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ABSTRACT 

 

The knowledge of the seismic hazard in the Iberian Peninsula (IP) and its 

neighboring area is important to address the mitigation of damage that 

earthquakes could cause in it. The occurrence of earthquakes in the area is quite 

frequent because it is in the contact zone between the Eurasian Plate and the 

African Plate.  

The general objective of this document is the calculation, representation and 

analysis of a set of seismic parameters (b-value, maximum magnitude and 

annual rate of earthquakes per unit area) of the Iberian Peninsula and its 

adjacent area, considering geographic information systems (GIS) as a basic 

working tool. These systems allow the integration of data from different 

information sources, as well as rigorous and quality analysis and graphical 

representations. 

To achieve this goal, having a quality seismic catalog is essential. Therefore, one 

has been compiled for the area as complete, rigorous and extensive in the time 

possible, and further, revised, homogeneous in size (magnitude) and with 

independent events. This has served as the basis for the works exposed here. 

For the generation of this catalog, the database of earthquakes of the National 

Geographic Institute of Spain has been consider as a starting point, that has 

been revised (especially the magnitude) and completed with other databases and 

specific studies. In addition, the catalog of work has included earthquakes for 

which only macroseismic (and reliable) information is available as well as those 

recorded during the instrumental period according to the scientific advances of 

each moment. Then, the size of all the events has been transformed to moment 

magnitude (Mw) in order to compare it, taking into account only the events with 

Mw greater or equal to 3.0. Subsequently, a process of elimination of non-main 

shocks (foreshocks, aftershocks and swarms) has been carried out. Finally, a 

completeness date has been considered for each magnitude. 

In this thesis, the b-value, the annual rate of earthquakes per unit area and the 

maximum magnitude have been calculated, represented and analyzed. In 



 

 

addition, it has been done through two approaches. The first deals with zoning 

related to Spanish seismic regulations and are based on both geological 

characteristics and seismicity of the area; and others that are based on objective 

and mathematically robust criteria and considers only seismicity. In the second 

approach, a set of multiresolution grids have been established, in which zonings 

are defined according to a purely geographic criterion. The size of the cells 

(zones) has been 0.5º x 0.5º for the calculation of the maximum magnitude 

recorded and 1º x 1º and 2º x 2º for the b-value and the annual rate normalized 

with the area. 

In both types of zoning, after the calculations and the representation of the 

seismic parameters, an analysis of them has been carried out. From this analysis 

it can be deduced that in some areas there has not been a quantity of events that 

allows to derive seismic parameters with solidity from a statistical point of view. It 

can also be concluded that earthquakes with maximum recorded magnitude have 

a marine epicenter and are located in the SW of the IP. Moreover, the b-value 

takes a value of 1.0 or somewhat lower in the contact zone between the Eurasian 

and African plates (a value that decreases further to the east), while in the 

mainland, 1.2 can be considered an approximate value, with somewhat higher 

values in some areas. Finally, regarding the annual rate, it should be noted that 

the highest values (close to 1E-3 events / km2) appear in the Granada basin and 

in the Pyrenees Region and to a lesser extent, to the SW of Cabo de San 

Vicente, in Galicia and a large part of the southeast of the IP where values 

greater than 1E-4 are exceeded. 

  



 

 

 

RESUMEN 

 

El conocimiento de la peligrosidad sísmica en la península ibérica y su entorno 

es importante para abordar la mitigación de los daños que los terremotos podrían 

causar en la misma. La ocurrencia de terremotos en el área es bastante 

frecuente porque se encuentra en la zona de contacto entre la placa euroasiática 

y la africana.  

El objetivo general de esta tesis doctoral es el cálculo, representación y análisis 

de un conjunto de parámetros que intervienen en la definición de la peligrosidad 

sísmica de la península ibérica y su área adyacente, considerando como 

herramienta básica de trabajo los sistemas de información geográfica. Estos 

permiten la integración de datos de distintas fuentes de información, así como el 

análisis y representaciones gráficas rigurosas y de calidad. 

Para la consecución de este objetivo, el disponer de un catálogo sísmico de 

calidad es fundamental. Por tanto, se ha compilado uno para la zona lo más 

completo, riguroso y extenso en el tiempo posible y además, revisado, 

homogéneo en tamaño (magnitud) y con eventos independientes. Este ha 

servido como base para los trabajos que aquí se exponen. Para la generación 

del mismo, se ha partido de la base de datos de terremotos del Instituto 

Geográfico Nacional de España, que se ha visto revisada (sobre todo la 

magnitud) y completada con otras bases de datos y estudios específicos. 

Además, en el catálogo del trabajo se han incluido, desde terremotos de los que 

únicamente se dispone de información macrosísmica (y fiable) como los 

registrados durante la época instrumental según los avances científicos de cada 

momento. Luego, se ha transformado el tamaño de todos los eventos a magnitud 

momento (Mw) para poder compararlo, tomando solo los eventos con Mw mayor o 

igual a 3,0. Posteriormente, se ha llevado a cabo un proceso de eliminación de 

terremotos no principales (premonitores, réplicas y enjambres). Finalmente, se 

ha considerado una fecha de completitud para cada magnitud. 

En esta tesis se han calculado, representado y analizado el parámetro b-value, la 

tasa anual de terremotos por unidad de área y la magnitud máxima. Además, se 



 

 

ha hecho a través de dos aproximaciones. La primera versa sobre zonificaciones 

relacionadas con la normativa sismorresistente española y basadas tanto en las 

características geológicas como en la sismicidad de la zona; y por otras que 

parten de criterios objetivos y robustos matemáticamente y están basadas solo 

en la sismicidad. En la segunda aproximación, se han establecido un conjunto de 

mallas multirresolución, en las que las zonificaciones son definidas según un 

criterio puramente geográfico. El tamaño de las celdas (zonas) ha sido de 0,5º x 

0,5º para el cálculo de la magnitud máxima registrada y de 1º x 1º y 2º x 2º para 

el del b-value y la tasa anual normalizada con el área. 

En ambos tipos de zonificaciones, tras los cálculos y la representación de los 

parámetros sísmicos, se ha llevado a cabo un análisis de los mismos. De este se 

deduce que en algunas zonas no ha ocurrido una cantidad de eventos que 

permita extraer parámetros sísmicos con solidez desde un punto de vista 

estadístico. También se puede concluir que los terremotos con magnitud máxima 

registrada tienen epicentro marino y se encuentran al suroeste de la península 

ibérica. Por otro lado, el b-value toma un valor de 1,0 o algo menor en la zona de 

contacto entre las placas euroasiática y africana (valor que disminuye más al 

este), mientras que en tierra firme como valor aproximado se puede considerar 

1,2, con valores algo mayores en algunas zonas. Finalmente, respecto a la tasa 

anual de terremotos, cabe comentar que los valores más altos (cercanos a 1E-3 

eventos / km2) aparecen en la cuenca de Granada y en la región de los Pirineos 

y, en menor medida al SO del Cabo de San Vicente, en Galicia y gran parte del 

sureste peninsular donde se superan valores mayores a 1E-4. 
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Introduction 
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The aim of this doctoral thesis is the calculation, representation and 

analysis of some of the main parameters that intervene in the definition of the 

seismic hazard of the Iberian Peninsula and its closest environment. This 

knowledge is relevant for the mitigation of damage caused by earthquakes in the 

Iberian Peninsula. To this end, a specific geographic information system (GIS) 

has been designed that allows, by means of georeferencing, an optimum 

integration and management of geographic and seismotectonic data. Before 

presenting these works, the general framework within which they are framed is 

set out. 

1.1. BACKGROUND 

In the study of earthquakes, it is possible to distinguish between the 

analysis and the parameters corresponding to their area of origin (focal region), 

which is what is called seismicity. This is the study of the size and spatial 

distribution of ground movement caused by the earthquake (displacement, speed 

and acceleration), known as seismic hazard and generally expressed by its 

maximum values, and the study of the effects of this movement on the 

population, the infrastructure and the environment, which is what is called seismic 

risk.  

The action produced by some natural phenomena means a risk that can 

give rise to physical, human, economic and environmental damage and losses. 

One of the phenomena that cause the greatest damage, both material and 

personal, are earthquakes. These are brought about by a sudden rupture along 

crustal faults, which causes the consequent release of energy. Part of this takes 

the form of elastic waves that produce ground movements, which is what is 

commonly referred to as an earthquake. Usually, these ruptures take place in the 

areas close to the contact between tectonic plates, although in some cases they 

occur within the same plate (intra-plate phenomena). The occurrence of these 

ruptures is linked to the area’s seismotectonic framework. 

In order to determine an area’s seismic risk, it is necessary to perform the 

convolution between seismic hazard, vulnerability and exposure. One way of 
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expressing risk is in terms of cost, such as the probability that an earthquake will 

cause certain economic losses and loss of life. So: 

Risk = Hazard * Exposure * Vulnerability (*Cost) 

Of these factors, exposure refers to the number and value of exposed 

elements that can therefore be damaged by seismic hazard, which is linked to 

spatial planning and urban planning. These elements can be the population, the 

infrastructure, the environment, buildings, etc. 

Next, vulnerability concerns the ability of these elements to withstand 

seismic excitation. In the case of buildings and infrastructures, this depends on 

their calculation and design, both in terms of materials and the geometric 

configuration of the structural elements. 

To finish with the factors, the last that intervenes in the seismic risk is the 

seismic hazard, the only one that does not depend on human action (except in 

the case of induced seismicity). This thesis focuses on the study of some 

parameters that characterize seismic hazard in the geographical area of the 

Iberian Peninsula and its adjacent area. 

After treating seismic risk and its factors, it becomes necessary to address 

how the size of earthquakes is expressed, given their importance within seismic 

parameter studies. The size is normally defined either by the magnitude, the 

seismicity parameter linked to the energy released at the rupture, or by the 

macroseismic intensity, the risk parameter thus related to the effects of the 

earthquake. These two parameters refer to two different concepts and are 

sometimes misinterpreted by the non-specialized literature, which tends to 

express non-integer values of intensity, such as "intensity 5.1 earthquake". As will 

be seen later, this is not correct. In addition, another way to measure the size of 

earthquakes is the seismic energy itself (contained in the seismic waves), which 

has a special implication in the study of seismic series, since it is possible to add 

that of several events and thus calculate the accumulated seismic energy.  

The magnitude is a focal parameter, unique for each earthquake, 

proportional to the released energy whose size, registered and measured 

instrumentally, responds to continuous and theoretically unlimited values, 

although until now no earthquake has surpassed that of Chile in 1960, whose 

magnitude reached 9.5 (M9.5). This is measured by means of various magnitude 
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scales, depending on the waves on which it is based and on how it is determined 

and calculated. Thus, one can speak of the magnitude of internal waves, local 

waves, surface waves, etc.  At present, the most suitable is the so-called moment 

magnitude (Mw) (Hanks and Kanamori, 1979), directly linked to the energy 

released at the rupture. This moment magnitude is especially recommended for 

large earthquakes, since it has the advantage that its value is not saturated as a 

function of the energy released, as is the case with the generality of other 

magnitude scales. 

As has been mentioned before, the intensity alludes to the measurement 

of the effects caused by the earthquake, which depend on the movement of the 

ground (hazard). This is quantified by means of the so-called intensity degree 

scales which, unlike magnitude scales, are discrete (represented by Roman 

numerals), empirical and of a limited number of degrees. In addition, the same 

earthquake causes different effects depending on the location considered, on the 

distance to the epicenter (vertical projection on the terrestrial surface of the 

earthquake focus), the attenuation of seismic waves, the ground effect, etc. In 

principle, the closer the epicenter is to the point under consideration, the greater 

the observed intensity will be, with the epicenter generally being the maximum. 

The intensity assigned to an earthquake in the catalogs corresponds to the 

maximum recorded, generally in the epicenter (epicentral intensity). Of special 

importance for earthquakes with a marine epicenter is the consideration of 

corrections based on attenuation (in which the maximum intensity recorded on 

land will in most cases be lower than the hypothetical epicentral intensity) since it 

is not possible to quantify the effects of the earthquake in the sea (López-Casado 

et al., 2000).  

The devastating effects of earthquakes worldwide are well known. 

Although not exhaustive, regions that have suffered strong seismic shocks in 

recent years can be cited. In 2017, Mexico M7.1; in 2016, Ecuador M7.8; in 2015, 

Nepal M7.8; in 2011, Japan M9.0 with tsunami and nuclear disaster. In 2010, 

Haiti M7.0 and in 2004, Sumatra-Andamán M9.1 (with tsunami) events took place 

that caused more than 200,000 deaths. Closer to the area of study of this paper 

are several relatively high magnitude earthquakes that occurred recently in Italy, 

in 2009 M6.3 and 2016 M6.2. 
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The Iberian Peninsula, with an approximate extension of 580,000 km2, is 

located in the southwest of the continental zone of the Eurasian plate. Its 

southernmost area is in contact with the African plate with which it presents a 

relative movement between the two with an estimated displacement rate of 

between 2 and 5 mm per year, according to a NW-SE to WNW-ESE (IGN-UPM 

WG, 2013), which conditions the seismotectonic framework. Figure 1.1 presents 

the seismotectonic context map. 

 

Figure 1.1. Context map. Source: Amaro-Mellado et al. (2017) 

The seismic activity of the Peninsula and adjacent areas is considered 

moderate-low, despite which, historically, some very important earthquakes have 

occurred. These have taken place both in the interior of the Peninsula and in the 

surrounding sea. Some have been really catastrophic, especially in the southwest 

of the Peninsula, as for example the earthquake of Lisbon 1755 M8.7 and, more 

recently, another also to the southwest of Cape St. Vincent in 1969 M7.9. Also 

noteworthy are others closer, such as the earthquakes in the north of Algeria in 

2003 M6.8 or Al Hoceima in the north of Morocco 2004 M6.3. Even with an 
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epicenter in the mainland, historically quite harmful events have taken place 

(IGN, 2019a), such as the earthquake of Andalusia in 1884 M6.8, Torrevieja in 

1829 M6.6, Malaga in 1680 M6.5 or the earthquake of Carmona in 1504 M6.8. 

Very recently, in 2011, an earthquake took place in Lorca (Murcia) with a 

moderate magnitude M5.1 but which caused the lives of nine people, and also 

losses of millions of euros. 

When carrying out a seismic hazard analysis, it would be ideal to have a 

good knowledge of the seismotectonic framework, made up of the seismicity and 

of the distribution of faults.  

In the case of the Iberian Peninsula, despite the invaluable effort that is 

being made in the knowledge of faults that generate seismic activity, the 

information relating to these elements is still definitely incomplete at a peninsular 

level. Especially relevant are the works promoted by the Geological and Mining 

Institute of Spain (Instituto Geológico y Minero de España, IGME), specifically the 

compilation Quaternary Active Faults database of Iberia (QAFI). Its latest public 

version of which is QAFI v.3 (IGME, 2015), in which the Laboratorio Nacional de 

Energia e Geologia (LNEG, Portugal), among others, has collaborated. 

After studying the available research, it has been considered convenient 

to conduct a deeper analysis of some of the most influential seismic parameters 

of several seismic zonings proposed by various researchers, as well as to obtain 

the parameters according to a zoning in the form of a purely geometric grid. 

Thus, the body of this thesis includes two different approaches to address the 

issue. Previously a rigorous, revised and homogeneous catalog must be 

compiled, from the National Geographic Institute of Spain (hereinafter, NGIS) 

(Instituto Geográfico Nacional, IGN) earthquake database. As general tool a GIS 

is used, among other tasks, to integrate heterogeneous geographical data, make 

high quality representations and performing analysis. 

On the one hand, seismic parameters are calculated, represented and 

analyzed starting from the seismic zoning considered most relevant.  On the 

other hand, the calculation and representation of those same seismic parameters 

is carried out starting in this case, instead of with a predefined zoning, with a 

zoning in the form of a pseudorectangular multiresolution grid (0.5º x 0.5º, 1º x 1º, 

2º x 2º), by means of a network of parallels and meridians covering the working 
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environment, in a similar way to that proposed in Mapa Sismotectónico WG 

(1992).  

1.2. OBJECTIVES 

The general objective of this work is to calculate, represent and analyze a 

series of seismic parameters (the b-value, maximum magnitude and mean 

annual seismic activity rate per unit area) for the Iberian Peninsula and its 

environment using a GIS as a fundamental tool. This general aim can be 

achieved through several specific objectives.  

Therefore, a first specific objective, and a starting point for the rest, is to 

generate a reviewed seismic catalog, homogeneous in magnitude and with 

independent events for the Iberian Peninsula and its surroundings. This must 

include both earthquakes for which only macroseismic information is available, as 

well as those of the pre-instrumental stage and, finally, those recorded during the 

purely instrumental period. Given that the recurrence periods of major events in 

the Iberian Peninsula are at least hundreds of years, valuable information on the 

size of ancient earthquakes (provided it is of sufficient quality to be considered 

reliable) cannot be discarded from the calculation. In order for events to be 

comparable, the magnitude of all of them must be homogeneous, so to convert 

the size of all earthquakes to Mw has been chosen for the reasons noted above. 

This aim will be treated in Chapter 3. 

The second objective is to calculate and represent the parameters of 

seismic hazard of different seismic zoning proposed for the Iberian Peninsula and 

its environment. As a source of information, in addition to the geometry of these 

seismic zonings and the seismic catalog, the QAFI database has been used. In 

order to achieve this objective, a method must be used that takes into account 

both the heterogeneity of the seismic detection networks (through geometric 

sectoring of the completeness year) and the existence of earthquakes throughout 

the different periods (considering different couples of magnitude-years of 

completeness). This is fundamental given the importance, both in number and 

size, of the earthquakes recorded in the catalog of work over time, not only in the 

instrumental period but also in previous ones. Chapter 4 addresses this and the 

next one goal.  
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The third objective consists of analyzing different zonings such as those 

related to building seismic regulations, based on both the registered seismicity 

and on geological characteristics, as well as the zonings resulting from the 

establishment of objective criteria, centered exclusively on seismic catalogs 

(although validated with geology). 

Finally, the fourth specific objective, that will be conducted in Chapter 5, is 

the calculation and graphical representation of the parameters mentioned 

continuously in space by means of multiresolution grids (0.5º x 0.5º, 1º x 1º, 2º x 

2º) and considering a different minimum number of events per cell, to proceed or 

not to its calculation, and without pre-established previous zoning. 

1.3. OUTLINE 

The doctoral thesis is structured in seven chapters: 

 This Chapter 1 contains an introduction to the basic concepts 

related to seismic hazard as well as the framework in which it is 

framed, and presents the objectives, both general and specific, 

that are pursued with this doctoral thesis. 

 

 Chapter 2 deals with the fundamentals required to conduct a 

rigorous research. Thus, seismic catalogs, seismogenic zonings, 

fault databases, seismic hazard parameters and GIS concepts are 

treated. 

 

 Chapter 3 details the sequence of operations carried out to 

generate a revised, homogeneous and without non-main 

earthquakes seismic work catalog from the NGIS earthquake 

database.  

 

 In Chapter 4, after compiling the working seismic catalog, this will 

be later used to calculate, represent and analyze different seismic 

hazard parameters of the seismic zonings of the Iberian Peninsula 

that have been considered the most relevant. It is based on 

Amaro-Mellado et al. (2017). 
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 Chapter 5 describes the calculation, representation and analysis 

of the same hazard parameters considering multiresolution grids 

(0.5º x 0.5º, 1º x 1º, 2º x 2º) pseudorectangular ones -a network of 

parallels and meridians- that encompass the working environment 

instead of pre-defined zoning, from the generated catalog. It is 

based on Amaro-Mellado et al. (2018). 

 

 Chapter 6 lists the conclusions drawn from the work carried out. 

 

 Finally, Chapter 7 presents the contributions undertaken during 

PhD research period. 
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For the understanding of subsequent chapters, several concepts such as 

a seismic catalog, seismogenic zones, seismic hazard parameters, fault 

database and geographic information systems should be presented. 

2.1.  SEISMIC CATALOGS 

Seismic catalogs can be defined as databases in which various relevant 

parameters of earthquakes are collected, such as their epicentral location, date, 

time of origin, information on size (magnitude and/or macroseismic intensity 

depending on the available data), depth, etc. They can also collect information on 

the phases, focal mechanisms and quality parameters of the calculation, such as 

the uncertainty of the location, the number of stations considered during the 

calculation, etc.  

In principle, continuous catalogs are available spatially (unlike what 

happened with the knowledge of faults), prepared by different institutions and at 

different times, whose quality is closely linked to the configuration and technology 

of the seismic detection network used for its determination. For a good evaluation 

of the seismic hazard, it is fundamental to have a quality seismic catalog, since 

practically all the parameters that are going to define it are going to be derived 

from it.  

Normally, given the breadth of the scope of seismological studies, as well 

as the different organisms involved in the recording of seismic movements, it is 

necessary to review various databases in order to compile a catalog that is as 

complete as possible. 

In this work, the catalog of the NGIS has been used as a starting point. 

This is considered to be the most continuous, homogeneous and stable one on 

the Iberian Peninsula and its contiguous zone. It contains earthquakes since 

1373 (IGN, 2019b), as previous events may lack the reliability necessary for their 

integration into the catalog, so it covers more than 600 years (although until a few 

years ago much older earthquakes were also shown in it). However, the 

consideration of other sources of information, such as the catalogs of other 

seismic research centers, papers collected in the international scientific literature, 
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etc., enriches the starting point of the catalog both quantitatively and qualitatively. 

The way of obtaining the catalog of the work is detailed in Chapter 3. 

2.2.  SEISMOGENIC ZONES 

When conducting a Probabilistic Seismic Hazard Analysis (hereinafter, 

PSHA), two types of sources or areas where earthquakes originate (or a hybrid of 

both) can be considered: faults (linear sources) and seismogenic zones (zonal 

sources). As an approximation, a seismogenic zone is a faulted region with 

homogeneous seismic and tectonic characteristics. It may consist of one or more 

faults or seismic structures. Depending on the degree of seismotectonic 

knowledge of the region and the size of the earthquakes, individualized faults or 

zones are usually chosen. In the case of large ruptures, the treatment is usually 

carried out from the thorough knowledge of the system of generating faults since 

it tends to be more viable. If the seismic activity is less energetic, it is more 

common to develop studies from seismic zonings. 

Seismic source identification is characterized by great uncertainty and 

subjectivity. This is a problem faced from two sides: depicting the seismic 

sources and determining their parameters. 

First, setting the limits of the seismic sources poses a great uncertainty. 

Generally, seismogenic zones have been obtained from the geological structures 

and the distribution of epicenters. In zones of moderate seismic activity, such as 

the IP, the catalog of earthquakes can be incomplete. Moreover, the geological 

structures considered cannot be related to the current tectonic regime (Martínez-

Álvarez et al., 2015). The efforts of many authors have generated the idea that 

the same area can have as many different seismogenic zones as studies. The 

analysis of the thermal and resistant parameters may give a better method for 

depicting the seismogenic zones. Nevertheless, determining the rheological 

profiles is greatly uncertain. 

Second, there is also a great uncertainty regarding the calculation of the 

seismic parameters of the seismogenic zones. Insufficient data or inappropriate 

methods are often used to calculate the seismic parameters.  
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In the Iberian Peninsula, the use of zoning has so far played a very 

important role, given that the maps of seismic hazard considered in Spanish 

Building Seismic Regulations have been defined from seismogenic zones. As an 

example, there are the proposals of García-Mayordomo et al. (2012b), of Bernal 

(2011) and, with slight modifications, of Martín (1984). 

As commented before, in the fourth chapter the zones defined by different 

authors have been considered and, in the fifth, some zonings have been defined 

with a purely geographical criterion, by means of regular grid cells (0.5º x 0.5º, 1º 

x 1º, 2º x 2º).  

The use of zonings with exclusively geographical criteria implies an 

objective contribution to the calculation of parameters, since these are not 

conditioned by limits defined a priori in a subjective manner. Thus, four 2º x 2º 

grids have been considered (the original one; one displaced 1º to the east; 

another 1º to the south; and finally, one displaced to the east and south); four 

grids of 1º x 1º, with displacements of 0.5º instead of 1º; and a grid of 0.5º x 0.5º, 

without overlaps. When working with overlaps between the different grids, the 

result shown is a combination of what was obtained with each one, so that the 

border effect between cells is mitigated. For more details see Chapter 5.  

2.3. THE IBERIAN PENINSULA AND EXISTING 

PROPOSAL FOR SEISMOGENIC ZONINGS 

As previously stated, the IP is on the border of the Eurasian Plate. The 

seismicity of this complex boundary is mainly due to the convergence between 

this plate and the African one. The ocean-ocean contact between these plates 

changes to a continent-continent collision through the Betics and Atlas structures, 

with the Alboran Sea in between (Mezcua et al., 2011). Morales-Esteban et al. 

(2013) showed that this seismicity is moderate with few events of magnitude 

equal to or larger than 5.0. 

The ocean-ocean contact area begins at the E-W Gloria Fault. It moves to 

the east towards an area centered at the Gorringe Bank where reverse faulting 

with a horizontal pressure axis in NW-SE direction motions produces large 

earthquakes. Recently, the M7.9 Cape St. Vincent Earthquake (1969) and, long 

ago, the 1755 Lisbon Earthquake (M8.7) hit within this area (Peláez et al., 2007). 



PhD Thesis: Statistical analysis of different seismogenic zonings of the Iberian Peninsula 

and adjacent areas through a geographic information system 

 

16 

 

Besides, the continent-continent collision takes place in the north of Morocco, 

Algeria, south Iberia and the Alboran Sea. It is interesting to note that, although 

focal mechanisms of shallow earthquakes show stress regime compatible with a 

horizontal N-S to NW-SE convergence of Eurasian and African plates, in the 

Betics-Alboran region an E-W horizontal extension happens (Buforn et al., 2004). 

Furthermore, there is a relevant seismicity in the Pyrenees, particularly, and in 

Galicia. The latter extends to the Atlantic Ocean. There are other zones of 

seismicity, such as the strip between Cantabria and the south of Valencia, and 

the Cordoba-Lisbon zone that also extends to the Atlantic Ocean (Carreño et al., 

2003). The earliest references corresponding to some of the largest earthquakes 

suffered by the IP: peninsular earthquake are from 24 August 1356 (Justo and 

Gentil, 1990); the 1504 Carmona earthquake (Gentil and Justo, 1983; Justo and 

Gentil, 1983); the 1531 Lisbon earthquake (Justo and Salwa, 1998); the 1680 

Malaga earthquake (Gentil and Justo, 1985); and the 1884 Andalusia earthquake 

(López-Arroyo et al., 1981). 

Likewise, it is interesting to highlight that the contact area between the 

African and the Eurasian Plates produces frequent and large earthquakes that 

affect the IP. Nevertheless, the seismicity within the Iberian Plate is moderate. 

Despite this, earthquakes of significant magnitude have been produced. This 

seismicity has been observed in the Tagus Basin and in Galicia (Teves-Acosta et 

al., 2017; Giner-Robles et al., 2012; Martín-González et al., 2012; Carreño et al., 

2008). 

Most earthquake hypocenters are located at a shallow depth (< 30 km) 

and at an intermediate depth (30–150 km). It is of interest to note that there are 

some shocks that hit at great depth (≅650 km) (Buforn et al., 1995). 

Three main parts can be distinguished regarding the geology of the IP. 

First, the Hercynian Block –or Iberian Massif– which is the core of the IP. To its 

southeast, the Betic Foldchain can be found. The Pyrenean Fold is to the 

northeast. Both these are part of the Alpine Belt. The IP is bounded to the west 

by the Atlantic Continental Margin off Portugal and Spain. Figure 1.1 shows a 

general schema including, some remarkable sites. 

The first relevant seismic zoning for the IP was proposed by Martín (1984) 

who defined 27 seismogenic zones. As stated by Mezcua et al. (2011), NCSE-02 
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is due with minor changes to Martín (1984) and is based on seismic distribution 

and on structural and tectonic characterizations. 

López-Casado et al. (1995) used four different zonings for their b-value 

study: one for the Betics Cordillera and three for the Betics-Rif Region. Jiménez-

Peña et al. (1998) depicted a map based on seismic and geological data. Ten 

zones were delimited for the south-east of the IP. Also, Molina (1998) evaluated 

the seismic hazard in the contact area between the African Plate and Iberian 

Peninsula Sub-plate. He defined 25 shallow zones (h < 30 km), five intermediate 

(30 < h ≤ 60 km) and two deep zones (60 < h ≤ 90 km). Later, Secanell et al. 

(1999) did a specific study for Catalonia. This research was based on the 

Gutenberg-Richter law and the usual mathematical methods for seismic-studies. 

Peláez and López-Casado (2002) did a seismic hazard analysis for the IP. Only 

shallow and intermediate seismicity (h ≤ 30 km; 30 < h ≤ 60 km, respectively) 

was considered. García-Mayordomo (2007) presented a hybrid model, based on 

the spatial distribution of the epicenters and the geological structures, for defining 

seismogenetic sources. He presented an example of his method to zone the 

southeastern IP. Mezcua et al. (2011) proposed a new seismogenetic zoning for 

Spain which is a sum of existing partial zonings. The authors defined 36 zones 

based on several regional seismic zonings. 

Recently, IGN-UPM WG (2013) presented a new probabilistic seismic 

hazard analysis for Spain. It is based on the seismic zonings of García-

Mayordomo et al. (2012b) and Bernal (2011). The zoning by García-Mayordomo 

et al. (2012b) is based on a previous model named Iberfault (García-Mayordomo 

et al., 2010). It was later adjusted to the seismic zonings of Portugal and France 

with the collaboration of experts from both countries (Stucchi et al., 2013). Finally, 

it was modified by the Project Following Committee and the Working Group. The 

work by Bernal (2011) is based on various seismic hazard studies undertaken by 

the authors in the period of 1990–2009. The geology, tectonics and a thorough 

analysis of the seismicity have been considered. 

Morales-Esteban et al. (2014) proposed a method for seismic zoning 

based on an effective adaptive Mahalanobis k-means algorithm. This method 

was used for the IP and adjacent areas. These zones were also checked with the 

geology. 
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Martínez-Álvarez et al. (2015) defined 34 zones for the IP and adjacent 

areas. The zones were delimited using a triclustering algorithm. The zones were 

later validated with the geology. 

A detailed description of recent zonings for the IP, regions of the IP, 

France, Portugal and northern Africa can be found in IGN-UPM WG (2013). 

2.4. THE FAULT DATABASE OF THE GEOLOGICAL 

AND MINING INSTITUTE OF SPAIN (IGME) 

The QAFI is constructed by the IGME (info.igme.es/qafi, last accessed 

March 2015). This database collects only active faults during the Quaternary 

period. These are considered the only faults capable of generating seismic 

activity nowadays. It is necessary to point out that, although it is constantly 

updated, not all the Quaternary faults are known. This leads to an inevitable lack 

of information. It contains information related to location, geometry and 

kinematics (length, sense of movement, depth), Quaternary activity (geomorphic 

evidence, age of the youngest deposits affected by the fault, slip rate, maximum 

slip per event, number of seismic events, evidence of aseismic creep), seismic 

parameters (maximum magnitude, recurrence period, date of the last maximum 

event), associated seismicity and extended data. The maximum expected 

magnitude is obtained from equations that consider the length and/or width of the 

faults (García-Mayordomo et al., 2012a). For further details on uncertainties 

related to these transformations (García-Mayordomo et al., 2012a) can be 

checked out. In this work, the QAFI v.2.0 release has been used. Figure 2.1 

depicts a map of the QAFI. 

http://info.igme.es/qafi
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Figure 2.1. Map of the Quaternary active faults database of Iberia. QAFI v.2.0 

(www.igme.es). Source: Amaro-Mellado et al. (2017) 

2.5.  SEISMIC HAZARD PARAMETERS 

The seismic hazard can be defined by means a series of parameters, 

where some of the most common are the following: the size distribution of 

earthquakes (b-value), the annual rate of earthquakes and the maximum 

magnitude. All of them will be calculated, represented and analyzed in this work.  

2.5.1. The size-distribution (b-value) 

Earthquake size distribution has been studied since the beginning of the 

20th Century. First, Ishimoto and Iida (1939) and, later, Gutenberg and Richter 

(1941) noticed that the rate of earthquakes, N, of magnitude larger than or equal 

to a threshold magnitude, Mmin, follows a power law distribution: 

 
𝑁(𝑀) = 𝛼𝑀𝑚𝑖𝑛

−𝛽
 (Eq. 2.1) 

http://www.igme.es/
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where α and β are the adjustment parameters. 

Gutenberg and Richter (1944) and Gutenberg and Richter (1954) 

transformed this equation into a linear law which is known as the Gutenberg-

Richter frequency-magnitude relation: 

 
log10 𝑁(𝑀) = 𝑎 − 𝑏𝑀 (Eq. 2.2) 

By means of this law, the cumulative (or absolute) number of earthquakes 

(of magnitude ≥ Mmin) is related to the a and b parameters. The a-parameter is a 

measure of the seismic activity (earthquake productivity) (Cheng and Sun, 2018). 

Parameter b, known as the b-value, reflects the relationship between 

earthquakes of different sizes (larger or smaller magnitudes and it is an 

outstanding parameter in seismic studies as is of capital importance to 

understand a territory’s seismic hazard.  

On a global scale, 0.9–1.0 is considered as the normal b-value (Frohlich 

and Davis 1993; Hiemer et al. 2014; Page et al., 2016). The importance of the b-

value is due to its relationship with the physical characteristics of an area as well 

as with its tectonics (Lee and Yang, 2006; Bachmann et al., 2012; Reyes et al., 

2013; Martínez-Álvarez et al., 2015). A high b-value indicates material 

heterogeneity and that high stress cannot be held. By contrast, a low b-value 

reflects a high rigidity, so the area can accumulate a higher stress and release it 

suddenly. This issue is not clear indeed and the variation of the b-value is still 

under discussion among the experts (Kamer and Hiemer, 2015; Singh and Singh, 

2015). There are two different theories. The first argues its relation to the physics. 

The second states that the b-value must be around 1.0 and its variations are due 

to miscalculations, lack of data, inhomogeneous detection network, etc. (Frohlich 

and Davis, 1993; Amorese et al., 2010). 

Over time, multiple methods to calculate the b-value and its uncertainty 

have been proposed-non exhaustive (Aki, 1965; Utsu 1965; Weichert 1980; Shi 

and Bolt, 1982; Bender, 1983; Tinti and Mulargia, 1987; Frohlich and Davis, 

1993; Kijko and Smit, 2012; Kamer and Hiemer, 2015). At first, the least square 

(LS) method was applied but then Maximum-Likelihood Estimate (hereinafter, 

MLE) has been considered preferable (Aki, 1965; Utsu, 1965; Amorese et al. 

2010) and more robust as it does not present interdependency between variables 

(IGN-UPM WG, 2013). 
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The MLE method (Aki, 1965; Utsu, 1965) estimates the b-value as: 

 
𝛽 =

1

𝑀̅ − 𝑀𝑚𝑖𝑛

 (Eq. 2.3) 

where β = b / log e; 𝑀̅ is the average magnitude of the earthquakes larger 

than or equal to Mmin; Mmin is the cut-off magnitude. In this case, Mmin is equal to 

the magnitude of completeness (Mc), i.e., the lowest magnitude at which events 

records are complete. 

Mc is a crucial value and is closely related to the earthquake detection 

network configuration (González, 2017) and obviously predetermines the number 

of events (N). A thorough description of different methods for its calculation such 

as the Maximum Curvature (MAXC) technique, the Goodness-of-Fit Test (GFT), 

the Mc by b-value stability (MBS), and the Mc from the Entire Magnitude Range 

(hereinafter, EMR), among others, can be found in Mignan and Woessner (2012). 

Recently, the method by Stepp (1972) was used in IGN-UPM WG (2013) and the 

linear method was employed by Mezcua et al., (2011), both of them in the area of 

this research.  

As stated above, in González (2017) a detailed research on the evolution 

of the magnitude of completeness for Spain applying the EMR method, focused 

on the instrumental era, was conducted. 

One of the most crucial steps is to define the computation of Mc, as this 

value has a direct impact on the results of the b-value. 

Regarding its temporality: (a) using a unique value of Mc and just an 

interval of time (beginning and end) (Morales-Esteban et al., 2014; Scitovski, 

2018); (b) using one Mc for different intervals of time (one Mc for every interval) 

(Mezcua et al., 2011). 

With regards to its spatiality: (a) one Mc value for the whole area of 

interest, as in Mezcua et al. (2011; (b) different Mc values depending on the 

location: either a local value for small areas (González, 2017) or a regional value 

(for a seismogenic zonation, for instance) (IGN-UPM WG, 2013). 

Regarding the b-value calculation methods, most of them compute it 

considering just one Mc for the whole catalog. In the Iberian Peninsula, the impact 

of historical, pre-instrumental and early instrumental events is relevant. So, using 

a method with different cut-off magnitudes is advisable. 
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Kijko and Smit (2012) proposed dividing the catalog into sub-catalogs with 

different years of completeness. Also, the method suggested by Weichert (1980) 

allows splitting the catalog into sub-catalogs. Moreover, this has been used in 

several investigations for the same region (Mezcua et al., 2011; IGN-UPM WG 

2013). Kijko and Smit’s method is simpler and easier to drive and it is not based 

on an iterative process. This allows computing the mean seismic activity rate 

easily, once the b-value has been obtained.  

The generalized Aki–Utsu 𝛽̂ estimator dealing with sub-catalogs with 

different levels of completeness is (Kijko and Smit, 2012): 

 
𝛽̂ = (

𝑟1

𝛽̂1

+
𝑟2

𝛽̂2

+ ⋯ +
𝑟𝑠

𝛽̂𝑠

)

−1

 (Eq. 2.4) 

where ri=ni n⁄ , n = ∑ ni
s
i=1  is the total number of earthquakes of magnitude 

equal to or larger than the Mc for the years of completeness of the full catalog. 𝛽̂𝑖 

are the Aki–Utsu β-values estimators calculated for individual sub-catalogs 

according to (Eq. 2.3). The sample standard deviation is defined as: 

 
𝜎̂𝛽̂ =

𝛽̂

√𝑛
 (Eq. 2.5) 

Kijko and Smit (2012) also suggested applying the formula provided by 

Ogata and Yamashina (1986) to correct the slight overestimation of the b-value, 

for small samples: 

 
𝑏̃ =

(𝑛 − 1)𝑏

𝑛
 (Eq. 2.6) 

Hereinafter, when referring to the b-value in this research it will relate to 

the 𝑏̃-value, calculated from (Eq. 2.6). 

One key point is to establish the minimum number of events to obtain a 

meaningful b-value. This is a matter of debate among experts: Bender (1983) and 

Bachmann et al. (2012) proposed 25 events; Amorese et al. (2010), Singh and 

Singh (2015) and Mousavi (2017) suggested 50 events; González (2017) used 

60; and Roberts et al. (2015) established a minimum of 200. Shi and Bolt (1982) 

gave a general method to estimate the b-value calculation error and Nava et al. 

(2017) studied the precision for different nominal values of the b-value by means 

of the MLE. A summary of Nava et al. (2017) can be found in Table 2.1Table 2.1. 
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b-value estimate and its precision for b = 0.8; b = 1.0; b = 1.2 versus the number 

of events (Nava et al. 2017). 

Table 2.1. b-value estimate and its precision for b = 0.8; b = 1.0; b = 1.2 versus the 

number of events (Nava et al. 2017) 

N 
b nom = 0.8 

sigma 

b nom = 0.8 

b est 

b nom = 1.0 

sigma 

b nom = 1.0 

sigma 

b nom = 1.2 

b est 

b nom = 1.2 

sigma 

10 0.885 0.310 1.103 0.385 1.321 0.458 

25 0.831 0.172 1.037 0.214 1.241 0.255 

50 0.814 0.117 1.015 0.145 1.216 0.174 

200 0.802 0.057 1.001 0.071 1.198 0.084 

5000 0.798 0.011 0.996 0.014 1.193 0.012 

 

The b-value is spatially variable, so, in order to assess its value the area 

must be divided into smaller parts. A seismogenic zonation is a kind of division. 

When not considering a zonation, the sampling process is usually as follows: a 

grid is considered, being the sample distance (not exhaustive) between 1 km x 1 

km for California-USA (Wiemer and Wyss 2002); 0.025º x 0.025º (Ghosh et al. 

2008) for Costa Rica; 0.05º x 0.05º (Mignan et al. 2011) for Taiwan; 10 km x 10 

km for Alaska-USA (Wiemer and Wyss 2000); 0.1º x 0.1º (Zhao and Wu 2008) for 

China; 0.3º x 0.3º for Iran (Mousavi 2017); to 1º x 1º, (Mapa Sismotectónico WG 

1992). Then, one of these options (Tormann et al. 2014) must be selected: 

 Fixed R: a fixed radius (or geographical distance) is considered. 

All events located in this “circle” (centered in the grid node) are 

used to calculate a local b-value—just if there are enough 

earthquakes (Nmin). 

 Nearest N: for every grid node, the closest N events (N ≥ Nmin) are 

used for the computation of the b-value, considering a maximum 

radius, Rmax. Centered in this node, a surface is created (a circle or 

a trapezoid). The radius and minimum number of events required 

are pretty variable. 

https://link.springer.com/article/10.1007/s10100-017-0506-7#CR58
https://link.springer.com/article/10.1007/s10100-017-0506-7#CR16
https://link.springer.com/article/10.1007/s10100-017-0506-7#CR36
https://link.springer.com/article/10.1007/s10100-017-0506-7#CR57
https://link.springer.com/article/10.1007/s10100-017-0506-7#CR59
https://link.springer.com/article/10.1007/s10100-017-0506-7#CR38
https://link.springer.com/article/10.1007/s10100-017-0506-7#CR31
https://link.springer.com/article/10.1007/s10100-017-0506-7#CR52
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 DEW (Distance Exponential Weighted) method: this employs 

decay functions, considering the distance between the grid node 

and every event. 

Regarding the b-value mapping, different issues must be considered. As 

stated above, it may be used as a crude stress-meter to obtain the relative stress 

distribution in the Earth’s crust (Schorlemmer et al. 2005; Bachmann et al. 2012; 

Tormann et al. 2014). 

It is clear that the lower the number of events (N), the greater the 

uncertainty of the b-value calculation. On the one hand, there is a trade-off 

between accuracy and coverage. On the other hand, the larger the radius, the 

smaller the spatial resolution is. 

2.5.2. The maximum magnitude 

The maximum magnitude is another key parameter in a seismic hazard 

study as it warns of the most energetic event in the study area. The value of this 

can refer to either recorded values or potential values (as from QAFI database), 

and even both could be exceeded in the future given the long periods of 

recurrence of major earthquakes. Publications related to paleoseismology (from 

thousands to millions of years) (Ferrater et al., 2017; Masana et al., 2018; 

Gómez-Novell et al., 2019) or archaeoseismology (from hundreds to around 4000 

years BC) (Rodríguez-Pascua et al., 2016) of the Iberian Peninsula are becoming 

more and more frequent. 

Yet, different methods to estimate the maximum possible magnitude and 

its uncertainty can be found in the literature. Some are based on the width and/or 

length of the faults (IGN-UPM WG, 2013). Others use the Bayesian procedure 

(Kijko, 2012). 

2.5.3. The annual rate 

Finally, within the parameters of seismic hazard, this study has chosen to 

also obtain the annual rate of earthquakes normalized according to the surface in 

square kilometers.  

Kijko and Smit (2012) stated that after calculating the 𝛽̂-value, the mean 

seismic activity rate λ(Mmin) can be determined. Kijko and Sellevoll (1989, 1992) 
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asserted that the maximum likelihood estimation of λ(Mmin) can be calculated 

from the following equation: 

 
𝜆(𝑀min ) =

𝑛

∑ 𝑡𝑖 exp[−𝛽̂(𝑀𝑚𝑖𝑛
𝑖 − 𝑀𝑚𝑖𝑛)]𝑠

𝑖=1

 
(Eq. 2.7) 

where, Mmin is the minimum magnitude considered, n is the total number 

of earthquakes equal to or larger than the cut-off magnitude, ti is time-lapse and 

𝑀𝑗
𝑖 is the sample of ni earthquake magnitudes registered during the time-lapse of 

the i-th subcatalog and 𝛽̂ is the maximum likelihood estimation of the β-value. 

The mean seismic activity rate is more significant if it is related to the area of 

every zone (km2).  

It should be noted that the area of a surface given in conformal projection 

(where shapes and angles are kept, but not distances or areas), such as the 

Universal Transverse Mercator (UTM) coordinate system is not accurate. This 

fact is more important when the zones considered are far away from the first 

meridian of the projection. In this study, long distances (19° longitude) are 

considered. This causes more than a 1% error. This has led to the choice of an 

equivalent projection (where the area of a surface is maintained, but neither 

distances nor shapes are) in order to determine an accurate value of the area of 

every zone. INSPIRE recommendation (Council of the European Union European 

Parliament, 2007) has been followed and the ETRS89-LAEA (Lambert Azimuthal 

Equal-Area) for statistical purposes has been chosen to calculate the area of 

every zone. The impact of the improvement generated by the use of equivalent 

projections compared to the UTM projection for the calculation of zonal 

parameters can be consulted in Pérez-Romero and Amaro-Mellado (2014). 

Finally, the annual rate of earthquakes per square kilometer (hereinafter, AR) has 

been defined as the quotient between the mean seismic activity rate and the 

area, in square kilometers, of every zone (Ai): 

 
𝐴𝑅 =

𝜆(𝑀𝑚𝑖𝑛)

𝐴𝑖

 (Eq. 2.8) 

Obviously, where there are not enough events to a proper b-value 

calculation, AR is not rigorous. 
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2.6. GEOGRAPHIC INFORMATION SYSTEMS 

Finally, the use of GIS is very useful to be able to adequately manage the 

purely geometric or geographical information and the information coming from 

databases (seismic catalogs, information on faults, etc.).  

GIS are computer-based tools for collecting, storing, processing, 

analyzing and visualizing geographic information. They are tools that improve the 

efficiency and effectiveness of handling information about objects and events 

located in geographic spaces (Longley et al. 2015). 

The power of this tool, both to carry out calculations and to generate latent 

information (the result of the combination and analysis of the initial data), as well 

as to represent it, makes it possible to obtain results or data outputs that would 

not otherwise be viable. 

The transfer of data to georeferenced files, visually very intuitive, not only 

facilitates operations with them, but sometimes makes them possible, since 

otherwise to do so would not always be feasible. 

As a strong point of the use of these systems, it is worth mentioning that 

they allow a fairly agile adaptation to a change in the initial data, such as the 

catalog, zoning or other parameters involved in the seismic hazard, which allows 

new results to be obtained quickly. 

For these reasons, the use of geographic information systems has been 

fundamental both in the approach and in the attaining of the works that are 

framed in this doctoral thesis. 

In this study a GIS has been used to integrate the final catalog, the 

background information, the seismogenic zonings (in case of multiresolution grid 

have even been created with a GIS) and the QAFI. This information has been 

previously treated in order to ensure coherence, including depuration of the 

associated databases. The geometries have been edited in order to avoid 

conflation problems (misalignment due to the use of different systems of 

reference or coordinates, etc.). 
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3.1. INTRODUCTION 

This chapter shows the generation of a seismic catalog for the Iberian 

Peninsula. The use of a reliable and homogenous catalog is a need for seismicity 

studies since its compilation is a crucial step.  

Firstly, the generation of the seismic catalog of work will be dealt with 

given its capital importance for the rest of the subsequent analysis, since from 

this the different parameters related to seismic hazard have been calculated, 

represented and analyzed, i.e., the b-value, maximum magnitude and annual rate 

(Figure 3.1). Therefore, the results obtained are presented below, and will be 

used in both: in the case of using predefined seismic zoning and in the case of 

using a grid defined on the basis of exclusively geographical parameters. 

 

Figure 3.1. Catalog use schema 

The seismic catalog is the basis for the rest of the analysis. In this 

doctoral thesis, a catalog has been compiled from the NGIS database of 

earthquakes in the area of the Iberian Peninsula and its adjacent area as 

indicated in Figure 3.2. 

 

 

Seismic catalog(s)  

of the work 

Zonings predefined by 
the experts 

Zonings based on 
regular multiresolution 

grids 
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3.2. CATALOGS GENERATION 

Firstly, the records in the initial catalog have been reviewed (especially 

earthquakes with a marine epicenter) and supplemented with information from 

other catalogs and specific studies. Subsequently, the size of the events was 

homogenized to Mw, establishing the cut-off magnitude in M3.0. Thirdly, non-main 

earthquakes have been removed (a process called declustering). Then, a 

completeness date has been considered for each reference magnitude. Finally, 

the seismic catalog of the work is shown, the result of the processes mentioned. 

 

Figure 3.2. Seismic catalog generation workflow 

3.2.1. The National Geographic Institute of Spain seismic 

catalog 

The NGIS seismic catalog —freely available at the NGIS website (IGN, 

2019b)— has been considered as the basis to define the working catalog of this 

research study. It is the official earthquake catalog of Spain and has kept records 

with reliable information from 1373 until nowadays, thus spanning more than 600 

IGN database of earthquakes 

Review form other catalogs and specific 
studies 

Magnitude homogenisation (Mw) 

(cut-off magnitude)  

Declustering 

Year of completeness 

Seismic catalogs of the work 
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years. It comprises parallels 26ºN to 45ºN and meridians 20ºW to 6ºE. A 

thorough study of its evolution, precision and completeness can be found in 

González (2017).  

As shown in Figure 3.3. Earthquakes of th NGIS catalog form 1373 to 

2015. Source: Amaro-Mellado et al. (2018), there are two separated regions of 

interest: the IP and adjacent areas, and the Canary Islands and surroundings. 

The events which occurred outside of these two zones are not recorded in the 

NGIS catalog. This database has eleven fields: event ID, date, hour (UTC and 

local), latitude (°), longitude (°), depth (km), macroseismic intensity, magnitude, 

magnitude type and administrative location. As a first approach, all earthquakes 

with a recorded magnitude larger than or equal to 2.5 have been considered, as 

well as events with Imax greater than or equal to “II” from 1373 to December 2015. 

Figure 3.3 illustrates all earthquakes gathered in the catalog considered.  

In this study, only shakes that affect the IP and adjacent areas have been 

considered. So, the whole catalog has been limited to 33°N to 45°N latitude and 

from 12°W to 6°E longitude. Moreover, earthquakes whose hypocentral depth is 

over 65 km have been removed. Deeper events are not considered relevant to 

seismic hazard (IGN-UPM WG, 2013). 
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Figure 3.3. Earthquakes of th NGIS catalog form 1373 to 2015. Source: Amaro-

Mellado et al. (2018) 

3.2.2. Review from other catalogs and specific studies 

In order to update and improve the NGIS catalog, the information from 

other catalog reviews and specific studies have also been considered. These 

reviews are particularly important in order to decide upon the magnitude of some 

historical earthquakes. More than 350 events have been reviewed or added (note 

that these events are available as supplementary material in Amaro-Mellado et 

al., 2017). 

Here below, modifications to the catalog are listed, considering that those 

written later in this text prevail over those written earlier, and Mw over other types 

of magnitude. 

First of all, earthquakes with a marine epicenter and with only 

macroseismic information have been separately computed. For this purpose, the 
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correction suggested by López-Casado et al. (2000) to determine a better 

epicentral IMAX estimation, in accordance with the distance to the mainland and 

the recorded depth have been conducted, just like IGN-UPM WG (2013). 

Obviously, this leads into a relevant IMAX increase for some marine events. Thus, 

more than 70 marine events' IMAX have been revised. 

Then, in order to avoid any missing information, events from the north of 

Africa have been added and reviewed. 

 Peláez et al. (2007) compiled a catalog including the main earthquakes in 

Morocco and adjacent areas from 1045 to 2005. They used different 

catalogs and other specific reviews. 

 Hamdache et al. (2010) generated a catalog including the main northern 

Algeria and adjacent areas from 856 until 2008. They extracted information 

from different catalogs and specific studies. 

Then, the database of the Geophysics Institute of Andalusia (Instituto 

Andaluz de Geofísica) was reviewed to assign moment magnitude to some 

shocks of the instrumental period. 

 Stich et al. (2003a) calculated moment tensor inversion for small and 

moderate shallow events from IP, northern Morocco and northern Algeria 

from November 1995 to March 2002. 

 Stich et al. (2005b) established moment magnitude for earthquakes that hit 

in the Gulf of Cadiz and Cape St. Vincent region from 1964 to 2004. 

 Stich et al. (2010) presented moment tensor solutions for earthquakes in 

the Ibero-Maghrebian area from mid-2005 to the end of 2008. 

 Martín et al. (2015) performed moment tensor inversion for earthquakes in 

the Ibero-Maghrebian area from the beginning of 2009 to mid-2014. 

Also, the reviews from Martínez-Solares and Mezcua (2002) and Mezcua 

et al. (2004) have been used to reveal moment magnitude through Bakun and 

Wentworth's method (Bakun and Wentworth, 1997) for some historical and 

preinstrumental earthquakes. 

Finally, some specific studies have been adopted to improve the catalog 

(Batlló et al., 2010; 2008; Olivera et al., 2006; Stich et al., 2005a, 2003b). 
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3.2.3. Magnitude homogenization 

It has been previously stated that the NGIS has ancient records (from 

1373). This means that the magnitude of the earthquakes has been calculated 

with different procedures. A detailed description of the equations used in every 

time-period, as well as further discussion on the same, can be found in IGN-UPM 

WG (2013). The following periods can be distinguished, with an estimation of 

uncertainties (1σ), between brackets: 

1. Historical seismicity (up to 1923). Epicentral or maximum intensity, 

IMAX. The most reliable parameter to determine the magnitude of historical 

events was macroseismic intensity. (0.5 ≤ σ ≤ 1.5) 

2. Pre- and early instrumental (1924–February 1962). Duration 

magnitude, MD(MMS). Both macroseismic intensity and magnitude were 

recorded (Mezcua and Solares, 1983). (σ = 0.4) 

3. February 1962–March 2002. Surface-wave magnitude, 

mb,Lg(MMS). For this interval, the equations used for magnitude 

calculations were based on A/T ratio (amplitude/period of the wave) and 

the epicentral distance (Mezcua and Solares, 1983). (σ = 0.3 < 1985); (σ 

= 0.2 > 1985) 

4. From March 1998. Body-wave magnitude, mb(V−C). For this 

period, the magnitude was calculated by means of the formula given by 

Veith and Clawson (1972). It should be noted that from 1998 onwards, 

both mb,Lg and mb were obtained, although the catalog of the NGIS only 

shows one of them. (σ = 0.2) 

5. From March 2002. Surface-wave magnitude, mb,Lg(L). Wideband 

seismometers appear. The usage of mb is maintained. From 2002, the 

equation from López (2008) that depends on A/T ratio and the 

hypocentral distance was also used. This magnitude was correlated to the 

Richter scale of local magnitude (Richter, 1935). (σ = 0.2) 

6. The NGIS also started the calculation of the moment magnitude, 

Mw, for larger events whose value depends on the seismic moment. It was 

installed in the NGIS by Rueda and Mezcua (2005). (σ = 0.1) 
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It must be said that other interesting studies on magnitude calculation 

exist (by MD and M(A/T)) for earthquakes which occurred during the 20th century: 

Samardjieva et al. (1999) (1912–1962), Miguel and Payo (1983) (1948–1961) 

and Miguel and Payo (1980) (1962–1975). 

It can be observed that various parameters and equations have been 

used to calculate the earthquake magnitude. In order to provide an adequate 

catalog, all events must be characterized in the same magnitude. It is known that 

moment magnitude has a direct relation with the physics of the source through 

scalar seismic moments. Moreover, this scale of magnitude does not get 

saturated by large earthquakes. Due to these reasons, the moment magnitude 

has been considered as the reference-magnitude in this research. 

For that purpose, most records (where the Mw was not provided) have 

been converted into moment magnitude. Over time, different conversion relations 

between these macroseismic and magnitude scales have been proposed 

(Johnston, 1996a, b; Rueda and Mezcua, 2002; Castellaro et al., 2006; Gaspar-

Escribano et al., 2008; Cabañas et al., 2015). Finally, the formulae used have 

been calculated from a reduced major axis regression, just like IGN-UPM WG 

(2013) for the same area. This model can be assumed to be more robust than 

least square regression when handling errors in both dependent and independent 

variables. The equations for these transformations, as well as further discussions 

on them, can be found in Cabañas et al. (2015) and are listed as follows: 

 
𝑀𝑤 = 1.656 + 0.545𝐼𝑀𝐴𝑋 (Eq. 3.1) 

 
𝑀𝑤 = 0.290 + 0.973𝑚𝑏,𝐿𝑔(𝑀𝑀𝑆) (Eq. 3.2) 

 
𝑀𝑤 = −1.528 + 1.213𝑚𝑏,𝐿𝑔(𝑉 − 𝐶) (Eq. 3.3) 

 
𝑀𝑤 = 0.676 + 0.836𝑚𝑏,𝐿𝑔(𝐿) (Eq. 3.4) 

Besides, it is necessary to point out that only earthquakes from 1373 

onwards have been considered in this research because this date is a 

conservative value to find events with a certain epicentral location and 

macroseismic intensity reliability.  
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With regard to magnitude cut-off, it must be said that this is a variable 

which depends on the authors. That is to say, Miguel and Payo (1980, 1983), 

who determined the magnitude from the epicentral distance and the attenuation 

of the amplitude/period ratio of the maximum LgV waves recorded by Iberian 

WWSSSN stations from 1948 to 1975, including 2.5 or IMAX greater or equal than 

III; Peláez et al. (2007) used 3.0 as cut-off magnitude for their studies on 

Morocco. Also Morales-Esteban et al. (2010, 2014), did so for the IP and 

surroundings. Mezcua et al. (2011) and IGN-UPM WG (2013) considered 3.5 for 

the same area. Martín (1984) computed 4.0 as a cut-off. 4.5 was taken by 

Jiménez et al. (1999) for events from 1900 to 1989 in the IP, and by Hiemer et al. 

(2014) to establish a model for Europe, etc.  

Finally, the chosen cut-off value has been 3.0, as it had been previously 

calculated by Morales-Esteban et al. (2010) for the NGIS database. It should be 

noted that a lower cut-off magnitude can lead to inconsistencies, as the number 

of small earthquakes can be less than expected from the extrapolation of 

moderate magnitude earthquakes (Lombardi, 2003). 

3.2.4. Declustering 

It is known that earthquakes do not occur in an isolated manner. Normally, 

large magnitude earthquakes trigger subsequent smaller earthquakes 

(aftershocks). It is also possible for tremors to forewarn larger earthquakes 

(foreshocks). It may even occur that there is no dominant earthquake (seismic 

swarm). 

In the b-value calculation, it is assumed that the occurrence of 

earthquakes follows the Poisson distribution where earthquakes are independent 

events. Therefore, it is necessary to previously eliminate dependent earthquakes 

(aftershocks, foreshocks and swarms) through a process known as declustering. 

The results of the subsequent processes would be contaminated or 

unreliable if the catalog of earthquakes did not follow a Poisson distribution. In 

this research, although trials have been carried out using the Reasenberg (1985) 

method, finally the one described by Gardner and Knopoff (1974) has been used 

due to its clarity, simplicity and stability (IGN-UPM WG, 2013; Hamdache et al., 

2010; Talbi and Yamazaki, 2009; Peláez et al., 2007).  It establishes windows of 

both time and space, depending on the magnitude of the principal earthquake. 
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The windows are defined through logarithmic functions. The original parameters 

of this method may require modification (personalization) in order to adjust them 

to the IP. These have been obtained after the corresponding trials and 

bibliography revisions. In the recent literature two main groups of values (Peláez 

et al. 2007; IGN-UPM WG 2013) have been used for the Iberian Peninsula.  

For the study of seismogenic zones predefined by experts, the values 

considered by Peláez et al. (2007) have been used. For example, for a 3.0 and 

an 8.0 Mw earthquake, a space-window of 20 and 100 km has been, respectively, 

obtained. With regard to the length of the time-window, 10 and 900 days have 

been, respectively, determined. 

Regarding the zonings based on multiresolution grid, the calculations 

have been done considering both values. Moreover, this allows comparing the 

results. Peláez et al.’s (2007) values have been also considered by Crespo 

(2011) for the Iberian Peninsula. 

This declustering option and the different temporal and geographical 

extent (as will be seen later) results in that, actually, three catalogs very slightly 

different coexist (but are not mix up). 

3.2.5. Year of completeness 

A catalog is complete only if all records equal or superior to a cut-off 

magnitude have been recorded. Obviously, it is more likely for larger earthquakes 

to have been previously registered. Therefore, the year of completeness is more 

recent for smaller magnitudes. Morales-Esteban et al. (2010) calculated that 

1978 is the year of completeness for the catalog of the NGIS for a threshold 

magnitude of 3.0. The linear method (Mezcua et al., 2011) was used for that 

purpose. 

From a strict point of view, this parameter must be calculated for each 

zone. In this study approximately 900 zones have been considered including the 

zones of all the zonings studied. Moreover, some zones are very small which 

means that not much data are available within it. Another way to face the issue is 

to consider a global value for the whole area, as in Mezcua et al. (2011). In line 

with this approach, the year of completeness has been determined for the zones 

proposed by Martín (1984). Also, the linear method has been used. Then, the 
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most recent (restrictive) year for every cut-off magnitude considered (3.0, 4.0, 5.0 

and 6.0, in this study), for all the zones, has been taken as representative for the 

entire NGIS catalog. Later, this has been compared with other years of 

completeness published for the Iberian Peninsula (IGN-UPM WG, 2013; Mezcua 

et al., 2011). It has been found that the results are conservative and in 

accordance with these sources. The results are listed in Table 3.1. 

Table 3.1. Year of completeness 

 

 

But, as the results have not been satisfactory due to detection network 

heterogeneity depending on the location, a regionalization has been applied. In 

particular, regionalized values considered in IGN-UPM WG (2013) have been 

finally considered. The division can be seen in Figure 3.4, and the corresponding 

years of completeness for every magnitude are shown in Table 3.2. 

Table 3.2. Regionalized year of completeness 

 

Magnitude Completeness 

3.0 1980 

4.0 1953 

5.0 1915 

6.0 1522 

Magnitude Africa Azores SE Spain Rest 

3.0 1987 1987 1978 1985 

4.0 1950 1972 1908 1933 

5.0 1910 1935 1800 1800 

6.0 1578 1720 1370 1370 

https://www.sciencedirect.com/science/article/pii/S0040195117303530#t0010
https://www.sciencedirect.com/science/article/pii/S0040195117303530#t0010
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Figure 3.4. Regionalization of completeness adapted from IGN-UPM WG (2013). 

Source: Amaro-Mellado et al. (2017) 

Finally, it has been verified that this choice is consistent with the period in 

which the Spanish seismic network can be considered to have spread all over the 

Iberian Peninsula. 

3.2.6. Resulting catalogs 

The catalogs resulting from this series of processes has been integrated 

into a GIS.  

Figure 3.5 depicts all shocks employed for the analysis of the zonings 

proposed by the experts. It is comprised by parallels 33ºN and 45ºN and 

meridians 12ºW and 6ºE. The temporal extension varies from 1373 to June 2014. 

Figure 3.6 presents the earthquakes for the seismic parameters in the 

multiresolution grids. The geographical window includes events from latitude 

34ºN to 44ºN and the longitude spans 17º (12ºW - 5ºE).  It gathers earthquakes 
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from 1373 to December 2015. In the case of the multiresolution zoning, visually, 

both catalogs are almost identical so just one is shown. 

As can be seen, the geographic breath of the catalog considered to 

analyze for the zonings designed by the experts is greater. As will be shown in 

Chapter 4, some of the zones of these zonations are further away from the IP 

which justifies this greater geographic extension of the catalog. 

 

Figure 3.5. Seismic catalog for studying zonings proposed by the experts (from 

1373 to June 2014). Decluster parameters: Peláez et al. (2007). Source: Amaro-

Mellado et al. (2017) 
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Figure 3.6. Seismic catalog for studying zonings from a multiresolution grid (from 

1373 to December 2015). Decluster by IGN-UPM WG (2013). Source: Amaro-Mellado 

et al. (2018) 
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This chapter deals with the calculation, representation and analysis of the 

seismic parameters of different seismic zonings proposed by the experts for the 

Iberian Peninsula. Firstly, an introduction exposing the issue is given. Then, the 

seismogenic selected zonings that will be analyzed are shown. Later, the seismic 

hazard parameters together with the input data are presented. Finally, the results 

achieved are displayed and analyzed.  

4.1. INTRODUCTION 

One of the most important issues in a PSHA is depicting the seismic 

sources. A seismic source must have some relatively uniform seismic parameters 

and must be different to the adjacent one. Some b-value variations can be 

permitted in a seismic source. By contrast, the maximum magnitude and the 

annual rate must be uniform (Martínez-Álvarez et al., 2015). 

The Iberian Peninsula seismic activity is moderate with infrequent 

earthquakes of M ≥ 5. Large earthquakes are infrequent and the recurrence 

period between events is long. This makes the population unaware of this hazard 

and inadequately prepared to behave in a safe manner. For this reason, 

seismogenic zones were used in the last Spanish Building Seismic Regulations 

(Ministerio de Fomento (Gobierno de España), 2002; Ministerio de Obras 

Públicas Transporte y Medio Ambiente (Gobierno de España), 1994). According 

to Mezcua et al. (2011) both are based on the seismogenic zoning defined by 

Martín (1984) with minor modifications. A new Seismic Regulation is currently 

being developed. This is based on the seismogenic zonings proposed by García-

Mayordomo et al., (2012b) and Bernal (2011). 

In this study, from the working catalog compiled in the previous chapter, 

the statistical parameters have been obtained though methods that use different 

years of completeness. These methods also allow calculating the statistical 

parameters (standard errors and confidence limits) of the seismic parameters 

obtained. This allows using more data for the calculations and avoiding errors 

due to incomplete data. Also, the Quaternary activity database has been used to 

complete the data. 
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This research conducts a critical review of the seismogenic zonings of the 

IP. This analysis is only based on the seismic parameters calculated from this 

catalog. A GIS has been used for this goal. 

Regarding the review of the seismogenic zonings of the IP, it should be 

noted that this analysis is based solely on its seismic parameters. Namely, the b-

value, the annual rate of earthquakes per square kilometer and the maximum 

magnitude.  

The solution proposed by Kijko and Smit (2012) has been used to 

calculate the b-value, as has been explained in Chapter 2. This method has the 

advantage of using different magnitudes of completeness. This allows the use of 

more data which provides stronger statistical results. Also, the correction for the 

b-value calculation proposed by Ogata and Yamashina (1986) has been 

considered.  

The annual rate of earthquakes has been obtained from the maximum 

likelihood estimation of the seismic activity. This has been later divided by the 

area of every zone. It should be noted that corrections regarding the curvature of 

the Earth have been assumed to avoid inaccurate data. In this way, the annual 

rate of earthquakes per square kilometer has been obtained.  

The maximum magnitude for every zone has been determined through 

two methods. The Fault Maximum Magnitude (hereinafter, FMM) that considers 

the maximum magnitude that the faults intersecting the zone can produce 

according to the information provided by the QAFI, and the Recorded Maximum 

Magnitude (hereinafter, RMM), which is the largest earthquake recorded within 

the zone. This is particularly relevant due to the long time span (more than 600 

years) of the NGIS catalog, making it very probable that the largest earthquake 

has previously been recorded. All of these parameters have been programmed in 

the GIS. Therefore, their determination is automatic and lacks human error. 

All of the above-mentioned seismic parameters have been calculated for 

all the zones of five seismogenic zonings selected for this research (Bernal, 

2011; García-Mayordomo et al., 2012b; Martín, 1984; Martínez-Álvarez et al., 

2015; Morales-Esteban et al., 2014). It is to be mentioned that the zonings by 

Martín (1984), García-Mayordomo et al. (2012b) and Bernal (2011) have been 

selected due to their use in the Spanish Seismic Regulations. The zonings by 
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Morales-Esteban et al. (2014) and Martínez-Álvarez et al. (2015) have been 

chosen for comparison due to the relevant mathematical and statistical methods 

that support these works.  

Therefore, it is expected that the method exposed in this research will 

help defining seismogenic zones more objectively. A more robust calculation of 

the statistical parameters of the seismogenic zones will also be provided. 

Finally, it should be noted that all the information and calculations have 

been integrated into a GIS. This presents some interesting advantages. First, it 

allows the combination of graphic and alphanumeric data. This is especially 

relevant for calculation and passing information. Second, the calculations have 

been programmed on the GIS which facilitates their determination and avoids 

errors. It has a strong graphical support which allows for the generation of rich 

graphic results. The preparation and programming can be tedious but it allows for 

the obtaining of multiple results. This is this case where more than 200 different 

zones have been used. Finally, it should be noted that new information can be 

obtained from the GIS. 

4.2. SEISMOGENIC ZONINGS SELECTED 

In this research, five of the most relevant seismogenic zonings for the 

Iberian Peninsula have been considered. The first one is the model used, with 

minor modifications, in current Spanish regulations (Mezcua et al., 2011). The 

second and the third ones are those proposed for the next regulation. The fourth 

and the fifth ones have been selected due to the fact that they are based on 

strong mathematical and statistical methods. Specifically, the fourth one is based 

on the efficient adaptive Mahalanobis k-means algorithm and the last one is 

based on triclustering. These zonings are briefly described below, and depicted in 

Figure 4.1, Figure 4.2, Figure 4.3, Figure 4.4 and Figure 4.5: 

 Martín (1984) proposed 27 zones for the Iberian Peninsula (Figure 4.1). 

These were based on the seismic catalog and macroseismic activity maps. 

The zones were limited considering both homogeneous geological and 

geophysics criteria. This zoning is selected for being the first relevant 

zonation and for being, with slight modifications, the one included in the last 

two building regulations for Spain (Earthquake Code Permanent 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/peninsula
https://www.sciencedirect.com/science/article/pii/S0040195117303530#bb0270
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Commission of Spain 1994, 2002; Mezcua et al., 2011). This zoning has 

been named in this paper as AJM. 

 

Figure 4.1. AJM zoning for the IP. Source: Amaro-Mellado et al. (2017) 

 García-Mayordomo et al. (2012b) proposed a first model based on the 

Iberfault model. This takes into account various aspects, such as tectonic 

and geological cartography, relief, thickness of the crust, thermal flux, 

historical and instrumental seismicity. Afterward, this model was improved 

with the idea of adjusting the Spanish zoning in line with those of 

neighboring countries. For that purpose, a follow-up commission with 

experts from Portugal (Instituto Superior Técnico) and France (Institut de 

Radioprotection et de Sûreté Nucléaire) was formed (Stucchi et al., 2013). 

Also the QAFI was used. Finally, the model proposed by García-

Mayordomo et al. (2012b) (hereinafter, GM12) has 55 shallow and four 

deep zones (the latter not being considered in this study), see Figure 4.2. 
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Figure 4.2. GM12 zoning for the IP. Source: Amaro-Mellado et al. (2017) 

 Bernal (2011) (hereinafter, ByA12) used geology and tectonics as general 

criteria for each seismogenic zone, including several zones, together with a 

detailed seismicity analysis. The Iberian Peninsula was split into eight 

regions, where 72 seismic zonings were established (Figure 4.3). 
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Figure 4.3. ByA zoning for the IP. Source: Amaro-Mellado et al. (2017) 

 Morales-Esteban et al. (2014) (hereinafter, MAH) used an efficient adaptive 

Mahalanobis k-means algorithm for zoning the Iberian Peninsula. The 

catalog of the NGIS was used. The advantage of this method lies in its 

ability to discover elliptical zones in any direction. The zones were 

smoothed according to geology and a good match with the QAFI was 

found. Finally, 16 zones were defined (Figure 4.4). 
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Figure 4.4. MAH zoning for the IP. Source: Amaro-Mellado et al. (2017) 

 Martínez-Álvarez et al. (2015) (hereinafter, TRIC) proposed 34 zones for 

the Iberian Peninsula based on a statistical analysis of the seismicity. 

Triclustering was used for that purpose and the catalog of the NGIS was 

adopted. The advantage of this method is its impartiality. It is solely based 

on seismic data and zone depicting is automatic. The zones were later 

confirmed with the geology (Figure 4.5). 
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Figure 4.5. TRIC zoning for the IP. Source: Amaro-Mellado et al. (2017) 

4.3. SEISMIC STATISTICAL PARAMETERS 

In this section, the seismic statistical parameters used in this research are 

presented. First, the b-value has been calculated by the method proposed by 

Kijko and Smit (2012) that takes into account different periods of completeness is 

described. The correction proposed by Ogata and Yamashina (1986) has also 

been used. Next, the normalized annual rate has been calculated (AR). The error 

in the area of every zone due to the curvature of the Earth is also corrected. 

Finally, two methods for calculating the maximum magnitude are shown. This is 

determined in consideration of both the largest earthquake registered from the 

historical data and from the properties of the active Quaternary faults of every 

zone. 

The catalog used for these calculations spans 1373 to June 2014 

comprised by parallels 33°N–45°N and meridians 12°W–6°E (Figure 3.5). 
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The declustering has been applied considering the method proposed by 

Gardner and Knopoff (1974) with the parameters defined by Peláez et al. (2007) 

as was mentioned in Chapter 3. 

The minimum number of events to compute a proper b-value has been set 

to 30, taking into account the study conducted by Shi and Bolt (1982). This value 

represents a trade-off between the small amount of data available for some 

zones and the standard error associated with a significant b-value. Thus, b-value 

has been declared “undefined” and is shown as “-” for zones with less than 30 

events. 

4.4. RESULTS 

4.4.1.  Results achieved 

In this section the results from this study are shown. First, the AR is 

compared to the b-value for the five zonings analyzed: Figure 4.6, Figure 4.7, 

Figure 4.8, Figure 4.9 and Figure 4.10. The axes of these figures have the same 

length in order to allow a comparison between them. Note that GM12 and ByA12 

seismogenic zonings boundary-line files have been provided by the NGIS, upon 

request. 

Later, tables with the zone numbering (N), number of events (NE), area of 

the zone (in km2), 𝑏̂-value, the 𝑏̃-value, the standard deviation of the 𝑏̃-value (𝜎̂𝑏̃), 

the lower and upper endpoint of the 95% confidence interval for the 𝑏̃-value, AR, 

RMM and FMM (when available) are listed. Table 4.1, Table 4.2, Table 4.3, Table 

4.4 and Table 4.5 show the results for AJM, GM12, ByA12, MAH and TRIC, 

respectively. 

Finally, regarding with the representations of the parameters: 𝑏̃-value are 

shown in Figure 4.11, Figure 4.12 and Figure 4.13; standard deviation of the 𝑏̃-

value (𝜎̂𝑏̃) are depicted in Figure 4.14, Figure 4.15 and Figure 4.16; AR is 

represented in Figure 4.17, Figure 4.18 and Figure 4.19; lastly, in Figure 4.20, 

Figure 4.21 and Figure 4.22 RMM are presented.  
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4.4.2. Analysis of the results 

This section provides analytical discussion about the results achieved. For 

a better visualization, illustrate color maps for the b̃-value, its standard deviation, 

AR and RMM, for the five studied zonings. 

4.4.2.1. AJM zoning (Martín, 1984) 

AJM zoning consists of 27 zones that mainly cover the IP. The zone with 

the lowest number of events is zone 18 (west of the Pyrenees) with 22 events. 

This ensures an acceptable minimum number of earthquakes for the calculation 

of the parameters for almost all zones. The smallest zone has 3860 km2 and the 

biggest has 48,801 km2. The 𝑏̃-value lies between 0.98 and 1.68. The AR varies 

between 1.4E−03 for zone 1 (Granada Basin) and 4.5E−05 for the west of the 

Pyrenees. The RMM ranges from 4.7 to 8.7 (zone 27) and the FMM, similarly, 

from 5.5 to 8.1 (zone 27). It is important to analyze the Granada Basin (zone 1). 

This is the zone with the highest AR - notably the highest, see Figure 4.6 - and 

with a 𝑏̃-value of 1.16. This means that earthquakes are frequent but large events 

are not particularly frequent. The AR of zones 2, 3 and 22 (Penibetic area, east of 

the Betics System and north Pyrenees, respectively) is also high. The normalized 

annual rate, AR, presents values between 1.4E-3 for the Granada basin and 

4.5E-5 for the Iberian Massif. Figure 4.1 and Figure 4.6 show that zones 2–3 are 

adjacent and have a very similar AR and 𝑏̂-value and not so dissimilar from 4 and 

even 1 zones.  

 

https://www.sciencedirect.com/science/article/pii/S0040195117303530#f0055
https://www.sciencedirect.com/science/article/pii/S0040195117303530#f0055
https://www.sciencedirect.com/science/article/pii/S0040195117303530#f0020
https://www.sciencedirect.com/science/article/pii/S0040195117303530#f0020
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Figure 4.6. Annual rate vs. 𝒃̃-value for AJM zoning. Source: Amaro-Mellado et al. 

(2017) 

  



PhD Thesis: Statistical analysis of different seismogenic zonings of the Iberian Peninsula 

and adjacent areas through a geographic information system 

 

56 

 

Table 4.1. Results for AJM zoning 

N NE Area 𝒃̂ 𝒃̃ 𝝈̂𝒃̃ Lower Upper AR RMM FMM 

1 230 3860 1.16 1.15 0.08 1.00 1.30 1.4E−03 6.7 6.7 

2 321 13,888 1.24 1.24 0.07 1.10 1.37 5.7E−04 6.8 6.7 

3 315 13,224 1.15 1.15 0.06 1.02 1.27 5.7E−04 6.6 7.4 

4 125 12,015 1.29 1.28 0.12 1.05 1.50 2.6E−04 6.3 6.9 

5 39 7060 1.32 1.29 0.21 0.87 1.70 1.4E−04 4.7 7.1 

6 100 9702 1.42 1.41 0.14 1.13 1.69 2.6E−04 6.7 7.1 

7 170 14,023 1.12 1.11 0.09 0.94 1.28 2.9E−04 5.5 5.6 

8 82 22,123 1.10 1.08 0.12 0.85 1.32 8.8E−05 6.9 – 

9 34 6437 1.19 1.16 0.20 0.76 1.56 1.6E−04 5.2 7.2 

10 69 15,57 1.28 1.26 0.15 0.96 1.56 1.4E−04 5.7 7.2 

11 88 27,938 1.23 1.22 0.13 0.96 1.48 9.7E−05 5.5 6.9 

12 28 9757 – – – – – – 6.6 7.5 

13 50 13,174 1.06 1.04 0.15 0.75 1.34 1.1E−04 5.5 7.7 

14 62 25,837 1.33 1.31 0.17 0.98 1.64 7.5E−05 5.5 7.9 

15 134 22,596 1.69 1.68 0.15 1.39 1.97 1.9E−04 5.5 7.9 

16 112 15,43 1.33 1.31 0.13 1.07 1.56 2.3E−04 5.9 6.9 

17 39 27,111 1.32 1.29 0.21 0.87 1.70 4.5E−05 5.7 7.0 

18 22 15,767 – – – – – – 5.1 – 

19 54 16,023 1.61 1.58 0.22 1.15 2.00 1.1E−04 5.7 7.4 

20 53 8222 1.35 1.33 0.19 0.96 1.69 2.0E−04 7.3 7.4 

21 82 19,937 1.34 1.33 0.15 1.04 1.62 1.3E−04 6.0 – 

22 429 23,04 1.17 1.17 0.06 1.06 1.28 5.6E−04 6.3 7.4 

23 50 4139 1.19 1.17 0.17 0.84 1.50 3.7E−04 5.4 – 

24 437 46,232 1.08 1.07 0.05 0.97 1.17 2.8E−04 6.9 8.0 

25 118 24,549 1.14 1.13 0.10 0.92 1.33 1.7E−04 6.6 5.5 

26 359 48,801 1.13 1.13 0.06 1.01 1.25 2.6E−04 6.7 7.5 

27 437 38,631 0.98 0.98 0.05 0.88 1.07 3.6E−04 8.7 8.1 

Min 22 3860 0.98 0.98 0.05 0.75 1.07 4.5E−05 4.7 5.5 

Max 437 48,801 1.69 1.68 0.22 1.39 2.00 1.4E−03 8.7 8.1 
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4.4.2.2. GM12 zoning (García-Mayordomo et al., 2012b) 

This zoning has 55 zones that spread over the IP, the Mediterranean Sea, 

the north of Africa and the Atlantic Coast to the west of the IP. This plentiful 

number of zones means that a few zones have less than 30 registers. It should 

be noted that zone 49 is outside of the area considered in this study. The smaller 

zone is number 16 (in the Pyrenees) with 3201 km2 and the biggest is zone 41 

(east of the Alboran Sea) with 68,858 km2. The 𝑏̃-value oscillates between 0.73 

and 1.96, which may denote the lack of data for a proper calculation of some 

zones. It should be noted that zone 16 has the highest AR (2.6E-3). The AR is 

also significant in zones 35 and 38 (inner Betics System). The RMM lies between 

4.4 and 8.7 (zone 50). Similarly, the FMM ranges from 4.9 to 8.6 (zone 53). There 

are also many zones with a very low AR. Figure 4.2 and Figure 4.7 show that 

zones 50–51 and 45–46–47–48 are adjacent and have a very similar AR and 𝑏̃-

value. 

 

 

Figure 4.7. Annual rate vs. 𝒃̃-value for GM12 zoning. Source: Amaro-Mellado et al. 

(2017) 

  

https://www.sciencedirect.com/science/article/pii/S0040195117303530#f0025
https://www.sciencedirect.com/science/article/pii/S0040195117303530#f0025
https://www.sciencedirect.com/science/article/pii/S0040195117303530#f0060
https://www.sciencedirect.com/science/article/pii/S0040195117303530#f0060
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Table 4.2. Results for GM12 zoninig 

N NE Area 𝒃̂ 𝒃̃ 𝝈̂𝒃̃ Lower Upper AR RMM FMM 

1 17 25,367 – – – – – – 6.3 – 
2 243 46,034 1.47 1.46 0.09 1.28 1.65 1.7E−04 5.5 7.6 
3 39 18,438 0.94 0.92 0.15 0.62 1.21 6.0E−05 5.2 – 
4 35 33,604 1.29 1.25 0.22 0.82 1.68 3.2E−05 5.5 – 
5 32 17,675 1.25 1.21 0.22 0.78 1.65 5.6E−05 5.1 – 
6 124 57,525 1.46 1.45 0.13 1.19 1.70 6.9E−05 5.9 7.9 
7 51 20,058 0.99 0.97 0.14 0.70 1.25 7.3E−05 5.5 7.9 
8 51 25,178 1.03 1.01 0.14 0.72 1.29 6.5E−05 6.3 – 
9 69 15,633 1.21 1.20 0.15 0.91 1.48 1.4E−04 6.6 7.7 

10 134 63,264 1.26 1.25 0.11 1.04 1.46 6.5E−05 6.0 7.5 
11 58 31,676 1.36 1.34 0.18 0.99 1.69 5.8E−05 5.9 – 
12 92 52,789 1.62 1.61 0.17 1.27 1.94 5.7E−05 4.9 6.0 
13 73 10,997 1.04 1.03 0.12 0.79 1.26 1.9E−04 5.2 7.2 
14 71 7647 1.41 1.39 0.17 1.07 1.72 2.9E−04 5.2 – 
15 55 5760 1.32 1.30 0.18 0.95 1.64 3.0E−04 4.4 – 
16 280 3201 1.08 1.08 0.06 0.95 1.21 2.6E−03 6.3 – 
17 69 9858 1.21 1.19 0.15 0.91 1.48 2.1E−04 6.0 – 
18 77 6912 1.44 1.42 0.16 1.10 1.74 3.5E−04 6.3 7.4 
19 41 4681 1.21 1.18 0.19 0.81 1.55 2.7E−04 7.3 7.4 
20 62 8324 1.28 1.26 0.16 0.94 1.58 2.3E−04 6.0 – 
21 33 17,215 1.73 1.67 0.30 1.09 2.26 6.5E−05 6.0 – 
22 39 13,599 1.39 1.35 0.22 0.92 1.79 9.1E−05 6.3 7.3 
23 48 16,739 1.26 1.24 0.18 0.88 1.59 8.9E−05 5.7 7.4 
24 14 28,162 – – – – – – 4.7 – 
25 16 15,76 – – – – – – 5.7 – 
26 55 35,547 1.45 1.42 0.20 1.04 1.80 4.9E−05 5.2 7.0 
27 17 17,212 – – – – – – 4.4 7.4 
28 114 15,607 1.14 1.13 0.11 0.92 1.34 1.8E−04 6.9 – 
29 123 14,326 1.15 1.14 0.10 0.94 1.34 2.1E−04 5.3 5.6 
30 55 14,826 1.55 1.52 0.21 1.11 1.93 9.6E−05 4.7 7.1 
31 141 14,832 1.49 1.48 0.13 1.24 1.73 2.5E−04 6.7 7.1 
32 9 47,978 – – – – – – 5.5 4.9 
33 80 13,958 1.25 1.23 0.14 0.96 1.50 1.4E−04 5.5 5.5 
34 135 8000 1.28 1.27 0.11 1.06 1.49 4.2E−04 6.8 6.7 
35 344 6894 1.18 1.18 0.06 1.05 1.30 1.2E−03 6.7 6.7 
36 91 7429 1.29 1.28 0.14 1.01 1.54 3.1E−04 6.3 6.9 
37 218 10,723 1.22 1.21 0.08 1.05 1.38 5.0E−04 5.7 6.8 
38 194 6480 1.38 1.37 0.10 1.18 1.57 9.5E−04 6.5 6.4 
39 42 12,739 2.00 1.96 0.31 1.35 2.56 1.1E−04 4.9 6.5 
40 77 11,656 1.42 1.40 0.16 1.08 1.72 2.4E−04 6.7 – 
41 69 68,858 1.24 1.23 0.15 0.93 1.52 3.1E−05 4.8 – 
42 50 13,544 1.07 1.05 0.15 0.75 1.34 1.3E−04 6.6 – 
43 223 24,421 1.03 1.02 0.07 0.89 1.16 3.2E−04 6.2 7.5 
44 54 17,569 0.83 0.82 0.11 0.60 1.04 1.0E−04 5.8 7.5 
45 127 27,4 0.81 0.81 0.07 0.67 0.95 1.6E−04 7.0 7.5 
46 160 23,671 0.89 0.88 0.07 0.75 1.02 2.3E−04 7.3 – 
47 130 19,446 0.75 0.74 0.07 0.61 0.87 2.2E−04 7.3 – 
48 197 29,065 0.77 0.77 0.06 0.66 0.88 2.3E−04 7.1 – 
49 1 868 – – – – – – 3.4 – 
50 520 35,368 0.99 0.99 0.04 0.90 1.07 4.7E−04 8.7 8.1 
51 431 28,564 1.08 1.08 0.05 0.98 1.18 4.5E−04 6.9 8.0 
52 48 33,387 0.81 0.79 0.12 0.56 1.02 4.3E−05 6.2 7.1 
53 47 33,633 1.02 0.99 0.15 0.70 1.28 4.0E−05 5.5 8.6 
54 30 12,707 0.75 0.73 0.14 0.46 1.00 7.8E−05 6.7 – 
55 220 10,791 1.06 1.06 0.07 0.92 1.20 4.8E−04 6.6 7.4 

Min 1 868 0.75 0.73 0.04 0.46 0.87 3.1E−05 3.4 4.9 
Max 520 68,858 2.00 1.96 0.31 1.35 2.56 2.6E−03 8.7 8.6 
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4.4.2.3. ByA12 zoning (Bernal, 2011) 

ByA12 is the zoning analyzed with the largest number of zones (72). 

Therefore, in many zones, less than 30 earthquakes have been registered. This 

zoning covers the full IP and surrounding area. Zone 40 has just 1144 km2 

(Medium Segura fault zone). By contrast, the largest is zone 72 (coastal zone to 

the east of Levante) with 69,348 km2. The 𝑏̃-value lies from 0.78 to 1.85. There 

are a few zones with a high AR (greater than 1E-3), especially zone 51 (Loja-

Gorda Mountains), zone 52 (Granada), zone 15 (northwestern Pyrenees), zone 

60 (Adra-Alhamilla Mountains) and zone 55 (Almanzora Valley). The RMM 

ranges between 3.5 and 8.7 (zone 45) and the FMM between 4.9 and 8.0 (zone 

45).It should be noted that the 44–45 adjacent zones present not dissimilar 𝑏̃-

values and AR figures. Finally, and again, it must be highlighted that too many 

zones exist with not enough data to conduct a proper calculation and to look for 

potential clusters of zones. 

 

 

Figure 4.8. Annual rate vs. 𝒃̃-value for ByA12 zoning. Source: Amaro-Mellado et al. 

(2017) 
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Table 4.3. Results for ByA12 zoning 

N NE Area 𝒃̂ 𝒃̃ 𝝈̂𝒃̃ Lower Upper AR RMM FMM 
1 46 14,447 1.51 1.48 0.22 1.04 1.92 1.0E−04 5.5 7.6 
2 149 34,639 1.53 1.52 0.13 1.27 1.77 1.4E−04 5.5 7.9 
3 153 35,278 1.20 1.19 0.10 1.00 1.38 1.3E−04 5.9 7.2 
4 19 16,314 – – – – – – 4.9 – 
5 70 32,581 1.54 1.52 0.18 1.16 1.88 6.9E−05 5.5 7.9 
6 7 29,734 – – – – – – 3.5 7.5 
7 21 17,939 – – – – – – 4.4 7.5 
8 28 16,72 – – – – – – 4.9 – 
9 69 67,193 1.36 1.34 0.16 1.02 1.66 3.2E−05 5.9 7.5 

10 95 29,982 1.22 1.21 0.13 0.97 1.46 9.7E−05 6.0 7.6 
11 39 18,073 1.25 1.22 0.20 0.83 1.62 6.7E−05 4.4 – 
12 139 30,178 1.13 1.13 0.10 0.94 1.32 1.4E−04 5.7 7.2 
13 2 31,861 – – – – – – 4.7 – 
14 12 27,401 – – – – – – 4.8 – 
15 369 8707 1.12 1.12 0.06 1.00 1.23 1.3E−03 6.3 – 
16 35 2905 1.62 1.57 0.27 1.04 2.11 3.9E−04 5.2 – 
17 176 24,003 1.36 1.35 0.10 1.15 1.56 2.3E−04 7.3 7.4 
18 14 1396 – – – – – – 6.3 6.9 
19 59 8000 1.18 1.16 0.15 0.86 1.46 2.2E−04 4.9 – 
20 37 12,072 1.59 1.55 0.26 1.04 2.06 9.9E−05 6.0 – 
22 10 1593 – – – – – – 5.3 6.9 
23 24 13,917 – – – – – – 5.1 – 
24 4 26,915 – – – – – – 4.0 – 
25 8 12,054 – – – – – – 4.1 – 
26 34 8476 1.34 1.30 0.23 0.85 1.75 1.3E−04 5.7 7.3 
28 33 13,539 1.24 1.20 0.22 0.78 1.62 7.5E−05 5.2 7.4 
29 10 2786 – – – – – – 5.7 – 
30 0 6030 – – – – – – 4.1 – 
31 21 12,853 – – – – – – 5.2 7.0 
32 24 17,005 – – – – – – 5.2 – 
34 19 15,11 – – – – – – 4.4 7.4 
35 42 7274 1.90 1.85 0.29 1.28 2.43 1.5E−04 5.5 7.1 
36 39 5382 1.30 1.27 0.21 0.86 1.68 1.8E−04 5.5 7.1 
37 68 6507 1.45 1.43 0.18 1.09 1.78 2.7E−04 6.7 7.1 
38 71 5330 1.24 1.23 0.15 0.94 1.52 3.3E−04 5.2 6.8 
39 6 18,419 – – – – – – 5.5 4.9 
40 38 1144 1.07 1.04 0.17 0.70 1.38 7.8E−04 5.7 6.8 
41 53 3138 0.95 0.93 0.13 0.68 1.19 3.8E−04 6.6 6.8 
42 39 1357 1.08 1.05 0.17 0.71 1.39 6.8E−04 6.0 7.0 
43 37 5045 1.47 1.43 0.24 0.96 1.91 1.9E−04 4.9 6.8 
44 46 6758 1.20 1.17 0.18 0.82 1.52 2.1E−04 5.2 7.2 
45 643 47,774 1.05 1.05 0.04 0.97 1.13 3.9E−04 8.7 8.0 
46 72 17,455 1.19 1.18 0.14 0.90 1.45 1.0E−04 6.9 – 
47 86 10,715 1.22 1.20 0.13 0.95 1.46 2.0E−04 5.3 5.6 
48 23 6688 – – – – – – 4.3 7.1 
49 83 10,62 1.20 1.19 0.13 0.93 1.45 1.9E−04 4.9 5.5 
50 160 6264 1.14 1.13 0.09 0.95 1.30 6.1E−04 5.5 – 
51 146 2081 1.23 1.22 0.10 1.02 1.42 1.7E−03 6.5 6.7 
52 135 2300 1.14 1.13 0.10 0.94 1.32 1.4E−03 6.7 6.5 
53 92 6855 1.18 1.16 0.12 0.92 1.40 3.3E−04 5.5 6.9 
54 36 3516 1.34 1.30 0.22 0.86 1.74 2.6E−04 6.3 6.9 
55 97 2297 1.60 1.59 0.16 1.27 1.90 1.1E−03 6.3 6.5 
56 25 3045 – – – – – – 5.5 6.1 
57 24 2264 – – – – – – 5.2 6.3 
58 72 4175 1.27 1.25 0.15 0.96 1.55 4.3E−04 6.8 6.7 
59 24 2906 – – – – – – 6.1 6.2 
60 160 4016 1.31 1.30 0.10 1.10 1.50 1.2E−03 6.4 7.4 
61 88 5810 1.15 1.14 0.12 0.90 1.38 4.6E−04 6.5 7.4 
62 98 14,581 1.57 1.55 0.16 1.24 1.87 2.4E−04 6.7 6.9 
63 166 18,832 1.00 0.99 0.08 0.84 1.15 3.0E−04 6.2 7.5 
64 95 59,723 1.31 1.30 0.13 1.03 1.56 5.0E−05 4.9 7.5 
65 71 20,888 0.98 0.97 0.12 0.74 1.20 1.2E−04 6.6 – 
66 84 20,258 1.10 1.08 0.12 0.85 1.32 1.4E−04 6.7 – 
67 61 21,527 0.83 0.82 0.11 0.61 1.03 9.5E−05 5.7 7.4 
68 99 20,73 0.79 0.78 0.08 0.62 0.93 1.6E−04 7.0 7.4 
69 63 21,448 1.02 1.00 0.13 0.75 1.26 8.5E−05 5.5 7.7 
70 34 9449 1.18 1.15 0.20 0.75 1.54 1.1E−04 6.6 7.5 
71 109 7938 0.89 0.89 0.09 0.72 1.05 4.3E−04 7.9 8.0 
72 20 69,348 – – – – – – 4.9 7.3 

Min 0 1144 0.79 0.78 0.04 0.61 0.93 3.2E−05 3.5 4.9 
Max 643 69,348 1.90 1.85 0.29 1.28 2.43 1.7E−03 8.7 8.0 
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4.4.2.4. MAH zoning (Morales-Esteban et al., 2014) 

MAH zoning is the zoning with the lowest number of zones (16). All zones 

possess a great number of events (160–693). This makes the statistical results 

very robust (0.11 as maximum standard deviation). The smallest zone is zone 14 

(northeast of the Tell Atlas) with 29,478 km2 and the largest is zone 4 (center and 

coastal zone to the west of Portugal) with 1,384,436 km2. The smallest 𝑏̃-value is 

0.70 (zone 16) and the highest is 1.50 (zone 11, Iberian Mountain Mass). It is 

noteworthy that zones 13–16 have a 𝑏̃-value below 1.0. This shows that large 

earthquakes are quite frequent in the Tell Atlas. No zone can be highlighted for 

having a very low or very high AR (between 5.0E-4 and 4.8E-5) as the areas are 

quite large and this softens the results. The lowest RMM is 5.7 and the lowest 

FMM is 6.7. The largest RMM (8.7) is similar to the largest FMM (8.6), both in 

zone 5. Only zones 14, 15 and 16 have a more or less similar 𝑏̃-value and AR to 

their neighbors. 

 

 

Figure 4.9. Annual rate vs. 𝒃̃-value for MAH zoning. Source: Amaro-Mellado et al. 

(2017) 
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Table 4.4. Results for MAH zoning 

N NE Area 𝒃̂ 𝒃̃ 𝝈̂𝒃̃ Lower Upper AR RMM FMM 

1 404 127,115 1.44 1.43 0.07 1.29 1.57 1.0E−04 5.9 7.9 

2 418 35,487 1.19 1.19 0.06 1.08 1.31 3.6E−04 6.0 – 

3 388 113,716 1.31 1.30 0.07 1.17 1.44 1.1E−04 7.3 7.4 

4 273 138,436 1.13 1.13 0.07 0.99 1.26 5.9E−05 6.6 7.9 

5 628 78,936 0.98 0.98 0.04 0.90 1.05 2.5E−04 8.7 8.6 

6 520 58,867 1.12 1.12 0.05 1.03 1.22 2.6E−04 6.9 8.0 

7 164 75,504 1.02 1.02 0.08 0.86 1.17 7.5E−05 6.7 – 

8 241 31,997 1.03 1.02 0.07 0.89 1.15 2.6E−04 6.7 7.1 

9 522 47,498 1.20 1.20 0.05 1.10 1.30 2.7E−04 6.9 6.7 

10 693 33,556 1.15 1.15 0.04 1.06 1.23 5.0E−04 6.7 7.5 

11 182 122,376 1.51 1.50 0.11 1.28 1.72 4.8E−05 5.7 7.0 

12 692 75,647 1.27 1.26 0.05 1.17 1.36 2.3E−04 6.7 7.4 

13 170 62,216 0.91 0.91 0.07 0.77 1.04 9.3E−05 7.0 7.5 

14 190 29,478 0.88 0.87 0.06 0.75 1.00 2.2E−04 7.3 – 

15 160 31,053 0.79 0.79 0.06 0.66 0.91 1.7E−04 7.3 – 

16 187 56,554 0.70 0.70 0.05 0.60 0.80 1.1E−04 7.1 – 

Min 160 29,478 0.70 0.70 0.04 0.60 0.80 4.8E−05 5.7 6.7 

Max 693 138,436 1.51 1.50 0.11 1.29 1.72 5.0E−04 8.7 8.6 
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4.4.2.5. TRIC zoning (Martínez-Alvarez et al., 2015) 

TRIC zoning has 34 zones. An almost acceptable number of events 

(between 23 and 27) has been registered for several zones (5, 9, 10, 11, 12, 23) 

and a very low number of earthquakes for zone 23 (zone to the east of the 

Balearic Islands) and 34 (south of the Tell Atlas). The smallest zone is zone 3 

(east of Galicia) with 2200 km2 and the largest is zone 24 (Azores-Gibraltar Fault) 

with 69,726 km2. Zone 33 (east of the Tell Atlas) can be considered the zone with 

the lowest 𝑏̃-value (0.60). It should be noted that in this zoning quite a few zones 

with a 𝑏̃-value below 1.0 have been identified. Zones 3 (in Galicia) and 6 (west of 

the Pyrenees) have the highest AR. As in the MAH zoning, the AR values are 

also very homogeneous (between 8.7E-4 and 6.8E-5) The RMM ranges from 4.4 

to 8.7 (zone 24) and the FMM from 6.3 to 8.1 (zone 24). The analysis of the 

Figure 4.10 shows that all the zones are different to those adjacent except for 

27–28 and 30–33. 

 

 

Figure 4.10. Annual rate vs. 𝒃̃-value for TRIC zoning. Source: Amaro-Mellado et al. 

(2017) 

  

https://www.sciencedirect.com/science/article/pii/S0040195117303530#f0070
https://www.sciencedirect.com/science/article/pii/S0040195117303530#f0070
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Table 4.5. Results for TRIC zoning 

N NE Area 𝒃̂ 𝒃̃ 𝝈̂𝒃̃ Lower Upper AR RMM FMM 

1 22 6365 – – – – – – 4.5 – 

2 76 4402 1.56 1.54 0.18 1.19 1.89 5.9E−04 4.4 – 

3 62 2200 1.25 1.23 0.16 0.92 1.54 8.7E−04 5.4 6.9 

4 51 14,858 1.29 1.26 0.18 0.91 1.62 1.1E−04 5.5 7.9 

5 25 18,778 – – – – – – 5.1 – 

6 443 17,39 1.17 1.16 0.06 1.06 1.27 7.7E−04 6.3 – 

7 91 8751 1.21 1.20 0.13 0.95 1.44 3.2E−04 7.3 7.4 

8 45 10,37 1.60 1.57 0.24 1.10 2.03 1.4E−04 5.7 6.9 

9 24 4485 – – – – – – 5.1 – 

10 23 20,707 – – – – – – 5.7 – 

11 23 15,104 – – – – – – 5.2 6.8 

12 24 4610 – – – – – – 4.7 – 

13 25 10,71 – – – – – – 5.4 – 

14 43 9180 1.00 0.98 0.15 0.68 1.27 1.3E−04 6.6 7.7 

15 27 4661 – – – – – – 6.6 7.0 

16 38 3476 1.34 1.31 0.22 0.88 1.73 3.4E−04 5.5 – 

17 42 18,666 1.18 1.15 0.18 0.79 1.50 6.8E−05 4.9 – 

18 594 23,796 1.26 1.26 0.05 1.16 1.36 6.2E−04 6.8 6.7 

19 144 10,977 1.09 1.08 0.09 0.90 1.26 3.1E−04 5.5 6.3 

20 246 11,092 1.32 1.32 0.08 1.15 1.48 6.9E−04 6.5 7.4 

21 297 15,66 1.26 1.26 0.07 1.11 1.40 4.7E−04 6.3 7.0 

22 190 18,873 1.54 1.53 0.11 1.31 1.75 2.6E−04 6.7 7.1 

23 10 20,826 – – – – – – 4.7 – 

24 962 69,726 1.02 1.02 0.03 0.96 1.09 4.0E−04 8.7 8.1 

25 176 53,588 1.06 1.05 0.08 0.90 1.21 1.1E−04 6.7 – 

26 148 10,115 1.06 1.06 0.09 0.88 1.23 5.1E−04 6.2 6.9 

27 35 7283 0.69 0.67 0.12 0.44 0.90 1.6E−04 5.8 – 

28 124 24,096 0.80 0.79 0.07 0.65 0.93 1.7E−04 7.0 7.5 

29 111 9604 0.85 0.84 0.08 0.68 1.00 3.9E−04 7.3 – 

30 48 4772 0.72 0.70 0.10 0.50 0.90 3.3E−04 7.3 – 

31 112 11,869 0.85 0.84 0.08 0.68 1.00 3.2E−04 7.0 – 

32 59 9966 0.74 0.72 0.10 0.54 0.91 2.0E−04 6.8 – 

33 69 10,763 0.61 0.60 0.07 0.46 0.74 2.1E−04 7.1 – 

34 4 3241 – – – – – – 5.0 – 

Min 4 2200 0.61 0.60 0.03 0.44 0.74 6.8E−05 4.4 6.3 

Max 962 69,726 1.60 1.57 0.24 1.31 2.03 8.7E−04 8.7 8.1 
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Figure 4.11. Color map to visualize the 𝒃̃-value for AJM (up) and GM12 (down) 

zonings. Source: Amaro-Mellado et al. (2017) 
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Figure 4.12. Color map to visualize the 𝒃̃-value for ByA12 (up) and MAH (down) 

zonings. Source: Amaro-Mellado et al. (2017) 
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Figure 4.13. Color map to visualize the 𝒃̃-value for TRIC zoning. Source: Amaro-

Mellado et al. (2017) 
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Figure 4.14. Color map to visualize the 𝒃̃-value’s standard deviation for AJM (up) 

and GM12 (down) zonings. Source: Amaro-Mellado et al. (2017) 
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Figure 4.15. Color map to visualize the 𝒃̃-value’s standard deviation for ByA12 (up) 

and MAH (down) zonings. Source: Amaro-Mellado et al. (2017) 
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Figure 4.16. Color map to visualize the 𝒃̃-value’s standard deviation for TRIC 

zoning. Source: Amaro-Mellado et al. (2017) 
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Figure 4.17. Color map to visualize AR for AJM (up) and GM12 (down) zonings. 

Source: Amaro-Mellado et al. (2017) 
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Figure 4.18. Color map to visualize AR for ByA12 (up) and MAH (down) zonings. 

Source: Amaro-Mellado et al. (2017) 
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Figure 4.19. Color map to visualize AR for TRIC zoning. Source: Amaro-Mellado et 

al. (2017) 
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Figure 4.20. Color map to visualize RMM for AJM (up) and GM12 (down) zonings. 

Source: Amaro-Mellado et al. (2017) 
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Figure 4.21. Color map to visualize RMM for ByA12 (up) and MAH (down) zonings. 

Source: Amaro-Mellado et al. (2017)  
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Figure 4.22. Color map to visualize RMM for TRIC zoning. Source: Amaro-Mellado 

et al. (2017) 
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4.4.3. Tectonic analysis 

At present, it is clear that there is a net contact between the Eurasian and 

the North American plates (de Vicente et al., 2008). This becomes more diffuse 

towards the African Plate and within the IP. The IP is located between the African 

and the Eurasian plates. A slow convergence, mainly directed NW-SE, produces 

its seismicity. The Iberian Plate became part of the Eurasian Plate in the Lower 

Miocene (Srivastava et al., 1990). The movements between the Iberian, the 

African and the Eurasian Plates have generated its limits. It should be noted that 

the Iberian Plate formed part of the African Plate from the Upper Cretaceous to 

the Upper Eocene Roest and Srivastava, 1991, Srivastava et al., 1990. Most of 

the IP is under a strike-slip regime that coexists with an extensive regime to the 

East and to the North. 

The Azores-Gibraltar Fault limits the Iberian Plate to the south. It 

presented a small movement till the Lower Oligocene. From then onward, it has 

shown an extension regime near the Azores, a strike-slip regime in the Gloria 

Fault and a compression regime to the East of the Gorringe Bank. In this study, 

the higher RMM and FMM have been found in the Azores-Gibraltar Fault. This is 

consistent with the predominant interplate seismicity of the IP that has produced 

very large earthquakes in the past. 

The stress trajectory curves in the northeastern part of the IP. It moves 

from NW-SE to N-S and NE-SW. The Pyrenees, the Ebro Basin and the Valencia 

Basin are affected (de Vicente et al., 2000). The lowest AR has been found in the 

west of the Pyrenees. However, the north of the Pyrenees presents a high AR. It 

should be noted that, currently, there is no clear seismotectonic model for this 

area (Lacan and Ortuoño, 2012). In the Gulf of Cadiz and in the north of Algeria 

compressional stresses are predominant. In this study the seismicity in the Gulf 

of Cadiz is characterized by a b-value around 1.0 whereas the north of Algeria 

presents an outstanding seismicity with values around 0.7–0.8. In the Betics, the 

Alboran Sea and the Rif a strike-slip regime is principal (de Vivente et al., 2008) 

which coexists with reverse faults. In the Granada Basin the highest AR has been 

determined. In the Penibetic Area and the East of the Betics System a high AR is 

also shown. 
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4.4.4. Final remarks 

The analysis of the 𝑏̃-value shows that the following minimum and 

maximum values have been obtained: AJM (0.98–1.68), GM12 (0.73–1.96), 

ByA12 (0.78–1.85), MAH (0.70–1.50) and TRIC (0.60–1.57).  The lowest values 

have been achieved for the zones located in the Tell Atlas: zone 33 for TRIC. 

Such low 𝑏̃-value are hard to imagine. This which might show that the catalog is 

not complete for that zone, even having considered a regionalized years of 

completeness. The 𝑏̃-value is not far from 1.0 to 1.4 for all zones, except for 

GM12, where one zone has a value about 2.0. The standard deviations of the 𝑏̂-

value ranges are as follows: AJM (0.05–0.22), GM12 (0.04–0.31), ByA12 (0.04–

0.29), MAH (0.04–0.11) and TRIC (0.03–0.24). With regards to the AR, the 

following zones have the highest values within the zonings: AJM (zone 1, 2, 3 

and 22), GM12 (zone 16, 35, 38 and 37), ByA12 (zone 51, 52, 15, 60, 55, 40, 42 

and 50), MAH (zone 10) and TRIC (zone 3, 6, 20, 18, 2, and 26). The maximum 

RMM ranges between 3.5 and 8.7. The maximum RMM is 8.7 for all the zonings. 

Regarding the maximum FMM, it varies from 4.9 to 8.6. The maximum RMM and 

the maximum FMM matches for all zonings, except for the GM12 zoning. In this 

case, the maximum RMM is 8.7 for zone 50 and the maximum FMM is 8.6 for 

zone 53. 

Comparing these results with other studies, and considering just the b-

value as a different cut-off magnitude that leads to non-comparable values for 

AR, authors can assess the following. They are a bit higher (0.2) in the mainland 

and a bit lower (0.3) in the north of Africa than those calculated by Hiemer et al., 

2014, Woessner et al., 2015. The later found 0.9 as a global b-value for crustal 

seismicity in Europe. This work shows similar results to Jiménez et al. (1999), 

who obtained lower values for the North of Africa (0.4–0.9). However, lower 

values were found for the mainland (approximately 1.0), in contrast to the new 

results of about 1.2. By comparison to Jiménez et al (1989), the values obtained 

are pretty high as they calculated values between 0.37 and 0.58 for Southern and 

East of the IP and Pyrenees by applying Kijko and Sellevoll (1987) method. 

Vilanova and Fonseca (2007) found values about 1.0 for all Portugal and SW of 

Cape St. Vincent and this paper computes higher values the further to the North: 

b-values in Portugal up to about 1.5. 
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The results obtained are very similar, inside a (0.1–0.2) interval, to 

Mezcua et al. (2011), with the exception in the zones including the M8.7 Lisbon 

Earthquake, where higher values (about 0.4) were calculated in that research. 

To conclude, the results of the b-value calculated in this thesis have been 

compared with those obtained by the authors proposing the zoning which have 

been analyzed in this doctoral thesis. The annual rate is not comparable, since 

the cut-off magnitudes are not the same. 

 Martín (1984) worked with macroseismic intensities so the values 

calculated in this thesis have been considered to not be 

comparable with this source. 

 When comparing the values that GM12 (García-Mayordomo et al., 

2012b) give for their zones, there is important agreement in the 

southern part (within the uncertainties of the calculation). Even so, 

there are several areas of the Levant with significant differences 

(of more than 0.4): in the area that covers most of Galicia and in 

areas of the Levant, GM12 gets much lower values and the 

northern part of Galicia much higher. 

 ByA12 (Bernal, 2011) calculates very similar values, although 

discrepancies are found in some of the areas of the Levant where 

fewer major earthquakes have occurred. In the northwestern part 

of Algeria, lower values can be seen in this thesis. 

 MAH (Morales-Esteban et al., 2014) do not present b-value 

parameter values in their research. 

 The results are consistent with those reached by TRIC (Martínez-

Álvarez et al., 2015), although these obtain higher values by more 

than 0.3 in the Tell Atlas area, undoubtedly due to the lack of 

completeness regarding small earthquakes, especially in the 

TRIC. Similarly, in the areas of the Levant and eastern Catalonia 

they give higher values.  
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After analyzing the seismic parameters obtained for the zones of several 

seismic zonings proposed by the experts, this chapter starts from multiresolution 

grids (0.5º x 0.5º, 1º x 1º, 2º x 2º), purely geometric, and the parameters for each 

of the cells (which are the equivalent to the seismic zones) of these are obtained. 

In the introduction  

5.1. INTRODUCTION 

As can been seen in in previous chapters, some parameters are 

particularly relevant in this analysis: the b-value (the frequency–magnitude 

relation) that represents the relation between small and large earthquakes, the 

maximum possible magnitude and, finally, the annual rate of events exceeding a 

given magnitude threshold. 

This research follows the mainstream which holds that the b-value can be 

regarded as a stress-meter. The aim is to obtain a b-value map for the Iberian 

Peninsula using a homogeneous, reviewed and updated catalog lasting more 

than 600 years. Moreover, different declustering methods, magnitudes of 

completeness and other restrictions have been considered. It should be noted 

that the maximum possible magnitude is an outstanding parameter in a seismic 

analysis (Kijko, 2012). In this research the maximum recorded magnitude (Mmax) 

has been used as the maximum possible magnitude. Besides, the Mmax and the 

annual rate have been calculated, and subsequently, depicted in maps. In order 

to properly integrate all the information required and to make the graphic 

representation easier, a Geographic Information System (GIS) has been used. 

GIS has also been successfully employed in other geological works (Torrecillas 

et al. 2006; Ghedhoui et al. 2016). 

The GIS has enabled obtaining only the data for the selected area 

(longitude 12ºW−5ºE, latitude 34ºN−44ºN). Data homogenization has also been 

conducted by it. To select the data for every zone, for the Mmax, b-value, AR, the 

data have been obtained from the GIS. It has also permitted the determination of 

the correct areas for the AR. It should also be noted that for calculations, the 

combination of graphical and numerical data has been possible thanks to the 



PhD Thesis: Statistical analysis of different seismogenic zonings of the Iberian Peninsula 

and adjacent areas through a geographic information system 

 

84 

 

GIS. Moreover, in this study more than 650 different cells have been used. Also, 

all the grids have been generated in it. 

As was stated in Chapter 3, different values proposed by IGN-UPM WG 

(2013) and Peláez et al. (2007) to decluster the catalog through Gardner and 

Knopoff method have been employed.  

The results of declustering, carried out with the ZMAP software (Wiemer 

2001), with both methods, has been summarized in Table 5.1. 

Table 5.1. Results of declustering 

 
Peláez et al. (2007) IGN-IPM WG (2013) 

Number of events 30,074 30,074 

Number of clusters of earthquakes 2554 2098 

Number of events removed 12,456 12,264 

Number of mainshocks 17,618 17,810 

Seismic moment released by clusters (%) 0.24 0.27 

 

5.2. SEISMIC PARAMETERS 

In a PSHA, one of the main parameters to define the seismic hazard is to 

establish the maximum possible magnitude, as this parameter can provide an 

idea of the seismicity of the area studied. For that purpose, a 0.5º x 0.5º grid, 

covering the Iberian Peninsula, has been established. As has been previously 

stated, different methods to estimate the maximum possible magnitude and its 

uncertainty can be found in the literature. In this study, given the temporal extent 

of the catalog (more than 600 years), the maximum recorded magnitude has 

been considered as the maximum possible magnitude. This is a simplification, 

not lacking error, although the catalog lasts for more than 600 years. 

Other very important parameter is the b-value, the slope of the FMD in a 

log-log plot and it may reflect the physics of the area studied, as has been 
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mentioned. The method proposed by Kijko and Smit (2012), with the Ogata and 

Yamashina (1986) correction, has been used for its calculation as it is ideal for 

incomplete or inhomogeneous catalogs as NGIS earthquake one (despite of the 

effort to minimize this irregularities) because is rigorous but simple and easy to 

apply. Besides, it allows to compute the mean seismic activity rate easily, once 

the b-value has been obtained. 

In this research, multiple Mc couples of values (Mc-year of completeness) 

have been used according to IGN-UPM WG (2013) regionalized (four areas) 

values, slightly modified. These values are consistent with the seismic detection 

network configuration changes (González 2017) for the Iberian Peninsula. In 

Table 3.2, it can be observed that there are important differences depending on 

the area considered, depicted in Figure 3.4. 

Regarding the minimum number of events, it is clear that the lower the 

number of events (N), the greater the uncertainty of the b-value calculation. On 

the one hand, there is a trade-off between accuracy and coverage. On the other 

hand, the larger the radius, the smaller the spatial resolution is. 

Similarly to Mousavi (2017), two maps with different N have been depicted 

in this research. Mousavi (2017) considered a different radius for Iran: Nmin = 50, 

Rmax = 170km (for high-coverage-low-accuracy) and Nmin = 80 and Rmax = 80 km 

(for high-resolution-low-uncertainty).  

In this research, the method assessed by Mapa Sismotectónico WG 

(1992) has been used for the whole Iberian Peninsula: four 2º x 2º overlapped 

grids (the original; one shifted 1º to the East; another displaced 1∘ to the South; 

and finally, one moved both 1ºE and 1ºS). For the most seismic areas, the size of 

the grid has been reduced to 1º x 1º, with displacements of 0.5º instead of 1º. In 

this research, two maps have been produced. To do so, 25 events (Bender 1983; 

Bachmann et al. 2012) and 50 events (Amorese et al. 2010; Singh and Singh 

2015; Mousavi 2017) have been considered. Also, the values determined by 

Nava et al. (2017) have been studied, considering that the Iberian Peninsula has 

a low-moderate seismicity, with aseismic areas. Likewise, the above cited studies 

have been examined. 

For every cell, average geographical coordinates have been computed. 

Prior to computing the b-value, a completeness area is necessary for every cell. 
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Besides, the computed b-value and the mean seismic activity rate have been 

assigned to this average location, not to the cell center. Then, the method by 

Kijko and Smit (2012) has been used to calculate the b-value in every cell of 

every grid. Where N was lower than 25, its associated b-value has not been 

considered for mapping. Therefore, further analysis must be considered. 

Finally, four color maps (Figure 5.2, Figure 5.3, Figure 5.4 and Figure 5.5) 

have been depicted for every option [Nmin = 25; Nmin = 50; decluster parameters 

suggested by IGN-UPM WG (2013); decluster parameters suggested by Peláez 

et al. (2007)], in all cases, the Mc has been regionalized as IGN-UPM WG (2013) 

as was pointed out in Chapter 3. 

After calculating the b-value, the mean seismic activity rate of events have 

been computed from the as previously stated. 

5.3. RESULT AND ANALYSIS 

Three of the main seismic parameters: the Mmax, b-value and (normalized) 

mean seismic activity rate (AR) have been calculated for the Iberian Peninsula. In 

particular, for b-value and AR, the methodology applied follows the method 

proposed by Kijko and Smit (2012). This enables computing the b-value and 

allows considering the incompleteness of the seismic catalog. This is especially 

relevant given the seismicity pattern and the configuration of the seismic network 

over time of the area. Besides, once the b-value has been calculated, the AR has 

been easily obtained. 

5.3.1. The maximum recorded magnitude 

The first parameter depicted is the Mmax, which is useful for observing the 

size-distribution (Bod’a 2017) over the Iberian Peninsula. A 0.5º x 0.5º grid has 

been considered (Figure 5.1). 
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Figure 5.1. Maximum recorded magnitude (Mmax). Grid 0.5º x 0.5º. Source: Amaro-

Mellado et al. (2018) 

The map shows that the largest earthquakes have a marine epicenter 

(100–200 km of the SW of Iberian Peninsula) and have reached up to M8.7. Also 

in the Alboran Sea area, there have been earthquakes of more than 6.0 and in 

the north of Algeria there have been earthquakes of a magnitude greater than 

7.0, the effects of the latter on the Iberian Peninsula being almost negligible given 

the distance (Mezcua et al. 2011), but sometimes felt in the Balearic Islands. 

When studying the continental part of the Iberian Peninsula, earthquakes of 

considerable magnitudes (greater than 6.5) have been found in the Pyrenees and 

in the southeastern part of the peninsula (regions of eastern Andalusia, Murcia 

and southern Valencia) or even in the west (the Lisbon area), as well as other 

intraplate phenomena, such as those produced in Galicia, with Mw>5.5, which are 

worthy of mention.  

As a summary, it can be stated that, although in much of the interior 

peninsular, especially in the Meseta, M4.0 has been infrequently exceeded (there 

are even regions where there are no events with Mw greater than 3.0 recorded), 
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there are a considerable number of areas that have exceeded magnitude 6.0, 

especially in the interior to the south of it. 

5.3.2. The size-distribution (b-value) 

This is a parameter of the utmost importance in seismic studies and it is 

related to the physics of the area. In this research, different variables 

(declustering parameters and number of events) have been used. This has 

allowed generating multiple maps. The results can be compared and a relevant 

value for every area of the area analyzed is provided. 

 

Figure 5.2. b-value map considering a grid of 2º x 2º, at least 25 events, Mc 

regionalized (IGN-UPM WG 2013) and the declustering parameters by IGN-UPM WG 

(2013). Source: Amaro-Mellado et al. (2018) 

These maps can be found in Figure 5.2, Figure 5.3, Figure 5.4 and Figure 5.5, 

where yellow points are the points (representing a cell) where the number of 

events is at least 25 or 50, respectively. This means that if the distance between 
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the closest points is very high in a region, contour lines are not representative. 

This fact is more evident dealing with more than 50 events. 

 

Figure 5.3. b-value map considering a grid of 2º x 2º, at least 50 events, Mc 

regionalized (IGN-UPM WG 2013) and the declustering parameters by IGN-UPM WG 

(2013). Source: Amaro-Mellado et al. (2018) 

In the mainland, values higher than 1.2 are predominant. In the contact 

area between the African and the Eurasian plates the b-value is around 1.0. In 

the most active area in the S and SE, values are about 1.3 and in the Pyrenees 

values about 1.4 with higher dispersion are found. In Galicia (NW), higher values, 

of approximately 1.5 are found.  

After computation, a reference b-value for the Iberian Peninsula can be 

set at 1.2–1.4, with some occasional 0.2 variations. This b-value decreases to 

about 1.0 (0.1) in the contact limit, the north of Africa and the Gorringe Bank. This 

means that the stress gets more accumulated in this area causing larger 

earthquakes. 
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These results are consistent with other b-value maps such as Crespo 

et al. (2012), but those authors calculated a b-value around 0.8–1.0 for the 

aseismic central west area. 

If the results are compared to other authors proposal, similar findings to 

the Chapter 4 can be the drawn. In the continental zone the values are 

approximately 0.2 higher than those obtained by Hiemer et al. (2014) and 

Woessner et al. (2015), and, on the contrary, these are 0.3 higher for North 

Africa. Likewise, these authors calculated a reference value for the b-value of 0.9, 

somewhat lower than that obtained in this doctoral thesis.  

If the work of Mezcua et al. (2011) is established as a reference, the 

results are very similar, within the range of expected errors (0.1-0.2), except in 

the area southwest of Cape St. Vincent, where values of 0.3-0.4 higher have 

been obtained. 

When comparing the results with those obtained by Vilanova and Fonseca 

(2007), it should be mentioned that they obtained values close to 1.0 for Portugal 

and Cape St. Vincent, compared to the highest values obtained in this thesis (up 

to 1.5 in some areas of Portugal). 

Something similar to what happened with the works of Hiemer et al. 

(2014) and Woessner et al. (2015), occurs in the comparison with the results of 

Jiménez et al. (1999), which for North Africa obtained values between 0.4 and 0.9 

(consistent with this thesis), but lower in the peninsular zone: about 1.0 as 

opposed to the 1.2 that could be taken as a mean value according to this thesis. 

Finally, if the work of Jiménez et al. (1989) is taken as a reference, the 

differences are appreciable, since they calculated much lower values (0.37-0.58) 

for the east and south of the Iberian Peninsula, and for the Pyrenees. 
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Figure 5.4. b-value map considering a grid of 2º x 2º, at least 25 events, Mc 

regionalized (IGN-UPM WG 2013) and the declustering parameters by Peláez et al. 

(2007). Source: Amaro-Mellado et al. (2018) 

Regarding the decluster comparison, the results are very similar. 

Nevertheless, it can be checked that the b-value obtained is higher in IGN-UPM 

WG (2013), particularly in the North of Africa. This could be due to the fact that 

Peláez et al.’s (2007) parameters eliminate more small events, so the small/large 

proportion decreases, i.e., lower b-values. 
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Figure 5.5. b-value map considering a grid of 2º x 2º, at least 50 events, Mc 

regionalized (IGN-UPM WG 2013) and the declustering parameters by Peláez et al. 

(2007). Source: Amaro-Mellado et al. (2018) 

Finally, a more detailed map showing both Mmax and the b-value has been 

depicted in Figure 5.6. The most seismic area in the mainland has been depicted 

using a 1º x 1º grid and at least 50 events have been considered (for b-value 

calculation). 
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Figure 5.6. Mmax (0.5º x 0.5º grid) and b-value (1º x 1º grid and at least 50 events). 

Declustering by IGN-UPM WG (2013). Source: Amaro-Mellado (2018) 

5.3.3. The mean seismic activity rate 

Finally, the mean seismic activity rate has been determined. This has 

been provided per area and not as an absolute value. In order to define de size 

of the grid, several resolutions have been tested. Finally, the 1º x 1º has been 

chosen, as it presents an optimal trade-off between the amount of data and the 

resolution. The results with different variables (declustering parameters and 

number of events) are pretty similar, so, Mc regionalized (IGN-UPM WG 2013) 

and declustering parameters by IGN-UPM WG (2013) have been depicted. 

The AR value is strongly dependent on the size of the grid and the cut-off 

magnitude. It can be stated that the results with Mw ≥ 3.0 are consistent with the 

studies by IGN-UPM WG (2013) (Mw ≥ 4.0) and Mezcua et al. (2011) (Mw ≥ 3.5) 

that used zonations. The results are also similar to studies that use continuous 

maps such as Crespo et al. (2012) (Mw > 3.5). 

The highest values have been found in the Granada Basin and in the 

Pyrenees—more than 9 x 10−4 earthquakes / km2. In the SW of the Cape St. 

Vincent, close to Huelva, in the NW (Galicia) and in the southern part of the east 
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extreme the values obtained are higher than 1 x 10−4 earthquakes / km2. Most 

areas present values higher than 1 x 10−5 earthquakes / km2, although some 

regions present a lower value. 

Similarly to Figure 5.7, a more detailed map (Figure 5.8), for the most 

seismic area in the mainland, showing the AR and the b-value, has been 

depicted. 

 

Figure 5.7. Mean seismic activuty rate by km
2
 (values x 10

-4
), considering a grid of 

1º x 1º, Mc regionalized (IGN-UPM WG 2013) and the decluster parameters by IGN-

UPM WG (2013). Source: Amaro-Mellado et al. (2018) 
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Figure 5.8. AR (1º x 1º grid) and b-value (1º x 1º grid and at least 50 events). 

Declustering parameters by IGN-UPM WG (2013). Source: Amaro-Mellado et al. 

(2018) 
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6.1. CONCLUSIONS 

The main objective of this doctoral thesis has been the study of some of 

the parameters considered most influential for the determination of seismic 

hazard in the Iberian Peninsula and its surroundings by means of the usage of a 

GIS. 

This general objective has in turn been based on the achievement of a 

number of more specific objectives. 

Firstly, to generate a new catalog of earthquakes, as extensive as 

possible given the information available, reviewed, homogeneous, in which only 

independent events for the study area are considered.  

As a second objective, the calculation of the seismic parameters 

corresponding to a series of seismic zonings previously defined by different 

researchers, of a different nature, proposed for the Iberian Peninsula has been 

made: some taken as a reference for the seismic-resistant regulations; others 

based on criteria as objective as possible and mathematically robust. 

The third objective, closely linked to the previous one, is the analysis of 

the parameters obtained in the calculation for each of the zonings proposed. 

Finally, it has also been sought to calculate and represent the parameters 

of seismic hazard, but in this case starting not from predefined areas, but from a 

division of the territory by multiresolution grids (2º x 2º, 1º x 1º, 0.5º x 0.5º). The 

following can be concluded from the results achieved: 

1. The generation of a new independent, homogeneous and as complete as 

possible catalog is a fundamental starting point for the analysis of seismic 

hazard parameters. In this doctoral thesis, a new seismic catalog has 

been compiled, which undoubtedly constitutes a valuable contribution. 

This compilation entails a series of steps that, in the end, give solidity to 

the study of seismic parameters, and are the re-evaluation of the intensity 

of earthquakes with a marine epicenter: the review of other seismic 

catalogs and other specific studies; the transformation of all events to the 

same type of magnitude (Mw, magnitude moment in this work); the 
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elimination of non-main events (declustering); and, given the 

heterogeneity in space and time of the seismic detection networks within 

the study area, a regionalization of the completeness date according to 

each magnitude considered. 

2. The catalog compiled is a very satisfactory result of this work; even so, 

despite the efforts made, there are areas (although distant) that may not 

be considered complete, such as the Tell Atlas area. 

3. When treating the results of the seismic parameters, in quite a few of the 

areas set out in the zoning proposed by Bernal (2011) there have not 

been more than 30 events according to the intervals of magnitude and 

time considered. This is understood as a negligible hazard and in more 

than a few the number is around that figure, so the uncertainties of the 

parameters are not the most desirable. This fact, although to a lesser 

extent, also occurs with the zoning proposed by GM12. 

4. There are adjacent areas with similar parameters, which suggests that it 

would be reasonable to merge them. This fact is especially noticeable in 

the GM12 and ByA12 zoning. These two circumstances make it seem 

reasonable to consider fewer and larger zones, although the 

seismotectonic aspects of these zones should be carefully studied. 

5. In general, there is consistency between the maximum magnitude values, 

both those recorded and the potential from QAFI faults. For future 

research, considering the maximum potential magnitude will become 

more important the more spatially complete the database from which it is 

extracted, since the step of integrating this information into the 

calculations has already been taken.  

6. In addition, the map of maximum magnitudes recorded according to a grid 

of 0.5º x 0.5º gives very visual and intuitive information on the 

geographical distribution of earthquakes. 

7. The use of a calculation method (of the b-value and of the seismic activity 

rate) that considers different pairs of dates and magnitudes of 

completeness makes it possible to work in a more correct way with non-

homogeneous catalogs (of more than 600 years of temporal scope), such 
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as that of this work, which means another contribution of this doctoral 

thesis.  

8. This thesis has confirmed the usefulness of GIS for studies involving both 

databases and the geographical phenomena associated with them. This 

fact is especially relevant when the sources of information are diverse, but 

the coherence of the data, both geometric and alphanumeric, is essential. 

9. The use of GIS for managing, filtering, analyzing and, of course, 

representing geographical information has proved essential for the 

emergence of latent information within the baseline data. The strength 

provided by a quality graphical representation means that GIS play a 

fundamental role in decision making related to almost any area of society 

(including engineering and the environment). 

10. The work with these systems has allowed the elaboration of a calculation 

and representation of parameters in a quite intuitive and agile way, being 

able to consider the territory of study as a continuum in a quite 

considerable extension of land, thanks to the use of multiresolution grids. 

The contribution of this doctoral thesis can be assessed in the 

development of a methodology for the calculation and representation of hazard 

parameters through the use of GIS so that the hazard can be evaluated. This 

methodology can be extrapolated to other seismic regions, in such a way that a 

reclassification of the zones in function of the similarities between hazard 

parameters can be approached. It is also worth mentioning not only the 

methodological development but also the results obtained, the catalog compiled 

being of special interest 

Furthermore, according to technological advances and the evolution of 

GIS towards spatial data infrastructures, in the future it could be considered that 

the results obtained in this or similar research would be visible and graphically 

accessible in an integrated way through the Internet (Amaro-Mellado, 2014).  

Another field in which to advance is the greater definition in the 

delimitation of zones. As a future line of research, it is proposed to start from a 

denser grid of points and work with overlapping circles (centered on those 

points), so that the number of zones would be huge. In any case, zones with an 

insufficient number of events must not be taking into account. 
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Finally, another line of research to explore is the consideration of other 

catalogs as a source of initial information, such as those registered by the  

Portuguesse Institute for Sea and Atmosphere (Instituto Português do Mar e da 

Atmosfera , IPMA) in order to compare the results obtained. 
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6.2. CONCLUSIONES 

El principal objetivo de esta tesis doctoral ha sido el estudio de algunos 

de los parámetros considerados más influyentes para la determinación de la 

peligrosidad sísmica en la península ibérica y su entorno mediante el empleo de 

un SIG. 

Este objetivo general a su vez se ha basado en la consecución de una 

serie de objetivos más específicos. 

En primer lugar, generar un nuevo catálogo de terremotos, lo más 

extenso posible dada la información disponible, revisado, homogéneo, en el que 

solo se consideren eventos independientes para el área de estudio.  

Como segundo objetivo se ha abordado el cálculo de los parámetros 

sísmicos correspondientes a una serie de zonificaciones sísmicas previamente 

definidas por distintos investigadores, de distinta naturaleza, propuestas para la 

Península ibérica: unas tomadas como referencia para las normas 

sismorresistentes; otras basadas en criterios lo más objetivos posibles y robustos 

matemáticamente. 

El tercer objetivo, estrechamente ligado al anterior, es el análisis de los 

parámetros obtenidos en el cálculo para cada una de las zonificaciones 

propuestas. 

Finalmente, también se ha buscado calcular y representar los parámetros 

de la peligrosidad sísmica, pero en este caso partiendo, no de zonas 

predefinidas, sino de una división del territorio mediante mallas multirresolución 

(2º x 2º; 1º x 1º; 0,5º x 0,5º). 

De los resultados obtenidos se pueden concluir lo siguiente: 

1. La generación de un nuevo catálogo independiente, homogéneo y lo más 

completo posible es un punto de partida fundamental para el análisis de 

los parámetros de peligrosidad símica. En esta tesis doctoral se ha 

compilado un nuevo catálogo sísmico, lo que, constituye, sin duda, una 

valiosa aportación de la misma. Dicha compilación conlleva una serie de 

pasos que, a la postre, dotan de solidez al estudio de los parámetros 
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símicos, y son la reevaluación de la intensidad de los terremotos con 

epicentro marino; la revisión de otros catálogos símicos y otros estudios 

específicos; la transformación de todos los eventos a un mismo tipo de 

magnitud (Mw, magnitud momento en este trabajo); la eliminación de 

eventos no principales (declustering); y, dada la heterogeneidad en 

espacio y tiempo de las redes de detección sísmica dentro del área de 

estudio, una regionalización de la fecha de completitud en función de 

cada magnitud considerada. 

2. El catálogo compilado es un resultado muy satisfactorio de este trabajo, 

aun así, a pesar de los esfuerzos llevados a cabo, existen zonas (aunque 

lejanas) que quizá no se pueden considerar completas, como la zona del 

Tell Atlas. 

3. Al tratar los resultados de los parámetros sísmicos, en bastantes de las 

zonas propuestas en la zonificación propuesta por Bernal (2011) no se 

han producido más de 30 eventos según los intervalos de magnitud y 

tiempo considerados, lo que se entiende como una peligrosidad 

despreciable y en no pocas el número ronda esa cifra con lo que las 

incertidumbres de los parámetros no son las más deseables. Este hecho 

aunque en menor medida también ocurre con la zonificación propuesta 

por GM12. 

4. Existen zonas adyacentes con parámetros similares lo que lleva pensar 

que sería razonable la fusión de las mismas. Este hecho es 

especialmente notorio en las zonificaciones de GM12 y ByA12. Estas dos 

circunstancias dan lugar a que parezca razonable el considerar menos 

zonas y más amplias, aunque habría que estudiar detenidamente los 

aspectos sismotectónicos de las mismas. 

5. Por lo general, hay coherencia entre los valores de magnitud máxima 

tanto la registrada como la potencial a partir de las fallas del QAFI. Para 

futuras investigaciones, el considerar la magnitud máxima potencial 

cobrará mayor importancia cuanto más completa espacialmente sea la 

base de datos de la que se extraiga, ya que el paso de integrar dicha 

información en los cálculos ya está dado.  
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6. Además, el mapa de magnitudes máximas generado según una 

cuadrícula de 0,5º x 0,5º da una información muy visual e intuitiva de la 

distribución geográfica de los terremotos. 

7. El empleo de un método de cálculo (del b-value y de la tasa de actividad 

sísmica) que considera distintos parejas de fecha y magnitud de 

completitud hace que se pueda trabajar de una forma más correcta con 

catálogos no homogéneos (de más de 600 años de ámbito temporal), 

como el de este trabajo, lo que supone otra aportación de esta tesis 

doctoral.  

8. La presente tesis ha permitido constatar la utilidad de los SIG para 

abordar estudios en los que están implicados tanto bases de datos como 

fenómenos geográficos asociados a estas. Este hecho es especialmente 

relevante cuando las fuentes de información son diversas pero es 

imprescindible la  coherencia de los datos, tanto geométrica como 

alfanumérica. 

9. El empleo de los SIG para gestionar, filtrar, analizar y, por supuesto, 

representar información geográfica ha demostrado ser esencial para 

aflorar información latente dentro de los datos partida. La fuerza que 

proporciona una representación gráfica de calidad hace que los SIG 

tengan un papel fundamental en la toma de decisiones relacionadas con 

casi cualquier ámbito de la sociedad (incluidos el ingenieril y el 

medioambiental). 

10. El trabajo con estos sistemas ha permitido la elaboración de un cálculo y 

representación de parámetros de una forma bastante intuitiva y ágil, 

pudiendo considerar el territorio de estudio como un continuo en una 

extensión de terreno bastante considerable, gracias al empleo de mallas 

multirresolución. 

La aportación de esta tesis doctoral puede valorarse en el desarrollo de 

una metodología para el cálculo y la representación de parámetros de 

peligrosidad mediante el empleo de los SIG de forma que dicha peligrosidad 

pueda ser evaluada. Esta metodología puede ser extrapolada a otras regiones 

sísmicas, de tal forma que pueda ser abordada una reclasificación de las zonas 

en función de las similitudes entre parámetros de peligrosidad. También es digno 
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de mención, no solo el desarrollo metodológico, sino los propios resultados 

obtenidos, siendo de especial interés el catálogo compilado. 

Además, según los avances tecnológicos y la evolución de los SIG hacia 

las infraestructuras de datos espaciales, en un futuro se podría plantear que los 

resultados obtenidos en esta investigación u otras similares fueran visibles y 

accesibles gráficamente de forma integrada a través de Internet (Amaro-Mellado, 

2014).  

Finalmente, otra línea de investigación a escrutar es la consideración de 

otros catálogos como fuente de información de partida, como podrían ser los 

registrados por el Instituto Português do Mar e da Atmosfera (IPMA) con el fin de 

comparar los resultados obtenidos.  
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7.1. USE OF A GEOGRAPHIC INFORMATION 

SYSTEM FOR THE ANALYSIS OF THE EXISTING 

SEISMOGENIC ZONINGS   

This is the first contribution related to this PhD Thesis, since allowed to 

integrate information from different sources (seismic catalogs, seismogenic 

zonings, fault databases, etc.). The goal was to unify all of this information into a 

geographic information system in order to make an approach to analyze 

seismogenic zonings.  

The reference of this document is: 

 Amaro-Mellado JL, Morales-Esteban A, Martínez-Álvarez (2014) Utilización 

de un sistema de información geográfica para el análisis de las 

zonificaciones sismogenéticas existentes. In: Actas del XII Congreso 

Internacional de Expresión Gráfica aplicada a la Edificación, pp 279-289. 
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7.2. IMPACT OF THE UTM PROJECTION ON THE 

CALCULATION OF THE SURFACE OF STATES  

This contribution is related to this PhD Thesis regarding representation 

systems (as all of them are affected by distortion), since arose the impact of the 

location of a polygon when calculating its surface using UTM projection 

(conformal projection, where shapes are maintained but surfaces are not), in 

comparison with the value that could be considered “deformation-free”.  

After this work, the use of an equivalent projection (surfaces are kept but 

shapes are not) representation was chosen due to one of the seismic parameters 

to be calculated (the normalized annual rate) is closely related to surface values. 

This fact is more significant because of the different between 12ºW and 6ºE 

longitudes which would involve meaningful inaccuracies. 

The reference of this document is: 

 Pérez-Romero AM, Amaro-Mellado JL (2014) Utilización de un sistema de 

información geográfica para el análisis de las zonificaciones sismogenéticas 

existentes. In: Actas del XII Congreso Internacional de Expresión Gráfica 

aplicada a la Edificación, pp 295-301. 
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7.3. A NOVEL METHOD FOR SEISMOGENIC ZONING 

BASED ON TRICLUSTERING. APPLICATION TO 

THE IBERIAN PENINSULA 

This paper is important in this thesis because was the first JCR 

publication related to this PhD works. In this, data from different sources were 

integrated into a geographic information system to deal these data rigorously and 

make a proper representation.  

This work can be found in: 

 Martínez-Álvarez F, Gutiérrez-Avilés D, Morales-Esteban A, Reyes J, 

Amaro-Mellado JL, Rubio-Escudero C (2015) A novel method for 

seismogenic zoning based on triclustering. Application to the Iberian 

Peninsula. Entropy 17(7):5000–5021.  

 

 Journal Impact Factor (JCR 2015): 1.743 

 Ranking JCR: 25/79 (Q2) 
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7.4. COMPARING SEISMIC PARAMETERS FOR 

DIFFERENT SOURCE ZONE MODELS IN THE 

IBERIAN PENINSULA 

This paper is one of the two publications that constitute the kernel of this 

PhD, as in it the seismic catalog is deeply studied and compiled and because a 

thorough study on the seismic hazard parameters (b-value, maximum magnitude 

and normalized annual rate of earthquakes) related to different sesmic zonations 

proposed by the experts is conducted by means of a GIS. 

This work can be found in: 

 Amaro-Mellado JL, Morales-Esteban A, Asencio-Cortés G, Martínez-

Álvarez F (2017) Comparing seismic parameters for different source zone 

models in the Iberian Peninsula. Tectonophysics 717:449-47. 

https://doi.org/10.1016/j.tecto.2017.08.032 

 

 Journal Impact Factor (JCR 2017): 2.686 

 Ranking: 32/85 (Q2) 

 

https://doi.org/10.1016/j.tecto.2017.08.032
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7.5. MAPPING OF SEISMIC PARAMETERS OF THE 

IBERIAN PENINSULA BY MEANS OF A 

GEOGRAPHIC INFORMATION SYSTEM  

This is second paper of the core of this research. In contrast to the 

previous paper, seismic hazard parameters (b-value, maximum magnitude and 

normalized annual rate of earthquakes) are calculated, represented and analyzed 

from zonings generated from multiresolution grids, developed to his end in a GIS, 

instead of coming from experts’ delineation. 

This work can be found in: 

 Amaro-Mellado JL, Morales-Esteban A, Martínez-Álvarez F (2018) Mapping 

of seismic parameters of the Iberian Peninsula by means of a geographic 

information system. Central European Journal of Operations Research 

26:739-758. https://doi.org/10.1007/s10100-017-0506-7 

 

 Journal Impact Factor (JCR 2017): 0.730  

 Ranking: 74/84 (Q4) 
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