
AC electrified jets in a flow-focusing device: Jet length
scaling

Elena Castro-Hern�andez,1,a) Pablo Garc�ıa-S�anchez,2

Javier Alzaga-Gimeno,1 Say Hwa Tan,3 Jean-Christophe Baret,4

and Antonio Ramos2,b)

1 �Area de Mec�anica de Fluidos, Departamento de Ingenier�ıa Aeroespacial y Mec�anica de
Fluidos, Universidad de Sevilla, Avenida de los Descubrimientos s/n, 41092 Sevilla, Spain
2Departamento de Electr�onica y Electromagnetismo, Facultad de F�ısica, Universidad de
Sevilla, Avenida de Reina Mercedes s/n, 41012 Sevilla, Spain
3Queensland Micro- and Nanotechnology Centre, Griffith University, Brisbane QLD 4111,
Australia
4CNRS, Univ. Bordeaux, CRPP, UPR 8641, Soft Micro Systems, 115 Avenue Schweitzer,
33600 Pessac, France and Max-Planck Institute for Dynamics and Self-Organization,
Droplets, Membranes and Interfaces, Am Fassberg 17, DE-37077 Goettingen, Germany

(Received 31 March 2016; accepted 4 June 2016; published online 15 June 2016)

We use a microfluidic flow-focusing device with integrated electrodes for control-

ling the production of water-in-oil drops. In a previous work, we reported that very

long jets can be formed upon application of AC fields. We now study in detail the

appearance of the long jets as a function of the electrical parameters, i.e., water

conductivity, signal frequency, and voltage amplitude. For intermediate frequen-

cies, we find a threshold voltage above which the jet length rapidly increases.

Interestingly, this abrupt transition vanishes for high frequencies of the signal and

the jet length grows smoothly with voltage. For frequencies below a threshold

value, we previously reported a transition from a well-behaved uniform jet to

highly unstable liquid structures in which axisymmetry is lost rather abruptly.

These liquid filaments eventually break into droplets of different sizes. In this

work, we characterize this transition with a diagram as a function of voltage and

liquid conductivity. The electrical response of the long jets was studied via a dis-

tributed element circuit model. The model allows us to estimate the electric poten-

tial at the tip of the jet revealing that, for any combination of the electrical

parameters, the breakup of the jet occurs at a critical value of this potential. We

show that this voltage is around 550 V for our device geometry and choice of flow

rates. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4954194]

I. INTRODUCTION

Microfluidics provides new means to study the rheology of complex fluids.1 The fine con-

trol of channel geometry provided by microfabrication techniques and replica molding2 is espe-

cially appealing to investigate the flow patterns in multiphase systems, a problem of relevance

to understand emulsification and foaming. In addition to the fundamental questions related to

flows and instabilities in multiphase systems, the recent use of microfluidics in practical appli-

cations3 is a further motivation to investigate these flow patterns. In the classical problem of

the dripping to jetting transition at a microfluidic junction, the theoretical background to under-

stand a liquid jet stability in coflowing fluids involves the description of both, the absolute and

convective instabilities along the jet.4,5 In an absolute instability, perturbations grow from a

fixed point in space. The disturbances grow and propagate in both, the downstream and
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upstream directions. On the other hand, the perturbations in a convective instability propagate

downstream as they grow, which allows a long and continuous fluid thread to persist consis-

tently. Nevertheless, long jets are not always a result of a convective instability, as it was

shown by Utada et al.5 At the microscale, microfluidic devices provide the necessary conditions

which favour controllable thread length production with extremely high accuracy and precision.

Well defined and controllable jets could then be interesting for applications in the field of mate-

rial science and fibre synthesis.6

In the context of applications, actively controlling such a transition is of interest to design

switchable microsystems. Recently, Tan et al.7 designed an electrocapillary system usable to

control the dripping to jetting transition, for fixed flow conditions. It was shown that an AC

electric field can be applied into a microfluidic flow focusing device to provide an additional

dimensional control in the production of water droplets in oil. This method of actuation is a

viable tool to modulate both, the droplet size at the nozzle in the dripping regime and the

thread length in the jetting regime. The electric field induces the transition of droplet production

from the dripping to the jetting regime as the electric field intensity increases. This method of

electroactuation is sufficiently fast to switch reliably between droplet sizes (or frequency pro-

duction8). These electro-flow focusing devices have been successfully used9 in order to produce

long jets that cannot be obtained by other means under the same flow conditions.

In our previous work, we found that for a constant voltage amplitude of 1000 V peak-to-

peak, the jet length was proportional to the square root of the conductivity to frequency ratio.

In order to clarify the physical mechanisms that produce these long jets, we have performed a

thoroughly experimental characterization of the applied voltage effect on the jet length. In par-

ticular, for intermediate values of the frequency, we find long jets beyond a threshold voltage.

However, for high frequencies the jet length increases smoothly. When the signal frequency is

below a critical value (f � fmess), there is a transition between the axisymmetric jet and an

unstable droplet generation regime.7,9 We report a stability map displaying these critical values,

for different voltages and conductivities. In Sec. IV, we make use of a distributed element cir-

cuit model to describe the decay of the voltage difference between a long jet and the down-

stream electrodes.9 We apply this model to calculate the voltage at the tip for all long jets. In

all cases, we find that the voltage at the tip of the jet is around 550 V peak-to-peak, irrespective

of the applied voltage, signal frequency, and/or jet conductivity. This result indicates that the

breakup takes place for a given solution of the electric field around the tip.

II. EXPERIMENTAL SETUP

Soft lithography techniques are used to assemble a microfluidic electro-flow focusing de-

vice by replica molding in polydimethylsiloxane (PDMS, Dow Corning, relative permittivity

er;PDMS ¼ 2:5). Figure 1 shows a schematic view of the device with a cross-junction w ¼
100 lm wide and h ¼ 35 lm tall. Two sets of electrodes, with the same width and height, are

patterned on both sides on the junction running parallel to the inner inlet and outlet channels

and they are produced using the microsolidics technique.7,10 The distance between the electro-

des and the microfluidic channel is de ¼ 35 lm. The length of the upstream electrodes is

le ¼ 2:2 mm. The PDMS device is plasma bonded to the non-conductive side of an Indium Tin

Oxide glass (ITO, thickness 1 mm; er;glass ¼ 7:5). The conductive side of the ITO glass is used

as a counter electrode.

A water-in-oil (W/O) emulsion is produced by focusing an inner aqueous stream (dispersed

phase) with two outer oil streams (continuous phase). The inner and outer flow rates, Qi and

Qo, respectively, are controlled by means of a double syringe pump (model 33, Harvard

Apparatus). The dispersed phase is an aqueous solution of KCl in Milli-Q water with a viscos-

ity gi ¼ 1 cP and an electrical conductivity varying between j ¼ 3� 10�4 S=m and

j ¼ 3� 10�2 S=m. The continuous phase is mineral oil (RTM14, Sigma Aldrich) with a viscos-

ity of go ¼ 100 cP. The relative permittivity of mineral oil is er;o ¼ 2:1, and its electrical con-

ductivity is negligible (jo < 10�10 S/m), being considered from now on as a perfect insulator.

A 5 % ðw=wÞ of a non-ionic surfactant (Span 80, Sigma Aldrich) is added to the continuous
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phase lowering the surface tension of the liquid to liquid interface from r ¼ 40 mN=m to

r ¼ 5 mN=m, being this value independent of the KCl concentration.

The high-voltage is applied to the downstream pair of electrodes while the others are

grounded, which guarantees that the incoming liquid has zero potential.9 As a consequence, there

is an applied AC potential difference between the inner liquid emerging from the upstream elec-

trodes and the downstream electrodes. A sinusoidal voltage with frequencies varying from

f ¼ 1 kHz to f ¼ 50 kHz (TGA1244, TTi) is amplified from Vpp ¼ 0 V to Vpp ¼ 1000 V

(PZD700A, Trek). The microfluidic device is placed on an inverted microscope (Eclipse Ti-U,

Nikon) connected to a high-speed camera (Phantom v7.3) with a resolution of 800� 256 px2

when operated at an acquisition rate of 104 fps. The jet diameter, dj, and jet length, lj, of at least

100 images are measured via image processing (Matlab, Mathworks, and ImageJ).

III. EXPERIMENTAL RESULTS

Long jets can be produced by means of hydrodynamic forces exclusively. In general, for

low values of the flow rates, the dripping regime is observed and the production of monodis-

perse droplets takes place in a region close to the junction. A jetting regime is reported for

large flow rates. In this situation, if the outer viscous stresses on the jet interface are of the

order of the surface tension confinement forces, a slender jet appears which eventually breaks

up into uniform droplets.5,11–15

Liu et al.16 applied DC electric fields to control the droplet production in a flow focusing de-

vice. They observed very long jets for high applied voltages and a suitable flow rate ratio

between the two phases. As we previously reported,9 the simple use of an AC voltage elongates

the jet and allows for a precise control of the breakup length, which might provide an alternative

technique to produce fibers-like shape structures.6 In order to study these long jets, we perform

experiments with an outer fluid viscosity go ¼ 100 cP and an inner to outer flow rate ratio

Qi=Qo ¼ 0:125 (Qi ¼ 50 ll=h; Qo ¼ 400 ll=h). In this situation, jetting takes place even in the

absence of electric field although with smaller jet lengths (Figures 2(a) and 4(a)). For these flow

rates, the jet issues around 500 droplets per second. We carry out series of experiments varying

the inner conductivities (j ¼ 3� 10�4; 1� 10�3; 3� 10�3; 1� 10�2, and 3� 10�2 S=m), the

frequency (f ¼ 0�50 kHz) and the voltage (Vpp ¼ 0�1000 V) of the applied AC field.

FIG. 1. (a) Cross section of the device at the level of the outlet microchannel. (b) Sketch of a microfluidic flow focusing de-

vice under an AC electric field. The electrodes are in black and the dispersed phase in blue.
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Figure 2 shows the effect of increasing the voltage amplitude on the jet length for a given

water conductivity (j ¼ 3� 10�3 S=m) and signal frequency (f ¼ 9 kHz). Increasing the voltage

results in longer jets, and a jet of 650 lm in length is obtained when the maximum voltage sup-

plied by the amplifier is applied (1000 V). The same trend is found for all the tested water con-

ductivities obtaining longer jets for higher values of the conductivity.

Figure 3 displays measurements of the jet length versus the applied voltage for a given

conductivity (j ¼ 3� 10�3 S=m) and different frequencies. The jet length is measured from the

beginning of the downstream electrodes. These measurements are an average of 100 ruptures,

and the dispersion is approximately given by the jet diameter, about 10 lm. For low frequen-

cies (f � 9 kHz), it also shows an abrupt change in jet length as voltage increases. This thresh-

old voltage is around Vpp ’ 600 V. The inset shows a more detailed study for f ¼ 5 kHz where

the voltage was increased from 500 V to 600 and decreased back to 500 V. Decreasing the volt-

age the change in jet length is smooth and, as a result, a hysteresis curve is obtained.

Interestingly, this abrupt transition vanishes for high frequencies of the signal; the jet length

grows smoothly with voltage and the hysteresis disappears. We have observed the same hyste-

retic behavior for all water conductivities. In particular for high conductivities (j¼ 10 and 30

mS/m), the transition was abrupt for all tested signal frequencies.

Figure 4 shows the effect of decreasing the signal frequency on the jet length for a given

water conductivity (j ¼ 3� 10�3 S=m) and signal amplitude (Vpp ¼ 1000 V). For comparison,

we show in Figure 4(a), the situation where no voltage is applied. Accordingly to previous

results,9 longer jets are found as the frequency of the signal is reduced (sequence from (b) to

(e) in Figure 4) and the rest of the parameters are kept constant. The figure also shows that the

unstable regime takes place for frequencies low enough (f � fmess). The same trend is observed

for all water conductivities. For a given voltage and frequency, longer jets are obtained for

FIG. 2. Series of images showing the effect of increasing the signal voltage on the jet length for Qi ¼ 50 ll=h; Qo ¼
400 ll=h; go ¼ 100 cP; j ¼ 3� 10�3 S=m and f ¼ 9 kHz: (a) Vpp ¼ 0 V; (b) Vpp ¼ 300 V; (c) Vpp ¼ 600 V; (d)

Vpp ¼ 700 V; (e) Vpp ¼ 800 V; (f) Vpp ¼ 1000 V.
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FIG. 4. Series of images showing the effect of decreasing the signal frequency on the jet length for

Qi ¼ 50 ll=h; Qo ¼ 400 ll=h; go ¼ 100 cP; j ¼ 3� 10�3 S=m, and Vpp ¼ 1000 V: (a) Vpp ¼ 0 V; (b) f ¼ 50 kHz; (c)

f ¼ 30 kHz; (d) f ¼ 10 kHz; (e) f ¼ 5 kHz; (f) f ¼ 1 kHz.

FIG. 3. Jet length versus signal voltage for different values of the signal frequency for Qi ¼ 50 ll=h; Qo ¼ 400 ll=h;
go ¼ 100 cP, and j ¼ 3� 10�3 S=m. The inset shows the hysteresis loop when increasing or decreasing the voltage amplitude

for f ¼ 5 kHz.
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higher conductivities. The transition frequency to the unstable regime (see Figure 4(f)) depends

on both, the water conductivity and the applied voltage amplitude, as it was reported in previ-

ous observations by Tan et al.7 In this work, a transition from jetting to unstable drop produc-

tion was found for a frequency which linearly increases with water conductivity for go ¼ 30 cP.

When the instability takes place, the jet wets the glass wall and produces liquid filaments that

eventually break into droplets of different sizes.

Figure 5 shows fmess for all the tested conductivities and different values of the voltage am-

plitude. The transition frequency increases with water conductivity while, apparently, below

j ¼ 1 mS=m is constant. This figure also demonstrates that, for a fixed conductivity, the larger

the voltage the larger fmess, i.e., the unstable region increases. Since the jet is attracted to both

electrodes, any nonaxisymmetric perturbation can be amplified for high electric field, which

could be the reason for this instability. To the best of our knowledge, the onset of this instabil-

ity below a certain frequency lacks of a theoretical explanation. Castro-Hern�andez et al.9

showed for a voltage amplitude of 1000 V that the jet length is proportional to
ffiffiffiffiffiffiffiffi
j=f

p
. Figure 6

shows the same scaling for each applied voltage for those cases where a long jet is established

(lj > w). The figure also shows the best fit curves to a power law for each voltage. All expo-

nents obtained from the fitting are close to �1/2. This key clue, provided by the experimental

data, will be rationalized by theoretical analysis in Sec. IV.

IV. DISCUSSION

Table I summarizes some relevant dimensionless numbers involved in our experiments.

Inner and outer Reynolds numbers are small, implying that inertial effects should be negligible

as it is usual in these types of geometries. Here, the average velocity of the dispersed phase

was computed as Ui ¼ 4Qi=pd2
j . Electrical forces are characterized by the electrical Bond num-

ber Be, defined as the time-averaged electrical pressure on the interface eoE2
rms=2 divided by the

capillary pressure r=‘, where ‘ is a typical radius of curvature. For the maximum applied volt-

age of 1000 V peak to peak, the characteristic electric field in the junction is estimated as

Erms ¼ 3:5� 106 V/m. From this value, the electrical Bond number for the cone-jet transition is

Be;cone � 0:5, taking as typical cone radius of curvature ‘ ¼ 20 lm. Since the experimental

FIG. 5. Transition frequency versus dispersed phase conductivity for different values of the applied voltage for

Qi ¼ 50 ll=h; Qo ¼ 400 ll=h, and go ¼ 100 cP.
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radius of the jet is almost constant dj=2 ¼ 6:5 lm and the electric field on the surface of the jet

is Erms ¼ 2:3� 107 V/m (computed numerically using finite elements), the electrical Bond

number for the jet at the channel entrance is Be;jet � 6 for an applied voltage of 1000 V. This

indicates that Be changes by an order of magnitude in the cone-to-jet transition. Inner and outer

capillary numbers are below unity, meanwhile the electrical Bond number of the jet is much

greater (values between Be � 2 for 600 V applied voltage and Be � 6 for 1000 V applied volt-

age), which strengthens the idea that the electric forces are responsible for the formation of

such long jets.

The experiments show that the length of the jet increases for increasing applied voltage,

decreasing frequency, and increasing water conductivity. When either the applied voltage is

small, the frequency is high, or the conductivity is small, there is a very short jet that breaks

into drops rapidly. Based upon these experimental facts and the way the electric field amplitude

decreases as we move along the jet inside the channel,9 we hypothesize that the jet breaks into

drops when the electric field amplitude around the jet tip is below a certain value. The voltage

difference, V, between the jet and the channel electrodes as a function of distance z inside the

channel can be studied by using concepts of transmission line (or distributed element) theory.17

The transmission line model is valid when there is translational symmetry and the characteristic

length along the line is much greater than the characteristic length in transverse direction. This

methodology was successfully applied by Baret et al.18 to model the electric response of a liq-

uid finger in electrowetting experiments.

Using phasors, the potential drop in the axial direction along a conducting jet is (see

Figure 7)

FIG. 6. Jet length versus f=j for different values of the signal voltage for Qi ¼ 50 ll=h; Qo ¼ 400 ll=h, and go ¼ 100 cP.

TABLE I. Values of the dimensionless relevant parameters involved in this problem. Electrical Bond number was calcu-

lated for Vpp¼ 1000 V.

gi=go ¼ 0:01 Qi=Qo ¼ 0:125

Reo ¼ qoUoh=go ’ 0:01 Rei ¼ qiUidj=gi ’ 0:7

Cao ¼ g0U0=r ’ 0:5 Cai ¼ giUi=r ’ 0:02

Be;cone ¼ eoE2
rms‘=2r ’ 0:5 Be;jet ¼ eoE2

rmsdj=4r ’ 6
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V zð Þ � V zþ dzð Þ ¼ dz

jpa2
I zð Þ ) � @V

@z
¼ I

jpa2
; (1)

where I(z) is the current intensity carried by the jet at z, j is the liquid conductivity, and

a ¼ dj=2 is the jet radius. Charge conservation leads to the current intensity at z should be

equal to the current at z þ dz plus the displacement current leaving the jet interface

I zð Þ ¼ I zþ dzð Þ þ ixCV zð Þ ) � @I

@z
¼ ixCV ; (2)

where C is the capacitance per unit of length and i ¼
ffiffiffiffiffiffiffi
�1
p

is the imaginary unit. The differen-

tial equation that describes the potential is finally

@2V

@z2
¼ ixC

jpa2
V : (3)

The boundary conditions are of fixed applied voltage at the entrance, Vðz ¼ 0Þ ¼ V0, and negli-

gible electrical current at the jet tip, Iðz ¼ ljÞ � 0. For this last boundary condition, we assume

that the current transported by the drops issuing from jet tip is negligible (see below).

Therefore, according to the transmission line model, the potential along the jet is

V zð Þ ¼ V0

cosh 1þ ið Þ lj � zð Þ=d
� �

cosh 1þ ið Þlj=d
� � ; with d ¼ a

ffiffiffiffiffiffiffiffi
2jp
xC

r
: (4)

We obtain the capacitance per unit of length C numerically by using the finite element solver

COMSOL and taking into account the dimensions of our system in a cross-section (see Figure

1(b)). The numerically obtained value for C is 5:1� 10�11 F/m. The approximation is valid

when the characteristic axial length, d, is much greater than the characteristic transverse length.

The greatest transverse length is the distance between the jet and the electrodes, which is

around 75 lm. The values of d that can be computed from the values of f=j in Figure 6 are

greater or much greater than 75 lm. For instance, for j ¼ 10�3 S/m, a¼ 6.5 lm, f¼ 5 kHz, we

get d¼ 410 lm.

Figure 8 shows jet lengths in units of radius a versus nondimensional frequency X ¼ xC=j
for an applied voltage of 1000 V and the five water conductivities. The figure also shows the

functions d=a and 2d=a. As can be seen, the jet breaks into drops at a distance from the en-

trance between d and 2d for this applied voltage. Interestingly, d is proportional to
ffiffiffiffiffiffiffiffiffi
j=x

p
, in

agreement with the observed trend for jet length of Figure 6.

Figure 9 shows the absolute value of the voltage jVj as a function of z along the jet, as

given in Equation (4). We can see that the voltage amplitude is a decreasing function of z. The

electrical Bond number, being proportional to V2
rms, is also a decreasing function of z. In our

hypothesis, there is a threshold voltage at the tip (or equivalently, a threshold electrical Bond

FIG. 7. Sketch of the transmission line model. The resistive jet is coupled capacitively to the electrodes.
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number) below which the jet breaks into drops. Figure 10 plots the average of lj=d (jet length

in units of d) and the corresponding standard deviation for each applied voltage. For making

this plot we have used the experimental values of Figure 6. For instance, each lj value corre-

sponding to an applied voltage of 1000 V is divided by its corresponding d and then averaged.

The result is lj=d � 1:460:3, as can also be extracted from Figure 8 where all jet lengths are

between d and 2d. The figure also plots three curves of constant voltage at the tip VðljÞ. From

Equation (4), these curves are given by expression VðljÞ ¼ V0=jcosh½ð1þ iÞlj=d�j. The voltage

at the tip that best fits the experimental points is 550 V peak to peak. This value corresponds to

an electrical Bond number Be¼ 1.8. Therefore, we have obtained a master curve for our experi-

ments that tells us which is the most probable length of breakup for a given applied voltage,

signal frequency, and water conductivity. Moreover, the voltage of 550 V is close to the experi-

mental threshold voltage which is observed in Figure 3. This plot confirms our hypothesis that

there is a threshold voltage at the tip below which the jet breaks into drops. The fact that the

breakup occurs for a given voltage at the tip (550 V peak to peak for our experimental condi-

tions) demands a theoretical explanation.

The model is based upon several approximations that we now justify. The convection of

charge by the moving jet interface was neglected in front of the ohmic current through the jet

FIG. 8. Dimensionless jet length as a function of nondimensional frequency for different values of the conductivity for

Qi ¼ 50 ll=h, Qo ¼ 400 ll=h; go ¼ 100 cP, and Vpp ¼ 1000 V.

FIG. 9. Voltage amplitude as a function of axial length of the jet.
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bulk. The ratio between convection and conduction currents is called the electric Reynolds

number.19 The convection current at a certain axial location is Iconv ¼ 2paqsUi, where qs is the

induced surface charge on the jet given approximately by eoEn, with En being the outer normal

electric field. The conduction current through the jet is Iohm ¼ pa2jEz where Ez is the axial

electric field. The electric Reynolds number becomes Iconv=Iohm � eodUi2=ja2, where we have

used that En=Ez � d=a in our model. The higher d values correspond to the lower frequencies,

for f¼ 3 kHz and for the smallest conductivity (0.3 mS/m), the ratio between convected and

ohmic currents is of the order of 0.05 and we can safely ignore the motion of the jet when

computing the fields. The displacement current inside the jet has also been neglected in front of

the ohmic current. This is valid if eix=j� 1, which is fulfilled for the signal frequencies we

are dealing with, eix=j � 4� 10�3 for f¼ 1 kHz, and j ¼ 10�3 S/m. Boundary condition

IðljÞ ¼ 0 assumes that the current transported by the issuing drops is negligible. This current

could be either convected charge by the drops or capacitive current through coupling between

jet tip and drops. The convected current by the drops should be of the same order as the one

convected by the jet, already very small. The capacitive current due to the drops can be com-

pared to the capacitive current leaving the surface of the jet. The ratio between these currents is

given by the ratio between capacitances, which is of the order of R=d (with R being the drop

radius) and this number is very small.

V. CONCLUSIONS

Long water jets in a flow focusing device were generated upon application of AC fields.

The length of the jet was measured as a function of water conductivity, signal frequency, and

voltage amplitude. It was found a threshold voltage above which the jet length increases very

fast. The measurements of the length show a hysteresis loop around this threshold voltage. For

high frequencies of the AC signal (f 	 10 kHz), the transition to long jets is not abrupt and the

hysteresis disappears. The distributed element circuit model of the system provides a way of

evaluating the electric potential at the tip of the jet as a function of the electrical parameters.

We found that, for all combinations of these parameters at which a long jet is formed, the elec-

tric potential at the tip of the jet is around 550 V. This result, together with the similarity of

the tip geometry for all long jets, seems to confirm our hypothesis that the jet breakup occurs

for a given electric field distribution around the tip. For low frequencies of the AC signals, we

FIG. 10. Jet length in units of d for each applied voltage. Continuous lines depict curves of equal voltage at the jet tip: red

550 V, blue 600 V, green 500 V.
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observed the disruption of jet into many small droplets of different sizes. Our measurements

show that the lower the liquid conductivity, the lower the frequency signal required for this

instability to appear. Also, for increasing applied voltage the instability region increases, i.e.,

fmess increases. These results point to a critical value of the electric field at the jet surface at

which, possibly, a nonaxisymmetric instability leads to the jet disruption.
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