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Abstract

Latin squares are used as scramblers on symmetric-key algorithms that generate
pseudo-random sequences of the same length. The robustness and effectiveness of
these algorithms are respectively based on the extremely large key space and the
appropriate choice of the Latin square under consideration. It is also known the
importance that isomorphism classes of Latin squares have to design an effective
algorithm. In order to delve into this last aspect, we improve in this paper the effi-
ciency of the known methods on computational algebraic geometry to enumerate and
classify partial Latin squares. Particularly, we introduce the notion of affine algebraic
set of a partial Latin square L = (I;;) of order n over a field K as the set of zeros

of the binomial ideal ( x; x; — R (, j) is a non-empty cell inL ) € K[xq, ..., x,].
Since isomorphic partial Latin squares give rise to isomorphic affine algebraic sets,
every isomorphism invariant of the latter constitutes an isomorphism invariant of the
former. In particular, we deal computationally with the problem of deciding whether
two given partial Latin squares have either the same or isomorphic affine algebraic
sets. To this end, we introduce a new pair of equivalence relations among partial
Latin squares: being partial transpose and being partial isotopic.
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1 Introduction

A partial Latin square of order n is an n X n array in which each cell is either empty
or contains an element of a finite set S of n symbols so that each symbol occurs at
most once in each row and in each column. This is a Latin square if all its cells are
non-empty. Every Latin square constitutes the multiplication table of a quasigroup
0 = (S, -) endowed with a binary operation - so that the equations a - x = b and
y - a = b have unique solutions for x and y in S, for all a, b € S. Equivalently, Q
has left- and right-division, which we denote respectively \ and /. That is, x = a\b
in the first equation, and y = b/a in the second one. Currently, it is only known the
number of Latin squares of order n < 11 [24, 31, 37] and that of partial Latin squares
of ordern < 7 [13-15].

Quasigroups and Latin squares are commonly used in cryptography [38, 39,41]. In
symmetric cryptography, Latin squares are used as scramblers that generate ciphered
pseudo-random strings with the same length than a given plaintext, but with a remark-
able period growth [26, 27, 33]. That is, they increase considerably the maximum
number of consecutive distinct bits within the plaintext. More specifically, given a
quasigroup Q = (S, -), a leader symbol s € S and a plaintext T = t1t,...t,, the
former enables one to generate the encrypted string E(T) = ejez...e,, where
e =s-t1ande; = e¢;_ - t;, forall 1 < i < m. The sequences of the ciphered text
follow a uniform distribution [34, 36]. The decryption map D;(E(T)) is, in turn,
based on the left-division within Q. In particular, t; = s\ej and t; = ¢;_1\¢;, for all
1 < i < m. This encryption-decryption process acts, therefore, as a symmetric-key
algorithm having the underlying Latin square related to the quasigroup as its crypto-
graphic key. The latter can in turn be decomposed into disjoint partial Latin squares
as shares describing a secret sharing scheme [4, 5, 12, 44].

The huge number of Latin squares ensures the robustness of this algorithm against
brute force and statistical attacks, even if the ciphered text and the leader symbol are
known. In any case, an appropriate choice of the Latin square under consideration
is especially relevant to design effective symmetric-key algorithms producing high
period growths [9]. In order to optimize this choice, the distribution of Latin squares
into isomorphism classes play a fundamental role. This is due to the fact that any
two isomorphic Latin squares always generate the same number of consecutive dis-
tinct bits starting from a same plaintext. Reciprocally, the analysis of pseudo-random
sequences derived from non-isomorphic Latin squares enables one to discover certain
algebraic and even geometrical properties that they have in common [32, 35]. Remark
in this last regard how Dimitrova and Markovski [10, 11] introduced the distribution
of quasigroups into fractals and non-fractals, depending on the image patterns that
result after disposing as rows of a rectangular array the ciphered texts derived from an
iterative application of the described encryption process. Let us remark that counting,
enumerating, and analyzing isomorphism classes constitute indeed main problems in
the theory of (partial) Latin squares. Currently, it is known the number of isomor-
phism classes of Latin squares of order n < 11 [24, 31, 37] and that of partial Latin
squares of order n < 6 [17, 19].

Computational algebraic geometry has revealed to be a good alternative to deal
with the enumeration and classification of (partial) Latin squares of small order [1, 2,



13-17, 19], but further work is necessary to deal with higher orders. This is mainly
due to the cost of computation that is required to determine the reduced Grobner
basis of the ideal associated to each partial Latin square. Such a computation is
extremely sensitive to the number of involved variables, and the length and degree of
the generators [20-22, 28].

In order to reduce the mentioned cost, we introduce in this paper the notion of
affine algebraic set of a partial Latin square. Within the framework of the charac-
ter theory of finite quasigroups, Johnson [30] introduced the determinant of a Latin
square L = (l;;) as that one of the square matrix X; = (x;;). We deal with the
analogous matrix that is related to a partial Latin square, but focus on the affine alge-
braic set of the zero-dimensional binomial ideal whose generators are of the form
xixj — xy;;, for all non-empty cell (i, j). We expose how the isomorphism invariants
of such an affine algebraic set reduce the cost of computation that is required to dis-
tribute partial Latin squares into isomorphism classes. The study of new invariants
to facilitate the classification of partial Latin squares is currently an active research
area [0, 18, 43].

The paper is organized as follows. Section 2 deals with some preliminary con-
cepts and results on partial Latin squares and computational algebraic geometry that
are used throughout the paper. Sections 3 and 4 focus on those conditions under
which two given partial Latin squares have, respectively, the same or isomorphic
affine algebraic sets. In particular, we prove that isomorphic Latin squares give rise
to isomorphic affine algebraic sets, but the reciprocal is not true in general. As
an illustrative example, we enumerate the isomorphism classes of the affine alge-
braic sets of all partial Latin squares of order up to three. In Section 5, we expose
how the computation of affine algebraic sets of partial Latin squares lowers the
computational cost that is required to determine their distribution into isomorphism
classes. Due to the high dependence on notation, a glossary of symbols is shown
in Appendix.

2 Preliminaries

Let us review some basic concepts and results on partial Latin squares and Compu-

tational Algebraic Geometry that are used throughout the paper. We refer the reader

to the monographs [8, 25] for more details on both topics.

2.1 Partial Latin squares

Let £,, denote the set of partial Latin squares of order n having the set
[n]:={1,...,n}

as set of symbols. Every partial Latin square L = (/;;) € £, is determined by its set
of entries

E(L) = {(lv.]vll]) l’]’ ll] € [Vl]}



The cardinality of this set constitutes the weight of L, which coincides with the
number of its non-empty cells. Thus, for instance, the partial Latin square

213
L =]|1 e L;
1

has set of entries E(L1) = {(1, 2, 2), (1, 3,3), (2, 1, 1), (3,2, 1)} and weight four. A
partial Latin square is said to be trivial if its weight is zero.

Let S,, denote the symmetric group on n elements. Permutations of rows, columns,
and symbols of partial Latin squares preserve the set £,. Thus, two partial Latin
squares L = (l;;) and L' = (I j) in £, are called isotopic if there exists a triple
O = (f,8 h) € Sy x Sy x Sy such that E(L") = {(f (@), g(j), h(lij)): (G, ], 1ij) €
E(L)}. In such a case, we denote L® = L’. The triple (f, g, h) is an isotopism from
L to L’. This constitutes an isomorphism if f = g = h, in which case, the partial
Latin squares under consideration are called isomorphic. In such a case, we denote
LT = L’. Thus, for instance, the previously mentioned partial Latin square L is
isotopic to the partial Latin square

L, =2 1€£3
3

by means of the isotopism ((123), (12)(3), (13)(2)) € S3 x S3 x S3. Further, two
partial Latin squares L and L’ of the same order are said to be conjugate if there exists
a permutation 7 € S3 such that E(L") = {(ix1), iz ), ix3)): (i1,i2,i3) € E(L)}.
Every partial Latin square has, therefore, six conjugates (not necessarily distinct from
each other). Thus, for instance, the partial Latin square

3
Ly=| |1| |e /L3
1] (2

is conjugate of the previously mentioned partial Latin square L, by means of the
permutation (123) € S3. Finally, two partial Latin squares are said to be paratopic if
one of them is isotopic to a conjugate of the other. Thus, for instance, the previously
mentioned partial Latin squares L and L3 are paratopic. Remark that to be isotopic,
isomorphic, conjugate, or paratopic are equivalence relations among partial Latin
squares.

We deal now with the use of Latin squares as scramblers within the context of the
encryption-decryption process described in the introductory section. Particularly, we
focus on the construction of the mentioned image patterns introduced by Dimitrova
and Markovski [10, 11]. To this end, let us consider a Latin square L = (/;;) € L,,
a pair of positive integers m, r € N, a sequence S = (s1,...,S-—1), and a plaintext
T =1t...ty,withs;,t; € [n],foralll <i <rand1 < j < m. Let us denote
T'=Tand T; = E;,_(Ti—1),foralll <i <r.

Then, the r x m image pattern derived from L, S, and T is the r x m array
satisfying that, for each i € [r], the entries of its i row coincide sequentially with
the characters of 7;. We denote Zg 7 (L) this array.



Example 1 Let us consider the Latin square

112(3
L =|2|3|1|€ L3,
31112
the sequence S = (1,2, 2, 3, 3, 3) and the plaintext 7 = 123123. Then,
11213(1|2(3
112(1(1]|2]1
21313|13|1(1
ZsT(L)=|3]2|1|3|3|3|
21313|2]1|3
113(2(3]31(2
31213(2]11(2 4

The following result implies that, in order to analyze the set of image patterns of
the set £,, it is enough to focus on a representative Latin square of each one of its
isomorphism classes. It follows straightforwardly from the notion of isomorphism of
Latin squares and the described encryption process.

Lemma 1 Let f be an isomorphism between two Latin squares L, L' e L, and
let us consider a sequence S = (s1,...,Sy—1) and a plaintext T = t1...t,, with
si,tj € [n], foralli <rand j <m. Let f(S) = (f(s1),..., f(sy—1) and f(T) =
f @) ... f(tm). Then, the image patterns Ls (L) and If(S)’f(T)(Lf) coincide up to
a permutation of their symbols. More specifically, a cell (i, j) in Igr; (L) contains
a symbol a;; € [n] if and only if the corresponding cell (i, j) in If(g),f(T)(Lf)
contains the symbol f (o).

In practice, image patterns based on Latin squares of order n are represented
as pixel arrays so that each symbol in the pattern under consideration is uniquely
replaced by a color within a given palette of n colors. In order to illustrate this fact,
let us consider the following Latin squares.

11213](1|2(3[|1|3]2]|1|3]|2||2]|1]|3
213[1](3]|1|2(|2|1{3][3]2]1]|[1]3]|2
3(112](2(3|1||3]|2|1]|2(1|3]|3|2]|1

L3y Lisp Lizz L34 Lis

They are respective representatives of the five isomorphism classes of the set L£3.
Each pixel array Z3 ; in Fig. 1, where 1 < i < 5, represents a 120 x 120 image pattern
derived from the Latin square L3 ;, the constant sequence S = (2,...,2), and the
constant plaintext 7 = 1...1.

Lemma 1, together with the fractal character of all the pixel arrays in Fig. 1,
implies that every quasigroup of order three is fractal [10]. Observe also from Lemma
1 that all these pixel arrays make easy to distinguish visually all the isomorphism
classes of the set L3 except for the first two arrays, Z3 1 and Z3 2, which require a
more trained eye to distinguish them.
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Fig. 1 Image patterns based on the five isomorphism classes of L3

We introduce here a general approach to make easier this distinction. This con-
sists of representing separately the contribution of each cell within the Latin square
L under consideration on the construction of the corresponding image pattern Z =
(@;j). To this end, we consider the quasigroup Q = ([n], -) having L as its multi-
plication table. Then, for each pair (k,l) € [n] x [n], we define the r x m array
A1(D) = (afj’l) so that afj’l = «;; if and only if the encrypted symbol «;; has been

obtained as the product k - [. Otherwise, afj’l =0.

Example 2 In the context of Example 1, we have that

o[o[o[o[o[0
olo[o[o[o[0
0[0[3[3[0[0
As1(Zs.r(L)) = [0]0]0[0[3[3]
0[0[3[0[0]0
0[o[o[0[3]0
3[0[0[0[0[0 4

We define the atomic decomposition of an image pattern Z based on a Latin square
of order n as the n x n array A(Z) so that, for each i, j € [n], its cell (i, j) contains
the array A; ;(Z), which we call an atom of A(Z). Thus, for instance, Fig. 2 shows
the atomic decomposition of both image patterns Z3 ; and Z3 > in Fig. 1. The zero
symbols of each atom is colored in black. The following result ensures that the set
of atoms within the atomic decompositions of two isomorphic Latin squares coin-
cide up to permutation of their non-zero symbols. It follows straightforwardly from
Lemma 1.

Proposition 1 Under the assumptions of Lemma 1, the atoms A; j(Ls 1 (L)) and
Ari), 1) (If(s)’f(T)(Lf)) coincide up to their non-zero symbols. More specifically,
the non-zero symbol of the former is a € [n] if and only if that one of the latter is

f ().

Proposition 1 makes possible to establish certain conditions that should be satisfied
by any possible isomorphism between two given Latin squares. Thus, for instance,
we can observe in Fig. 2 that any possible isomorphism f between the Latin squares
L3 1 and L3 7 should map the atom .41 ;(Z3,1) into the atom A; | (Z3.2), because the
latter is the only atom within the atomic decomposition A(Z3 2) that coincides with
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Fig.2 Atomic decompositions of the image patterns Z(L3,1) and Z(L32)

the former, even regardless of the color. As a consequence, it should be f(1) = 1.
Nevertheless, a detailed inspection of Fig. 2 enables us to ensure that no such an
isomorphism exists. Observe to this end that, again even regardless of the color, there
are no coincidence among any of the rest of atoms within the atomic decompositions
A(Z3.1) and A(Z32). Since visual inspections are very difficult to be done in general,
alternative approaches are, therefore, required. In this paper, we propose to make use
of computational algebraic geometry in this regard.

2.2 Computational algebraic geometry

Let K[X,,] be the multivariate polynomial ring over a given field K that is defined
on the finite set of variables X, := {x1,...,x,}. A zero of a set of polynomials
S € K[X,] is any point P € K” such that f(P) = O, for all f € S. An dffine
algebraic set in the affine space K" is any subset V € K" formed by all the zeros
of a set of polynomials in K[X,,]. This is irreducible if it is not the union of two
non-empty proper affine algebraic subsets. Every affine algebraic set is uniquely
decomposed into a finite union of irreducible components so that none of them is
a proper subset of another one. The dimension of an affine algebraic set V is the
maximal length of any chain of irreducible components of V minus one. This is
denoted dim(V).

A morphism between two affine algebraic sets V| and V, in K" is any map
¢ : V1 — V5 such that there exist n polynomial functions, f1, ..., f, € K[X,], sat-
isfying that ¢ (P) = (f1(P), ..., fu(P)), for all P € Vj. This is an isomorphism if
¢ is a bijection whose inverse is a morphism from V> to V. In this case, both affine
algebraic sets are said to be isomorphic. Any property of affine algebraic sets that



is preserved by isomorphisms is said to be an isomorphism invariant. Examples of
isomorphism invariants of an affine algebraic set are its dimension, its cardinality in
case of being zero-dimensional, and the number of irreducible components.

An ideal is a subset I € K[X,,] satisfyingthat0 € I; p+q € I, forall p,q € I;
and p-gq € I, forall p € I and g € K[X,]. The ideal generated by a finite set of
polynomials {p1, ..., pr} € K[X,] is defined as

k
(p1,-oospi) = {Z%"Pi: gi € K[X,]¢.

i=1

It is binomial if all its generators are. Further, it is radical if every polynomial p €
K[X,] belongs to I whenever there exists a positive integer m € N such that p” € I.
The affine algebraic set that is formed by all the zeros of the polynomials within 7 is
denoted V(I). The ideal I is zero-dimensional if dim(V (1)) = 0.

The leading monomial of a polynomial in K[X,] is its largest monomial with
respect to a given multiplicative well-ordering whose smallest element is the constant
monomial 1. A Grobner basis of an ideal I C K[X] is any subset G C I whose
leading monomials generate the same ideal that is generated in turn by all the leading
monomials of the non-zero polynomials of /. This is reduced if all its polynomials are
monic and no monomial of a polynomial in G is generated by the leading monomials
of the rest of polynomials in the basis. The reduced Grobner basis of I is unique
and can always be computed from Buchberger’s algorithm [3]. Its decomposition
into finitely disjoint subsets enables one to determine the irreducible components
of V(I) [23, 29, 40].

The computation of a reduced Grobner basis is extremely sensitive to the number
of variables, and the length and degree of polynomials in the ideal [20-22, 28]. The
following two results illustrate this fact in case of dealing with the field Q of rational
numbers or a finite field Iy, with g a power prime.

Theorem 1 ([28]) The complexity to compute the reduced Grobner basis of a zero-
dimensional radical ideal over the field Q of rational numbers is d°™, where d is
the maximal degree of the polynomials of the ideal, and n is the number of variables.

Theorem 2 ([20]) The complexity time that is required to compute the reduced
Grobner basis of an ideal { p1, ..., Pm, p(f — Pls -+ p;],, — Pm ) over a polyno-
mial ring F,[X,], where py, ..., pm are polynomials given in sparse form and have
longest length 1, is g™ + O (m>1). Here, sparsity refers to the number of monomials.

3 The affine algebraic set of a partial Latin square

Let K be a field and let L = (/;;) be a partial Latin square in £,,. We define the affine
algebraic set of L over K as the affine algebraic set V(L) € K" of the binomial
ideal

I(L) = (xixj —xy; 2 (0, J, lij) € E(L)). ey



Particularly, if L is the trivial partial Latin square of order n, then I(L) = {0} and
hence, Vk (L) = K”". Throughout this paper, we consider the first three variables x1,
x2, and x3 to be, respectively, x, y, and z.

Example 3 Let us consider the Latin square L3 > € £3 described in Section 2, and
let K be a field. According to (1), each entry of the Latin square L3> maps into a
binomial in K[x, y, z]. Thus, for instance, the triples (1, 1, 1) and (1, 2, 2) in the set
of entries E(L3,) map, respectively, into the binomials x> — x and xy — y. The
complete map is schematically represented as follows, where we take into account
that the product of variables is commutative.

112(3 x2—x[xy—ylz—z
3112 > |xy —z y2—x yz—y
2(13|1 xXz—Yylyz—z 2 —x

The nine binomials appearing as entries within the last array constitute the generators
of the binomial ideal /(L3 ). Observe in particular that the binomial y — z belongs
to such an ideal, because

y—z=(y—2—(xy—y.
Then, the binomial x — z also belongs to the ideal, because
x—z=y( -+ 0Gz-2 -0 —x.

As a consequence, x = y = z in the coordinate ring K[x, y, z]/1(L32). Thus, we
have, for instance, that

I(L3p) =(x—2,y—2, 2> —2).

The set {x —z, y —z, z> — z} constitutes indeed a reduced Grobner basis of the ideal
I (L3 ) with respect to the lexicographical ordering. Further, the affine algebraic set
of the Latin square L3 over the K is, therefore, the set

Vk(L32) ={(0,0,0), (1, 1, D}.

A similar study can be made for the rest of representative classes of the set L3,
which we showed in Section 2. In particular,

Vk(L3,1) ={(0,0,0)} U {(@®,a® a): a € Ksuchthata® = 1}

and
Vi (L33) = Vk(L3,4) = Vk(L35) ={(0,0,0), (1, 1, 1)}.

Thus, it seems that there is not a clear relationship among affine algebraic sets and
isomorphism classes of Latin squares. The goal of the rest of the paper consists of
establishing this relationship, together with the characterization and analysis of these
new algebraic structures.

Let us start our analysis by illustrating in the following example the dependence
that affine algebraic sets of Latin squares have on the base field.



Example 4 Let us consider the partial Latin square

1

L c L.

1

Then, I (L) = (x>—x, y?>—x) C K[x, y]and V(L) = {(0,0), (1, 1), (1, —=1)}. The
latter is formed by three different elements unless the base field K has characteristic
two, in which case the points (1, 1) and (1, —1) coincide. <

In what follows, we focus on the study of the set
Vi (Ly) = {Vk(L): L € Ly}.
Firstly, we characterize the case n = 1.

Lemma 2 The set V(L) is formed by the affine space K and the set {0, 1}. Both
sets are isomorphic if and only if K is the finite field ;.

Proof The only non-trivial partial Latin square in £ is

LEEE].

Then, I(L) = (x*> — x) C K[x] and Vk(L) = {0, 1}. The last assertion is
straightforwardly verified. U

The following result enables us to ensure that Vx (L) # @, forall L € L,,.

Lemma 3 Let K be a field. Then,

[l V=1{0.....0.(,.... D} S K".
VeVr(Ly)

Proof The case n = 1 follows readily from Lemma 2. Thus, suppose that n > 2.
From (1), it is verified that {(0,...,0),(,...,1)} € Vk(L), forall L € £,.In
order to prove the equality, we describe a partial Latin square of order n whose affine
algebraic set coincides with the pair of points under consideration. In this regard, let
L e L,besuchthat E(L) ={(1, j, j),(j,1,j—1): j€{2,...,n}}. Then, I (L) =

(x1xj —xj, xjx1 —xj—1: j €{2,...,n}) C K[X,]. Since the product of variables
is commutative, we have that x; = ... = x, in the coordinate ring K[X,]/I(L).
As a consequence, x12 —x1 € I(L) and hence, Vx(L) = {(0,...,0),(1,..., 1)} C
K", O

Lemma4 Let L € L, and L' € L, be such thatm < n. If E(L) C E(L'), then
Vi (L) € Vk(L) x K™, The equality holds when E(L) = E(L').

Proof The result follows readily because every generator of the ideal /(L) in the
polynomial ring K[X,,] is also a generator of the ideal I (L) in K[X,,]. O



The following pair of questions arise in a natural way from the definition of affine
algebraic set of a partial Latin square.

Problem 1 When do two partial Latin squares determine the same affine algebraic
set?

Problem 2 When do two partial Latin squares determine isomorphic affine algebraic
sets?

Let us focus on Problem 1. Firstly, we study which entries can be removed from
a partial Latin square so that the resulting partial Latin square has the same affine
algebraic set than the former. To this end, for each partial Latin square L = (I;;) €
L,, we consider the set of non-empty cells of L,

C(L) :={G,j) € [n] x[n]: (G, j, lij) € E(L)}.
Then, for each subset S € C (L), we define the partial Latin square Lg € £, so that
E(Ls) ={(, j,lij) € E(L): (i, j) € C(L)\ S}

Example 5 According to the previous definition, we have, for instance, that
2(3

(L3,2)(1,1),2,3).3,3)) = [3]1
213 <

Based on the commutativity of the product of variables, the following result
enables us to ensure that, in order to determine the same affine algebraic set of a par-
tial Latin square, we can remove from the latter a cell of every pair of symmetric cells
(i, j) and (J, i) containing the same symbol.

Lemma 5 Let L € L, be such that there exist two different positive integers i, j < n
satisfying that lj; = lj; € [n]. Then, Vg (L) = Vk(L{g, j)-

Proof The result follows straightforwardly from the fact that the only generator of
the binomial ideal / (L) that would not be explicitly a generator of the binomial ideal
I (L, j)) would be x;x; — Xl but this coincides with xjx; — X1j;- Since i # j, the
latter is a generator of the second ideal. O

In a similar way, the following lemma deals with triples of cells of a partial Latin
square from which we can remove one of them in order to preserve its related affine
algebraic set.

Lemma 6 Letn > 2. Let L € L, be such that there exist three different positive
integers i, j, k < n such that {(i, j, k), (k, j, i), (j,k,k)} € E(L). Then, Vx(L) =
Vi (L, -



Proof Since xx; = x;x; in K[X,], we have that x; — x; € I(Ly, j)}). Then, the
binomial x;x; — xi, which is related to the triple (i, j, k) ¢ E(L{(,j)}), is equivalent
in the ideal I (L, j)) to the binomial xzx; — x;, which is associated to the triple
(k. j. 1) € E(LG,j))- =

Example 6 From Lemma 6, the following two partial Latin squares determine the
same affine algebraic set. In the context of that result, we consider here (i, j, k) =
(1,3,2).

2
L=l |1 Loy =] | |1
2 2
In particular, for any given field K, we have that
V(L) = Vk(Lia,3)) =1{0,0,a): a e K}U{(a,a,1): a e K}. q

The following result deals with partial Latin squares having pair of cells containing
the same pair of different symbols.

Lemma 7 Let L = (I;;) € L, be such that n > 2. Let i, j € [n] be such that
lij, lji € [n] are different. If there exists a cell (i’, j') € C(L) such that (i’, j') #
@, j) by =lijand Ly = 1j;, then Vg (L) = V(L jny) = Vr(L,iny)-

Proof The result follows readily from the fact that x;; — x;;; € I(L), because of the
hypothesis. O

Example 7 Let K be a field. From Lemma 7, we have that
Vi(L32) = Vr((L32)(3,1)) = VK((L3,2){3.1).3.2)))- 4

Let us introduce now a new concept that enables us to determine new cases of
partial Latin squares having the same affine algebraic set. To this end, let L and L’
be two partial Latin squares of the same order and weight. We say that L' is a partial
transpose of L if, for each entry (i, j, k) € E(L") \ E(L), the set E(L) contains
the entry (j, i, k). Particularly, the transpose of a partial Latin square is also a partial
transpose of the latter. Furthermore, being partial transpose is an equivalence relation
among partial Latin squares of the same order and weight.

Example 8 The following two partial Latin squares are partial transpose of each
other.

13 2(3

<

Lemma 8 If two partial Latin squares of the same order and weight are partial
transpose of each other; then their affine algebraic sets coincide.



Proof Let L = (I;;) and L' = (I; j) be the partial Latin squares under consideration.
The result follows straightforwardly from the fact that the generators of both binomial
ideals I (L) and I (L") coincide. Specifically, for each non-empty cell (i, j) € C(L'),
it is

xjxp —xp,, i G, 1) € E(L),

XiXj— Xy = .
1y { xixj — xj,;, otherwise. O

Two partial Latin squares that are partial transpose of each other can be con-
sidered to be “almost” conjugate in the sense that only a subset of cells of the
corresponding partial Latin square are switched. More formally, two partial Latin
squares L and L, in £, are partial transpose if there exists a third partial Latin
square L3 € L, such that E(L3) € E(Ly), E(Lg) C E(Ly),and E(L1) \ E(L3) =
E(Ly) \ E(L%). Thus, in Example 8, the corresponding third partial Latin square
would have {(1, 2, 1), (2, 1, 2), (2, 3, 1)} as set of entries. In a similar way, we can
ask ourselves about the existence of “almost” isotopic partial Latin squares whose
affine algebraic sets coincide. In this regard, we say that two partial Latin squares L
and Lj in L, are partial isotopic if there exists a third partial Latin square L3 € L,
and an isotopism ® = (f, g, h) € S} such that E(L3) € E(Ly), E(LY) € E(L»)
and E(L1) \ E(L3) = E(Lp) \ E(Lg)). In particular, if L| and L, are isotopic by
means of an isotopism @', then they are partial isotopic. To see it, it is enough to
consider Ly =L;and ® = @',

Example 9 The following partial Latin squares are non-isotopic (in fact, they are
non-paratopic), but they are, however, partial isotopic by means of the partial Latin
square in L3 with set of entries {((1, 1, 1), (2,2,2), (3, 1,2))} and the isotopism
((123), (123),1d) € S33 . Here, Id denotes the trivial permutation.

1| |3 2(3
2 1

The following question arises in a natural way.

Problem 3 Given two partial Latin squares that are partial isotopic, when do they
determine the same affine algebraic set?

In order to answer this question, a previous definition is required. For each partial
Latin square L = (I;;) € £, and each positive integer m < n, we define the set

S(L;m) :=={k € [n]: xm —xx € I(L)}. 2)

In particular, m € S(L; m). Besides, from (1), if k # m, then the binomial x,, —
Xy belongs to the ideal (L) if and only if there exists a subset of non-empty cells
{G1, J1), -, Us, Js)} € C(L), such that

a) {(jl7il)7"'7(j.§‘7i5‘)} g C(L),
b) l;,j, =mandl; =k, and
¢) Ui, = li,, .., for all positive integer ¢ < s.



As a consequence, [;, j, € S(L; m), for all positive integer ¢ < s.

Example 10 Let us consider the partial Latin square

34| |1
41213
1142
1(3

Then, S(L;2) = {1, 2, 3}, because of the existence of the subset {(3,4), (3,2)} C
C(L), which is associated to the symbols I3 4 = 2,143 = 32 = l and 3 = 3.
Similarly, we have that S(L; 1) = S(L; 3) = {1,2,3}and S(L; 4) = {4}. <

L=(;= € Ly.

Observe that the sets S(L; 1) = S(L; 2) = S(L; 3) and S(L; 4) constitute a parti-
tion of the set of symbols of the partial Latin square in Example 10. The next result
establishes that this fact always occurs. It follows straightforwardly from (2) and the
subsequent remark.

Proposition 2 Let us consider a partial Latin square L € L, and a positive integer
m < n. Then,

a) S(L; k) = S(L;m), forallk € S(L; m).
b) S(L;k)NS(L;m) =0, forallk € [n]\ S(L; m).
c) Theset {S(L; k): k < n} constitutes a partition of the set [n], forall L € L,.

From here on, the partition described in Proposition 2 is denoted as P(L).
Thus, for instance, the partial Latin square L in Example 10 satisfies that P(L) =
{{1, 2,3}, {4}}.

Proposition 3 Let L € L, be such that P(L) = {[n]}. Then, V(L) =
{(07"'70)7(17"'11)}gKn'

Proof Since S(L; k) = [n], forall k € [n],itmustbe x; = ... = x, in the coordinate
ring K[ X, ]1/1(L). Besides, the partial Latin square L has to be non-trivial. Otherwise,
P(L) = {{i}: i € [n]}. Let (i, j, k) € E(L). Then, the result follows from the fact
that both binomials x;x; — x; and x]2 — x1 are equivalent in K[X,,]/1(L). O]

The following result enables us to answer Problem 3.

Proposition 4 Let Ly, L, € L, be such that P(L1) = P(L3). If L1 and L,
are partial isotopic by means of an isotopism ® = (f,g,h) € Sfl so that f,
g, and h preserve the mentioned partition, then Vk(L1) = Vk(L2), whatever the
field K is.

Proof Let K be a field. From the hypothesis, there exists a third partial Latin square
L3 € L, such that E(L3) € E(Ly), E(Lg’) C E(Lp) and E(L1) \ E(L3) =



E(L))\ E (Lg")). Hence, the generators of the ideal 7 (L;) coincide with those of the
ideal I (L) except for, at most, those binomials in the set {x;x; — x¢: (G, j, k) €
E(L1) \ E(L3)}. More specifically, every such a generator of the ideal /(L) gives
rise to a unique generator of the ideal 1 (L») in the set {x r;Xg(jy — Xn@): (0, j, k) €
E(L1) \ E(L3)}. Since the three permutations f, g, and & preserve the partition
P(L1) = P(L»), both sets of binomials coincide. Thus, both ideals 7 (L) and I (L»)
have the same set of generators and hence, Vk(L1) = Vk(L»). ]

Example 11 The non-isotopic partial Latin squares

314 |1 4] |1

41213 41213
b= ™ b=EEe
113 13

are partial isotopic by means of the partial Latin square L3 € L4 of weight
one such that E(L3) = {(1,1,3)} and the isotopism ((13),Id,Id) € Si. Since
all the components of this isotopism preserves the partition P(L1) = P(Ly) =
{{1, 2, 3}, {4}}, Proposition 4 enables us to ensure that Vik(L;) = Vk(L3), what-
ever the field K is. More specifically, both affine algebraic sets coincide with the set
{(0,0,0,0), (1,1, 1, 1)}. <

4 Algebraic sets of isomorphic partial Latin squares

Let us focus now on answering Problem 2 and hence, on the distribution of the set
Vk (L,) into isomorphism classes. In this regard, Lemma 2 dealt with the distribution
of the set Vx(£1) into two isomorphism classes. For higher orders, the next result
enables us to focus on the set of affine algebraic sets associated to a representative
Latin square of each isomorphism class of the set £,.

Lemma 9 If rwo partial Latin squares L, L' € L, are isomorphic, then the affine
algebraic sets Vg (L) and Vg (L) are also isomorphic.

Proof Let f be an isomorphism between the partial Latin squares L = (J;;)
and L' = (I ].). This gives rise to a bijective map between the generators of the

ideals I(L) and I(L’). Particularly, each binomial x;x; — x;; € I(L) maps to

the binomial xri)xr(j) — Xf) = XFOHXf(G) — xl/f(')f(') e I(L)). Hence, a
FOL

point (ay,...,a,) € K" belongs to the affine algebraic set V(L) if and only if

(af(l), e, af(n)) € Vi (L. O

As an illustrative example, we determine the distribution into isomorphism classes
of the set Vi (L,), for n € {2, 3}, whatever the base field K is.



4.1 Theset V(L))

For n = 2, it is known [17] the distribution of £; into 20 isomorphism classes, for
which the following partial Latin squares are class representatives.

1| |2 L} (2]]1]2]|2]1||1

Ly L, L3 L4 Ls Lg¢ L7 Lg

2 1 1 2 Ly (1] |2]]1]2

Ly Ly Ly Li2 Li3 Lig Lis Lis

21111 11212
1 211 1121
L7 Lig Lyg Ly

In order to determine the isomorphism classes of the set Vg (L£;), we discard the
partial Latin squares L3, Lig, L17, and Log, because their related affine algebraic
sets coincide, from Lemma 5, with those of L4, L¢, L7, and L9, respectively. Further,
we discard from Lemma 8 the partial Latin squares Lg, Lo, L5, and L9, which
are respective transposes of Lg, L7, L4, and Lig. Finally, from Lemmas 8 and 9,
we discard the partial Latin square Ls, which is isomorphic to the transpose of Lj.
Table 1 shows the affine algebraic sets of those isomorphism classes that have not
been discarded.

Table 1 enables us to ensure that the reciprocal of Lemma 9 is not true in general,
because the partial Latin squares L7, Lig, and Lg give rise to isomorphic affine
algebraic sets. The following result also holds from the table.

Theorem 3 Let K be a field. If its characteristic is two, then the set Vi (L2) is dis-
tributed into seven isomorphism classes, which correspond to the affine algebraic sets

Table 1 Algebraic sets of the
set Vk (£2) dim(Vg(L)) L Vk(L)

2 L K2
Ly {x=0U{x=1}
Ly {y=x%
Ly {x=0U{y=1
Le  {x=1}U{(0.0)}
0 Ly {(0,0), (1, 1), (—1,1)}
Lo {(0,0), (1, 1), (1, —1)}
Lyt {(0,0), (0, 1), (1,0), (1, D}
{r=»%y2+y+1=01U{0,0), (1, D}
Lis  {(0,0), (1, 1)}
{(0,0), (1, 1), (1, =)}




of L1, Ly, L3, La, Le, L11, and L1a. Otherwise, there exists an eighth isomorphism
class associated to L7.

Proof From Table 1, the affine algebraic sets of the partial Latin squares L7 and
L14 coincide if and only if the base field has characteristic two. It is then enough to
focus on the affine algebraic set of the partial Latin square L. Depending on the
base field K, this consists of two, three, or four different points. Then, a bivariate
polynomial interpolation determines an isomorphism between such an affine alge-
braic set and that one associated, respectively, to the partial Latin square L4, L7,
or Lij. L]

4.2 Theset Vi(L3)

The following results are useful to study the distribution of the set Vk(L,) into
isomorphism classes, for n > 2.

Lemma 10 Let n > 2. Let L € L, be such that there exist three different
positive integers i, j,k < n satisfying that (a) {(i, j, i), (j,i,k)} < E(L), (b)
C(L) N {(j, k), (k, )} = @, and (c) there does not exist i’, j' € [n] such that
{(j,i',0), (k, j', k)} C E(L). Then, Vg (L) coincides with the affine algebraic set of
the partial Latin square that is obtained by replacing the entry (j,i,k) € E(L) by
both entries (j, k, i) and (k, j, k).

Proof Let L' € L, be the new partial Latin square. By the hypothesis, this is well-
defined. Observe also that the set of generators of the binomial ideal 1 (L’) coincides
with that of 1 (L) after replacing the generator x jx; —xy in the latter by both binomials
xjx; — x; and xgx; — xg. All of them are equivalent, because x; — xx € I(L) N
I(L). O

Proposition 5 Letn > 2. Let L € L, be such that there exist three different positive
integers i, j, k < n suchthat {(i, j,i), (j, k,i)} € E(L). Then, Vx(L) is isomorphic
to an affine algebraic set contained in Vg (L), where L' € L, is such that E(L') =
{(1,2, 1), (2,3, D}

Proof Let f be any permutation on the set [#] that maps, respectively, the elements
i, j,and k into 1, 2, and 3. This leads to an isomorphism between L and a partial
Latin square L” € L, such that E(L”) € E(L’). The result follows then from
Lemma 4. O

Example 12 Let us consider the following three partial Latin squares.

3 2 1
L =2 L, =|2 L3 = 1




From Lemma 10, the affine algebraic sets of L and L, coincide, whatever the
base field is. Further, from the proof of Proposition 5, both affine algebraic sets
are isomorphic to the affine algebraic set of L3. In the context of both results, we
consider here (i, j, k) = (2,1,3). In particular, for any given field K, we have
that

Vk(L1) =Vk(Ly) ={(a,0,0): a e K}U{(1,a,a): a € K}
and
Vk(L3) = Vk(L2) ={(0,a,0): a e K}U{(a,1,a): a € K}. b
The next result holds from a simple study of cases based on Proposition 5.

Proposition 6 Let L € L3 be such that there exist three different positive integers
i, j,k < nsuchthat {(i, j,i), (j, k,i)} € E(L). Then, V(L) is isomorphic to one
of the following affine algebraic sets in K[x, y, z], whatever the base field K is.

a) IFdim(Vk(L)) = 1:

—  Two non-concurrent straight lines and a common concurrent line to both of
them: {x =y=0U{x=z=0U{x=2,y=1}

—  Two concurrent straight lines: {x =z =0}U{x =z,y = 1}.

—  Two non-concurrent straight lines: {x =y =0}U{x =z,y = 1}.

—  Two concurrent straight lines and an external point: {x =y = 0} U {x =
z=0}U{(, 1, D}.

— A straight line and two external points: {x = z =0} U {(0,0, 1), (1, 1, D}.

— A straight line and an external point: {x =y =0} U {(1, 1, D}.

b) Ifdim(Vk(L)) = 0:

—  Two points: {(0, 0, 0), (1, 1, 1)}.
—  Three points: {(0,0,0), (0, 1,0), (1, 1, D}.
—  Four points: {(0,0,0), (0, 1,0), (0,0, 1), (1, 1, D}.

It is known [17] the distribution of the set £3 into 2029 isomorphism classes. The
results exposed throughout the paper enable us to discard the most of them and focus
on only 124 classes. The distribution of their respective affine algebraic sets into 30
isomorphism classes is exposed in Table 2, where we also indicate a partial Latin
square from which each one of these classes derives. Each one of them is written row
after row in a single line, with empty cells represented by zeros. They are labeled
from M to M3g.

The following result holds straightforwardly from Table 2.

Theorem 4 Let K be a field. If its characteristic is two, then the set Vi (L3) is dis-
tributed into 32 isomorphism classes, which correspond to those affine algebraic sets
of the partial Latin squares M1—M>g and M33—M3e. Otherwise, it is distributed into
the 38 isomorphism classes exposed in Table 2.



Table 2 Distribution of the set Vk (£3) into isomorphism classes

dim L Vk(L)
3 M; = 000000 000 K3
2 M, = 100000000 (x=0}U{x =1}
M3 = 010000000 x=0U{y=1)
My = 120000000 x=1}U{x=y=0}
Ms = 023 000 000 (x=1U{y=2z=0}
Mg = 123000000 {x = 1}U{(0, 0, 0)}
M7 = 200000 000 {y = x?}
Mg = 030000000 {z =xy)
1 Mo = 120030000 {x =1,z =y?}U{(0,0,0)}
Mo = 100020000 x=y=0Ulx=y=1U{x=0,y=1}U{x =1,y =0}
Mj; = 010200000 fx=y=0U{x=y=1}
M, = 010300000 x=z=0U{x=zy=1}
M3 = 013000000 (x=z=0U{x=1,y=2}
Mi4 = 010001000 x=y=0U{x=z=0U{x=2zy=1}
M;s = 100001 000 x=y=0U{x=z=0U{x=1,yz=1)
M6 = 013000000 (x=z=0U{x=y=1U{y=1,z=0)}
M7 = 100002 000 fx=y=0U{x=z=01U{x=1Ly=0U{x=0,z=1}
Mg = 010001 020 {x=y=0}U{(1,1,D}
M9 = 130003 000 {x =z=0}U{(1,0,0), (1,1, 1)}
Moy = 120003 000 (x=y=1}U{x=1,z=0}U{(0,0,0))
M3; = 012000000 fxz=1Ly=1U{x=y=0}
My = 012003 000 {xz=1,y =1}U{(0,0,0)}
Ma3 = 200002 000 (y=x%z=1U{x=y=0)
Mos = 123030000 {x =1,z =y} U{(0,0,0))}
M>s = 200001 000 {xz=1Ly22=1}U{x =y =0}
Mz = 100030000 x=0,z=yU{x=1,z=1%
Ma7 = 230000 000 (y=x%z=x3%
Mas = 200030000 {y=x2z=1x%
Mag = 210000 000 x=y=0U{x=y=1}JU{x=—-1,y=1}
M3y = 210003 000 x=y=1JU{x=y=-1}U{(0,0,0)}
M3 = 200003 000 y=x2z=0U{x=y=1U{x=y=—1}
M3, = 300030000 y=-xz=xU{y=x,z=1x%
0 M33 = 012200300 {(0,0,0), (1,1, 1)}
M34 = 130002 000 {(0,0,0), (1,1,1), (1,0, 0)}
M3s = 100002 030 {(0,0,0), (1,1, 1), (1,0, 0), (0, 1, 1)}
M36 = 100020 003 {(0,0,0), (1,1, 1),
(1,0,0), (0,1, 1), (0, 1,0), (0,0, 1), (1,0, 1), (1, 1, 0)}
M37 = 032001 000 {(0,0,0), (1,1, 1), (1, =1, =1), (=1,1, =1), (=1, =1, 1)}

M3g = 100023 002 {(0,0,0),(1,1,1),(1,0,0), (0,1, 1), (0, 1, =1), (1,1, = 1)}




5 Effectiveness of the method

Let F = {fij: i,j € [n]} and K[F] respectively denote the set of n? variables
{fij: i, j € [n]} and the related multivariate polynomial ring over a field K.

Lemma 11 Two partial Latin squares L, L' € L, are isomorphic if and only if the
affine algebraic set of the following ideal in K[ F1] is non-empty

I(L, L) := (f5—fij: i, j €n])
=Y Ft €D+ (1=3" i i € [n])
+ firr fij G =1 2 G, J, k) € E(L), (', ', K) € E(LY).

Proof Let P = (pi1, ..., pun) be a zero of the ideal I(L, L’). The first subideal of
I(L, L) involves P to belong to the set {0, 1}"2. The second and third ones imply
that the map f : [n] — [n] that is defined so that f(i) = jif p;; = lisa
well-defined permutation of the symmetric group S,,. Finally, the fourth one involves
f to be an isomorphism between the partial Latin squares L and L’. To see it, let
(f@), f(j), k) € E(L") be such that (i, j, k) € E(L), for some k € [n]. Since
Pif) = Pjf(j) = 1, the fourth subideal of 1 (L, L) implies that pyr = 1 and hence,
k' = fk). O

Lemma 11 enables one to make use of computational algebraic geometry in order
to distribute a given set of partial Latin squares into isomorphism classes. In partic-
ular, the affine algebraic set V(I (L, L)) can be computed by means of the reduced
Grobner basis of the ideal I (L, L") [23, 29, 40]. The following result shows how the
cost of computation that is required to this end is, however, extremely sensitive to the
number of variables and the length and degree of the generators of I (L, L').

Proposition 7 The complexity to compute the reduced Grobner basis of the ideal
I(L,L" in Lemma 11 is

a) 30(”2), if K = Q, the field of rational numbers.
b) qO("z) + 0@, ifK = Iy, the finite field of order a prime power q.

Proof The result holds from Theorems 1 and 2 once we prove that the ideal I (L, L")
in Lemma 11 is zero-dimensional and radical. The first condition derives from the
fact of being V(I (L, L)) c {0, 1}"2, whereas the second one follows from Seiden-
berg’s Lemma (see Proposition 3.7.15 in [25]), once we observe that, for any three
positive integers i, j, k < n, the unique monic generator of I (L, L) N K[F] is the
square-free polynomial fizj — fij- O

Algebraic sets of partial Latin squares constitute an efficient alternative to lower
this computational cost. Particularly, Lemma 9 implies that, under the assumptions
of Lemma 11, none computation is required to ensure that V(I (L, L")) = @ when-
ever the affine algebraic sets Vg (L) and Vg (L') are not isomorphic. Isomorphism



invariants of affine algebraic sets can, therefore, be considered as new isomorphism
invariants of partial Latin squares.

Further, the computational cost that is required to determine the affine algebraic set
V(I (L, L")) is much lower than that one exposed in Proposition 7. More specifically,
a similar proof to that one exposed in the mentioned result enables us to ensure that
the complexity to compute the reduced Grobner basis of the ideal defined in (1) is
20 over the field Q and g% + O (n*) over the finite field F,, with g a prime
power.

We have implemented all the previous results in the open computer algebra system
for polynomial computations SINGULAR [7] and we have checked the efficiency of
using affine algebraic sets of partial Latin squares to lower the cost of computation
exposed in Proposition 7. Figure 3 shows the average run time that both methods
(with and without using affine algebraic sets) require, in a system with an Intel Core
i7-2600, with a 3.4-GHz processor and 16 GB of RAM, to distribute into isomorphism
classes a set of 1000 partial Latin squares of order n < 3 and weight m < n? that are
randomly generated in the next way:

1. We begin with a trivial partial Latin square of order n and attempt x times to add
an entry (i, j, k) chosen randomly uniform from [n] x [r] x [n].

2. If the random entry does not give rise to a partial Latin square (that is, if the pair
(i, j) is already in the domain, or adding the entry introduces a repeated symbol
in a row or a column of the array), we do nothing.

This way for generating random partial Latin squares has already been used
in [42, 43].

General method (Proposition 5.2).
1200

— — Using algebraic sets.

1000

800

600

Run time (us)

400

200

Fig. 3 Computational cost required to distribute the set £,, into isomorphism classes



6 Conclusion and further studies

In this paper, we have introduced the affine algebraic set of a finite partial Latin
square and several results have been exposed to study when two such affine algebraic
sets are equal or isomorphic. We have also introduced two new concepts that enable
us to deal with new ways of classifying partial Latin squares according to whether
they are partial transpose or partial isotopic. Further work is required to delve into
both classifications. Particularly, we have determined the isomorphism classes of the
set of affine algebraic sets of partial Latin squares of order n < 3. The following
question is also established as further work.

Problem 4 Let V be an affine algebraic set in the set Vg (£,,). Which is the smallest
weight of a partial Latin square L € £, such that Vx(L) = V?

Finally, remark the fact that Lemmas 1 and 9 enable us to ensure that the com-
mon use of image patterns and affine algebraic sets of Latin squares constitutes a
good alternative to determine isomorphism classes of Latin squares, with a particular
interest to be implemented into the encryption process described into the introduc-
tory section. Thus, for instance, the common use of Fig. 1 together with the fact
that Vk(L3.1) # Vk(L32) (as we showed at the beginning of Section 3) implies in
an easy way that the five Latin squares L3 to L3 5 really correspond to different
isomorphism classes. Of course, further work dealing with Latin squares of higher
orders is required to delve into this implementation.

Appendix: Glossary of symbols

C(L) The set of non-empty cells of a partial Latin square L.
E(L) The set of entries of a partial Latin square L.
I(L) The binomial ideal related to a partial Latin square L.
L, The set of partial Latin squares of order n.
Ls The partial Latin square that results after eliminating a subset S € C(L).
P(L) The partition of [n] described in Proposition 2.
V() The affine algebraic set of an ideal of polynomials /.
Vk (L) The affine algebraic set of a partial Latin square L over a field K.
Vk(L,) The set of affine algebraic sets over a field K of partial Latin squares of
order n.
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