.g. [29,39,40,42].

4. Statement of the results

Here we stay as a reference the hypotheses for u0 and f to be
sed throughout this work.

(H2) Assume u0 ∈ D(A) and f ∈ L∞(0, T ; L2(Ω)) for either
0 < T < ∞ or T = ∞.

ur first step is to modify (4)–(5) together with (2) and (3) in
rder to easily produce an equivalent problem without pressure.
 0

6

First we apply the Helmholtz–Leray projector P to (4) and (5).
Then we obtain the following functional evolution setting{ dv

dt
+ νAv + B̃(u, v) = Pf ,

u(0) = u0,
(30)

here we have defined v = (I + α2A)u.

emark 10. In the existing literature unknowns u and v in sys-
tem (4)–(5) are traditionally called v and u, respectively. There-
fore, from now on, observe that we have switched the role of u
and v in (4)–(5) together with (2) and (3). This way we keep the
notation of the previous papers and unify hypotheses on u0 being
the initial data for both (30) and (31).

Analogously, we apply the Helmholtz–Leray projector to (1)
together with (2) and (3) to have{ du

dt
+ νAu + B(u, u) = Pf ,

u(0) = u0.
(31)

Next, we begin by defining the Galerkin approximation to
(30) for which we can easily prove existence of solutions and
for which we can also show a priori energy estimates that are
independent of the regularization parameter α. In order to do
this, we use the basis of the eigenfunctions wi, j ∈ N, for the
Stokes operator A. For every n ∈ N, we define the nth Galerkin
approximation

uα
n =

n∑
i=1

ani (t)wi

satisfying{ dvα
n

dt
+ νAvα

n + PñB(uα
n , v

α
n ) = Pnf ,

uα
n (0) = Pnu0,

(32)

here we have defined vα
n = (I + α2A)uα

n .
The existence of a solution uα

n to (32) on an interval [0, Tα,n)
ollows from Carathéodory’s theorem. Then a priori estimates
how that the solution exists according to the case t ∈ [0, T ]

r [0, +∞). The uniqueness of the solution to (32) is stan-
ard; namely, it follows by comparing to different solutions. The
moothness of the solution depends on how smooth is f ; in
articular, one can prove that uα

n ∈ H1(0, T ;V n) under (H2).
Initially, we will derive local-in-time error estimates appropri-

te on [0, T ]. Later, we will show how these can be combined to
rovide error estimates that are globally defined on [0, +∞).

heorem 11. Let T > 0 be fixed. Assume that (H1) and (H2) hold.
et u be the solution to (31), and let uα

n be the solution to (32) on
[0, T ]. Then there exists K > 0 such that

sup
0≤t≤T

[
∥uα

n (t) − u(t)∥2
+

∫ t

0
∥A

1
2 (uα

n (s) − u(s))∥2ds
]

≤ K (λ
−

1
2

1 α2
+ λ

−
3
2

n+1),

where K = K (u0, f , ν, T , Ω), and λn+1 is the (n + 1)th eigenvalue
of the Stokes operator A.

Theorem 12. Let T = ∞. Assume that (H1), (H2) and (H3) (below)
old. Let u be the solution to (31), and let uα

n be the solution to (32)
n [0, +∞). Then there exist K∞ > 0, n0 ∈ N, and α0 > 0 such
hat

sup ∥uα
n (t) − u(t)∥2

≤ K∞ (λ
−

1
2

1 α2
+ λ

−
3
2

n+1)

≤t<∞
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∥

olds provided that n ≥ n0 and α ≤ α0, where K∞ = K∞(u0, f , ν,

Ω), and λn+1 is the (n + 1)th eigenvalue of the Stokes operator A.

5. Local-in-time error estimates

In this section we will first establish local-in-time a priori
energy estimates for the Galerkin approximations uα

n to problem
(32) independent of the regularization parameter α and the di-
mension n of V n. Then, we will be ready to pass to the limit
to obtain a strong solution of the Navier–Stokes equations (31),
which will inherit the a priori energy estimates from the Galerkin
approximations for α = 0. Finally, we will use both a priori
energy estimates to derive local-in-time estimates for the error
uα
n − u in the L∞(0, T ;H) and L2(0, T ;D(A

1
2 )) norm regarding the

egularization parameter α and the eigenvalues λn+1 of the Stokes
perator A.

.1. Local a priori energy estimates

emma 13 (First Energy Estimates for uα
n ). Let T > 0 be fixed. There

exists a constant E1 = E1(u0, f , ν, T , Ω, α) such that the Galerkin
pproximation uα

n defined by problem (32) satisfies

sup
0≤t≤T

[
∥uα

n (t)∥
2
+ α2

∥A
1
2 uα

n (t)∥
2

+ν

∫ t

0
(∥A

1
2 uα

n (s)∥
2
+ α2

∥Auα
n (s)∥

2)ds
]

≤ E1. (33)

roof. Take the L2(Ω)-inner product of (32)1 with uα
n to get

1
2

d
dt

(∥uα
n∥

2
+ α2

∥A
1
2 uα

n∥
2) + ν(∥A

1
2 uα

n∥
2
+ α2

∥Auα
n∥

2) = (f , uα
n ),

here we have used (29). Thus, applying Schwarz’ inequality,
oincaré’s inequality (13) and Young’s inequality subsequently to
f , uα

n ), one accomplishes

1
2

d
dt

(∥uα
n∥

2
+ α2

∥A
1
2 uα

n∥
2) + ν(∥A

1
2 uα

n∥
2
+ α2

∥Auα
n∥

2)

≤
1

2νλ1
∥f ∥2

+
ν

2
∥A

1
2 uα

n∥
2. (34)

inally, integrating over (0, t), for any t ∈ [0, T ], one obtains

∥uα
n (t)∥

2
+ α2

∥A
1
2 uα

n (t)∥
2
+ ν

∫ t

0
(∥A

1
2 uα

n (s)∥
2
+ α2

∥Auα
n (s)∥

2)ds

≤ ∥u0∥
2
+ α2

∥A
1
2 u0∥

2
+

1
νλ1

∫ T

0
∥f (s)∥2ds := E1. □

Lemma 14 (Second energy estimates for uα
n ). Let T > 0 be fixed.

There exists a positive constant E2 = E2(u0, f , ν, T , Ω, α) such that
the Galerkin approximation uα

n defined by problem (32) satisfies

sup
0≤t≤T

[
∥A

1
2 uα

n (t)∥
2
+ α2

∥Auα
n (t)∥

2

+ν

∫ t

0
(∥Auα

n (s)∥
2
+ α2

∥A
3
2 uα

n (s)∥
2)ds

]
≤ E2. (35)

roof. Take the L2(Ω) inner product of (32)1 with Auα
n to obtain

1
2

d
dt

(∥A1/2uα
n∥

2
+ α2

∥Auα
n∥

2) + ν(∥Auα
n∥

2
+ α2

∥A
3
2 uα

n∥
3)

= (f , Auα
n ) − (̃B(uα

n , v
α
n ), Auα

n ).
(36)

We shall begin by estimating the term (f , Auα
n ). Thus, by Schwarz’

and Young’s inequalities, we have

(f , Auα) ≤ ∥f ∥∥Auα
∥ ≤

C
∥f ∥2

+
ν
∥Auα

∥
2.
n n ν 6 n

7

ow the relation vα
n = uα

n + α2Auα
n allows us to write the term

(̃B(uα
n , v

α
n ), Auα

n ) as:

(̃B(uα
n , v

α
n ), Auα

n ) = (̃B(uα
n , uα

n ), Auα
n ) + α2 (̃B(uα

n , Auα
n ), Auα

n )
:= D1 + D2.

We now combine estimate (27) with Young’s inequality to yield

D1 ≤
C
ν3 ∥uα

n∥
2
∥A

1
2 uα

n∥
4
+

ν

6
∥Auα

n∥
2

≤
C
ν3 E1∥A

1
2 uα

n∥
2(∥A

1
2 uα

n∥
2
+ α2

∥Auα
n∥

2)

+
ν

6
(∥Auα

n∥
2
+ α2

∥A
3
2 uα

n∥
2).

In a similar fashion, but using estimate (28), it follows the esti-
mate for D2:

D2 ≤
Cα2

ν3 ∥uα
n∥

2
∥A

1
2 uα

n∥
2
∥Auα

n∥
2
+

ν

6
α2

∥A
3
2 uα

n∥
2

≤
C
ν3 E1∥A

1
2 uα

n∥
2(∥A

1
2 uα

n∥
2
+ α2

∥Auα
n∥

2)

+
ν

6
(∥Auα

n∥
2
+ α2

∥A
3
2 uα

n∥
2).

Putting all this together into (36) gives

d
dt

(∥A
1
2 uα

n∥
2
+ α2

∥Auα
n∥

2) + ν(∥Auα
n∥

2
+ α2

∥A
3
2 uα

n∥
2)

≤
C
ν3 E1∥A

1
2 uα

n∥
2(∥A

1
2 uα

n∥
2
+ α2

∥Auα
n∥

2) +
C
ν

∥f ∥2.

(37)

Finally, Grönwall’s inequality leads to

∥A
1
2 uα

n (t)∥
2
+ α2

∥Auα
n (t)∥

2
+ ν

∫ t

0
(∥Auα

n (s)∥
2
+ α2

∥A
3
2 uα

n (s)∥
2)ds

≤ e
C
ν4

E21

{
∥A

1
2 u0∥

2
+ α2

∥Au0∥
2
+

C
ν

∫ T

0
∥f (s)∥2ds

}
:= E2,

or all t ∈ [0, T ]. □

emma 15. Let T > 0 be fixed. There exists a positive constant
3 = E3(u0, f , ν, T , Ω, α) such that the Galerkin approximation uα

n
efined by problem (32) satisfies∫ T

0
∥
d
dt

uα
n (t)∥

2dt ≤ E3. (38)

roof. Applying the operator (I + α2A)−1 to (32)1, we write

duα
n

dt
= −νAuα

n − (I + α2A)−1PñB(uα
n , v

α
n )

+ (I + α2A)−1Pnf .

Thus, we have

∥
duα

n

dt
∥
2

≤ Cν2
∥Auα

n∥
2
+ C∥(I + α2A)−1PñB(uα

n , v
α
n )∥

2

+ C∥(I + α2A)−1Pnf ∥2.

It is clear from (35) that

2
∫ T

0
∥Auα

n (s)∥
2ds ≤ νE2

rom (8) and (14), we have

(I + α2A)−1PñB(uα
n , v

α
n )∥

2

≤ ∥PñB(uα
n , v

α
n )∥

2
≤ ∥uα

n × (∇ × vα
n )∥

2

≤ ∥uα
n∥

2
L4(Ω)

∥A
1
2 vα

n∥
2
L4(Ω)

≤ C∥uα
n∥∥A

1
2 uα

n∥∥A
1
2 vα

n∥∥Avα
n∥

α
1

α
1

α 2 α α 2 3
α

≤ ∥un∥∥A 2 un∥(∥A 2 un∥ + α ∥Aun∥)(∥Aun∥ + α ∥A 2 un∥).
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sing Schwarz’ inequality and integrating over [0, T ] gives∫ T

0
∥PñB(uα

n (s), v
α
n (s))∥

2 ds

≤
1
ν2

∫ T

0
∥uα

n (s)∥
2
∥A

1
2 uα

n (s)∥
2(∥A

1
2 uα

n (s)∥
2
+ α2

∥Auα
n (s)∥

2) ds

+ν2
∫ T

0
(∥Auα

n (s)∥
2
+ α2

∥A
3
2 uα

n (s)∥
2)ds

≤ E2(
1
ν2 E1E2T + ν).

Moreover, we have∫ T

0
∥(I + α2A)−1Pnf (s)∥ds ≤

∫ T

0
∥f (s)∥2 ds.

Therefore,∫ T

0
∥
d
dt

uα
n (s)∥

2ds ≤ E2(
1
ν2 E1E2T + 2ν) + ∥f ∥2

L2(0,T ;L2(Ω)) := E3. □

The bound (35) on the sequence {uα
n }α,n allows us to prove that

here exist a subsequence {uαj
nj } and a function u such that

uαj
nj → u weakly-⋆ in L∞(0, T ;D(A

1
2 )),

uαj
nj → u weakly in L2(0, T ;D(A)),

and, by a compactness result of the Aubin–Lions type together
with (38), such that

uαj
nj → u strongly in L2(0, T ;D(A

1
2 )),

ith (αj, nj) → (0, ∞) as j → ∞, where u is a strong solution of
he Navier–Stokes equations. The passage to the limit is routine.
his convergence is discussed in detail by Foias et al. in [29] for
eak solutions.
The strong solution u to the Navier–Stokes equations (31)

inherits the bounds (33) and (35) for α = 0 due to the lower
semi-continuity of the L∞(0, T ;H) and L2(0, T ;D(A

1
2 )) norms.

ee [29] for a proof in the three-dimension case.

heorem 16. Let T > 0 be fixed. There exist two positive constants
E1 = Ẽ1(u0, f , ν, T , Ω) and Ẽ2 = Ẽ2(u0, f , ν, T , Ω), which are E1
and E2 with α = 0, respectively, such that the unique solution u to
problem (31) satisfies

sup
0≤t≤T

[
∥u(t)∥2

+ ν

∫ t

0
∥A

1
2 u(s)∥2ds

]
≤ Ẽ1

and

sup
0≤t≤T

[
∥A

1
2 u(t)∥2

+ ν

∫ t

0
∥Au(s)∥2ds

]
≤ Ẽ2.

5.2. Proof of Theorem 11

We split the error u−uα
n into to two parts, en = u−ηn = P⊥

n u,
where ηn = Pnu, and zα

n = uα
n − ηn. Thus u − uα

n = en − zα
n .

The next result concerns the error estimates for en.

Lemma 17. Let T > 0 be fixed. There exists a positive constant
K1 = K1(u0, f , ν, Ω) such that

sup
0≤t≤T

∥en(t)∥2
≤ K1λ

−
3
2

n+1. (39)

roof. Applying P⊥
n to (31), we get

d
en + νAen = −P⊥B(u, u) + P⊥f . (40)
dt n n

8

Next, take the L2(Ω)-inner product of (40) with en to obtain

1
2

d
dt

∥en∥2
+ ν∥A

1
2 en∥2

= −(P⊥

n B(u, u), en) + (f , en). (41)

et us bound the right-hand side of (41). Making use of (15) and
21), we estimate

(P⊥
n B(u, u), en) ≤ C∥u∥

1
2 ∥A

1
2 u∥

3
2 ∥en∥

1
2 ∥A

1
2 en∥

1
2

≤ C∥u∥
1
2 ∥A

1
2 u∥

3
2 λ

−
1
4

n+1∥A
1
2 en∥

≤
C
ν

λ
−

1
2

n+1∥u∥∥A
1
2 u∥

3
+

ν

4
∥A

1
2 en∥2

≤
C
ν

λ
−

1
2

1 λ
−

1
2

n+1̃E
2
2 +

ν

4
∥A

1
2 en∥2,

where we have used (13) in the last line. Also,

(f , en) ≤ ∥f ∥∥en∥ ≤ λ
−

1
2

n+1∥f ∥∥A
1
2 en∥ ≤

C
ν

λ−1
n+1∥f ∥

2
+

ν

4
∥A

1
2 en∥2.

hus we achieve the following differential inequality:

d
dt

∥en∥2
+ ν∥A

1
2 en∥2

≤
C
ν

λ
−

1
2

1 λ
−

1
2

n+1̃E
2
2 +

C
ν

λ−1
n+1∥f ∥

2.

Taking advantage of (15), we get

d
dt

∥en∥2
+ νλn+1∥en∥2

≤
C
ν

λ
−

1
2

1 λ
−

1
2

n+1̃E
2
2 +

C
ν

λ−1
n+1∥f ∥

2.

Therefore,

d
dt

(eνλn+1t∥en∥2) ≤
C
ν
eνλn+1tλ

−
1
2

1 λ
−

1
2

n+1̃E
2
2 +

C
ν
eνλn+1tλ−1

n+1∥f ∥
2.

Integrating over (0, t), for any t ∈ [0, T ], we find

∥en(t)∥2
≤ e−νλn+1t∥en(0)∥2

+
C
ν

∫ t

0
e−νλn+1(t−s)(λ

−
1
2

1 λ
−

1
2

n+1̃E
2
2

+λ−1
n+1∥f (s)∥

2)ds

≤ ∥en(0)∥2
+

C
ν2 λ

−
3
2

n+1

{
λ

−
1
2

1 Ẽ2
2

+λ
−

1
2

n+1∥f ∥
2
L∞(0,T ;L2(Ω))

}
.

Finally, from (17), we have ∥en(0)∥2
≤ Cλ−2

n+1∥Au0∥
2. Hence, we

see that

∥en(t)∥2
≤ C

{
λ

−
1
2

n+1∥Au0∥
2
+

1
ν2 (λ

−
1
2

1 Ẽ2
2

+λ
−

1
2

n+1∥f ∥
2
L∞(0,T ;L2(Ω)))

}
λ

−
3
2

n+1

:= K1λ
−

3
2

n+1.

□ (42)

For the error zα
n = uα

n − ηn, we write its own equation.

emma 18. Let 0 < T < ∞. There holds

dzα
n

dt
+ νAzα

n = −PnB(u, zα
n ) − PnB(zα

n , u) − PnB(zα
n , zα

n )

+ PnB(zα
n , en) + PnB(en, zα

n )
+ PnB(u, en) + PnB(en, ηn)
+ (I + α2A)−1Pn(B(uα

n , uα
n ) − B(uα

n , v
α
n ))

− ((I + α2A)−1
− I)PnB(uα

n , uα
n )

+ (I + α2A)−1PnB⋆(uα
n , v

α
n )

+ ((I + α2A)−1
− I)Pnf .

(43)
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w
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O
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I

roof. We first apply the operator (I + α2A)−1 to (32)1 to obtain

duα
n

dt
+ νAuα

n = −(I + α2A)−1Pn(B(uα
n , v

α
n ) + B⋆(uα

n , v
α
n ))

+ (I + α2A)−1Pnf ,

(44)

where we have used the relation (19).
Next observe that ηn = Pnu satisfies

d
dt

ηn + νAηn = −PnB(u, u) + Pnf . (45)

This is readily seen by applying the finite-dimensional Helmholtz–
Leray operator Pn to (31). Subtracting (45) from (44) gives

dzα
n

dt
+ νAzα

n = PnB(u, u) − (I + α2A)−1PnB(uα
n , v

α
n )

+ (I + α2A)−1PnB⋆(uα
n , v

α
n )

+ ((I + α2A)−1
− I)Pnf .

(46)

Splitting the right-hand side of (46), with the idea of avoiding
using uα

n as

PnB(u, u) = PnB(u, u) ± PnB(uα
n , u) ± PnB(uα

n , uα
n )

= PnB(u − uα
n , u) + PnB(uα

n , u − uα
n ) + PnB(uα

n , uα
n )

= PnB(en − zα
n , u) + PnB(uα

n , en − zα
n ) + PnB(uα

n , uα
n )

= −PnB(u, zα
n ) − PnB(zα

n , u) − PnB(zα
n , zα

n )
+ PnB(zα

n , en) + PnB(en, zα
n ) + PnB(u, en)

+ PnB(en, ηn) + PnB(uα
n , uα

n ),

we obtain (43); thus concluding the proof. □

Now we are prepared to prove the local-in-time error estimate
announced in Theorem 11. Taking the L2(Ω) inner product of (43)
with zα

n , we get

1
2

d
dt

∥zα
n∥

2
+ ν∥A

1
2 zα

n∥
2

= −(B(u, zα
n ), zα

n )

− (B(zα
n , u), zα

n ) − (B(zα
n , z

α
h ), z

α
n ) + (B(zα

n , en), zα
n )

− (B(en, zα
n ), zα

n ) + (B(u, en), zα
n ) − (B(en, ηn), zα

n )
+ ((I + α2A)−1Pn(B(uα

n , uα
n ) − B(uα

n , v
α
n )), zα

n )
− (((I + α2A)−1

− I)PnB(uα
n , uα

n ), zα
n )

+ ((I + α2A)−1PnB⋆(uα
n , (I + α2A)uα

n ), zα
n )

+ (((I + α2A)−1
− I)Pnf , zα

n )

:=

11∑
i=1

Ji.

(47)

The right-hand side of (47) will be handled separately. It is
lear that Ji = 0, for i = 1, 3, 5, from (26). Let ε be a positive
onstant (to be adjusted below). The skew-symmetric property
25) of B combined with (13) and (23) gives

J2 = (B(zα
n , zα

n ), u) ≤ C∥zα
n∥∥A

1
2 zα

n∥∥u∥
1
2 ∥Au∥

1
2

≤
Cε

ν
∥u∥∥Au∥∥zα

n∥
2
+ νε∥A

1
2 zα

n∥
2

≤
Cε

ν
λ−1
1 ∥Au∥

2
∥zα

n∥
2
+ νε∥A

1
2 zα

n∥
2

nd

J4 = −(B(zα
n , zα

n ), en) ≤ ∥zα
n∥∥A

1
2 zα

n∥∥en∥
1
2 ∥Aen∥

1
2

≤
Cε

ν
∥u∥∥Au∥∥zα

n∥
2
+ νε∥A

1
2 zα

n∥
2

≤
Cε

λ−1
∥Au∥

2
∥zα

∥
2
+ νε∥A

1
2 zα

∥
2,
ν 1 n n

9

where we have also used (14) and (18) for bounding ∥en∥ ≤ 2∥u∥

nd ∥Aen∥ ≤ 2∥Au∥ in J4. Now, combining successively (25), (21),
(17), (18), and (13), we get

J6 = −(B(u, zα
n ), en) ≤ C∥u∥

1
2 ∥A

1
2 u∥

1
2 ∥A

1
2 zα

n∥∥en∥
1
2 ∥A

1
2 en∥

1
2

≤ C∥u∥
1
2 ∥A

1
2 u∥

1
2 ∥A

1
2 zα

n∥λ
−

3
4

n+1∥Au∥

≤ Cλ
−

1
4

1 ∥A
1
2 u∥∥A

1
2 zα

n∥λ
−

3
4

n+1∥Au∥

≤
Cε

ν
Ẽ2λ

−
1
2

1 λ
−

3
2

n+1∥Au∥
2
+ εν∥A

1
2 zα

n∥
2.

Analogous to J6, we have that J7 can be estimated as:

J7 = −(B(en, zα
n ), ηn) ≤ C∥en∥

1
2 ∥A

1
2 en∥

1
2 ∥A

1
2 zα

n∥∥ηn∥
1
2 ∥A

1
2 ηn∥

1
2

≤
Cε

ν
Ẽ2λ

−
1
2

1 λ
−

3
2

n+1∥Au∥
2
+ εν∥A

1
2 zα

n∥
2,

here we have also used (14) and (16) for bounding ∥ηn∥ ≤ ∥u∥

nd ∥A
1
2 ηn∥ ≤ ∥A

1
2 u∥. From the fact that (I + α2A)−1 is a self-

adjoint operator and in view of the definition of vα
n = (I+α2A)uα

n ,
e write
J8 = −α2(B(uα

n , Auα
n ), (I + α2A)−1zα

n )
= α2(B(uα

n , (I + α2A)−1zα
n ), Auα

n ),

here in the last line we have utilized (25). Thus, in virtue of (24),
9), and (13), we get

J8 ≤ Cα2
∥uα

n∥
1
2 ∥Auα

n∥
1
2 ∥A

1
2 (I + α2A)−1zα

n∥∥Auα
n∥

≤ Cα2
∥uα

n∥
1
2 ∥Auα

n∥
3
2 ∥A

1
2 zα

n∥

≤
Cε

ν
E2λ

−
1
2

1 α3
∥Auα

n∥
2
+ εν∥A

1
2 zα

n∥
2.

n order to estimate J9, we use identity (12) to obtain

J9 = α2(A(I + α2A)−1PnB(uα
n , uα

n ), zα
n )

= α2(B(uα
n , uα

n ), Pn(I + α2A)−1Azα
n )

= α2(B(uα
n , uα

n ), (I + α2A)−1Azα
n )

= α((α2A)
1
2 (I + α2A)−1B(uα

n , uα
n ), A

1
2 zα

n ).

bserve that we have applied that A(I + α2A)−1 is an adjoint
perator and neglected Pn since (I + α2A)−1Azα

n belongs to V n.
ow, from (10) and (13), we have

J9 ≤ α∥(α2A)
1
2 (I + αA)−1B(uα

n , uα
n )∥∥A

1
2 zα

n∥

≤ α∥B(uα
n , uα

n )∥∥A
1
2 zα

n∥

≤ α∥uα
n∥L∞(Ω)∥A

1
2 uα

n∥∥A
1
2 zα

n∥

≤ α∥uα
n∥

1
2 ∥Auα

n∥
1
2 ∥A

1
2 uα

n∥∥A
1
2 zα

n∥

≤
Cε

ν
E2λ−1

1 α2
∥Auα

n∥
2
+ εν∥A

1
2 zα

n∥
2.

It follows from (20) and (26) that

J10 = ((B⋆(uα
n , (I + α2A)uα

n ) − B⋆(uα
n , uα

n )), (I + α2A)−1zα
n )

= α2(B⋆(uα
n , Auα

n )), (I + α2A)−1zα
n )

= α2(B((I + α2A)−1zα
n , Auα

n ), uα
n )

= −α2(B((I + α2A)−1zα
n , uα

n ), Auα
n ).

ext, thanks to (22), (8), (9) and (13), we find that

10 ≤ α2
∥(I + α2A)−1zα

n∥
1
2 ∥A

1
2 (I + α2A)−1zα

n∥
1
2 ∥A

1
2 uα

n∥
1
2 ∥Auα

n∥
3
2

≤
Cε

ν
E2λ

−
1
2

1 α3
∥Auα

n∥
2
+ εν∥A

1
2 zα

n∥
2.

t is readily to bound J11 as

J11 = α2(A(I + α2A)−1Pnf , zα
n )

= α((α2A)
1
2 (I + α2A)−1Pnf , A

1
2 zα

n )

≤ α∥Pnf ∥∥A
1
2 zα

∥ ≤
Cε

α2
∥f ∥2

+ εν∥A
1
2 zα

∥
2.
n ν n
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ν

w

P

ollecting all the above estimates and choosing ε appropriately,
e have
d
dt

∥zα
n∥

2
+ ν∥A

1
2 zα

n∥
2

≤
C
ν

λ−1
1 ∥Au∥

2
∥zα

n∥
2
+

C
ν
Ẽ2λ

−
1
2

1 λ
−

3
2

n+1∥Au∥
2

+
C
ν
E2λ

−
1
2

1 α3
∥Auα

n∥
2
+

C
ν
E2λ−1

1 α2
∥Auα

n∥
2

+
C
ν

α2
∥f ∥2.

Equivalently,

d
dt

∥zα
n∥

2
+ ν∥A

1
2 zα

n∥
2

≤
C
ν

λ−1
1 ∥Au∥

2
∥zα

n∥
2
+

C
ν
(λ

−
1
2

1 α2
+ λ

−
3
2

n+1)
[
λ

−
1
2

1 Ẽ2∥Au∥
2

+E2(λ
−

1
2

1 + α)∥Auα
n∥

2
+ λ

1
2
1 ∥f ∥2

]
(48)

Applying Grönwall’s inequality yields, on noting Theorem 16,
hat

zα
n (t)∥

2
+ν

∫ t

0
∥A

1
2 zα

n (s)∥
2ds ≤

C
ν
e

C
ν2

λ−1
1 Ẽ2 (λ

−
1
2

1 α2
+ λ

−
3
2

n+1)×

×

[
λ

−
1
2

1 Ẽ2

∫ T

0
∥Au(s)∥2ds + E2(λ

−
1
2

1 + α)

×

∫ T

0
∥Auα

n (s)∥
2ds + λ

1
2
1

∫ T

0
∥f (s)∥2ds

]
:= K2(λ

−
1
2

1 α2
+ λ

−
3
2

n+1),

where we have used the fact that zα
n (0) = 0. To conclude the

proof of Theorem 11, we combine the above estimate and (39)
with the triangle inequality and choose K = max{K1, K2}.

6. Global-in-time error estimates

Without further assumptions on the solution u to the Navier–
Stokes equations (31), global-in-time error estimates cannot be
asserted. Therefore, to go further, we need to introduce the con-
cept of the L2(Ω) stability for solutions of the Navier–Stokes
equations. This stability condition deals with the behavior of
perturbations of u; namely, the difference between neighboring
solutions must decay as time goes to infinity. Once we know that
the solution u is stable in the sense of the L2(Ω) norm, we will
be able to obtain global-in-time estimates for the error u− uα

n in
the L∞(0, ∞;H) norm concerning the regularization parameter α

and the eigenvalue λn+1 of the Stokes operator A. In doing so, we
will first prove global-in-time a priori energy estimates.

6.1. Global a priori energy estimates

Lemma 19 (First Energy Estimates For uα
n ). Let T = ∞. There exists

a positive constant E1,∞ = E1,∞(u0, f , ν, T , Ω, α) such that the
alerkin approximation uα

n defined by problem (32) satisfies

sup
0≤t<∞

[
∥uα

n (t)∥
2
+ α2

∥A
1
2 uα

n (t)∥
2
]

≤ E1,∞. (49)

urthermore, we have, for 0 ≤ t0 ≤ t,∫ t

(∥A
1
2 uα

n (s)∥
2
+ α2

∥Auα
n (s)∥

2)ds ≤ E1,∞(1 + νλ1(t − t0)). (50)

t0

10
Proof. To start with, we take advantage of (34) to get

d
dt

(∥uα
n∥

2
+ α2

∥A
1
2 uα

n∥
2) + ν(∥A

1
2 uα

n∥
2
+ α2

∥Auα
n∥

2) ≤
1

νλ1
∥f ∥2.

(51)

y Poincaré’s inequality (13), we find that

d
dt

(∥uα
n∥

2
+ α2

∥uα
n∥

2) + νλ1(∥uα
n∥

2
+ ∥A

1
2 uα

n∥
2) ≤

1
νλ1

∥f ∥2.

Multiplying by eνλ1t gives

d
dt

[eνλ1t (∥uα
n∥

2
+ α2

∥A
1
2 uα

n∥
2)] ≤ eνλ1t

1
νλ1

∥f ∥2.

Upon integration, we obtain

∥uα
n (t)∥

2
+ α2

∥A
1
2 uα

n (t)∥
2

≤ e−νλ1t (∥u0∥
2
+ α2

∥A
1
2 u0∥

2)

+
1

νλ1
∥f ∥2

L∞(0,∞;L2(Ω))

∫ t

0
e−νλ1(t−s)ds

≤ e−νλ1t (∥u0∥
2
+ α2

∥A
1
2 u0∥

2)

+
1

ν2λ2
1
(1 − e−νλ1t )∥f ∥2

L∞(0,∞;L2(Ω)).

Thus we have

∥uα
n (t)∥

2
+ α2

∥A
1
2 uα

n (t)∥
2

≤ ∥u0∥
2
+ α2

∥A
1
2 u0∥

2

+
1

ν2λ2
1
∥f ∥2

L∞(0,∞;L2(Ω)) := E1,∞.

It remains to prove (50). Let us integrate (51) over (t0, t) to obtain

∥uα
n (t)∥

2
+ α2

∥A
1
2 uα

n (t)∥
2
+ ν

∫ t

t0

(∥A
1
2 uα

n (s)∥
2
+ α2

∥Auα
n (s)∥

2)ds

≤ ∥uα
n (t0)∥

2
+ α2

∥A
1
2 uα

n (t0)∥
2
+

1
νλ1

∫ t

t0

∥f (s)∥2ds

≤ E1,∞ +
1

νλ1
∥f ∥2

L∞(0,∞;L2(Ω))(t − t0)

≤ E1,∞(1 + νλ1(t − t0)).

Therefore,

ν

∫ t

t0

(∥A
1
2 uα

n (s)∥
2
+ α2

∥Auα
n (s)∥

2)ds ≤ E1,∞(1 + νλ1(t − t0)).

t completes the proof. □

emma 20 (Second Energy Estimates For uα
n ). Let T = ∞. There

xists a positive constant E2,∞ = E2,∞(u0, f , ν, T , Ω, α) such that
he Galerkin approximation uα

n defined by problem (32) satisfies

sup
0≤t<∞

[
∥A

1
2 uα

n (t)∥
2
+ α∥Auα

n (t)∥
2
]

≤ E2,∞. (52)

urthermore, we have, for all 0 ≤ t0 ≤ t,∫ t

t0

(∥Auα
n (s)∥

2
+ α2

∥A
3
2 uα

n (s)∥
2)ds ≤ E2,∞(1 + E3,∞(t − t0))

+
C
ν

∥f ∥2
L∞(0,∞;L2(Ω))(t − t0), (53)

here E3,∞ = E3,∞(u0, f , ν, Ω, α).

roof. Firstly, we must drop the term ∥Auα
n∥

2
+ α2

∥A
3
2 uα

n∥
2

from 20, with E instead of E . Secondly, we apply Grönwall’s
1,∞ 1



J.V. Gutiérrez-Santacreu and M.A. Rojas-Medar Physica D 448 (2023) 133724

i

∥

f

w
h
(
c

a

ν

a

u

t

L
a
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C˜

p
T

f

a
t
i
c

u

R
s
i
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nequality to it, for t − t∗ ≤ s ≤ t , with t∗ < t fixed, to find

A
1
2 uα

n (t)∥
2
+ α2

∥Auα
n (t)∥

2
≤ e

C
ν4

E21,∞(1+νλ1t∗)
×

×

{
∥A

1
2 uα

n (s)∥
2
+ α2

∥Auα
n (s)∥

2
+

C
ν

∥f ∥2
L∞(0,∞;L2(Ω))t

∗

}
,

where we have used (50). Finally, we integrate with respect to s,
or t − t∗ ≤ s ≤ t , to get

∥A
1
2 uα

n (t)∥
2
+ α2

∥Auα
n (t)∥

2
≤ e

C
ν4

E21,∞(1+νλ1t∗)
×

×

{
1
t∗

∫ t

t−t∗
(∥A

1
2 uα

n (s)∥
2
+ α2

∥Auα
n (s)∥

2)ds

+
C
ν

∥f ∥2
L∞(0,∞;L2(Ω))t

∗

}
≤ e

C
ν4

E21,∞(1+νλ1t∗)
{

1
t∗

E1,∞(1 + λνt∗)

+
C
ν

∥f ∥2
L∞(0,∞;L2(Ω))t

∗

}
:= E2,∞,

here we have again used (50). Therefore, we have that (52)
olds for t > t∗. To fill the gap for [0, t∗], we take into account
35) and select t∗ small enough such that E2 ≤ E2,∞, which is, of
ourse, always possible.
In order to obtain estimate (53), we integrate 20 over (t0, t)

nd use (49) and (52). Thus, we get∫ t

t0

(∥Auα
n (s)∥

2
+ α2

∥A
3
2 uα

n (s)∥
2)ds

≤
C
ν3 E1,∞E2

2,∞(t − t0) +
C
ν

∥f ∥2
L∞(0,∞;L2(Ω))(t − t0) + E2,∞.

≤ E2,∞(1 + E3,∞(t − t0)) +
C
ν

∥f ∥2
L∞(0,∞;L2(Ω))(t − t0),

where we have denoted

E3,∞ :=
C
ν3 E1,∞E2,∞. □

Using Lemma 4.1 in [27], the following corollary is derived.

Corollary 21. Let T = ∞. There exists a constant E4,∞ =

E4,∞(u0, f , ν, T , Ω, α) such that the Galerkin approximation uα
n

defined by problem (32) satisfies

e−t
∫ t

t0

es∥Auα
n (s)∥

2ds ≤ E4,∞,

for all 0 ≤ t0 ≤ t.

Analogous to the case 0 < T < ∞, one can show that there
exist a subsequence {uαj

nj } and a function u such that

uαj
nj → u weakly-⋆ in L∞

loc(0, ∞;D(A
1
2 )),

uαj
nj → u weakly in L2loc(0, ∞;D(A)),

nd, by a compactness result of the Aubin–Lions type, such that

αj
nj → u strongly in L2loc(0, ∞;D(A

1
2 )),

with (αj, nj) → (0, ∞) as j → ∞, where u is a strong solution of
he Navier–Stokes equations.

emma 22 (Second Energy Estimates For u). Let T = ∞. There exists
constant Ẽ = Ẽ (u , f , ν, T , Ω), which is E with α = 0,
2,∞ 2,∞ 0 2,∞

11
uch that the unique solution u to problem (31) satisfies

sup
0≤t<∞

∥A
1
2 u(t)∥2

≤ Ẽ2,∞. (54)

Furthermore, we have, for all 0 ≤ t0 ≤ t,

ν

∫ t

t0

∥Au(s)∥2ds ≤ Ẽ2,∞(1+Ẽ3,∞(t−t0))+
C
ν

∥f ∥2
L∞(0,∞;L2(Ω))(t−t0),

(55)

here Ẽ3,∞ = Ẽ3,∞(u0, ν, f , Ω), which is E3,∞ with α = 0.

Using Lemma 4.1 in [27], the following corollary is derived.

orollary 23. Let T = ∞. There exists a constant Ẽ4,∞ =

E4,∞(u0, f , ν, T , Ω) such that the unique solution u to problem (31)
satisfies

e−t
∫ t

t0

es∥Au(s)∥2ds ≤ Ẽ4,∞,

for all 0 ≤ t0 ≤ t.

6.2. Perturbations

Let us introduce here the concept of the L2(Ω) stability of the
solution u to the Navier–Stokes equations (31) analogous to that
of [26].

Definition 24. A function ζ, defined for all t ≥ t0, is called a
erturbation of u if u+ ζ is a solution of (31) with ζ = 0 on ∂Ω .
hat is, for a fixed t0 ≥ 0, ζ is a solution of the problem{ d

dt
ζ + νAζ + B(u, ζ) + B(ζ, u) + B(ζ, ζ) = 0,

ζ(t0) = ζ0,
(56)

or all t ≥ t0.

In order to prove the global-in-time error estimate we will
ssume that solutions u to the Navier–Stokes equations are condi-
ionally exponentially stable. This property is verified for instance
n simple axially symmetric Taylor cells occurring in rotating
oaxial cylinder. See [43].

(H3) There exist positive numbers B, M and δ such that for every
ζ0 ∈ D(A

1
2 ) with ∥ζ0∥ < δ and every t0 ≥ 0, there exists a

unique perturbation ζ to problem (56) satisfying

∥ζ(t)∥2
≤ B∥ζ0∥

2e−M(t−t0), (57)

for all t ≥ t0.

Let us denote P1,∞ = B∥ζ0∥
2 and P2,∞ = B∥A

1
2 ζ0∥

2 for later
se.

emark 25. In [43,44] it was showed that the L2(Ω) and H1(Ω)
tabilities are equivalent. The former is required to derive global-
n-time error estimates in the L∞(0, T ;H) norm whereas the
atter in the L∞(0, ∞;D(A

1
2 )) norm.

Remark 26. Perturbations ζ will exist as weak solutions globally
in time while solutions u to the Navier–Stokes equations are as
well. Instead, condition (57) requires solutions u to the Navier–
Stokes equations to be strong and a smallness condition for the
problem data. In spite of such a smallness condition on the forcing
term f , Navier–Stokes solutions u converge as t → ∞ toward
a singleton, which is a time-dependent solution to the Navier–
Stokes equations as well, and not toward a steady state. It is clear
that singletons are dynamically richer than steady states. To reach
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unique steady state, one would need to assume that either f is
time-independent, f (t) ≡ f , or f (t) → f in L2(Ω) as t → ∞.

Corollary 27. It also follows that

ν

∫ t

t0

∥Aζ(s)∥2ds ≤ P3,∞(1 + P4,∞(t − t0)). (58)

for all 0 ≤ t0 ≤ t, where

P3,∞ = max{̃E2,∞, P2,∞}

and

P4,∞ =
C
ν3 (̃E1,∞Ẽ2,∞ + P1,∞P2,∞ + P1,∞Ẽ2,∞).

roof. Estimate (58) is easily obtained from

d
dt

∥A
1
2 ζ∥2

+ ν∥Aζ∥2
≤

C
ν4 (∥u∥

2
∥A

1
2 u∥

2
+ ∥ζ∥2

∥A
1
2 ζ∥2)∥A

1
2 ζ∥2

+
C
ν4 ∥ζ∥2

∥A
1
2 u∥

4

by integrating over (t, t0), which is deduced by using (22) and
(24). □

6.3. Further results

Recall that u − uα
n = en − zα

n where en = u − Pnun = P⊥
n u

and zα
n = uα

n − Pnu. In the course of our analysis we shall require
further estimates for zα

n .

Lemma 28. Suppose that there exists K2,∞ = K2,∞(u0, f , ν, Ω) >

such that

zα
n (t)∥

2
≤ K2,∞(λ

−
1
2

1 α2
+ λ

−
3
2

n+1)

olds for all t ∈ [0, t∗]. Then there exist R∞ = R∞(u0, f , ν, Ω) > 0,
n0 ∈ N and α0 > 0 such that

∥A
1
2 zα

n (t)∥
2 < R∞ (59)

olds for all t ∈ [0, t∗], provided that n > n0 and α < α0.

roof. We have by (48) that

d
dt

∥zα
n∥

2
+ ν∥A

1
2 zα

n∥
2

≤
C
ν
(λ

−
1
2

1 α2
+ λ

−
3
2

n+1)
[
λ

−
1
2

1 (K2,∞λ
−

1
2

1

+Ẽ2,∞)∥Au∥
2

+E2,∞(λ
−

1
2

1 + α)∥Auα
n∥

2
+ λ

1
2
1 ∥f ∥2

]
≤

C
ν
(λ

−
1
2

1 α2
+ λ

−
3
2

n+1)[W1(∥Au∥
2

+∥Auα
n∥

2) + λ
1
2
1 ∥f ∥2],

here

1 := max{λ
−

1
2

1 (K2,∞λ
−

1
2

1 + Ẽ2,∞), E2,∞(λ
−

1
2

1 + α)}.

hen if we multiply by et , we arrive at

d
dt

(et∥zα
n∥

2) − et∥zα
n∥

2
+ νet∥A

1
2 zα

n∥
2

≤
C
ν
et (λ

−
1
2

1 α2
+ λ

−
3
2

n+1)[W1(∥Au∥
2
+ ∥Auα

n∥
2) + λ

1
2
1 ∥f ∥2

].

ntegrating over (0, t), with t ≤ t∗, and multiplying by e−t , we
obtain
12
νe−t
∫ t

0
es∥A

1
2 zα

n (s)∥
2ds ≤ e−t

∥zα
n (0)∥

2
+ e−t

∫ t

0
es∥zα

n (s)∥
2ds

+
C
ν
W1(λ

−
1
2

1 α2
+ λ

−
3
2

n+1)e
−t

×

∫ t

0
es(∥Au(s)∥2

+ ∥Auα
n (s)∥

2)ds

+
C
ν

λ
1
2
1 (λ

−
1
2

1 α2
+ λ

−
3
2

n+1)e
−t

×

∫ t

0
es∥f (s)∥2ds

≤ [K2,∞ +
C
ν
(W1(E4,∞ + Ẽ4,∞)

+λ
1
2
1 ∥f ∥2

L∞(0,∞;L2(Ω)))](λ
−

1
2

1 α2
+ λ

−
3
2

n+1),

where we have used the fact that zα
n (0) = 0 and our hypothesis.

ore compactly, we write

−t
∫ t

0
es∥A

1
2 zα

n (s)∥
2ds ≤ W2(λ

−
1
2

1 α2
+ λ

−
3
2

n+1). (60)

Next we take the L2(Ω)-inner product of (43) with Azα
n to get

1
2

d
dt

∥A
1
2 zα

n∥
2

+ ν∥Azα
n∥

2
= −(B(u, zα

n ), Azα
n )

− (B(zα
n , u), Azα

n ) − (B(zα
n , z

α
h ), Az

α
n )

+(B(zα
n , en), Azα

n )
− (B(en, zα

n ), Azα
n ) + (B(u, en), Azα

n )
−(B(en, ηn), Azα

n )
+ ((I + α2A)−1Pn(B(uα

n , uα
n ) − B(uα

n , v
α
n )), Azα

n )
+ (((I + α2A)−1

− I)PnB(uα
n , uα

n ), Azα
n )

+ ((I + α2A)−1PnB⋆(uα
n , (I + α2A)uα

n ), Azα
n )

+ (((I + α2A)−1
− I)Pnf , Azα

n )

:=

11∑
i=1

Li.

(61)

e shall bound each of the terms on the right-hand side of (61)
eparately. Let ε be a positive constant (to be adjusted below).
hus, from (22), we have:

L1 ≤ C∥u∥
1
2 ∥A

1
2 u∥

1
2 ∥A

1
2 zα

n∥
1
2 ∥Azα

n∥
3
2

≤
Cε

ν3 Ẽ1,∞Ẽ2,∞∥A
1
2 zα

n∥
2
+ νε∥Azα

n∥
2,

L3 ≤
Cε

ν3 ∥zα
n∥

2
∥A

1
2 zα

n∥
4
+ νε∥Azα

n∥
2,

L5 ≤
Cε

ν3 Ẽ1,∞Ẽ2,∞∥A
1
2 zα

n∥
2
+ νε∥Azα

n∥
2,

here we have used (14) and (16) in bounding L5. In view of (13)
nd (24), we obtain the bounds for L2 and L4:

L2 ≤ C∥zα
n∥

1
2 ∥A

1
2 u∥∥Azα

n∥
3
2

≤ Cλ
−

1
4

1 ∥A
1
2 zα

n∥
1
2 ∥A

1
2 u∥∥Azα

n∥
3
2

≤
Cε

ν3 λ−1
1 Ẽ2

2,∞∥A
1
2 zα

n∥
2
+ νε∥Azα

n∥
2,

L4 ≤
Cε

ν3 λ−1
1 Ẽ2

2,∞∥A
1
2 zα

n∥
2
+ νε∥Azα

n∥
2.

It follows, again using (22) and also (17) and (18), that

L6 ≤ C∥u∥
1
2 ∥A

1
2 u∥

1
2 λ

−
1
4

n+1∥Aen∥∥Az
α
n∥

≤
Cε Ẽ

1
2 Ẽ

1
2 λ

−
1
2
∥Au∥

2
+ εν∥Azα

∥
2.
ν 1,∞ 2,∞ n+1 n
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L

he bound for L7 proceeds by taking into account (24), (17), (16)
and (18):

L7 ≤
Cε

ν
Ẽ2,∞λ−1

n+1∥Au∥
2
+ εν∥Azα

n∥
2.

e estimate L8 analogously as J8. Thus we have by (12), (10) and
24) that

L8 = α2(B(uα
n , (I + α2A)−1Azα

n ), Auα
n )

≤ α∥uα
n∥

1
2 ∥Auα

n∥
3
2 ∥Azα

n∥

≤
Cε

ν
E

1
2
1,∞E

1
2
2,∞α∥Auα

n∥
2
+ νε∥Azα

n∥
2.

The term L9 is also treated as its counterpart J9. Then, by Lemma 1,
we get

L9 = α(A
1
2 B(uα

n , uα
n ), (αA)

1
2 (I + α2A)−1Azα

n )
≤ α∥A

1
2 B(uα

n , uα
n )∥∥Azα

n∥

≤ α(∥A
1
2 uα

n∥
2
L4(Ω)

+ ∥uα
n∥

1
2
L∞(Ω)∥Au

α
n∥

3
2 )∥Azα

n∥.

ext Gagliardo–Nirenberg’s and Agmon’s inequalities give

9 ≤
Cε

ν
α(αE2,∞ + E

1
2
1,∞E

1
2
2,∞)∥Auα

n∥
2
+ εν∥Azα

n∥
2.

We proceed in the manner of J10 to obtain a bound for L10, but
using (23):

L10 ≤
Cε

ν
E

1
2
1,∞E

1
2
2,∞α∥Auα

n∥
2
+ εν∥Azα

n∥
2.

By virtue of (11), we see that

L11 ≤
Cε

ν
∥f ∥2

+ εν∥A
1
2 zα

n∥
2.

Assembling the estimates of the Li’s into (61) and adjusting ε

properly, we find

d
dt

∥A
1
2 zα

n∥
2
+ ν∥Azα

n∥
2

≤
C
ν
W3∥A

1
2 zα

n∥
2
+

C
ν
K2,∞(λ

−
1
2

1 α2

+λ
−

3
2

n+1)∥A
1
2 zα

n∥
4

+
C
ν
W4(α + λ

−
1
2

n+1)(∥Au∥
2
+ ∥Auα

n∥
2)

+
C
ν

∥f ∥2
L∞(0,∞;L2(Ω)).

(62)

here

3 =
Ẽ2,∞
ν2 (̃E1,∞ + Ẽ2,∞λ−1

1 ),

W4 = max{̃E
1
2
2,∞ (̃E

1
2
1,∞ + Ẽ

1
2
2,∞λ

−
1
2

n+1), E
1
2
2,∞[E

1
2
1,∞ + E

1
2
2,∞α]}.

Now we claim that

A
1
2 zα

n (t)∥
2 < R∞ :=

4C
ν

∥f ∥2
L∞(0,∞;L2(Ω)) (63)

holds for all t ∈ [0, t∗], whenever n ≥ n0 and α ≤ α0, where
n0 and α0 will be determined later. Conversely, suppose that (63)
fails; i.e. suppose that there must be some n ≥ n0 and α ≤ α0 for
which there is a first time t ′ so that the bound is attained. That
is, let t ′ be the first time such that

∥A
1
2 zα

n (t
′)∥2

= R∞; (64)

ence

A
1
2 zα(t)∥2

≤ R (65)
n ∞

13
for all t ∈ [0, t ′]. Next, multiplying (62) by et , integrating over
(0, t ′), and multiplying by e−t ′ successively gives

∥A
1
2 zα

n (t
′)∥2

≤
C
ν
W3e−t ′

∫ t ′

0
es∥A

1
2 zα

n (s)∥
2ds

+
C
ν
K2,∞(λ

−
1
2

1 α2
+ λ

−
3
2

n+1)e
−t ′

∫ t ′

0
es∥A

1
2 zα

n (s)∥
4 ds

+
C
ν
W4(α + λ

−
1
2

n+1)e
−t ′

∫ t ′

0
es(∥Au(s)∥2

+∥Auα
n (s)∥

2) ds

+
C
ν

∥f ∥2
L∞(0,∞;L2(Ω)).

Now, from (60) and (65), we see that

∥A
1
2 zα

n (t
′)∥2

≤
C
ν
W3W2(λ

−
1
2

1 α2
+ λ

−
3
2

n+1)

+
C
ν
K2,∞R∞W2(λ

−
1
2

1 α2
+ λ

−
3
2

n+1)
2

+
C
ν
W4(α + λ

−
1
2

n+1)(̃E4,∞ + E4,∞)

+
C
ν

∥f ∥2
L2(0,∞;L2(Ω)).

herefore, if we select n0 ∈ N and α0 > 0 sufficiently large such
hat

3W2(λ
−

1
2

1 α2
+ λ

−
3
2

n+1) < ∥f ∥2
L2(0,∞;L2(Ω)),

K2,∞R∞W2(λ
−

1
2

1 α2
+ λ

−
3
2

n+1)
2 < ∥f ∥2

L2(0,∞;L2(Ω))

and

W4(α + λ
−

1
2

n+1)(E4,∞ + Ẽ4,∞) < ∥f ∥2
L2(0,∞;L2(Ω))

we arrive at

∥A
1
2 zα

n (t
′)∥2 < R∞,

hich is a contradiction with (64). Thus, (63) cannot fail. □

Next we write (56) as
d
dt

Pnζ + νAPnζ = −PnB(u, ζ) − PnB(ζ, u) − PnB(ζ, ζ). (66)

sing the fact that ζ = Pnζ + P⊥
n ζ, we split the right hand side of

66) as follows:
d
dt

Pnζ + νAPnζ = −PnB(u, Pnζ) − PnB(u, P⊥
n ζ)

−PnB(Pnζ, u) − PnB(P⊥
n ζ, u)

−PnB(Pnζ, Pnζ) − PnB(Pnζ, P⊥
n ζ)

− PnB(P⊥
n ζ, Pnζ) − PnB(P⊥

n ζ, P⊥
n ζ).

(67)

et wα
n = zα

n − Pnζ. Then, subtracting (67) from (43) gives

d
dt

wα
n + νAwα

n = −PnB(u, wα
n ) − PnB(wα

n , u)

− PnB(zα
n , w

α
n ) + PnB(wα

n , Pnζ)
+ PnB(u, P⊥

n ζ) + PnB(P⊥
n ζ, u)

+ PnB(Pnζ, P⊥
n ζ) + PnB(P⊥

n ζ, Pnζ)
+ PnB(P⊥

n ζ, P⊥
n ζ) + PnB(zα

n , en)
+ PnB(en, zα

n ) + PnB(u, en) + PnB(en, ηn)
+ (I + α2A)−1Pn(B(uα

n , uα
n ) − B(uα

n , v
α
n ))

+ ((I + α2A)−1
− I)PnB(uα

n , uα
n )

+ (I + α2A)−1PnB⋆(uα
n , v

α
n )

+ ((I + α2A)−1
− I)Pnf .

(68)
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emma 29. Under the conditions of Lemma 28, it follows that, for
0 ≥ 0,

∥wα
n (t)∥

2
≤ e

C0
ν (̃E22,∞+P22,∞)(t−t0)×

×

{
∥wα

n (t0)∥
2
+

C1

ν
(λ

−
1
2

1 α2
+ λ

−
3
2

n+1)
∫ t

t0

g(s) ds
}

,

(69)

or all t ≥ t0, where g(s) = (̃E2,∞ + R∞)λ
−

1
2

1 ∥Au∥
2

+ E2,∞(α +

−
1
2

1 )∥Auα
n∥

2
+ λ

−
1
2

1 P2,∞∥Aζ∥2
+ ∥f ∥2.

roof. Let us take the L2(Ω)-inner product of (68) with wα
n to

btain
1
2

d
dt

∥wα
n∥

2
+ ν∥A

1
2 wα

n∥
2

= −(B(u, wα
n ), w

α
n ) − (B(wα

n , u), wα
n )

− (B(zα
n , w

α
n ), w

α
n ) + (B(wα

n , Pnζ), w
α
n )

+ (B(u, P⊥
n ζ), wα

n ) + (B(P⊥
n ζ, u), wα

n )
+ (B(Pnζ, P⊥

n ζ), wα
n ) + (B(P⊥

n ζ, Pnζ), wα
n )

+ (B(P⊥
n ζ, P⊥

n ζ), wα
n ) + (B(zα

n , en), wα
n )

+ (B(en, zα
n ), w

α
n ) + (B(u, en), wα

n ) + (B(en, ηn), wα
n )

+ ((I + α2A)−1Pn(B(uα
n , uα

n ) − B(uα
n , v

α
n )), w

α
n )

+ (((I + α2A)−1
− I)PnB(uα

n , uα
n ), w

α
n )

+ ((I + α2A)−1PnB⋆(uα
n , v

α
n ), w

α
n )

+ (((I + α2A)−1
− I)Pnf , wα

n )

:=

17∑
i=1

Mi.

(70)

We first observe that M1 and M3 vanish by (26). From (21), we
bound

M2 ≤
Cε

ν
Ẽ2,∞∥wα

n∥
2
+ εν∥A

1
2 wα

n∥
2,

4 ≤
Cε

ν
P2,∞∥wα

n∥
2
+ εν∥A

1
2 wα

n∥
2.

ombining successively (25), (24), (15), (17), (16), (13) and (18),
e see easily that

M5 ≤
Cε

ν
λ

−
1
2

1 λ
−

3
2

n+1 (̃E2,∞∥Au∥
2
+ P2,∞∥Aζ∥2) + εν∥A

1
2 wα

n∥
2,

M7 ≤
Cε

ν
λ

−
1
2

1 λ
−

3
2

n+1P2,∞∥Aζ∥2
+ εν∥A

1
2 wα
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2,

M12 ≤
Cε

ν
λ

−
1
2

1 λ
−

3
2

n+1̃E2,∞∥Au∥
2
+ εν∥A

1
2 wα

n∥
2.

s before, but utilizing (23), instead of (24), there are no difficul-
ies in finding that

6 ≤
Cε

ν
λ

−
1
2

1 λ
−

3
2

n+1 (̃E2,∞∥Au∥
2
+ P2,∞∥Aζ∥2) + εν∥A

1
2 wα

n∥
2,

8 ≤
Cε

ν
λ

−
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1 λ
−

3
2

n+1P2,∞∥Aζ∥2
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1
2 wα
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Cε

ν
λ

−
1
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1 λ
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3
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n+1P2,∞∥Aζ∥2
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1 λ
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1
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or M10 and M11, we use (13) and (21) to get

M10 ≤
Cε

ν
λ

−
1
2

1 λ
−

3
2

n+1R∞∥Au∥
2
+ εν∥A

1
2 wα
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2,

M11 ≤
Cε

λ
−

1
2 λ

−
3
2 R∞∥Au∥

2
+ εν∥A

1
2 wα

∥
2,
ν 1 n+1 n

14
where we have employed estimate (59). Finally, the Mi’s, for i =

14, 15, 16, 17, are bounded exactly as the Ji’s, for i = 8, 9, 10, 11,
respectively. Thus, we obtain

M14 ≤
Cε

ν
λ

−
1
2

1 α3E2,∞∥Auα
n∥

2
+ εν∥A

1
2 wα

n∥
2.

M15 ≤
Cε

ν
λ−1
1 α2E2,∞∥Auα

n∥
2
+ εν∥A

1
2 wα

n∥
2,

M16 ≤
Cε

ν
λ

−
1
2

1 α3E2,∞∥Auα
n∥

2
+ εν∥A

1
2 wα

n∥
2,

M17 ≤
Cε

ν
α2

∥f ∥2
+ εν∥A

1
2 wα
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The previous estimates applied to (70) yield the bound, after
choosing ε correctly,

d
dt

∥wα
n∥

2
+ ν∥A

1
2 wα

n∥
2

≤
C
ν
(̃E2,∞ + P2,∞)∥wα

n∥
2

+
C
ν
(λ

−
1
2

1 α2
+ λ

−
3
2

n+1)g(t),

where

g(t) = (̃E2,∞ + R∞)λ
−

1
2

1 ∥Au∥
2
+ E2,∞(α + λ

−
1
2

1 )∥Auα
n∥

2

+ λ
−

1
2

1 P2,∞∥Aζ∥2
+ λ

1
2
1 ∥f ∥2.

Thus, Grönwall’s inequality gives (69). □

Finally, from (53), (55), and (58), we obtain

∥wα
n (t)∥

2
≤ e

C0
ν (̃E2,∞+P2,∞)(t−t0)×

×

{
∥wα

n (t0)∥
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1
2

1 α2
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3
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+C2(
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ν2 + λ

1
2
1 )(λ

−
1
2

1 α2
+ λ

−
3
2

n+1)

× ∥f ∥2
L∞(0,∞;L2(Ω))

(t − t0)
}

,

here

1,∞ = max{(̃E2,∞ + R∞)λ
−

1
2

1 , E2,∞(α + λ
−

1
2

1 ), λ
−

1
2

1 P2,∞},

S2,∞ = max{̃E2,∞, E2,∞, P3,∞}

and

S3,∞ = max{̃E3,∞, E3,∞, P4,∞}.

More compactly,

∥wα
n (t)∥

2
≤ eG1,∞(t−t0)×

×

{
∥wα

n (t0)∥
2
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1
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3
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1
2

1 α2
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−
3
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2
L∞(0,∞;L2(Ω))(t − t0)

}
,

(71)

where the Gi,∞’s are defined in the obvious way.

6.4. Proof of Theorem 12

Let us consider that the solution u of the Navier–Stokes equa-
tions is stable in the L2(Ω) sense. Then choose T large enough
that

Be−MT
≤

1
(72)
4
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nd hence define

2,∞ := 4eG1,∞T
{G2,∞(1 + G3,∞T ) + G4,∞∥f ∥2

L∞(0,∞;L2(Ω))T }. (73)

ext select n0 ∈ N and α0 > 0 such that, for all n ≥ n0 and
≤ α0,

2,∞(λ−
1
2 α2

+ λ
−

3
2

n+1) < δ. (74)

or all n ≥ n0 and α ≤ α0 in Lemma 28, we assert

zα
n (t)∥

2 < K2,∞(λ
−

1
2

1 α2
+ λ

−
3
2

n+1), (75)

for all t ≥ 0. But if not, there would exist some n ≥ n0 and α ≤ α0
uch that (72) fails for some time t∗. Let t∗ be the first value of t
for which

∥zα
n (t

∗)∥2
= K2,∞(λ

−
1
2

1 α2
+ λ

−
3
2

n+1). (76)

As a result, we have that

∥zα
n (t)∥

2
≤ K2,∞(λ

−
1
2

1 α2
+ λ

−
3
2

n+1) (77)

olds for all t∗ ∈ [0, t∗]; therefore inequality (71) is true in view
f Lemmas 28 and 29.
Firstly assume t∗ ≤ T . Then use inequality (71), with t0 = 0

nd ζ = 0, to get, from (73),

∥zα
n (t

∗)∥2
= ∥wα

n (t
∗)∥2

≤ eG1,∞t∗ {
G2,∞(1 + G3,∞t∗)

+ G4,∞∥f ∥2
L∞(0,∞;L2(Ω))
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}

× (λ
−

1
2

1 α2
+ λ

−
3
2

n+1)

<
K2,∞

4
(λ

−
1
2

1 α2
+ λ

−
3
2

n+1),

hich is a contradiction with (76). On the other hand, assume
∗ > T . Then use inequality (71), with t0 = t∗ − T , and ζ(t),
atisfying ζ(t0) = zα

n (t0), to find

∥zα
n (t

∗) − Pnζ(t∗)∥2
≤ eG1,∞T {

G2,∞(1 + G3,∞t∗)

+ G4,∞∥f ∥2
L∞(0,∞;L2(Ω))

T
}

× (λ
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1
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1 α2
+ λ

−
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4
(λ

−
1
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1 α2
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−
3
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(78)

urthermore, we have, by (72) and (77), that

ζ(t∗)∥2
≤ B∥ζ(t0)∥e−MT

≤
K2,∞

4
(λ

−
1
2

1 α2
+ λ

−
3
2

n+1). (79)

utting together (78) and (79) implies

zα
n (t

∗)∥2
≤ ∥zα

n (t
∗)−Pnζ(t∗)∥2

+∥ζ(t∗)∥2 <
K2,∞

2
(λ

−
1
2

1 α2
+λ

−
3
2

n+1),

hich again is a contradiction with (76).
Finally, select K∞ = max{K1,∞, K2,∞} and combine estimates

42) and (75), with K1,∞, Ẽ2,∞ and ∥f ∥L∞(0,∞;L2(Ω)) instead of K1,
2 and ∥f ∥L∞(0,T ;L2(Ω)), to conclude the proof.

. Concluding remarks

(1) If one bounds the term L11 in Lemma 28 as

L11 = α2(A(I + α2A)−1Pnf , Azα
n )

= α((α2A)
1
2 (I + α2A)−1Pnf , A

3
2 zα

n )

≤ α∥Pnf ∥∥A
3
2 zα

n∥ ≤ α∥f ∥λ
1
2
n ∥Azα

n∥

≤
Cε

α2λn∥f ∥2
+ εν∥A

1
2 zα

∥
2,
ν n

15
one obtains local-in-time error estimates for the Dirichlet
norm, i.e.,

sup
0≤t≤T

∥A
1
2 (uα

n (t) − u(t))∥2
≤ K (α + λ

−
1
2

n+1)

under the assumption αλ
−

1
2

1 λn < 1. In doing so, we have
used the fact that ∥A

1
2 Pnu∥

2
≤ λn∥u∥

2 for all u ∈ D(A
1
2 ).

Global-in-time error estimates for the Dirichlet norm fol-
low by using the H1(Ω) stability of solutions to the Navier–
Stokes equations. See [25].

(2) If one assumes d
dt f ∈ L∞(0, T ; L2(Ω)), with 0 < T < ∞ or

T = ∞, then it follows that

sup
0≤t<T

∥Auα
n (t)∥ < ∞. (80)

This argument is tedious and involves a plethora of com-
putations. The reader has been spared such unnecessary
technicalities herein.
Thus optimal local- and global-in-time error estimates can
be derived, i.e.,

sup
0≤t<T

∥uα
n (t) − u(t)∥2

≤ K (λ−1
1 α2

+ λ−2
n+1).

This follows from inequality (39) on estimating

(P⊥
n B(u, u), en) ≤ C∥u∥

1
2 ∥A

1
2 u∥∥Au∥

1
2 ∥en∥

≤ C∥u∥
1
2 ∥Au∥

2
∥A

1
2 u∥λ

−
1
2

n+1∥A
1
2 en∥

≤
C
ν

λ−1
n+1∥u∥∥Au∥

2
∥Au∥ +

ν

4
∥A

1
2 en∥2.

owing to (22) and (17). Hence one has

sup
0≤t≤T

∥en(t)∥2
≤ K1λ

−2
n+1.

The same is found in estimating the terms J6 and J7 in
Lemma 18 and the terms Mi for i = 5, . . . , 13 in Lemma 29
by using sup0≤t<T ∥Aζ(t)∥ < ∞ as well, which is a conse-
quence of (80).

(3) Although we are mainly focused on the Navier–Stokes-α
equations, we may state Theorems 11 and 12 for other
α-regularization models such as Leray-α, modified Leray-
α, Clark-α and simplified Bardina models. But one has to
proceed with caution in dealing with each nonlinearity.

(4) We believe that local- and global-in-time error estimates
for three-dimensional domains could also be attained. It
would follow the same argument presented in this work
except for the fact that a small condition for the data
problem is required in obtaining Lemmas 14 and 20 for the
Galerkin approximations together with appropriate three-
dimensional estimates for the operators B and B̃.
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