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This paper introduces a non-recursive algorithm for motion 
detection directly from the analysis of compressed samples. The 
objective of this research is to create an algorithm able to detect, 
in real-time, the presence of moving objects over a fixed 
background from a compressive-sampled greyscale video 
stream. Many difficulties arise using this type of algorithm 
because it violates the fundamental principles of compressive 
sensing reconstruction that lie beneath traditional recursive 
methods. Recursive reconstruction methods even if accurate 
need large amounts of time and resources because they aim to 
retrieve all of the information contained within a scene. Our 
method is based on two key considerations. The first is that the 
targeted information of a moving element compared to a fixed 
background is really small. The second is an appropriate choice 
of a sub-Gaussian compressive sampling strategy. Our aim is to 
reduce the focus of general reconstruction in order to retrieve 
only objects of interest. This algorithm can be used to process 
compressed samples derived from a video stream with a speed of 
100fps. This makes possible to detect the presence of moving 
objects directly from compressed samples with limited 
resources. 

Keywords— motion detection; compressive sampling; non-
recursive. 

I. INTRODUCTION 

Compressive sensing (CS) is a signal processing technique 
that exploits signal compressibility to recover a signal from a 
small set of samples. CS core equation is [1]: 

� (1)�

where  is the so-called measurement matrix, 
  are the compressed samples and  is the signal 

to be recovered represented as a vector. If the original signal 
can be sparsely represented in some domain, like natural 
images [2], then it is possible to recover it from a much 
smaller number of samples than that indicated by Nyquist-
Shannon theorem. The key requirement for achieving a 
successful reconstruction, i. e. approximating  given the 
much smaller set , is the sparsity of the input signal. The way 

in which the samples of the original signal are linearly 
combined to the compressed samples is encoded into the 
measurement matrix. The inverse problem defined by Eq. (1) 
is undetermined as long as . Although underdetermined 
problems are considered ill-posed, as there is no univocal 
solution to them, compressive sensing theory can lead to a 
unique solution by means of convex optimization [3]. 

In this paper, we are evaluating the efficiency of a 
lightweight non-recursive algorithm to process compressed 
samples of a greyscale video stream in order to detect moving 
objects over a fixed background. The difference of two sets of 
compressed samples,  and , taken using the same 
measurement matrix , from two consecutive frames  and 

, of a given video stream, equals the set of compressed 
samples  obtained by sampling , if this is the difference of 
the two frames: 

  (2) 

thanks to the linearity of the compressive sampling process. 
Each element of  maps the time evolution of a set of pixels 
of the original frames into the domain of compressed samples. 
If the background is fixed, a pixel by pixel difference of two 
consecutive frames will return values different from zero in 
those pixels that have changed. For this reason , the 
difference of two consecutive frames, can be considered to be 
highly sparse. This sparseness will allow us to introduce a new 
method that will highlight the presence of moving objects 
without recurring to standard reconstruction algorithms. 

Many methods of extracting information from compressed 
samples have been successfully implemented. Some of these 
works tackle the problem of feature extraction trying to adapt 
existing algorithms to the compressed domain [4]. Others 
focus on recursive reconstruction like algorithms that use 
trainable sparsifying dictionaries for object recognition [5]. 
Among these works, background subtraction from compressed 
samples using a standard reconstruction algorithm has been 
presented [6], but, to the best of our knowledge, there are no 
previous attempts to generate lightweight methods able to 
preprocess compressive-sampled videos in real-time. 

II. DESIGN OF THE MEASUREMENT MATRIX 

For the design of the measurement matrix we have chosen 
a sub-Gaussian distribution. Each element of this sub-
Gaussian measurement matrix is picked at random between 
one and zero. This choice presents three major advantages: it 
is easily understandable; it is also readily implementable [7] 
and [8]; and its dual matrix  will has the same structure as 
the original: 
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   (3) 

being  a matrix of ones. 

To obtain a single compressed sample from a sub-
Gaussian measurement matrix we would simply have to add 
together the values of a set of randomly chosen pixels, e. g. by 
summing their current outputs in a common line [7]. The 
information about which pixels have been selected to compose 
the -th compressed sample is explicitly included in the -th 
row of , from now on . 

Instead of dumping the information contained in the 
discarded pixels, it is possible to generate a second 
compressed sample by adding these contributions as well. We 
call it a dual compressed sample. These dual samples can be 
obtained by sampling the same frames,  and , using the 
dual matrix . The subtraction of two sets of dual compressed 
samples  and  will give us  the dual difference of 
compressed samples: 

   (4) 

It will not be possible to use this dual difference, , along 
with the original, , to double the amount of compressed 
samples for standard reconstruction purposes. The joint 
measurement matrix, , would generate a divergent 
solution in a recursive method. However, this description will 
be useful later on, in the non-recursive motion detection. 

III. MOTION DETECTION ALGORITHM 

Let us consider the structure of the data generated by 
compressively sampling two consecutive frames and then 
subtracting one from the other Eq. (2).Each element of , 
which, from now on, we will call , is the difference of two 
compressed samples generated by the same row of : 

  (5) 

If the pixels that contribute to  do not contain any changes, 
i. e. no object appears or disappears to or from them, then the 
value of  will be zero because that subset of  equals the 
corresponding subset of . Likewise, given the presence of 
a moving object in that subset, the contribution to  of the 
pixels belonging to that subset, differs from zero. It means that 
the pixels selected by  are experiencing changes between 
frames. The higher the value of  the higher is the amount of 
pixels selected by  that contains differences between the two 
consecutive frames. 

Based on these elements it is possible to create  
contribution vectors, , by 
multiplying each row of the measurement matrix, , by the 
scalar  which is the value of the difference of compressed 
samples generated by said row: 

   (6) 

Notice that each contribution  vector is a sparse vector that 
has the same size as the original frame difference . All non-
zero elements, which correspond to the positions of pixels 
selected by row , will have a value of . 

Thanks to the selection of a sub-Gaussian measurement 
matrix, each will have, by construction, a dual in : 

   (7) 

being  a row of matrix . If an object appears in a spot 
represented by a pixel chosen by  as part of a given sample, 
that object disappears from the pixels included in . Which 
means that the dual difference  will also experience a 
fluctuation. What is more is that  together with its dual  
contain the contributions of all the pixels of the frame, but no 
contribution belonging to  will be in , nor vice versa. 

Analogously, it is possible to define a dual contribution 
vector  from the dual differences: 

   (8) 

Adding together these two vectors it is possible to obtain 
, a contribution vector of all pixels. 

These vectors  will no longer be sparse and the value of their 
elements will either be  or . The pixels selected by  and 

 have been chosen randomly. The amount of pixels selected 
by them is also random. This means that each pair of  and 

 will generate a different contribution vector . 

It is worth nothing that if an object moves within the 
subset of the image defined by , even if  differs from zero, 
its dual sample  will still be zero. For that reason only non-
sparse contribution vectors  contain information on the 
motion of an object. A global contribution vector  can 
be generated by superposing the contribution of all ’s where 
both  and  are different from zero:  

  (9) 

The elements of the global contribution vector  are linear 
combinations of compressed samples and every other their 
dual. Let us assume that they are very likely to be different 
form each other. Each pixel contribution will be accounted for 
the same exact number of time as any other. This means that 
each element of  is directly comparable to the others. Notice 
that this is true only because of  and  together address all 
the pixels of the frame. Thus, the higher the value associated 
to a given element of  the greater the contribution of the 
corresponding pixel. In a sense, the maxima and minima in  
reflect those pixels where change happened, what means those 
pixels which contributed more notably to the compressed 
samples which addressed them. For that reason it is possible to 
associate those maxima and minima with the positions that the 
moving objects have occupied in the two consecutive frames. 

This algorithm not only returns information on the 
presence of an object moving on a fixed background in two 
consecutive frames, it also gives information on the direction 
of that motion, i. e. where the object was and is likely to be. 

At last it is important to notice that none of the steps taken 
for the generation of these contributions is recursive and, due 
to the randomness of , its accuracy is proportional to the 
amount of compressed samples computed. 

IV. EXPERIMENTAL EVALUATION 

To validate the presented method several simulations have 
been carried out. Some of the results, as well as the MATLAB 



code used to generate them, can be downloaded from: 
http://www.imse-cnm.csic.es/mondego/prime2016/ 

The performance of this method was studied creating 
various synthetic videos of 50 frames of 64 64 pixels each. 
Each video has a black background and one or more moving 
objects represented by 3 3-pixel white squares. Beside the 
number of objects another variable that we considered was the 
amount of compressed samples extracted. As a 64 64-pixel 
frame has a total amount of pixel of 4096, we took sets of 
samples reaching a compression ratio that ranged from 1/2, 
with 2048 compressed samples up to 1/32 with 128 
compressed samples, halving the total amount of samples 
taken at every step. 

To compare the results obtained with our method we 
compared each maxima and minima of the global contribution 
vector  with the difference of the original frames from which 
the compressed samples were derived. We also used the 
NESTA algorithm [9] on the same compressed samples sets to 
compare the performance of our method to one of the most 
effective convex optimization reconstruction algorithms 
currently presented in literature. 

 
Fig. 1. (a) Difference of two original 64 × 64-pixel frames; (b) Filtered 
difference of two NESTA reconstructed 64 × 64-pixel frames; (c) Maxima 
and Minima of the contributions extracted from two sets of compressed 
samples following our method. 

Fig.1 represents one example of our analysis. In this 
particular setup we used three moving objects and a set of 
1024 compressed samples i. e. 1/4 compression. Fig.1(a) 
represents the difference of the original frames from which 
1024 compressed samples and 1024 dual compressed samples 
have been simultaneously extracted. Fig.1(b) represents the 
reconstruction of the difference of said frames by applying a 
NESTA convex optimization algorithm over the set of 
compressed samples differences . This difference has been 
further filtered to remove noise. This has been done to easily 
compare it to the maxima and minima of the weight vector. It 
is possible to see that it resembles closely the difference of the 
two original frames shown in Fig.1(a). Lastly Fig.1(c) 
represents the location of the maxima (white) and minima 
(black) of the contribution vector produced by our proposed 
algorithm. These contributions have been scaled to fit a 

greyscale representation to easily compare them graphically 
with the original difference as well. 

Two different parameters where considered to establish the 
reliability of this method. The first parameter is the pixel by 
pixel root mean square error (RMSE) of the scaled 
contribution vector defined in Eq. (9) using the original frame 
differences as ground truth Fig.2. The values that the RMSE 
of our method took were then compared to the RMSE through 
NESTA reconstruction using the same ground truth and the 
same set up. We recorded these values while varying the 
amount of objects moving in the scene and the amount of 
compressed samples taken Fig.3. 

The second parameter considered to establish the 
reliability of this method is the time of reconstruction. We 
compared the time that the NESTA algorithm took to recover 
a difference  and the time our method took to locate the 
maxima and minima of the global contribution vector . 

Comparing Fig.2 and Fig.3 it is possible to see that 
traditional reconstruction derives better results over our 
proposed methodology in all cases of study. This was to be 
expected because relying on convex optimization leads better 
results than relying on a method whose strength is based only 
on the sheer amount of samples taken. 

 
Fig. 2. RMSE of NESTA reconstruction (% of Full Signal Range). 

 
Fig. 3. RMSE of our method (% of Full Signal Range). 

(a)    (b)  

(c) 



Even if that is the case it is worth noting that NESTA 
reconstruction fails in returning acceptable results in extreme 
cases i. e. high number of objects and low number compressed 
samples. 

We have run the whole procedure on an Intel core i7-
3740QM running at 2.7GHz having 24GB of RAM with an 
SSD. Comparing Fig. 4 and Fig.5 it is possible to see that the 
longest time our method took to estimate the position of a 
moving object was 2 to 3 orders of magnitude lower than the 
time it took for NESTA to deliver its results. 

 

Fig. 4. Time needed for NESTA reconstruction (seconds). 

 

Fig. 5. Time needed for maxima and minima extraction (seconds). 

Considering that the videos we were reconstructing had a 
total of 50 frames, in most cases it would have been possible 
to analyze said videos while streaming the results in real-time. 

V. CONCLUSIONS 

We have derived a new method to extract information 
from compressed samples without resorting to recursive 
reconstruction. This has resulted in a lightweight fast detection 
algorithm capable of analyzing a stream of compressed 
samples obtained by sampling frame by frame a greyscale 
video in order to detect the presence of moving objects over a 
fixed background. 

We have compared the performance of our algorithm with 
a highly efficient reconstruction algorithm, NESTA, to 
understand which benefits and limitations we are facing while 
trying to handle compressive-sampled information without 
recurring to standard techniques. While trying to target 
specific information within the compressed samples thus not 
following a conventional reconstruction technique may deliver 
worse reconstruction errors it is also true that it can benefit 
from faster processing times opening the possibility to new 
applications of CS. 

Our future works will focus on the application of these 
techniques for the detection of fast moving objects. To do that 
we will need to improve the frame rate. It will also be 
beneficial to reduce the root mean square error. Our final goal 
is to apply this algorithm to the reconstruction of 3D 
trajectories using compressed samples from multiple views of 
the scene 
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