
PROJECT ATLAS

AN ENCODER APPLICATION FOR APPLE WATCH

GUILLERMO ALCALÁ GAMERO

Trabajo fin de Grado

Supervisado por
Dr. Pablo Trinidad Martín-Arroyo y Alberto Jesús

Molina Cantero

Universidad de Sevilla

June 2018

Publicado en June 2018 por
Guillermo Alcalá Gamero
Copyright © MMXVIII
https://github.com/guillermo-ag-95

guialcgam@alum.us.es

https://github.com/guillermo-ag-95
mailto:guialcgam@alum.us.es

Yo, D. Guillermo Alcalá Gamero con NIF número 77815829K,

DECLARO

mi autoría del trabajo que se presenta en la memoria de este trabajo fin de grado
que tiene por título:

Project Atlas,
An encoder application for Apple Watch

Lo cual firmo,

Fdo. D. Guillermo Alcalá Gamero
en la Universidad de Sevilla

18/06/2018

To my parents.

ACKNOWLEDGES

i

I want to thank everyone that helped me in a way or another during this development:

Special thanks to my family. You have always supported me through this long
journey. I hope for the day I will be able to give you back everything you gave me.

Thanks to my both supervisors; Pablo, for letting me carry out a project I love as
my final degree work, and Alberto, who believe in me more than I did.

Thanks to my uncle Fernando, who introduced me to the world of weight lifting,
and thanks to everyone from the morning crew in Germano Sport, who makes me
waking up at 5 AM I bit easier.

ii

SUMMARY

iii

One of the reasons that led me to choose this degree was the will to solve problems
by myself. I may find something wrong, or just something I thought that could be
improved and I didn’t want to wait for anybody to solve it.

During these past years I start lifting weights. I love it and when I love something
I want to learn more about it. During this learning I found that some training systems,
like the Conjugate System, use the bar speed as a variable during the execution of a
lift. However, I didn’t have a way to measure it. The available hardware in the market
is heavy and expensive. I had the idea that this could be achieved using the built-in
accelerometer of a much lighter and cheaper wearable. With this idea, I started this
project: An Apple Watch application to measure the speed on a weight lifting lift.

During the development I had to learn how to deal with sensors, learn complex
algorithms to filter data, ditch part of the work because the results were not what I
expected, and design a real application to solve a problem I found in my everyday
life.

iv

CONTENTS

v

I Introduction 1

1 Context 3

1.1 Strength training in our society . 4

1.2 The use of technology in our everyday basis 4

1.3 The fitness industry and a business opportunity 5

2 Objectives 7

2.1 The problem to solve . 8

2.2 The project itself . 9

2.3 List of objectives . 10

II Project organization 11

3 Methodology 13

3.1 Project’s organizational structure . 14

3.2 Development methodology . 14

3.2.1 FDD Process #1: Develop an Overall Model 14

3.2.2 FDD Process #2: Build a Features List 15

3.2.3 FDD Process #3: Plan by Feature 17

3.2.4 A word about FDD . 17

CONTENTS

4 Planning 19

4.1 Project temporal summary . 20

4.2 Initial Planning . 20

4.3 Project timing report . 21

5 Costs 23

5.1 Project costs summary . 24

5.2 Personnel costs . 24

5.3 Material costs . 24

5.4 Indirect costs . 25

III Project development 27

6 Iteration #1: Booting 29

6.1 Feature List . 30

6.2 Architectonic Design . 30

7 Iteration #2: UI Design Patterns 31

7.1 Coded views vs Storyboards . 32

8 Iteration #3: Understanding the accelerometer 37

8.1 You get acceleration, not velocity . 38

8.2 Raw data bias . 38

8.3 Raw data vs User data . 39

8.4 From acceleration to velocity . 41

8.5 Velocity differs from zero with no movement 42

8.6 Threshold filter . 43

vi

CONTENTS

8.7 From acceleration to velocity via Integration 44

9 Iteration #4: Working with dependencies 47

9.1 Cocoapods . 48

10 Iteration #5: Understanding the data 53

10.1 Using charts to display both acceleration and velocity 54

10.2 Adding Gravity chart . 54

10.3 Real time charts . 55

10.4 Dealing with library bugs . 56

11 Iteration #6: Filter the data 59

11.1 Brainstorming of filters . 60

11.2 Research and study of the Kalman Filter 61

11.2.1 The g-h Filter . 61

11.2.2 Formal terminology . 67

11.2.3 Discrete Bayes Filter . 68

11.2.4 Gaussian Probabilities . 75

11.2.5 One Dimensional Kalman Filters 77

11.2.6 Multivariate Gaussians . 83

11.2.7 Multivariate Kalman Filters . 88

11.3 Implementing the filters . 96

11.4 Unit tests . 96

11.5 The Floating Point Problem . 98

11.6 Including external libraries in Unit Test files 99

12 Iteration #7: Parallel programming and queues 101

vii

CONTENTS

12.1 iOS Concurrency . 102

12.2 Concurrent code . 102

12.3 Performance improvements . 104

13 Iteration #8: Implementation of the filter in the app 107

13.1 From a 6x6 to a 2x2 matrix . 108

13.2 Kalman filter initialization . 108

13.3 Filter results . 109

14 Iteration #9: Data treatment 111

14.1 You get force, not acceleration . 112

14.2 The problem with Accelerometers . 116

14.3 Using vector projections . 117

14.4 Fixing the drift . 118

14.5 Finding patterns . 120

14.6 Displaying results in Speed Gauge . 122

15 Iteration #10: Atlas 125

15.1 From iOS to watchOS . 126

15.2 Including Healthkit . 128

15.3 Turning background to foreground . 129

15.4 The result . 129

IV Closing stage 131

16 User guide 133

16.1 Problem to solve and constraints . 134

viii

CONTENTS

16.2 Instructions . 134

17 Summing-up 135

17.1 Post-mortem report . 136

17.1.1 Things gone right . 136

17.1.2 Things gone wrong . 136

17.1.3 Discussion . 136

17.2 Future work . 137

Referencias bibliográficas 137

ix

CONTENTS

x

LIST OF FIGURES

xi

7.1 An example of a storyboard of an watchOS project 32

7.2 The modified AppDelegate.swi f t file . 33

7.3 Example of coded constraints . 34

7.4 Example of unordered constraints . 35

8.1 Example of raw acceleration in m/s2 . 39

8.2 Bias present in both, X and Y axes when the device is resting on a surface. 40

8.3 Example of the userAcceleration values when the device is on rest. . . . 41

8.4 Example of the userAcceleration bias. The Z-axis acceleration is over
zero most of the time. 42

8.5 Example of sharp steps after a movement. As you can see the velocity
of the three axes (Red, Green and Blue lines) does not come back to zero. 43

8.6 Threshold filter. 43

8.7 Example of the application after the Threshold filter. 44

9.1 First version of the Pod file . 49

9.2 Charts library information . 50

9.3 Surge library information . 51

10.1 Example of sharp steps after a movement in the gravity values. 55

10.2 Example of the application with the sensor set to 10Hz. 56

11.1 Error bars of Scale A with 70±3 and Scale B with 80±9. 62

LIST OF FIGURES

11.2 Error bars of Scale A with 70±1 and Scale B with 80±9. 63

11.3 Example on how the prediction and the measurement differ. 64

11.4 Estimate calculation based on the prediction and measurement. 65

11.5 Representation of the probabilities of every position of the hallway. . . . 69

11.6 Representation of the probabilities of each door. 70

11.7 Representation of the probabilities after the new information. 70

11.8 Representation of the probabilities with a noisy sensor. 71

11.9 Representation of the probabilities where the sensor is more likely to be
right than wrong. 71

11.10Representation of the probabilities where the sensor is more likely to be
right than wrong (After normalization). 72

11.11Representation of a movement with movement uncertainty. 73

11.12Another representation of a movement with movement uncertainty. . . . 73

11.13Initial prior and its posterior after new data. 74

11.14Posterior and new prior after prediction. 74

11.15New prior and updated posterior. 75

11.16Graphical representation of the belief as a Gaussian 78

11.17Graphical representation of the multiplication as a Gaussian 80

11.18Full Description of the Algorithm. 82

11.19Graphical representation of the belief as a Gaussian. 85

11.20Graphical representation of the belief as a Gaussian. 86

11.21Graphical representation of the belief as a Gaussian. 86

11.22Graphical representation of the data at time t=1, 2 and 3 seconds. 87

11.23g-h filter unit tests. 98

11.24Changes in Podfile. 100

xii

LIST OF FIGURES

12.1 Declaration of the new queue. 103

12.2 The closure is set to run on the new queue. 104

12.3 Update charts in the main queue. 104

12.4 Non-concurrent application performance after a minute running. 105

12.5 Concurrent Application performance after a minute running. 105

13.1 Result after the implementation of the Kalman Filter. 110

14.1 A representation of an object with no gravitational field. 112

14.2 A representation of an object moving with an acceleration of 1G. 113

14.3 A representation of an object under the effect of the gravity. 114

14.4 A representation of an object under the effect of the gravity where the
force affects two axes. 115

14.5 A representation of the rotation of the accelerometer [13]. 116

14.6 Example where, after a bottom-up movement, we get the vertical veloc-
ity close to zero. 119

14.7 Example where, after a press, we get the vertical velocity far from zero. . 119

14.8 Figure of the table view in the app. 123

15.1 Project organization in an Apple Watch app. 127

15.2 Code that implements how I start a workout in my app. 128

15.3 Code that implements how to make the audio work in the background. . 129

15.4 Final watchOS application. 130

xiii

LIST OF FIGURES

xiv

LIST OF TABLES

xv

3.1 Feature planning table . 18

4.1 Planning and timing summary table . 20

4.2 Initial timing planning . 20

4.3 Real timing planning . 21

5.1 Costs summary table . 24

11.1 Multiple iterations with an initial weight of 70.2 Kg, a gain rate of 1 Kg
per day and a scale factor of 4/10 . 66

11.2 Multiple iterations with an initial weight of 70.2 Kg, an initial gain rate
of 1kg per day, a measurement scale factor of 4/10 and a gain scale factor
of 1/3 . 67

11.3 Predict step equations . 88

11.4 Update step equations . 89

INTRODUCTION

PARTE I

1

CONTEXT

3

Personally, I look at weight training for what it is: mathematics, biomechanics, and physics.

Louie Simmons,
Powerlifting Coach

T his chapter makes up the idea behind the project. Section §1.1 includes a short de-
scription about its historical context, Section §1.2 explains how we use technology
today and Section §1.3 explains the business opportunity I have found.

CHAPTER 1. CONTEXT

1.1 STRENGTH TRAINING IN OUR SOCIETY

Strength performance has been present in our culture for a very long time. It was
present in the Ancient History with the Pankration, one of the Ancient Olympic Games
events; it was present in the Modern Era as a circus event with one of the first barbell
movements, the Bent Press, and it’s present today with a much broader number of
events.

As any other field, it has evolved over time. From a rural activity in Basque Country
[23] to several world-class sports, as it is today. This process has not been casual and
many factors have driven these changes.

It’s been a long time since countries use sport performance as an indicator of po-
litical success. In the last century, this was done by the Soviet Union. This caused
that a lot of studies about physics and mathematics applied to sport performance were
done during these years. The purpose of these studies was to get better results at the
Olympic Games.

Olympic Games gather many sport so, these studies should cover principles that
could be applied to as many sports as possible. One of the most studied principles by
Soviets was Power, thus, the relationship of force and velocity.

Power could be applied to such different sports as Javelin Thrown, Triple Jump
and, the one where the relationship between strength and the sport itself is the closest,
Weightlifting.

Americans took all these training principles, and they applied them to non-Olympic
sports like Powerlifting.

1.2 THE USE OF TECHNOLOGY IN OUR EVERYDAY BASIS

Nowadays, we have something that Soviets didn’t have back in the 60s and 70s. We
have twisted those massive computers into tiny devices that fit our pockets and wrists,
and we have learned to use them in ways those Soviets couldn’t have imagined.

All those principles and methodologies studied by the Soviets relied on physics
and mathematics and now, we have incredible calculators always with us. Everybody
can apply them with much ease than before.

4

1.3. THE FITNESS INDUSTRY AND A BUSINESS OPPORTUNITY

1.3 THE FITNESS INDUSTRY AND A BUSINESS OPPORTU-
NITY

All these studies were done to apply scientific principles to sports in an elite level
but the fitness industry focus mainly on sporadic activity called Exercise. This causes
that the majority of software that targets any kind of physical activity only covers run-
ning, abdominal work and bodyweight exercises. There is no software that takes ad-
vantage of these devices to support training based on barbell movements.

In fact, there are some devices that target this kind of training. There are called En-
coders. The problem with them is that they are heavier than a wearable and definitely
more expensive.

The built-in accelerometer that every wearable has, can be used to satisfy some
functionalities of encoders for a fraction of the price.

5

CHAPTER 1. CONTEXT

6

2

OBJECTIVES

7

If you cannot measure it, you cannot improve it.

Sir William Thomson (1824–1907),
Physitian and Mathematician

T his chapter includes the objectives of the project. Section §2.1 exposes the problem
to solve, Section §2.2 talks about the project itself and Section §2.3 defines the list of
objectives of this project.

CHAPTER 2. OBJECTIVES

2.1 THE PROBLEM TO SOLVE

The basic unit when it comes to training is the Workout. From there, you can scale
it to a Microcycle (a set of Workouts, usually, within a week), a Mesocycle (a set of
Microcyles, usually, within a month), a Macrocycle (a set of Mesocycles, usually, within
several months) [19] or even, a four-years Olympic cycle. We will focus on the workout
itself because it is what we can measure.

Every workout is based on a set of variables that the lifter must manage to get
better, thus, stronger, faster, bigger... Some of these variables are:

• The volume or total tonnage of the session (the weight per reps per sets).

• The average intensity of the session (the mean percentage of the weight lifted
compared to the lifter’s one repetition max or 1RM).

• The rest taken between sessions.

• The caloric intake.

One of the similarities between these four is that they are EASILY measurable:

• The volume is based on the number of sets, the number of reps per set and the
weight lifted, which appears by the side of every plate (considering a 20kg barbell
as the standard).

• The average intensity is a simple percentage based on the 1RM. Although it’s
true that the 1RM may change from one day to the other (if you are no longer
a novice, you cannot lift your record every day), a lifter may take his or her last
competition max as a 1RM.

• The rest is based on the work activity, stressors, time slept, etc. The only one that
is not so easy to measure is the quality sleep but this won’t be the subject of the
project.

• Although your caloric needs can change from one day to the other, due to the
changes on the Basal Metabolic Rate and the daily activity, you can guess them
thanks to your body response to the calories taken.

8

2.2. THE PROJECT ITSELF

The purpose of this project is to measure one variable that is not trivial as the pre-
vious ones. And this variable is Speed.

Speed in inherent to any strength related activity. For conceptual purposes, think
of a sprinter driving into the starting blocks, a football player exploding off the line of
a weight lifter squatting a maximal load. While each of these movements are markedly
different from one another, they all require explosive strength [18].

Power (which results from explosive strength) can be represented as:

Power(P) = Force(F) ∗Velocity(v) (2.1)

As the equation shows, in order to display a high level of P, one must be capable of
exerting a high amount of F and V. To do so, we have two options:

• Get stronger and/or

• Get faster

In a Max Effort lift (weights at or above 90% of the 1RM) [25], as we want to keep
both power and force production as high as possible (remember that force equals mass
times acceleration and we are lifting near maximal weights), velocity will be very
small. If bar speed gets to zero, no power is produced and the lift is considered missed
in a competition.

In the sub maximal percentage area (everything below 90% of the 1RM) the scenario
changes. In a Dynamic Effort lift [25], the mass of the barbell is not maximal so the force
production will not be maximal. However, we want to keep the power production as
high as possible so we need to keep the bar speed at a certain value. If the bar speed is
very high, that means that the mass is not as high as it should be and if it’s very low,
we may be digging ourselves in the 90% area, or worse, we may not be producing as
much power as possible.

So, how could we manage to control the barbell speed during a training session?

2.2 THE PROJECT ITSELF

In order to achieve this, this project will consist of an Apple Watch app that mea-
sures the velocity of the device thanks to the built-in accelerometer.

9

CHAPTER 2. OBJECTIVES

The purpose of this project is, solely, the instant record of the barbell acceleration.
In the 1.0 version, the version submitted for this subject, it should record the bar speed
flawless. As a personal project, this may evolve in the future and add more function-
alities but now, it will only record the data, manage the data, and will show it to the
lifter. You can create a message app with stickers and profiles and file sharing, but, if
the message exchange fails, it does not matter how many fancy stickers you can add;
the app is useless.

2.3 LIST OF OBJECTIVES

Objective 1. Improve my programming skills. This project will be done using the
Apple’s brand-new language, Swift 4. It’s been a long time since I wanted to use
this language and I think this is the best opportunity to learn it. The most impor-
tant part is that I don’t just want to learn the language but the Cocoa Framework
and libraries. You can define a variable using any language; it’s what you can do
with it what I want to study.

Objective 2. Develop for a Wearable. This will be the first time I will develop some-
thing using a real system. I want to learn how the system works with its environ-
ment and what can I do with it.

Objective 3. Improve my UI design skills. The way Apple structure its projects is
different to everything I have done. It’s a design-first pattern and I would like
to take this approach to analyze the pros and cons between what I have learned
in college and this style of programming. Although Apple encourage to use the
Storyboards as the way to develop the UI, I want to focus on designing UIs with
code because I think they are more versatile.

Objective 4. Learn how to organize myself. Every project we have done in college
was a group project so, this will be the first time in a long time where I judge my
strengths and weaknesses when it comes to project management and coding.

10

PROJECT ORGANIZATION

PARTE II

3

METHODOLOGY

13

If you fail to plan, you are planning to fail!

Benjamin Franklin (1706–1790),
Founding Father of the United States

T his chapter develops the basics about the methodology used. Section §3.1 explains how
I will organize during the development and Section §3.2 explains the methodology
used during the development.

CHAPTER 3. METHODOLOGY

3.1 PROJECT’S ORGANIZATIONAL STRUCTURE

As the sole developer of this project, I will be the one who study the technology,
develop the app and test the functionalities.

As an amateur lifter, I will be able to test the app in a real environment using dif-
ferent lifters to test the measure under several scenarios, like different techniques and
body types.

3.2 DEVELOPMENT METHODOLOGY

The first part of every project is the planning set-up. Due to my lack of experience
with this kind of projects, and as my project supervisor recommended me, I will plan
my schedule using an agile methodology called Feature-Driven Development (FDD).
A FDD project is organized around several processes. The first three initial FDD pro-
cesses can be considered a Zero Iteration, in Scrum and XP terms [4].

3.2.1 FDD Process #1: Develop an Overall Model

FDD takes a singular approach when it comes to develop a domain model. Al-
though we develop the domain object model from the beginning, this development is
an intense, highly iterative and collaborative activity.

The main purpose of this process is that everyone involved in the project gets a
good understanding about the project domain, relationships and interactions.

As an individual project, the purpose is to clarify what is going to be developed
and why it is going to be developed. In order to achieve this, it’s a good idea to set the
list of requirements of the project.

Requirement elicitation:

Objective 1. The system must record its speed using the accelerometer system. The
speed only refers to the upward movement of the device. Forward and backward
movements could be interesting to address any imbalance of the lifter but this
feature will be delayed to a post 1.0 release due to the extensive study of the
accelerometer system.

14

3.2. DEVELOPMENT METHODOLOGY

Objective 2. The system must determine where the concentric phase starts and
ends. This part is crucial to know the speed of a rep. The concentric phase of a
lift always starts with the lowest point of the movement and ends with its highest
point. However, there are some drawbacks: in a Squat, you can lift your shoul-
ders when you breathe and brace. This is not the way you should do the Valsalva
Maneuver but some lifters do this. We will expect a correct brace so, this aspect
must not be covered.

Objective 3. The system must determine when a rep starts and when it ends. As we
have to determine when the concentric part of the lift starts and ends, we need
to show each speed record as a different repetition. That’s why we need to count
how many repetitions we have done.

Objective 4. The system must show the lifter the speed of the lift in the screen.
Results must be presented in a table view, where each cell contains a different
speed value, representing the speed from a different repetition. The possibility
of showing a graphic to find a sticking point during the rep will be delayed to a
post 1.0 release due to the extensive study of the accelerometer system.

Objective 5. The lifter should be able to start and stop the measure. The way to do
this is currently uncertain. A button is the simplest way to accomplish this but
a lifter with his/her hands full of chalk, smelling salts and focused on breaking
a PR won’t stop his/her mental preparation to press a button on a wearable.
Besides, although a team-mate could press it, the app is intended to be used
alone. If you need someone to press the button, it won’t be as useful as it should
be. Another way could be using an acoustic signal, maybe a shout or similar
but, in a busy gym, it may stop the measure because someone else shouts, so this
aspect must be examined in a future to establish the system to use.

3.2.2 FDD Process #2: Build a Features List

Next process is about what is going to be addressed during the development. The
following tasks are the ones to be performed in order to get the project done. I will set
a few milestones which will help me to divide the whole list of features to develop and
group them.

15

CHAPTER 3. METHODOLOGY

Milestone #1: iPhone Accelerometer Gauge app

Feature #1: Study about the accelerometer APIs. The first feature to implement will
be considered as a feature zero. It’s impossible to start developing anything if
you don’t have the proper knowledge about how the system works. During this
task I will be learning about how the accelerometer actually works. Apple has
some pages about the subject. I also will be looking at RayWenderlich site and
Hacking With Swift books to find any information I can use.

Feature #2: Develop the view to watch in real time how the Accelerometer works.
Up next, after having an idea of how the accelerometer system works, I will build
an app to record accelerometer events and study how they change, thus, what
axis should I look for, what axis should I forget about, in what plane I need to
work... This app should have two tabs. One showing real time accelerometer
values and the other, recording the data for further study (the data recording is
not the real time events of the first tab. You change the tab, start recording and
then, you study them). Nowadays, I only have an iPhone, so, all measures will
be done there until I get an Apple Watch. Measures with the Apple Watch will
more accurate because it will show how the system will be used. The iPhone
Accelerometer Gauge app should be ported to Apple Watch in order to get better
study data.

Milestone #2: Atlas.app 0.1

Feature #1: Develop an Apple Watch app which reads the data from the Accelerom-
eter system. After the study is done, it’s time to build the first version of the app.
By this time, it will only record the data. No processing will be done with this
data. The purpose of this version is the calibration of the accelerometer and the
basic start/stop system (this may be changed if needed). This version could be
considered a ported version of the iPhone Acceleration Gauge.

Milestone #3: Atlas.app 0.x

Feature #1: Implement the rep scheme system. The addition of the rep scheme de-
termination, thus, when a rep starts and when it ends. Once the rep scheme is
solid, we will jump to the next stage.

Feature #2: Implement the view to show information about every rep. We will show
every rep in the app screen with no speed information. In this stage, the app will
measure the entire set and will show a table with as many cells as reps.

16

3.2. DEVELOPMENT METHODOLOGY

Feature #3: Implement when the concentric phase starts and ends. Then, we will
cut the rep to include only the concentric phase of the lift. Once the system know
when a rep starts and when it ends, it’s time to place a mark on the concentric
phase starting point and ending point.

Feature #4: Implement the calculation of the rep speed. Once the app knows when
the concentric phase starts and ends, I will calculate its speed and will show it to
the user.

At this point, the app could be considered an Alpha Version because there may
be some cases where it fails. In every previous stages, the app should be tested and
retested to avoid any failure but bug are meant to be found. Then, the Alpha version
will be enhanced to correct any bug and will be classified as a Beta.

Once the teacher gives me the OK to the app, it will be classified as a 1.0 version.

3.2.3 FDD Process #3: Plan by Feature

Following the Feature-Driven Development process, it’s time to establish these fea-
tures in the calendar, add the documentation related work and set a final schedule. In
the table below you can see the initial planning for the development.

3.2.4 A word about FDD

This methodology is very useful when the developers have already worked on sim-
ilar projects. They can estimate the spent time on every task with good accuracy and
know what are the most problematic parts that may slow down the development.

As I have never worked on this kind of projects before, I don’t know if any of the
proposed tasks will take more time than expected.

To avoid this, Pablo recommended me to merge this methodology (FDD) with Lean
Software Development (LSD).

LSD is a collection of principles taken from the Toyota Production System applied
to the software development. With this philosophy, we will try to avoid future prob-
lems by designing experiments that we will use to check the project viability and the
Minimum Viable Product (MVP) before we dig into the Apple Watch development.

We will start developing an app for the iPhone to study how the sensor works. Any

17

CHAPTER 3. METHODOLOGY

Feature planning

Feature #1: Study about the accelerometer
APIs.

06/11/2017 10/11/2017

Feature #2: Develop the view to watch in
real time how the Accelerometer
works.

11/11/2017 15/11/2017

Milestone #1 iPhone Accelerometer Gauge app 06/11/2017 19/11/2017
Feature #3 Develop Apple Watch app which

reads the data from the Accelerom-
eter system.

20/11/2017 29/11/2017

Milestone #2 Atlas.app 0.1 20/11/2017 03/12/2017
Feature #4 Implement the rep scheme system. 04/12/2017 24/12/2017
Feature #5 Implement the view to show infor-

mation about every rep.
12/02/2018 25/02/2018

Feature #6 Implement when the concentric
phase starts and ends.

26/02/2018 18/03/2018

Feature #7 Implement when calculation of the
rep speed.

19/03/2018 08/04/2018

Milestone #3 Atlas.app Alpha 04/12/2017 08/04/2018
Milestone #4 Atlas.app Beta 09/04/2018 22/04/2018
Milestone #5 Atlas.app 1.0

Table 3.1: Feature planning table

problem that may appear in the Apple Watch project will be addressed in the iPhone
app.

18

4

PLANNING

19

When the facts change I alter my conclusions. What do you do, sir?

John Maynard Keynes (1883-1946),
Economist

T his section includes a basic summary of the project planning and its actual execution.
Section §4.1 displays the summary of the project planning, Section §4.2 sets the initial
planning and Section §4.3 displays the final timing report.

CHAPTER 4. PLANNING

4.1 PROJECT TEMPORAL SUMMARY

Project summary

Starting date 05/10/2017
Ending date 17/06/2018
Checking periodicity Once every 3 weeks
Weekly workload 10 hours
Total number of hours expected 300 hours
Total number of hours 275 hours

Table 4.1: Planning and timing summary table

4.2 INITIAL PLANNING

Iterations summary

Iteration 1 06/11/17 a 19/11/17
Iteration 2 20/11/17 a 03/12/17
Iteration 3 04/12/17 a 24/12/17
Iteration 4 12/02/18 a 25/02/18
Iteration 5 26/02/18 a 18/03/18
Iteration 6 19/03/18 a 08/04/18
Iteration 7 09/04/18 a 22/04/18

Table 4.2: Initial timing planning

The length of the iteration has been chosen following the FDD principles. As FDD
recommend, a feature should be developed in two weeks, as a maximum.

There is only an iteration (Iteration 3) that lasts more weeks. There are several
reasons why I have chosen to break the rules there:

• It’s the first iteration where I will need to develop for the Apple Watch, so I want
to spend, at least, two entire weeks with the code, thus, forgetting about the
memory. The extra week is when I will be writing about the progress of this
iteration, so the development will still be two weeks.

20

4.3. PROJECT TIMING REPORT

• If this iteration lasts two weeks, there will be a sole week between the end of this
iteration and holidays, so I prefer to lengthen the iteration to get the best of that
week.

• During these three weeks, I have a very dense deliverable to present for another
subject, so, I will have less time to develop the feature.

Besides, there an entire month where I will not be developing at all. That’s the
exams period where I want to focus on the other subjects. The day I start the Spring
Semester, I will continue with the development of the iteration 4.

4.3 PROJECT TIMING REPORT

Iterations summary

Booting 05/10/17 a 06/11/17
UI Design Patterns 06/11/17 a 16/11/17
Understanding the accelerometer 16/11/17 a 09/01/18
Working with dependencies 03/01/18 a 09/01/18
Understanding the data 09/01/18 a 22/03/18
Filter the data 03/01/17 a 05/04/18
Parallel programming and queues 29/04/18 a 02/05/18
Implementation of the filter in the app 05/04/18 a 10/05/18
Data treatment 10/05/18 a 25/05/18
Atlas 25/05/18 a 28/05/18
Closing stage 28/05/18 a 18/06/18

Table 4.3: Real timing planning

For the table above, I won’t use the same iterations that appear in the initial timing
report. Planning differs way too much from the real execution. The reasons will be
developed in further chapter but a short summary will be delivered down here.

The original iteration 2 resulted in a 6-month development. As the system was
working with real time data from a sensor, I discovered many problems and issues I
couldn’t have imagined. I had to study why that happened and how to solve them, so
I couldn’t follow the planning.

21

CHAPTER 4. PLANNING

In order to create a logical project timing report, the seven iterations previously
presented have been replaced by the different steps of the development. Each of these
steps match a future chapter of the report.

A brief summary about these steps:

• Booting: This chapter includes from the project proposal to the start of the study
itself.

• UI Design Patterns: This chapter includes the decisions taken about the use of
Storyboards in my project.

• Understanding the accelerometer: This chapter includes my first steps with the
problem to solve and with the information retrieved by the device.

• Working with dependencies: This chapter includes my first steps with manag-
ing the dependencies of my project and how I had to work with external libraries.

• Understanding the data: This chapter includes how I manage to study the strengths
and flaws of the information I was getting from the sensor.

• Filter the data: This chapter includes the extensive study about the filter I chose
to improve the data from the sensor.

• Parallel programming and queues: This chapter includes how I had to deal with
concurrency in my app to improve its performance.

• Implementation of the filter in the app: This chapter includes how I chose the
values to initialize the filter.

• Data treatment: This chapter includes how I finally treat the data to get better
results.

• Atlas: This chapter includes the development of the Apple Watch app where I
apply all the study done in the previous chapters.

• Closing stage: This whole part includes a discussion about what went right and
wrong during the development and a few possible improvements for future ver-
sions of the project.

22

5

COSTS

23

There’s no such thing as a free lunch.

Milton Friedman (1912–2006),
Nobel Prize in Economics

T his chapter includes the costs of the project. Section §5.1 displays the costs summary,
Section §5.2 develops the personnel costs, Section §5.3 includes the material costs and
Section §5.4 exposes the indirect costs.

CHAPTER 5. COSTS

5.1 PROJECT COSTS SUMMARY

Project summary

Personnel costs 5.764 e
Gross salary 4640 e
Social Security contribution (company part) 1.438.4 e
Material costs 230.5 e
Indirect costs 630.89 e

TOTAL 6939.79 e

Table 5.1: Costs summary table

5.2 PERSONNEL COSTS

Personnel costs includes the costs of the people working for the project. During the
Design and Testing (D&T) subject we were told that a developer with a C or B level
in the subject usually earns 12 or 14 euros per hour (before taxes). If the developer
matches an A or A+ level, it could be a bit higher. As this project is done after Design
and Testing is passed, I will consider a 16 euros per hour as salary.

I have spent about 290 hours on the project so the Gross Salary is about 4.640 e.
This is the gross salary.

Now that we have the gross salary, we must calculate the costs of the Social Security
of the company. Following the guidelines of the government website [20], it would be
31.1% (23.6% from Common Contribution Type + 6.7% from the Part Time Unemploy-
ment + 0.2% from FOGASA + 0.6% from Professional training). With this percentage,
the company would pay 1438.4 e.

The total personnel costs of the project is 6.078.4 e

5.3 MATERIAL COSTS

For this point, we must calculate the depreciation [14] of the devices we have used.
I have used 3 different devices, a Mid-2013 MacBook Air, an iPhone 8 and an Apple

24

5.4. INDIRECT COSTS

Watch Series 3. Following the government guidelines, computer systems are fully de-
preciated after 6 years, so every device has been depreciated.

• The first device, the MacBook Air cost 1800eand the project have lasted 9 months,
so we will add 225 e.

• The next device, the iPhone 8 cost 800 eand the project have lasted 9 months, so
we will add 100 e.

• The last device, the Apple Watch Series 3 was also new. It had a cost of 400 e.
However, as I didn’t develop the WatchOS app until the last month, I will only
acknowledge one month, thus, 5.55 e.

The total material costs are 230.5 e.

For more information about the environment used for the development, see §6.2

5.4 INDIRECT COSTS

For this section, as I cannot value the exact amount of money expended indirectly
in the project, I will suppose a 10% of the current cost of the project, thus, 630.89 e.

25

CHAPTER 5. COSTS

26

PROJECT DEVELOPMENT

PARTE III

6

ITERATION #1: BOOTING

29

The beginning is the most important part of the work.

Plato (427BC–347BC),
Philosopher

T his chapter plans how the project is going to be started and how are the configurations
used to do so. Section §6.1 includes the feature list and Section §6.2 includes the
architectonic design of the project.

CHAPTER 6. ITERATION #1: BOOTING

6.1 FEATURE LIST

Following the structure of the features list delivered in the section 3.2.2, the project
will start with an initial study of the Accelerometer API and the development of a
test app called Speed Gauge (previously named iPhone Accelerometer Gauge). All the
details about this iteration will be delivered in future chapters.

6.2 ARCHITECTONIC DESIGN

Development configuration As I started the project with just an iPhone, all the
development and study of the behavior of the accelerometer has been done using the
iPhone as the physical device. The development environment has been macOS 10.13
High Sierra with Xcode 9 as IDE. The unit tests have been run using the simulator
offered by Xcode. As I’m using a sensor as data source, I couldn’t use the simulator to
study its behavior so, I had to deploy the app in my own device.

Pre-Production configuration As the project is intended to be an app for an Apple
Watch, I had to use this device to test the behavior of the real system.

Deployment configuration As the project is an Apple Watch app, this configuration
is the same compared to Pre-Production.

30

7

ITERATION #2: UI DESIGN

PATTERNS

31

The curious task of economics is to demonstrate to men how little they really know about what they imagine
the can design.

Friedrich A. Hayek (1899-1992),
Nobel Prize in Economics

T his chapter includes the differences between the use of coded views and Storyboards.
Section §7.1 explains the pros and cons of User Interfaces based on Storyboard and
coded views and what type I have chosen to use in the project.

CHAPTER 7. ITERATION #2: UI DESIGN PATTERNS

7.1 CODED VIEWS VS STORYBOARDS

One of the objectives of this project was the desire to learn how to build User Inter-
faces in mobile devices.

During the degree, we have learned how create web interfaces using technologies
like Apache JSP or Bootstrap. This way is full coded, which means, everything you see
in a screen has been coded by the programmer.

However, Apple presents two ways of doing interfaces. The former was coded as
well. During Objective-C times, if you wanted to create an interface, you have to deal
with views, windows and many other parameters to design your application. This
way is similar with everything we have already done.

A few years ago Apple presented a new method: Storyboards. As it sounds, Sto-
ryboard is a graphic representation of the interface of your app. If you have a label,
an input and a button, you will be able to see these elements as they are going to be
displayed in the device.

Figure 7.1: An example of a storyboard of an watchOS project

32

7.1. CODED VIEWS VS STORYBOARDS

Both methods present its pros and cons. With coded views, you have to deal with
how every visual element is displayed in your app. This means you have to manage
the main view, windows, background color and the like. One of the first thing I had to
tweak in my app was the AppDelegate.swi f t file where I had to define what view was
going to be the one rendered when I launch the application.

Figure 7.2: The modified AppDelegate.swi f t file

Every visual element must be declared as a variable. These may sound simple (and
it is) but it’s very verbose. One of my first versions of the landing view had barely 6
labels, 3 with the data from the sensor and 3 with a description of the data. Every one
of these labels had a set of constraints to make sure every element was placed where it
should.

Although these constraints made very clear what’s going on with every element,
I had a 200+ lines file with only the declarations of this basic interface. No logic was

33

CHAPTER 7. ITERATION #2: UI DESIGN PATTERNS

Figure 7.3: Example of coded constraints

already done I could barely organize so much code.

So, the main problem with this method is how verbose it is and the main pro is
how you can reuse this code in future projects. If you have implemented a button
with special features, you can just copy and paste its code in the new project.

Although I tried to refactor the code to be able to reuse everything I could, the
constraints I had to use had to be defined for every element. I could have one generic
label but I had to pass 6 or 7 constraints as parameters, so the size of this declaration
didn’t reduce.

The ability to reuse the interface elements was the main reasons I wanted to give
coded views a try. However, I had to throw away the idea to avoid massive file. This
is one of the reasons why some people call the MVC pattern in iOS project Massive
View Controllers.

34

7.1. CODED VIEWS VS STORYBOARDS

Another reason to go for Storyboard was the inability to use Segues. During the
time I have studied iOS development, I had always used Segues. I thought I could use
them in coded views but I couldn’t. Segues are objects from the UIStoryboard class so,
if there are no storyboards, there are no segues. With a verbose code and the inability
to use the only way I knew to manage different views, I was back with the Storyboards.
I tried to find the way to code the segues but I found nothing useful, so I didn’t want
to lose more time with a technology I don’t master.

With Storyboard everything was easier... until one point. As I’ve said, coded con-
straints are verbose but very clear. You could come back after a month, read the code
and see what everything does. With Storyboards, this is not that easy. Every time you
set a constraint, it is stored in an XML-like file. It’s not easy to read the code. You have
to open the Interface Builder, look for the view (not even the element) and see the con-
straint. With code, you had to be very confident with what you do because you had
to set 6 parameters. Here, the program set most of the constraint and stores it inside
a tiny view icon, without any order. After bunch of constraints, you couldn’t even see
the new one.

Figure 7.4: Example of unordered constraints

35

CHAPTER 7. ITERATION #2: UI DESIGN PATTERNS

If you want to change a single constraint, it takes 10 seconds to figure out the change
in code, but I even have to delete an entire view because I could find the constraint.

Finally, other reason to use Storyboard is because I’m using interface elements from
third-party library and this libraries may not describe how to declare their elements
solely with code.

36

8

ITERATION #3: UNDERSTANDING

THE ACCELEROMETER

37

I think that little by little I’ll be able to solve my problems and survive.

Frida Kahlo (1907–1954),
Painter

T his chapter includes my first approach with built-in accelerometers, the problems I
discovered and how I started to find solutions to these errors. Section §8.1 exposes
what data I was going to get from the accelerometer, Section §8.2 explains that there

was a bias in the raw data, Section §8.3 compares both raw data and user data, Section §8.4
explains how I was going to get velocities from the accelerations, Section §8.5 exposes the prob-
lems with the velocity drift, Section §8.6 includes what filter I used in first place and Section
§8.7 explains how I chose a different method to calculate velocities.

CHAPTER 8. ITERATION #3: UNDERSTANDING THE ACCELEROMETER

8.1 YOU GET ACCELERATION, NOT VELOCITY

It may sound weird but at first I didn’t think I have to deal with actual acceleration
values. Acceleration is the rate of change of velocity by time.

For me, it was an abstract concept. I can figure out why you may want a sensor
that gives you position values, I can figure out why you may want a sensor that gives
you velocity values, but acceleration? We don’t think in terms of "I’m increasing my
acceleration". We think "I’m increasing my velocity" or, "I was there and now here" but not
"I’m keeping my acceleration at zero so, my velocity is stable".

I figured out what was the data I was working after developing a very simple app
which displayed the data from the sensor. This app was called Speed Gauge and it has
been the mock app I have used to study how the accelerometer works.

8.2 RAW DATA BIAS

This app was very simple. I was displaying the data from every axis of the sensor.
I was using, what Apple calls, raw acceleration data. Raw acceleration data are the
values registered by the sensor, as they are. It includes gravity, so, when you lay the
device on a flat surface, you can see how the device is accelerating at 1 G, thus, 9.8
m/s2, as seen in Figure §8.1.

This is something I discovered with this version of the app. The sensor was using
Gs so, in order to get velocities, I had to convert the Gs to m/s2. A G is 9.8 m/s2 so,
the conversion is not difficult at all. I only had to be careful with what data I received.

What I also noticed was a bias in the axis which were not facing the gravity. If I
had the device on a flat surface, Z-Axis was accelerating almost 1G but X-Axis and Y-
Axis were also accelerating a little, although there was no movement, as seen in Figure
§8.2.

At this point, I had to start reading Apple documentation related to the accelerome-
ter in order to find why this happened. What I found was something better: the sensor
delivered an already-filtered data with no gravity at all; this is the User Acceleration
Data.

38

8.3. RAW DATA VS USER DATA

Figure 8.1: Example of raw acceleration in m/s2

8.3 RAW DATA VS USER DATA

Apple accelerometers offer two kinds of datasets. The one I started using was the
Raw data. As I have described, Raw acceleration means you receive the data, as it is.
No filter is done and the gravity acceleration is not removed.

This acceleration is kind of useless. If I don’t know the gravity that affects every
axis at every moment, I cannot get proper information from the sensor. This is the
reason why Apple delivers another type of acceleration, the UserAcceleration.

The UserAcceleration includes more information and this information is more use-
ful. It includes both the acceleration without the effects of gravity and the gravity
itself, as separate values.

This means the following: I can know the acceleration of every axis and the gravity
that affects every axis.

Once I updated the Speed Gauge, I finally could see how, with the device on a flat
surface, all accelerations were quasi-zero and how the gravity in the Z-Axis was -1 G
or -9.8 m/s2.

If you read the last paragraph carefully, you can see how I have written "quasi-zero"
and there is a reason. This I’m going to write here is the main reason why the original

39

CHAPTER 8. ITERATION #3: UNDERSTANDING THE ACCELEROMETER

Figure 8.2: Bias present in both, X and Y axes when the device is resting on a surface.

second iteration has taken so long to finish: All sensors, not only in this problem but
in any problem, does NOT give exact measurements.

This may sound obvious (or not) but I had to discovered it the hard way. All sen-
sors have a subtle variation in every measurement, they can have a bias and this bias
can cause more problems than expected.

First, the sensor is inexact, thus, when you read an acceleration of 1 G, it may not
be exactly 1 G, it may be 0.974 G or 1.021 G as seen in Figure §8.3. This will be the
foundation of the filters I have studied.

Second, sensors may have biases. The bias I discovered here was one related with
the gravity. There was a relationship between the bias and the gravity vector. When an
axis is under the gravity, the measurement are no longer zero-mean as seen in Figure
§8.4. They shift from the real value, as seen in Figure §8.4. And they don’t shift as
expected, it can shift 0.05 m/s2 positive at one point and then shift aggressively to
-0.05m/s2.

These two features of the sensors caused all the problems I’ve found doing my
project, and they have been the one addresses by the filters I have studied.

But, before we dig ourselves in how I, almost, fixed it, let’s see how I found this
was a problem at all.

40

8.4. FROM ACCELERATION TO VELOCITY

Figure 8.3: Example of the userAcceleration values when the device is on rest.

8.4 FROM ACCELERATION TO VELOCITY

The objective of this project is not to record accelerations, it’s to record velocities.
As the sensor gives acceleration data, I need to convert it to velocities. To do this, I
need to understand the relationship between this two magnitudes.

Acceleration is the rate of change of velocity, thus, how velocity change over time.
This looks like a simple arithmetic equation. On the left argument, we have the ve-
locity, the new value, the value based on the measurement of the sensor. On the right
argument, we have the acceleration measurement, the current velocity (the velocity of
the previous instant may describe it better).

Fortunately we already know the time interval of the measurements. Apple ac-
celerometer can be set from 0.1s (10Hz) to 0.01s (100Hz). I have chosen to use 100Hz
for two reasons: One is that the more measurements I get, the more precise I can be.
The other one is that professional encoders work at 1kHz so, 100Hz is already a low
frequency.

velocityk+1 = velocityk + accelerationk ∗ time_interval (8.1)

As the relationship between velocity and acceleration suggests, you can calculate
any of the variables if you know everything else. In a world of perfect sensors, a simple

41

CHAPTER 8. ITERATION #3: UNDERSTANDING THE ACCELEROMETER

Figure 8.4: Example of the userAcceleration bias. The Z-axis acceleration is over zero
most of the time.

equation would suffice to get the velocity. However, sensors are not perfect.

8.5 VELOCITY DIFFERS FROM ZERO WITH NO MOVEMENT

After I realized what data I got and what data I was looking for, I updated the app
to calculate velocities. I don’t have the proper equipment to test if the velocities were
working fine. I only know a theoretical relationship that should work in the real world.
The way I used to test if that worked was the following: I will move the device, from
rest, up and down, side to side. Positive velocities should cancel negative velocities.
As the velocity was zero at rest, it should have come back to zero after the movement.
It didn’t.

It didn’t and it didn’t by a large value as seen the Figure §8.5. I wasn’t worried
about the little errors added in every step. I thought positive errors would cancel
negatives. The reasons were both the bias of the accelerometer due to gravity and
variance of the measurement.

I realized two things: Sensors are not perfect and Theory doesn’t always match
practice. At this point, the proper project began.

42

8.6. THRESHOLD FILTER

Figure 8.5: Example of sharp steps after a movement. As you can see the velocity of
the three axes (Red, Green and Blue lines) does not come back to zero.

8.6 THRESHOLD FILTER

One of my first attempts was to filter the values based on a threshold. This may
sound a go-to solution. If there is a little variance in the measurements and this vari-
ance in the data is not significant, we could just make everything between ± the value
of the threshold, zero. In my case I chose ± 0.05 m/s2 The code used can be seen in
Figure §8.6.

Figure 8.6: Threshold filter.

It didn’t work for some reasons, as seen in Figure §8.7.

First, although I could remove the variance from the values close to zero, a value
above from 0.05 m/s2 or below from -0.05 m/s2 was not affected so, these errors were
adding with each new measure.

43

CHAPTER 8. ITERATION #3: UNDERSTANDING THE ACCELEROMETER

Second, there was a bias due to the gravity. I couldn’t control how the bias was
going to appear. I only knew it was due to the gravity, it could shift from positive to
negative randomly and that it wasn’t greater than ± 0.15m/s2. I couldn’t also just make
the threshold bigger, because I would have lost relevant information. An acceleration
of 0.15 is something important when the maximum velocity you are going to get is
barely 3 m/s.

Figure 8.7: Example of the application after the Threshold filter.

After these failures, I only knew (at that point of time) one more thing I could
improve: the precision of the conversion. It wouldn’t solve my problem but I could
improve it. I didn’t want to reject the solution because the conversion was poor.

8.7 FROM ACCELERATION TO VELOCITY VIA INTEGRA-
TION

In my last year of high school, they teach me what a change over time means in
mathematics. I learn how, when you integrate a function over time, you get the area
below the function (or above if negative). You could integrate velocity, get an area
and the value of that area would be the position of the object. It’s no different with
acceleration and velocity.

The method I learned was the one I used to improve the conversion. It’s called the

44

8.7. FROM ACCELERATION TO VELOCITY VIA INTEGRATION

Newton-Cotes formula of first degree, or how they called it, the trapezoidal rule.

I’m not going to explain the trapezoid rule in a degree final project but I wanted
to add this section to describe how I was starting to understand what I was working
with and how I could apply something I learned in my senior year in high school in
a real system.

Next two section will be about how I had to manage external libraries in Swift
project, how I had to deal with their bugs and how I used them until I realized I need
a stronger filter.

After these two, I will describe the study of different filters, the implementations
and unit tests.

45

CHAPTER 8. ITERATION #3: UNDERSTANDING THE ACCELEROMETER

46

9

ITERATION #4: WORKING WITH

DEPENDENCIES

47

The standard library saves programmers from having to reinvent the wheel.

Bjarne Stroustrup (1950),
Computer scientist

T his chapter includes my first approach to manage external libraries in an iOS project.
Section §9.1 explains how I needed a software to manage external dependencies and
what dependencies were used.

CHAPTER 9. ITERATION #4: WORKING WITH DEPENDENCIES

9.1 COCOAPODS

At this point I had proper knowledge about what I was working with and what
were the main problems of the sensor but my app was barely showing relevant in-
formation at all (All previous images were done using the final version of the Speed
Gauge application).

I was updating a label every hundredth of a second with the new value, so I had to
use an external tool like Octave to plot the measurements and study them. For me, it
was time to add graphs to the app.

Apple delivers some libraries to draw graphic content but you have to manage
every single aspect about it. In this case, I had to care about size of the chart, how I
was going to add every measurement, how the graph was going to update to fill three
hundred of measurements per second (a hundred per three axes), how I was going to
draw the graph axes and update them.

That’s so much work for something so "simple" as plotting a graph. There is no
need to reinvent the wheel. Somebody must have faced this exact problem and must
have provided a solution for it.

During the degree, we haven’t dealt with dependencies in a project. In Design and
Testing we used Maven. We had a pom.xml where you would add a new dependency,
save the file, click in "Update Maven Project" and that’s all.

We have never work with an empty project where you had to figure out how to
configure these dependencies.

This section is not a "how difficult is to manage dependencies". I’ve just had to
deal with it for the first time in an environment I don’t master, so I think it worth the
mention.

When you need to deal with dependencies in an Apple project, you will find three
different technologies, one official and two unofficial.

Both unofficial are widely used. They are CocoaPods and Carthage. There are no
such differences between the two, so I just picked CocoaPods because I remembered
many tutorials where it was used. Although they are widely used, CocoaPods is more
popular.

The Official one is the Swift Package Manager. It was presented by Apple a few

48

9.1. COCOAPODS

years ago. Although it the official one, it’s not as stable are the unofficial ones. Many
packages are not even prepared to use the official solution. In a near future, I’m sure
the Swift Package Manager will be the one every developer will use, but for now, Co-
coaPods is a better option. I just didn’t want to deal with a new package I couldn’t
install.

Something I didn’t expect is how simple is to configure CocoaPods. You only have
to do a few steps:

1. Install it (Just type "sudo gem install cocoapods" in the terminal).

2. Open the terminal and go to the project directory.

3. Type "pod init" to create a special file called Podfile.

The Podfile is the file where all dependencies will be declared. You can declare
the platform and version supported, for example, iOS 11. Then you need to specify the
Xcode target to link the dependencies. In my project it was "Speed Gauge". Up next,
you must declare the libraries. It’s as simple as write "pod ’[Library_Name]’". The first
version of my podfile can be seen in Figure §9.1.

Figure 9.1: First version of the Pod file

49

CHAPTER 9. ITERATION #4: WORKING WITH DEPENDENCIES

After saving the file, just type in the terminal "pod install" and all dependencies
will be installed in your project. This will generate a new workspace. If you try to use
the project in the former workspace it will fail. You need to use the new workspace.

If you want to maintain the same workspace for some reason, you just need to add
to your Podfile this line of code, outside of the target, "workspace ’MyWorkspace’".

The first library I needed was a library that let me plot the sensor data. I was lurking
GitHub and I found this one, Charts. It has different kinds of charts, good support by
the community and a proper Readme file to help me set my own charts. A picture of
the Readme file can be seen in §9.2.

Figure 9.2: Charts library information

The second one was Surge. As I will present in future chapters, I will be using a
lot of matrices to work with the sensor measurements. Back in the 90’s, Apple, IBM
and Motorola created AltiVec (a.k.a. Velocity Engine) which provided low-level in-
structions for mathematics calculations. When Apple made the switch to Intel CPUs,

50

9.1. COCOAPODS

AltiVec was ported to x86 architecture and it was renamed as Accelerate. This library
can be used in a Swift project but it’s coded in C, so I would need to merge C and Swift
code. Someone did an abstraction layer between the C API and Swift and this layer is
the Surge library I am using. Just for curiosity, Accelerate is an evolution of Velocity
Engine and acceleration is the derivate of velocity so, as the library is an evolution of
Accelerate, the library is named after the derivate of acceleration, the Surge. A picture
of the Readme file can be seen in §9.3.

Figure 9.3: Surge library information

51

CHAPTER 9. ITERATION #4: WORKING WITH DEPENDENCIES

52

10

ITERATION #5: UNDERSTANDING

THE DATA

53

Luck is what happens when preparation meets opportunity.

Seneca (4 BC–65 AD),
Philosopher

T his chapter includes how I had to find the way to display the data in my device to be
able to study it and find solutions to the problems I was facing. Section §10.1 explains
how I used the new library to display both accelerometer and velocity data, Section

§10.2 explains how I used the same library to display new relevant information about gravity,
Section §10.3 develops how I updated the app to get real time feedback from the sensor and
Section §10.4 exposes how I had to deal with some bugs I found in these libraries.

CHAPTER 10. ITERATION #5: UNDERSTANDING THE DATA

10.1 USING CHARTS TO DISPLAY BOTH ACCELERATION

AND VELOCITY

Once I had everything configured, it was time to update the app. This time I was
going show the sensor data and the calculated velocity in a graph. This would im-
prove my study of the behavior of the sensor.

After a few tests I could verify these things:

1. The accelerometer was tracking well the movement. If you moved the device, the
sensor will react as expected.

2. There was a bias in the sensor that caused the measurement to be a non-zero
mean at rest.

3. After a movement over one axis, the velocity of the other axis would not come
back to zero.

As I described in previous chapters, there was a relationship between these bias
and the gravity so, next thing I did was to study the changes of gravity in the app.

10.2 ADDING GRAVITY CHART

In order to study it, I would use the gravity data retrieve by UserAcceleration. I
included a new tab to show how the gravity would change over time with the move-
ments I made with the device.

Once I added the new chart I discovered something:

1. The amount of bias was proportional to the gravity value. That’s way when the
device was on a flat surface, the bias could be found in the Z-Axis.

2. During a movement over one axis, for example, the Z-Axis, a decrease in the
gravity value in these axes appears. Also, an increase in the gravity value in
those axes with a step in their velocity values was discovered. Sharp steps in
gravity can be found in Figure §10.1.

54

10.3. REAL TIME CHARTS

Figure 10.1: Example of sharp steps after a movement in the gravity values.

It was clear that the gravity was affecting the correct working of the velocity cal-
culation. In one of the tutorials with Alberto Molina, we talked about why I was using
the User Acceleration instead of the Raw one. Then, I try to use the Raw acceleration
but it didn’t deliver the gravity vector. In other words, in other to get the gravity, I was
forced to use UserAcceleration.

10.3 REAL TIME CHARTS

Up until this point, all my charts were drawn after I get all the data. I would press
the play button, perform the movement I wanted with the device and press the pause
button. Only then, the graphic was drawn.

After a little research, I found a way to draw the graphs in real time. This would
make the study way easier because I could see at which point the bias shifts or if it’s
happened due to a specific movement.

The update interval time is 0.01 s (100 Hz) so I had update three graphs (accel-
eration, velocity and gravity) every 100th of a second with 3 new measures in every
graph.

After I updated the app, I launched it to try how the CPU handled the workload. It

55

CHAPTER 10. ITERATION #5: UNDERSTANDING THE DATA

turns 120% in a matter of a second, so I had to find a way to reduce the workload.

First, I thought about reducing the update frequency, as seen in Figure §10.2, but I
would lost a lot of information. It would detect some positive peaks in the acceleration
but would ignore the negatives, so the velocities were worse than before.

Figure 10.2: Example of the application with the sensor set to 10Hz.

My solution was to update the graph every 10th of a second. All measurements
were going to be calculated but only one out of ten would be drawn. This reduced
the workload but I found one more error.

10.4 DEALING WITH LIBRARY BUGS

Before I took the decision to draw one out of ten measures, I tried to find why this
happened. I found that there were some bugs introduced in the last version of Charts.

This bug caused a performance bottleneck. Every time a new value was added
to the graph, the minimum and maximum value of the chart were calculated. This
calculation was done using a for each loop over the array of measurements so, adding a
hundred every second caused an important drop in performance. This was addressed
in a future update of the library[11].

Another bug was not a performance issue. I found that the calculation of the min-

56

10.4. DEALING WITH LIBRARY BUGS

imum and maximum value of the chart was not reset with a new chart. This was
addressed in the same update as the previous bug[3].

This section is not about how I solved these bugs. Instead, it’s about how I had to
learn how third-party libraries have bugs and how I had to read plenty on GitHub
issues before I could realize what was happening. This could be one of the lessons
learned from the projects: Every time you use an external library, there are chances that
it doesn’t work as expected.

57

CHAPTER 10. ITERATION #5: UNDERSTANDING THE DATA

58

11

ITERATION #6: FILTER THE DATA

59

Without a filter, a man is just chaos walking.

Patrick Ness (1971),
Novelist

T his chapter includes the study I made to find a way to filter and clean the data in
order to get better measurements. This includes a extensive explanation on how the
chosen filter (Kalman filter) works and what is the reasoning behind its algorithm.

Section §11.1 talks about all the research to find the filter I was going to use in the app, Section
§11.2 includes the extensive study done about the Kalman Filter, the chosen filter, Section §11.3
indicates how I decided to implement the filters, Section §11.4 explains how I set the Unit tests
of my app, Section §11.5 develops the problem I found with Floating point numbers and Section
§11.6 includes the changes I had to make in order to use the external libraries in my tests.

CHAPTER 11. ITERATION #6: FILTER THE DATA

At the same time I was improving how the data was displayed in the application,
I studied how to improve the data from the sensor. After a few tutorials with Alberto,
we realized that the data must be filtered. I had to remove the bias to get reliable
information.

11.1 BRAINSTORMING OF FILTERS

At this point I did research to find which filters could help me with this labor. I
developed a list of possible solutions:

1. Increase the level of Newton-Cotes formula: This is not a filter. The current
Newton-Cotes formula uses the first degree method. I could use a higher degree
method to reduce the little errors that accumulate due to the integration.

2. Implements a Moving Average filter.

3. Implements a Kalman filter.

4. Implements a Butterworth Band-Pass filter.

5. Implements a Total-Variation denoising.

6. Implements a Wavelet Thresholding.

7. Implements a Complementary filter.

Before I developed this list, Alberto and I tried other filters like High-Pass filter,
Low-Pass filter or turning the signal to a zero-mean but none of this worked.

With the little research I could do about how to improve calculation from accelera-
tion to velocity, I found two sides of the problem. One side said it was impossible to
calculate velocities from acceleration due to integration errors. This was addressed
in Google Conference (Sensor Fusion on Android Devices: A Revolution in Motion
Processing)[17].

The other side declared it was possible with a Kalman Filter. Plenty of sites de-
fended the Kalman Filter as a way to calculate velocities from accelerations.

Before I could even show the list to Alberto, he told me it could be addressed with
a Kalman Filter. I wouldn’t get a perfect measurement but I could get a pretty decent
one.

60

11.2. RESEARCH AND STUDY OF THE KALMAN FILTER

So, the Kalman Filter was my choice to improve the precision of the calculated
velocities.

11.2 RESEARCH AND STUDY OF THE KALMAN FILTER

OK, this section will be with no doubt the largest and most dense of the entire
report. It will include my first approach to the filter and a detailed explanation of it. I
will try to make this explanation as easy as possible. Something I have learned about
the filter is that it is the most dense mathematics I ever faced if you jump head first into
it. After you understand the basics, it’s basically common sense with matrices.

I don’t want to present a very verbose writing about the filter so, I will explain it
as I have learned it, from the bottom to the top, asking simple questions after simple
question until you realized you have a basic functional filter. To do so, I will follow-up
the scheme present in the book "Kalman and Bayesian Filters in Python"[9]. I will
reuse the examples used in the book for the sake of simplicity.

11.2.1 The g-h Filter

Imagine you live in a world without scales (the device you stand on to weight
yourself). One day, a coworker appears with a brand-new invention, the scale. You
weight yourself for the first time and you get a weight of 80Kg. Then, you call another
coworker to show him the new device. You weight yourself once against and you get
70 Kg. How can this happen?

Well, that’s how sensors works. They are inaccurate. That’s why filters exists in
Physics. If we could get exact measurements every time, there wouldn’t need to filter
anything.

Is there any way we can improve the result? We could find a better sensor but
that’s not possible in many cases. The other way is to weight yourself in different
scales. Before, you weighted yourself and you get (A) 70 Kg and (B) 80 Kg. With that
information we have several options.

1. We could choose to only believe A.

2. We could choose to only believe B.

3. We could choose a number less that A and B.

61

CHAPTER 11. ITERATION #6: FILTER THE DATA

4. We could choose a number greater than A and B.

5. We could choose a number between A and B.

Choosing the options 3 and 4 seems arbitrary. There is no reason to choose a num-
ber greater or lower that the measurements we have. Choosing 1 and 2 seems also
arbitrary. Why do you believe one scale over the another? The remaining option is the
one we want. We believe that the real value is somewhere between A and B.

Our first move would be to set the real value as the mean between the measure-
ments. If we have 70 and 80 Kg, the real weight could be 75. However, we should ask
if we had any more information. What if one scale is 3 times more accurate that the
other? Now, we have a measurement with 70±3 Kg and another with 80±9 Kg.

Figure 11.1: Error bars of Scale A with 70±3 and Scale B with 80±9.

As you can see in the figure §11.1, neither 70 Kg nor 75 Kg are included in the
overlap of the error bars. The only possible values are the ones between 71 and 73 Kg.
If we only use the measurement from A because it’s more accurate that B, we would
give an estimate of 70 Kg. If we average A and B, we would get 75 Kg. Neither of those
weights are possible given our knowledge of the accuracy of the scales. By including
the measurement of B, we would give an estimate between 71 and 73 Kg, the limits of
the intersections of the two error bars.

Let’s take this to the extreme limits. Assume we know the scale A is accurate to
1Kg and the scale B is accurate to 9 Kg. If we plot the error bars we can see in the figure
§11.2 how there is only one possible value left, 71 Kg.

62

11.2. RESEARCH AND STUDY OF THE KALMAN FILTER

Figure 11.2: Error bars of Scale A with 70±1 and Scale B with 80±9.

With two relatively inaccurate sensors we are able to deduce an extremely accurate
result. So two sensors, even if one is less accurate that the other, are better than one.
This is one of the most important lessons I have learned with this filter: We never
throw information away, no matter how poor it is.

However, we have stayed from our problem. No customer is going to want to buy
multiple scales, and besides, scales should be equally (in)accurate. What if I weight
myself multiples times on the same scale? This answer is not very practical. No one
has the patience to weigh themselves ten thousand times, or even a dozen times.

Let’s continue with the "what’s if". What’s if you measured your weight once a
day, and got the readings 80, 70.5 and then 79.5. Did you gain weight, loss weight or
is this all just noisy measurements? We can’t really say. There is an extreme range of
weight changes that could be explained by these 3 measurements. However, we are
measuring a human’s weight so, there is no reasonable way for a human to weigh 88
Kg on the day 1, and 72 Kg the day 3 (assuming an inaccuracy of 10 Kg in the readings).

The behavior of the physical system we are measuring should influence how we
interpret the measurements.

Suppose I take the following measurement with a scale: 70, 70.5, 69.5, 70.2, 69.8,
70.3, 70.5, 69.6, 70.1, 70.4. What does the intuition tell you? It is possible you gained a
kilo every day and the noisy measurements happens to look like you stayed the same
weight. Equally, you could have lost a kilo a day and got the same readings. But is that
likely? How likely is it to flip a coin and get 10 heads in a row? Not very likely. We
can’t prove it but it seems pretty likely that the weight held steady.

Another what if: What if the readings were 70.2, 72.3, 71.4, 72.2, 73.2, 73,7, 74.9,
74.3, 75.2, 75.6. This data trends upward over time; not evenly but definitely upwards.
We can see a trend on the weight gain.

63

CHAPTER 11. ITERATION #6: FILTER THE DATA

Let’s try something. Let’s assume that I know I am gaining a kilo a day. It doesn’t
matter how I know that right now, just assume I know it is approximately correct.

The first measurement was 70.2 Kg. If our weight today is 70.2, what will it be
tomorrow? Well, we think we are gaining weight at 1 kilo/day, so our prediction is
71.2.

Okay, but what good is this? Sure, we could assume the 1 kilo/day gain is accurate,
and predict our weight for the next 10 days, but then why use a scale at all if we don’t
incorporate its readings. So let’s look at the next measurement. We step on the scale
again and it displays 72.3 Kg.

Figure 11.3: Example on how the prediction and the measurement differ.

We have a problem. Our prediction doesn’t match our measurement... and that’s
good. If the prediction was always exactly the same as the measurement, it would not
be capable of adding any information to the filter. And, of course, there would be no
reason to ever measure since our predictions are perfect.

The key of this kind of filters is in this paragraph: If we only form estimates from
the measurement, then the prediction will not affect the result. If we only form
estimates from the prediction then, the measurement will be ignored. If this is to
work, we need to take some kind of blend of the prediction and the measurement.

All I have done is replaced an inaccurate scale with an inaccurate weight prediction
based of human physiology. It’s still data. Math doesn’t know if it came from a scale or
a prediction. We have two pieces of data with a certain amount of noise, and we want
to combine them.

Should the estimate be half-way between the measurement and prediction? Maybe,
but in general, it seems like we might know that our prediction is more or less accurate

64

11.2. RESEARCH AND STUDY OF THE KALMAN FILTER

compared to the measurements. Probably the accuracy of our prediction differs from
the accuracy of the scale.

Figure 11.4: Estimate calculation based on the prediction and measurement.

Now let’s try a randomly chosen number to scale our estimate: 4/10. With this, we
are expressing the belief that the prediction is somewhat more likely to be correct than
the measurement. We compute that as:

estimate = prediction +
4

10
∗ (measurement− prediction) (11.1)

The difference between the measurement and the prediction is called the resid-
ual. This will become an important value to use later on. Smaller residuals imply better
performance.

Let’s see in the table §11.1 how this works with real data (assume an initial weight
of 70.2 Kg, a gain rate of 1 Kg per day and a scale factor of 4/10):

We can see how our filter needs an initial gain rate to works as expected. If we
choose a bad gain rate, the estimates would be very different from the actual data. As
you can guess, a filter where you have to predict the gain rate is not very useful. If there
is a change is the gain rate during the process, the filter will fail. What if we calculate
the gain rate based on the existing measurements and estimates. This is very similar to
the problem of the prediction and the measurement. We have the old gain and the new
calculated gain. We need a way to merge this two: I will choose an arbitrary number
(1/3) to weight the importance of both gains.

new_gain = old_gain +
1
3
∗ (residual

time_step
) (11.2)

65

CHAPTER 11. ITERATION #6: FILTER THE DATA

Example with real data

Previous Prediction Measurement Estimate
70.2 71.2 72.3 71.64
71.64 72.64 71.4 72.15
72.15 73.15 72.2 72.77
72.77 73.77 73.2 73.54
73.54 74.54 73.7 74.21
74.21 75.21 74.9 75.08
75.08 75.08 74.3 75.37
75.37 76.37 75.2 75.90
75.90 76.90 75.6 76,38

Table 11.1: Multiple iterations with an initial weight of 70.2 Kg, a gain rate of 1 Kg per
day and a scale factor of 4/10

Assuming an initial weight of 70.2 Kg, an initial gain rate of 1kg per day, a mea-
surement scale factor of 4/10 and a gain scale factor of 1/3, we get the result of the
table §11.2:

This algorithm is known as the g-h filter. g and h refer to the two scaling factors
that we used in our example. g is the scaling we used for the measurements (the 4/10)
and h is the scaling for the change in measurements over time (the 1/3).

This filter is the basis for a huge number of filters, including the Kalman Filter. The
math may look profoundly different, but the algorithm will be exactly the same.

1. Multiple data points are more accurate than one data point, so throw nothing
away no matter how inaccurate it is.

2. Always choose a number between two data points to create a more accurate esti-
mate.

3. Predict the next measurement and the rate of change based on the current esti-
mate and how much we think it will change.

4. The new estimate is then chosen as part away between the prediction and next
measurement scaled by how accurate each is.

Now let’s explore a few different problem domains to better understand this algo-
rithm:

66

11.2. RESEARCH AND STUDY OF THE KALMAN FILTER

Example with real data

Previous Update Gain Prediction Measurement Estimate
70.2 1.0 71.2 72.3 71.64
71.64 1.7 73.34 71.4 72.56
72.56 1.05 72.61 72.2 72.45
72.45 0.91 73.36 73.2 73.3
73.3 0.86 74.16 73.7 73.98
73.98 0.71 74.69 74.9 74.77
74.77 0.78 75.55 74.3 75.05
75.05 0.36 75.41 75.2 75.33
75.33 0.29 75.62 75.6 75,61

Table 11.2: Multiple iterations with an initial weight of 70.2 Kg, an initial gain rate of
1kg per day, a measurement scale factor of 4/10 and a gain scale factor of 1/3

Consider the problem of trying to track a train. Trains are large and slow. It takes
many minutes for them to slow down or speed up significantly. So, if I know a train is
at the kilometer 23 at time t and moving at 18 kph, I can be very confident in predicting
its position at time t+1. In this example, we would set ’g’ to a number close to 0 because
we trust our prediction.

On the other hand, if we try to track an object in a hurricane, we cannot trust our
prediction at all. We will have to relay on the measurements and basic physics; an
object cannot move 10 kilometers in one second.

11.2.2 Formal terminology

Let me introduce some more formal terminology:

1. The system is the object we want to estimate. In previous examples, it has been
the weight.

2. The state of the system is the current configuration or values of that system that
is of interest to us. If I put a 100 Kg weight on the scale, the state is 100 Kg.

3. The measurement is a measured value of the system. As measurements can be
inaccurate, it may differ from the value of the state.

67

CHAPTER 11. ITERATION #6: FILTER THE DATA

4. The state estimate is our filter’s estimate of the state. For example, for a 100 Kg
weight, our estimate might be 99.45 Kg due to sensor errors. This is commonly
abbreviated to estimate.

5. We use a process model to mathematically model the system. In previous ex-
amples, our process model is the assumption that my weight today is yesterday’s
weight plus my weight gain for the last day.

6. The system error or process error is the error in this model. We never know this
value exactly, if we did, we could refine our model to have zero error.

7. The predict state is known as system propagation. It uses the process model to
form a new state estimate. Due to the process error, this estimate is imperfect.

11.2.3 Discrete Bayes Filter

As we have done with the g-h Filter, let’s use a simple thought experiment to see
how we might reason about the use of probabilities for filtering and tracking.

Let’s begin with a simple problem. Somebody invented a sonar sensor to attach to
a dog’s collar. It emits a signal, listen for the echo, and based on how quickly an echo
comes back, we can tell whether the dog is in front of an open doorway or not. To
keep the problem simple, we will assume that there are only 10 possible positions in
the hallway and that the hallway is circular (if you move to the right from position 9,
you are back to 0).

When I begin listening to the sensor, I have no reason to believe the dog is at any
particular position in the hallway. There are 10 positions, so the probability that he
is in any given position is 1/10. Figure §11.5 would be a basic representation of the
probabilities of every position of the hallway.

68

11.2. RESEARCH AND STUDY OF THE KALMAN FILTER

Figure 11.5: Representation of the probabilities of every position of the hallway.

In Bayesian statistics this is called a prior. It is the probability prior to incorporat-
ing measurements or any other information. A probability distribution is a collection
of all possible probabilities for an event. Probability distributions always sum to 1
because something had to happen; the distribution lists all possible events and the
probability of each.

Bayesian statistics takes past information (the prior) into account. We observe
that it rains 4 times every 100 days. For this, I could state that the chance of rain
tomorrow is 1/25. This is not how weather prediction is done. If I know it is raining
today and the storm front is stalled, it is likely to rain tomorrow. Weather prediction is
Bayesian.

Now let’s create a map of the hallway. We will use 1 for doors and 0 for walls.

I start listening to the dog’s transmissions and the first data I get from the sensor is
door. For now, let’s assume the sensor always returns the correct answer. From this I
conclude that it is i front of a door, but which one? I have no reason to believe he is in
front of the first, seconds or third door. All doors are equally likely, so I assign, as seen
in the figure §11.6, a probability of 1/3 to each door.

69

CHAPTER 11. ITERATION #6: FILTER THE DATA

Figure 11.6: Representation of the probabilities of each door.

This is a multimodal distribution because we have multiples beliefs about the po-
sition of our dog. Of course, we are not saying that we think he is simultaneously in
three different locations, merely that we have narrowed down our knowledge to one
of these three locations.

This is an improvement in two ways. I’ve rejected a number of hallway positions as
impossible, and the strength of my belief in the remaining positions has increased from
10% to 33%. This will always happen. As our knowledge improves, the probabilities
will get closer to 100%.

Suppose we were to read the following from the sensor: Door, move right, door.
Can we deduce the dog’s location? Of course! Given the hallway’s layout there is only
one place from which you can get this sequence, and that is at the left end. Now, our
belief is:

Figure 11.7: Representation of the probabilities after the new information.

This was a very simple example to explain the Bayesian Filter but first, we need to
address the real world complications to the problem.

70

11.2. RESEARCH AND STUDY OF THE KALMAN FILTER

Perfect sensors are rare. Perhaps the sensor would not detect a door if the dog sat
in front of it while scratching himself, or misread if he is not facing down the hallway,
thus, when I get door I cannot use 1/3 as a probability. I have to assign less than 1/3 to
each door, and assign a small probability to each blank wall position. Something like
this figure §11.8:

Figure 11.8: Representation of the probabilities with a noisy sensor.

If the sensor is noisy, it casts doubt on every piece of data. How can we conclude
anything if we are always unsure? The answer, as for the problem above, is with
probabilities. We are already comfortable assigning a probabilistic belief to the location
of the dog; now we have to incorporate the additional uncertainty caused by the sensor
noise.

Say we get a reading of door, and suppose that testing shows that the sensor is 3
times more likely to be right than wrong. We should scale the probability by 3 where
there is a door, as seen in the figure §11.9.

Figure 11.9: Representation of the probabilities where the sensor is more likely to be
right than wrong.

As you can see, this is not a probability distribution, the sum of all these values is
not 1, it’s 1.6. In order to get a one, we need to do a normalization of the results, as

71

CHAPTER 11. ITERATION #6: FILTER THE DATA

seen in the figure §11.10. Normalization is done dividing each element by the sum of
all elements in the list.

belie f
sum(belie f)

(11.3)

Figure 11.10: Representation of the probabilities where the sensor is more likely to be
right than wrong (After normalization).

We can see that the sum is now 1.0 and that the probability of a door vs wall is still
three times larger. The result also fits our intuition that the probability of a door must
be less than 1/3 and that the probability of a wall must be greater than 0.0.

This result is called the posterior, which is short for posterior probability distribu-
tion. All this means is a probability distribution after incorporation the measurement
from the sensor.

Now, it’s time to incorporate movement. Assume the movement sensor is perfect,
and it reports that the dog has moved one space to the right. How would we alter our
belief array?

We should shift all the values one space to the right.

If we thought there was a 0.188 change of the dog being at position 1, then after it
moved to the right, we should believe that there is a 0.188 change it is at position 2.

What if the sensor reported that our dog moved one space, but he actually moved
to spaces, or zero? This may sound like an insurmountable problem, but let’s model it
and see what happens.

Assume that the sensor’s movement measurement is 80% likely to be correct, 10%
likely to overshoot one position to the right and 10% likely to undershoot one position
to the left. That is, if the movement measurement is 4 (meaning 4 spaces to the right),

72

11.2. RESEARCH AND STUDY OF THE KALMAN FILTER

the dog is 80% likely to have moved 4 spaces to the right, 10% to have moved 3 spaces
and 10% to have moved 5 spaces.

For example, consider the reported movement of 2. If we are 100% certain the dog
started from position 3, then there is an 80% change it is at 5, and a 10% change for
either 4 or 6. This can be seen in the figure §11.11.

Figure 11.11: Representation of a movement with movement uncertainty.

What happens when our belief is not 100% certain, as seen in the figure §11.12?

Figure 11.12: Another representation of a movement with movement uncertainty.

Here the results are more complicated, but you should still be able to work it out.

1. The 0.04 is due to the possibility that the 0.4 belief undershoot by 1.

2. The 0.38 is due to the following: the 80% change that we moved 2 positions (0.4 *
0.8) and the 10% change that we undershoot (0.6 * 0.1).

3. The 0.52 is due to the following: the 80% change that we moved 2 positions (0.6 *
0.8) and the 10% change that we overshoot (0.4 * 0.1).

4. The 0.06 is due to the possibility that the 0.6 belief overshoot by 1.

73

CHAPTER 11. ITERATION #6: FILTER THE DATA

If the sensor is noisy, we lose some information on every prediction. Suppose we
perform the prediction an infinite number of times. If we lose information on every
step, we must eventually end up with no information at all.

The problem of losing information during the prediction may make it seem as if our
system would quickly devolve into having no knowledge. However, each prediction
is followed by an update where we incorporate the measurement into the estimate.
The update improves our knowledge. The output of the update step is fed into the
next prediction. Prediction degrades our certainty. That is passed into another update,
where certainty is again increased.

Let’s use the examples of the beginning of this section:

After the first update we have assigned a high probability to each door position,
and a low probability to each wall position, as seen in the figure §11.13.

Figure 11.13: Initial prior and its posterior after new data.

The predict step shifted these probabilities to the right, as seen in the figure §11.14.

Figure 11.14: Posterior and new prior after prediction.

Note the tall bar at the position 1 in the figure §11.15. This corresponds with the
(correct) case of starting at position 0, sensing the door, shifting 1 to the right, and
sensing another door. No other positions make this set of observations as likely.

74

11.2. RESEARCH AND STUDY OF THE KALMAN FILTER

Figure 11.15: New prior and updated posterior.

This is the basis of the Discrete Bayes Filter. As with the g-h Filter, we predict the
future value based on the knowledge of the system, and then we add a measurement
to compensate the lost of information during the prediction.

This use of probabilities is the basis we will use in the Kalman Filter but the Bayesian
Filter presents a serie of problems:

1. First, it’s scaling. In these examples, we wanted to track one variable, the position
of the dog. In real world problems, we will be tracking more variables and the
time complexity will increase with every new variable.

2. Second, it’s the discrete aspect of the filter. We live in a continuous world. A 100
meters hallway requires 10.000 positions to model the hallway to 1cm accuracy.
So each update and predict operation would entail performing calculations for
10.000 different probabilities. It gets worse if we add dimensions. A 100x100 m2

courtyard requires 100.000.000 positions.

3. Third, it’s multimodal. It’s useless to report that there is a change of 40% of being
in one place and 30% in another place.

11.2.4 Gaussian Probabilities

We desire an unimodal, continuous way to represent probabilities that models how
the real world works, and that is computationally efficient to calculate. Gaussian dis-
tributions provide all of these features.

Many real world observations are distributed following a gaussian distribution.
It can be described with two parameters, the mean (µ) and the variance (σ2).

75

CHAPTER 11. ITERATION #6: FILTER THE DATA

The mean (µ) is what it sounds like, the average of all possible probabilities. Be-
cause of the symmetric shape of the curve, it is also the tallest part of the curve.

The square root of the variance is called the standard deviation (σ). The standard
deviation is a measure of how much variation from the mean exists. For a Gaussian
distribution, 68% of all the data falls within one standard deviation (±1σ) of the mean,
95% falls within two standard deviations (±2σ) and 99.7% within three (±3σ). This is
often called the 68-95-99.7 rule. If you were told that the average test score in a class
was 5.9 with a standard deviation of 0.82, you could conclude that 95% of the students
received a score between 4.26 and 7.54 if the distribution is normal.

A remarkable property of Gaussians is that the sum of two independent Gaussians
is another Gaussian. The product is not a Gaussian, but proportional to a Gaussian.
The discrete Bayes filter works by multiplying and adding arbitrary probability distri-
butions. The Kalman filter uses Gaussians instead of arbitrary distributions, but the
rest of the algorithm remains the same. This means we will need to multiply and add
Gaussians.

The sum of two Gaussians is given by:

µ = µ1 + µ2 (11.4)

σ2 = σ2
1 + σ2

2 (11.5)

The product of two independent Gaussians is given by

µ =
σ2

1 ∗ µ2 + σ2
2 ∗ µ1

σ2
1 + σ2

2
(11.6)

σ2 =
σ2

1 ∗ σ2
2

σ2
1 + σ2

2
(11.7)

The following points must be understood before we continue:

1. Normals express a continuous probability distribution.

2. They are completely described by two parameters: the mean (µ) and the variance
σ2.

76

11.2. RESEARCH AND STUDY OF THE KALMAN FILTER

3. µ is the average of all possible values.

4. σ2 represents how much our measurements vary from the mean.

5. The standard deviation (σ) is the square of the variance (σ2).

6. Many aspects of nature approximate a normal distribution.

11.2.5 One Dimensional Kalman Filters

Now that we understand the discrete Bayes filter and Gaussians, we are prepared
to implement a Kalman filter.

"One dimensional" means that the filter only tracks one state variable. In later
sections I will explain the multidimensional form of the filter. The reason why I prefer
to explain the one-dimensional version first is to avoid the heavy math present in the
multidimensional filter. Here, we will learn the logic of the filter. The heavy math will
be delayed until the understanding of the logic is solid.

As in the Discrete Bayes Filter section, we will be tracking a moving object in a long
hallway. Here, we assume that the sensor provides a reasonably accurate position of
the dog. The sensor returns the distance of the dog from the left end of the hallway in
meters.

The sensor is not perfect. A reading of 23.4 could correspond to the dog being at
23.7 or 23.0. However, it is very unlikely to correspond to a position of 47.6. The errors
seemed to be evenly distributed on both sides of the true position; a position of 23
meters would equally likely be measured as 22.9 or 23.1.

We predict that the dog is moving. This prediction is not perfect. Sometimes our
prediction will overshoot, sometimes it will undershoot. We are more likely to under-
shoot or overshoot by a little than a lot.

We can express our belief in the dog’s position with a Gaussian. Say we believe that
our dog is at 10 meters and the variance in that belief is 1 m2, or N (10,1), as seen in
Figure §11.16.

77

CHAPTER 11. ITERATION #6: FILTER THE DATA

Figure 11.16: Graphical representation of the belief as a Gaussian

This plot describes our uncertainty about the dog’s position. While we believe that
it is most likely that the dog is at 10m, any position from 9 to 11m or so are quite likely
as well.

Let’s see how predictions work with gaussians.

If the dog is at 10m, his velocity is 15m/s and the epoch is 1 seconds long, we have:

xk = 10 + (15 ∗ 1) = 25m (11.8)

We are uncertain about its current position and velocity, so this will not work. We
need to express the uncertainty with a Gaussian.

If we think the dog is at 10m, and the standard deviation of our uncertainty is 0.2m,
we get

x =N (10,0.22) (11.9)

If the dog’s velocity is 15 m/s, the epoch is 1 second, and the standard deviation of

78

11.2. RESEARCH AND STUDY OF THE KALMAN FILTER

our uncertainty is 0.7 m/s, we get:

f (x) =N (15,0.72) (11.10)

The equation of the prior is

xprior = x + f (x) (11.11)

Let’s do the math with the gaussians:

xprior = µ(x) + µ(f (x)) = 10 + 15 = 25 (11.12)

σ2
prior = σ2(x) + σ2(f (x)) = 0.22 + 0.72 = 0.53 (11.13)

It makes sense that the predicted position is the previous position plus the move-
ment. What about the variance? Recall that in the prediction in the discrete Bayes filter
we always lost information. We don’t really know where the dog is moving so the
confidence should get smaller (variance gets larger).

Now, let’s cover the updates with gaussians.

We’ve just shown that we can represent the prior with a Gaussian. What about
the likelihood? The likelihood is the probability of the measurement given the current
state. We’ve learned how to represent measurements as a Gaussian. For example,
maybe our sensor states that the dog is at 23 m with a standard deviation of 0.4 m. Our
measurement, expressed as a likelihood, is

z =N (23,0.42) (11.14)

Both the likelihood and prior are modeled with Gaussians. We can multiply two
Gaussians but the result is not a Gaussian, but proportional to one. If we normalize the
result, the product is another Gaussian, as seen in Figure §11.17.

79

CHAPTER 11. ITERATION #6: FILTER THE DATA

Figure 11.17: Graphical representation of the multiplication as a Gaussian

N (µ,σ2) =N (25,0.53) ∗ N (23,0.16) =N (23.46,0,12) (11.15)

As in the discrete Bayes filter, after an update step the variance of the result de-
creases due to the incorporation of the measurement to the prediction.

This succession of predict and update steps using Gaussians is a Kalman Fil-
ter. This version is only useful if we are tracking only one variable. The multivariate
version will address this problem.

The example above is useful to describe how the Kalman Filter works in a concrete
case. Now that we understand the logic, we can write this version of the Kalman Filter
using the standard nomenclature.

This is not the actual code. The code will be delivered using Swift. This is only a
pseudocode using the "official" variable names:

func predict(posterior, movement) {

let x, P = posterior // Mean and variance of posterior

let dx, Q = movement // Mean and variance of movement

x = x + dx

P = P + Q

80

11.2. RESEARCH AND STUDY OF THE KALMAN FILTER

let prior = Gaussian(x, P)

return prior

}

func update(prior, measurement) {

let x, P = prior // Mean and variance of prior

let z, R = measurement // Mean and variance of measurement

y = z - x // Residual

K = P / (P + Q) // Kalman Gain

x = x + K * y // Posterior mean

P = (1 - K) * P // Posterior variance

let posterior = Gaussian(x, P)

return posterior

}

Before we dive in the multivariate filter, let’s see what some of these variables mean.
In the literature R is nearly universally used for the measurement noise, Q for the
process noise and P for the variance of the state.

K is the letter used to represent the Kalman Gain. To understand this concept we
must study a little about the math behind the filter. The posterior x is computed as the
likelihood times the prior, where both are Gaussians.

The mean of the posterior is given by:

µ =
σ2

prior ∗ µz + σ2
z ∗ µprior

σ2prior + σ2
z

(11.16)

This can be rewrite like this:

µ =
σ2

prior

σ2
prior + σz

∗ µz +
σ2

z

σ2
prior + σz

∗ µprior (11.17)

In this form it is easy to see that we are scaling the measurement and the prior by

81

CHAPTER 11. ITERATION #6: FILTER THE DATA

weights:

µ = W1 ∗ µz + W2 ∗ µprior (11.18)

The weights sum to one because the denominator is a normalization term. We
introduce a new term, K = W1, giving us:

µ = K ∗ µz + (1− K) ∗ µprior = uprior + K ∗ (µz − µprior) (11.19)

where

K =
σ2

prior

σ2
prior + σ2

z
(11.20)

K is the Kalman Gain. It’s the basis of the Kalman Filter. It is the scaling term
that chooses a value partway between µz and µprior, thus, the residual. This is the
way of reasoned about the g-h filter. It emphasized taking the residual y = µz - µprior

finding the Kalman gain as a ratio of our uncertainty in the prior and the measurement
K = P

P+Q , and computing the posterior by adding K ∗ y to the prior.

Figure 11.18: Full Description of the Algorithm.

A step by step algorithm can be described as following:

Initialization:

1. Initialize the state of the filter.

2. Initialize our belief in the state.

82

11.2. RESEARCH AND STUDY OF THE KALMAN FILTER

Predict:

1. Use the system behavior to predict the state at the next time step.

2. Adjust the belief to account for the uncertainty in prediction.

Update:

1. Get a measurement and associated belief about its accuracy.

2. Compute residual between the estimated state and the measurement.

3. Compute scaling factor based on whether the measurement or prediction is
more accurate.

4. Set state between the prediction and measurement based on scaling factor.

5. Update belief in the state based on how certain we are in the measurement.

11.2.6 Multivariate Gaussians

The techniques used in the last section are very powerful, but they only work with
one variable or dimension. They provide no way to represent multidimensional data,
such as the position and velocity of an object in a field. Position and velocity are related
to each other, and we learned in the g-h filter section that we should never throw
away information. In this section I will explain how to describe these relationships
probabilistically.

Our goal in this section will be to represent a normal distribution with multiples
dimensions, or variables. We need to represent their means and variances, just as we
do with Univariate Gaussians.

Let’s believe that x = 2 and y = 17:

µ =

[
2
7

]
(11.21)

We will say that the variance of x is 10 and the variance of y is 4:

σ2 =

[
10
4

]
(11.22)

83

CHAPTER 11. ITERATION #6: FILTER THE DATA

This is incomplete because it does not consider the correlations between the vari-
ables. If we were measuring the height and weight of a group of students, we can de-
duce that the taller students will, generally, weight more than the shorter ones. Thus,
height and weight are correlated. We want to express not only what we think the vari-
ance is in the height and the weight, but also, the degree to which they are correlated.

The way to achieve this is using a covariance matrix. This matrix is an NxN
matrix (where N is the number of variables). The diagonal of the matrix represents
the variances of the variables. The rest of spaces are left for the covariance between
the variables.

In the previous example, instead of a 2x1 matrix, we have a 2x2 matrix:

σ2 =

[
10 ?
? 4

]
(11.23)

If we consider that there is no correlation between x and y we get this matrix:

σ2 =

[
10 0
0 4

]
(11.24)

If x increases as y increases, we would get this:

σ2 =

[
10 1.2
1.2 4

]
(11.25)

If x increases as y decreases, we would get this instead:

σ2 =

[
10 −9.7
−9.7 4

]
(11.26)

(Note that the covariance values are arbitrary. Only the sign of the covariances are
intended).

As you can see, the covariance matrix is symmetric. After all, the covariance be-
tween x and y is always equals to the covariance between y and x.

Thinking of the physical representation of this Gaussians clarifies their meaning.

84

11.2. RESEARCH AND STUDY OF THE KALMAN FILTER

For this example I will be using this values:

µ =

[
2
7

]
(11.27)

σ2 =

[
2 0
0 2

]
(11.28)

Figure 11.19: Graphical representation of the belief as a Gaussian.

A Bayesian way of thinking about this is that it shows the amount of error in our
belief. A tiny circle would indicate that we have a very small error, and a very large
circle indicates a lot of error in our belief. The shape of the ellipse shows us the rela-
tionship of the errors in x and y. Here, in Figure §11.19, the errors of x and y are equally
likely. If we use this values, we would get this other plot.

µ =

[
2
7

]
(11.29)

σ2 =

[
2 0
0 6

]
(11.30)

85

CHAPTER 11. ITERATION #6: FILTER THE DATA

Figure 11.20: Graphical representation of the belief as a Gaussian.

Here, in Figure §11.20, there is a lot more uncertainly in y than in x. If we use
matrices with non-zero values in their covariances, we get this plot:

µ =

[
2
7

]
(11.31)

σ2 =

[
2 1.2

1.2 2

]
(11.32)

Figure 11.21: Graphical representation of the belief as a Gaussian.

86

11.2. RESEARCH AND STUDY OF THE KALMAN FILTER

Here, in Figure §11.21 the ellipse is tilted. This is due to the positive correlation
between the errors of x and y.

I won’t explain how to multiply two Multivariate Gaussians. It’s very similar to
how we did in previous sections. My goal with this chapter is to explain how to rep-
resent multiple variables with Gaussians. The sum and multiplications works similar.
What I would like to explain is the concept of hidden variables.

Imagine you are tracking a plane and you get this positions at time t=1, 2 and 3
seconds.

Figure 11.22: Graphical representation of the data at time t=1, 2 and 3 seconds.

What does your intuition tell you the value of x will be at time t=4 seconds? I’m
sure you thought the plain would be at (4,4). You inferred a constant velocity for the
airplane. The reasonable assumption is that the aircraft is moving one unit each in
x and y per time step. This is very similar of what we did with the g-h filter when
we were trying to improve the weight prediction of the noisy scale. We incorporated
weight gain into the equations because it allowed us to make a better prediction of the
weight the next day. We are going to do the same with the Kalman Filter.

87

CHAPTER 11. ITERATION #6: FILTER THE DATA

11.2.7 Multivariate Kalman Filters

We are now ready to study and implement the full, multivariate form of the Kalman
Filter. In the last section we learned how multivariate Gaussians express the correlation
between multiple random variables, such as the position and velocity of an aircraft. We
also learned how correlation between variables improves the posterior.

In order to explain the Kalman Filter with more ease, I will restrict the problem to
those described with Newton’s equation of motion.

The univariate Kalman Filter represented the state with a univariate Gaussian.
Naturally, the multivariate version will use multivariate Gaussians for the state. We
learned in the last chapter that multivariate Gaussians use a vector for the mean and
a matrix for the covariances. That means that the Kalman Filter needs to use linear
algebra to perform the estimations.

Now, I will compare the equations of the univariate and multivariate version of the
filter in table §11.3 and §11.4:

Predict step

Univariate version Multivariate version
xprior = x + dx xprior = F ∗ x + B ∗ u
Pprior = P + Q Pprior = F ∗ P ∗ FT + Q

Table 11.3: Predict step equations

Predict Step:

• x and P are the state mean and covariance. They correspond to µ and σ2

• F is the state transition function. When multiplied by x it computes the prior.

• Q is the process covariance.

• B and u are new to us. They let us model control inputs to the system.

Update Step:

• H is the measurement function. If you mentally remove H from the equations,
you should be able to see that these equations are quite similar.

88

11.2. RESEARCH AND STUDY OF THE KALMAN FILTER

Update step

Univariate version Multivariate version
y = z− xprior y = z− H ∗ xprior

K =
Pprior

Pprior+R K = Pprior ∗ HT ∗ (H ∗ Pprior ∗ HT + R)−1

x = xprior + K ∗ y x = xprior + K ∗ y
P = (1− K) ∗ Pprior P = (I − K ∗ H) ∗ Pprior

Table 11.4: Update step equations

• z and R are the measurement mean and noise covariance. They correspond to z
and σ2

z in the univariate filter.

• y and K are the residual and the Kalman gain.

There are a few differences between both versions but the concepts are very similar:

1. Use a Gaussian to represent our estimate of the state and error.

2. Use a Gaussian to represent the measurement and its error.

3. Use a Gaussian to represent the process model.

4. Use the process model to predict the next state (the prior).

5. Form an estimate part way between the measurement and the prior.

The job as a designer will be to design the state (x, P), the process (F, Q), the mea-
surement (z, R), and the measurement function H. If the system has control inputs,
we’ll need to design B and u.

Let’s go back to our problem of tracking a dog. Let’s start with the predict step:

First, we need to design the state variable. To do so, we need to know what vari-
ables are we going to track. In this problem, they will be the position and velocity of
the dog.

State variables can either be observed variables (directly measured from a sensor)
or hidden variables (inferred from the observed variables). For this problem, the sensor
will only read positions, so position is observed and velocity, hidden. It is important
to understand that tracking these variables is a design choice. In the project, I’ll be

89

CHAPTER 11. ITERATION #6: FILTER THE DATA

tracking observed accelerations and hidden velocities. For now, this is a mere example
to help to understand the filter.

In the univariate version, we represented the dog’s position with a scalar value (e.g.
µ = 3.27). In the multivariate version, we will be using matrices. We use a nx1 matrix
(called a vector) to store n state variables.

To represent a position of 10 meters and a velocity of 4.5 m/s, we will do it like this:

x =

[
10.0
4.5

]
(11.33)

Second, we need to design the state covariance. This is the other half of the Gaus-
sian, the variable P. In the multivariate version, we will need a matrix of covariances;
the diagonal will contain the variances of the variables and the rest of spots will repre-
sent the correlation between the variables.

To represent a position variance of 5002 (we are quite uncertain about the initial
position) and a velocity variance of 49 m2, we will do it like this:

P =

[
500.0 0

0 49

]
(11.34)

The 49m2 value of the velocity variance is not random at all. The top speed of a dog
is 21m/s. Following the idea that 99.7% of the values are inside the 3σ of the velocity,
3σ = 21, σ = 7, σ2 = 49.

The zeros in the covariance means doesn’t mean that there is no correlation between
the variables. It does mean that we have no idea about the correlation, so we initialize
the covariances to zero. If we knew the covariances, we would use them.

Third, we need to design the process model. The process model is based on the
mathematical behavior of the system. Kalman Filters implement this using this linear
equation, where xprior is the prior, or predicted state: xprior = F ∗ x

This equation can be written like this:

[
xprior

x_velprior

]
=

[
? ?
? ?

]
∗
[

x
x_vel

]
(11.35)

90

11.2. RESEARCH AND STUDY OF THE KALMAN FILTER

Our job as designers is to specify F such that xprior = F ∗ x performs the prediction
of our system. To do this, we need one equation for each variable. In this example, we
need an equation to compute the position x and another to compute the velocity x_vel.
We already know the equation for the position:

xprior = x + x_vel ∗ t_increment (11.36)

About the velocity equation, we have no predictive model, so we assume that it
remains constant between predictions. With these equations we have the following
process model:

xprior = x + x_vel ∗ t_increment (11.37)

x_velprior = x_vel (11.38)

We can write this more similar to the linear algebra way:

xprior = 1 ∗ x + t_increment ∗ x_vel (11.39)

x_velprior = 0 ∗ x + 1 ∗ x_vel (11.40)

We can rewrite this like:

[
xprior

x_velprior

]
=

[
1 t_increment
0 1

]
∗
[

x
x_vel

]
(11.41)

being

F =

[
1 t_increment
0 1

]
(11.42)

F is called the state transition matrix.

Forth, we need to design the process noise. A way to explain what the process
noise is, could be this: A car driving along the road with the cruise control on; it should

91

CHAPTER 11. ITERATION #6: FILTER THE DATA

travel at a constant speed. However, it is affected by a number of unknown factors such
as how does wind affect the car, as do hills.

Its design is quite demanding. There are some methods to model it: we can consider
it a continuous white noise, a piecewise white noise or even use a simplification where
we set all values to zero except for a noise term in the ones that change more rapidly,
thus, the higher degree derivate (velocity in the example). This design of this noise
turns out to be more experimental than theoretical, so I will skip it until I design the
filter for my own problem.

Fifth, we can design the control function. The filter does not only filter data, it al-
lows us to incorporate the control inputs of systems like robots and airplanes. Suppose
we are controlling a train. The train goes with constant velocity, but if you activate the
brakes, that’s information we have to incorporate to the system. We will do it with B
and u.

Here u is the control input and B, the control input model function. It must compute
how much x changes due to the control inputs.

With all these six variables, we have the predict step done. Now we can implement
the update step of the filter. You only have to supply two more matrices so, it won’t
take long.

First, we need to design the measurement function. Up until now, we track po-
sition using a sensor that measures positions. Computing the residual is easy, just
subtract the prediction from the measurement. But, what would happen if we were
trying to track temperature using a thermometer that outputs a voltage corresponding
to a temperature reading? We cannot subtract a temperature prediction from a voltage
reading.

Both the measurement z and the state x are vectors so, we need a matrix to perform
the conversion. This matrix is the variable H. We have to design H so that H ∗ xprior

yields a measurement. For this problem, we have a sensor that measures position, so z
will be a one variable vector:

z =
[
z
]

(11.43)

92

11.2. RESEARCH AND STUDY OF THE KALMAN FILTER

The residual equation will have the form

y = z− H ∗ xprior (11.44)

[
y
]
=

[
z
]
−

[
? ?

]
∗
[

x
x_vel

]
(11.45)

We will want to multiply the position x by 1 to get the corresponding measurement
of the position. We do not need to use velocity to find the corresponding measurement,
so we multiply x_vel by 0.

y = z− H ∗ xprior (11.46)

[
y
]
=

[
z
]
−

[
1 0

]
∗
[

x
x_vel

]
=

[
z
]
−

[
x
]

(11.47)

being

H =
[
1 0

]
(11.48)

Last, we need to design the measurement. The measurement is implemented by z,
the measurement mean, and R, the measurement covariance.

z is easy. It contains the measurement(s) as a vector. As we only have one measure-
ment, we have:

z =
[

x
]

(11.49)

If we had two sensors we would have:

z =

[
z1
z2

]
(11.50)

The measurement noise matrix models the noise in our sensors as a covariance
matrix. In practice, this can be difficult. A complicated system may have many sensors,

93

CHAPTER 11. ITERATION #6: FILTER THE DATA

the correlation between them might not be clear, and usually their noise is not a pure
Gaussian.

We have only a sensor so the covariance matrix R is:

R =
[
σz

]
(11.51)

If we had two sensors, the first with a variance of 5m2 and the second with 3m2, we
would write:

R =

[
5 0
0 3

]
(11.52)

The covariances between the noise of the different sensors is set to zero because we
assume there is no correlation between their noises.

With these three matrices (H, z and R) we have completed the update step.

Let’s see now the final equations of the system:

These are the predict equations

Mean of the prediction:

xprior = F ∗ x + B ∗ u (11.53)

F ∗ x computes the prediction of the state for the next time step. B ∗ u computes the
contribution of the controls to the state after the transition.

Covariance of the prediction:

Pprior = F ∗ P ∗ FT + Q (11.54)

We cannot simply write Pprior = P + Q. In the multivariate version, the variables
are correlated, so we multiply P by F and the transpose of F to include this correlation.

and these, the update equations

94

11.2. RESEARCH AND STUDY OF THE KALMAN FILTER

System uncertainty:

S = H ∗ Pprior ∗ HT + Q (11.55)

We cannot simply write Pprior + R. We have to ensure that the Pprior is in measure-
ment space. If not, we won’t be able to add the sensor noise (R). If you ignore the H
terms, you can see how we get the denominator of the Kalman Gain (K = σ2

σ2+σ2
z
).

Kalman Gain:

K = Pprior ∗ HT + S−1 (11.56)

If you ignore the H term, you can see how we get the Kalman Gain equation from
the univariate version of the filter.

Residual:

y = z− H ∗ xprior (11.57)

This is a easy one, we just compute the difference between the measurement and
the prediction.

State update:

x = xprior + K ∗ y (11.58)

Here, as we did in the g-h Filter, we add to the prediction a weighted version of the
residual.

Covariance update:

P = (I − K ∗ H) ∗ Pprior (11.59)

Once again, if you remove the H term, you can see we get the univariate version
(P = (1− K) ∗ Pprior).

In these equations, the H term is primary used to ensure we are working in mea-
surement space, thus, we are not trying to subtract temperature to voltage as we saw

95

CHAPTER 11. ITERATION #6: FILTER THE DATA

earlier.

I know this have been long and tedious, there is a lot of information, definitions,
theory, concepts but there are necessary to understand what’s going on. I first tried to
understand the Kalman Filter using a bunch of papers[6][8][2][5][12][1][7][10]. In the
second to third page of those papers, I already had the equations above. It was faster,
but I could not understand a thing.

As someone who went from not understanding a thing about the filter to under-
stand the reason behind the equations, I consider worth the long and tedious reading
in order to know what you are working with. The easy part of the Kalman Filter are
the equations. The problem is to design the matrices in a way they are useful. To do
so, you need to understand them from bottom to the top, as I have tried to show you.

Now we have the Kalman filter, it’s time to start coding and see what happens.

11.3 IMPLEMENTING THE FILTERS

Once I understood the principles of this kind of filters, I started to code them. The
objective of this module is to enhance the accuracy of the velocity calculations so these
filters should be coded in order to be implemented in the app.

Although my plan is to use the Kalman Filter, I wanted to code the g-h Filter, the
discrete Bayes Filter, the Gaussian object and the univariate version of the Kalman
Filter too.

I think it’s better to start with an easy filter, understand how to code it properly, test
it and them, jump to next one. If I start with the most difficult one, I will make all the
mistakes with the most complex, thus, the more prone to errors.

All these filters can be found in the "Model" folder of the project delivered with the
report [16].

11.4 UNIT TESTS

Once the filters were coded, I needed to test if there was any error in the imple-
mentation. For this task, I have used the test suite delivered by Apple, the XCTest
Framework.

96

11.4. UNIT TESTS

XCTest framework is the Xcode out-of-the-box test suite. As far as I know, the
Java "equivalent", JUnit, is only used for Unit Tests. However, XCTest includes Unit
Tests, Performance Test, UI Testing and can be configured to be run with Continuous
Integration.

At this point, I will only use the Unit Testing functionality. My goal with these tests
is to ensure the lack of errors in the implementation of the tests.

These tests can be found in the "Speed Gauge Tests" folder of the project delivered
with the report.

The tests are very similar to the way we have done them in previous lectures, like
Design and Testing. We have a setUp and tearDown method that must be present
in every test file. To avoid the repetitive code, I have created the Abstract_Test.swi f t
file, where these methods are declared. All test files must be declared as sons of this
Abstract_Test class.

The structure of a test is trivial:

1. We import the XCTest suite.

2. We import the project module as @testable (in this case it’s called "Speed Gauge".
Note the difference with the name of the Test Module "Speed Gauge Tests").

3. In every test we declare the data we want to filter, the expected result and the
filter itself.

4. We use the filter to treat the data, and we compare the result of the filter with the
expected data. If this comparison successes, the test is passed.

Although, the structure is simple, we need to write useful test. A test must be
"right" but also useful. The way I decided to implement the tests was using the under-
standing I have gained about what I was testing.

Let’s use the most simple filter for the example, the g-h Filter:

As we know now, in the g-h Filter, we predict the value for the next time step, then,
we get the measurement from the sensor from this future (now present) time step, and
we choose a weighted mean between the prediction and the measurement as the value
for this time step.

So, the test for this filter must cover a variety of cases:

97

CHAPTER 11. ITERATION #6: FILTER THE DATA

1. What if I trust 100% in the prediction? The measurement must be thrown away.

2. What if I trust 100% in the measurement? The entry data and the filtered data
must be the same.

3. What if I use the same data as the book I’ve been using? Do I get the same results?
If not, something must be wrong in my implementation.

This has been basically the way I have tried to focus my tests. Here, in the figure
§11.23 you can see the code of my g-h Filter tests.

Figure 11.23: g-h filter unit tests.

11.5 THE FLOATING POINT PROBLEM

Once I read that with floating-point numbers, if you have one problem and you
add another problem, you have 1.9999999997 problems. That’s basically the Floating
Point Problem.

In the implementation of the filters, I’ve always used the type Double when I was
dealing with numbers. The data from the sensor is delivered using this type, so I found
no reason to use any other basic type to represent numbers.

98

11.6. INCLUDING EXTERNAL LIBRARIES IN UNIT TEST FILES

Once I was doing my tests I found that I was getting failed tests, even in very basic
cases. The first test I did was a simple declaration of the object, and then I check that
every parameter of the object was correctly set. Even in this case, I would get a failed
test.

After a basic research, I realized what was happening. It may sound trivial but it
was unaware of this behavior.

It this paper[21], this behavior is explained. Long story short, squeezing infinitely
real numbers into a finite number of bits requires an approximate representation. Al-
though there infinitely many integers, the result of integer computations can be stored
in 32 or 64 bits. In contrast, given any fixed number of bits, most calculations with real
numbers will produce quantities that cannot be exactly represented using that many
bits. Therefore, the result of a floating-point calculation must often be rounded in order
to fit back into its finite representation. This rounding error was the reason why all
my tests were failing.

As I couldn’t modify the behavior of floating-point numbers, it did another research
to know how to cope with these problems when doing Unit Tests. What I found was
that XCTest already address this issue.

The method used to verify if an object is equal to another is called XCTAssertEqual(expression1 :
Equatable, expression2 : Equatable). Equatable states that the object can be compared
with another one.

In order to avoid this problem, I had to use this other function: XCTAssertEqual(expression1 :
FloatingPoint, expression2 : FloatingPoint, accuracy : FloatingPoint). The accuracy is
used as a threshold. Any value between "expression1 + accuracy" and "expression1−
accuracy" will be treated as equal to expression1.

11.6 INCLUDING EXTERNAL LIBRARIES IN UNIT TEST FILES

Another problem I found testing my filters was the use of external libraries in the
tests. I couldn’t import any external library added to the project using CocoaPods. I
would get compile time error that didn’t let me use them. This was a mayor problem
because Kalman Filter is basically matrices so, I couldn’t test it.

The problem was solved this way: As I was using CocoaPods to add the libraries
to the project, I would set the target to my project "Speed Gauge". What I didn’t know

99

CHAPTER 11. ITERATION #6: FILTER THE DATA

was that tests are considered another target, separate from the project.

I was telling CocoaPods to let use the libraries with "Speed Gauge" but it didn’t
know "Speed Gauge Tests" even existed. I had to restructure the Pod file to add the test
target. After that, the problem was solved.

Figure 11.24: Changes in Podfile.

100

12

ITERATION #7: PARALLEL

PROGRAMMING AND QUEUES

101

A single-threaded program has only one finger. But a multi-threaded program has multiple fingers. Each
finger still moves to the next line of code as defined by the flow control statements, but the fingers can be at
different places in the program, executing different lines of code at the same time.

Albert Sweigart,
Software developer

T his chapter includes the study and use of parallel programming to improve the perfor-
mance of the app. Section §12.1 talks about concurrency in the iOS platform, Section
§12.2 displays the code necessary to make the code concurrent and Section §12.3 dis-

plays the performance improvements after the changes.

CHAPTER 12. ITERATION #7: PARALLEL PROGRAMMING AND QUEUES

12.1 IOS CONCURRENCY

One of the most important advances in modern computing is the ability to perform
more than one task at the time. Previous processors could not execute more than one
instruction simultaneously. With multi-core processors that is not a problem anymore.
You can write different parts of your code to be executed in multiple cores. This is
important. You have to specify that a chunk of code is meant to be run concurrently. If
not, you will have a single-core application running in a multi-core device.

There are two ways to achieve this in Apple operating systems: Using the Grand-
Central-Dispatch or using Operation Queues[15].

The Grand-Central-Dispatch (GDC) is the most commonly used API to manage
concurrent code and execute operations asynchronously at the UNIX level of the
system. It’s a low-level C API that enables developers to execute tasks concurrently.

Operation Queues, on the other hand, are a high level abstraction of the queue
model and is build in top of GCD. That means you can execute tasks concurrently
just like GCD, but in an object-oriented fashion.

In this project I have used the latter. I first tried with GDC but I found that Opera-
tion Queues led to a clearer code.

12.2 CONCURRENT CODE

In order to implement concurrent code I had to understand a few rules about con-
currency.

First, operation queues have different priorities. These priorities are set in an
enumerate called QualityOfService. There are 5 different values:

1. userInteractive: Used for work directly involved in providing an interactive UI.
For example, processing control events or drawing to the screen.

2. userInitiated: Used for performing work that has been explicitly requested by the
user, and for which results must be immediately presented in order to allow for
further user interaction. For example, loading an email after a user has selected
it in a message list.

102

12.2. CONCURRENT CODE

3. utility: Used for performing work which the user is unlikely to be immediately
waiting for the results. This work may have been requested by the user or ini-
tiated automatically, and often operates at user-visible timescales using a non-
modal progress indicator. For example, periodic content updates or bulk file op-
erations, such as media import.

4. background: Used for work that is not user initiated or visible. In general, a user
is unaware that this work is even happening. For example, pre-fetching content,
search indexing, backups, or syncing of data with external systems.

5. default: Indicates no explicit quality of service information. Whenever possible,
an appropriate quality of service is determined from available sources. Other-
wise, some quality of service level between userInteractive and utility is used.

Second, the main queue is the one where interface updates take place. If any
heavy task is added to the main queue, UI updates will look slower. If this task is very
heavy, the UI could freeze and the screen won’t respond to any user interaction.

Last, closures receive the Operation Queue where they are going to be executed
as a parameter. Heavy math will be placed in a background queue and charts updates
will be placed in the main queue.

Now that we understand the basics of concurrent programming, we need to update
the app.

1. We declare an OperationQueue object, as in Figure §12.1.

Figure 12.1: Declaration of the new queue.

2. We pass the new queue to the closure as a parameter. All the code inside will be
executed in this queue, as in §12.2.

103

CHAPTER 12. ITERATION #7: PARALLEL PROGRAMMING AND QUEUES

Figure 12.2: The closure is set to run on the new queue.

3. We add the UI updates methods to the main queue. This means heavy math will
be executed in the background but charts updates, as in §12.3.

Figure 12.3: Update charts in the main queue.

With this simple changes, we are setting our code to work concurrently.

12.3 PERFORMANCE IMPROVEMENTS

These changes made an impact in performance. Previously, I was doing both math
and charts updates in the main queue. This caused the main queue to be full of work-
load, as in §12.4.

104

12.3. PERFORMANCE IMPROVEMENTS

Figure 12.4: Non-concurrent application performance after a minute running.

However, I found that I was updating all 9 charts every tenth of a second. To gain
a bit of performance, I decided to update only the graphs I was displaying. With these
changes, I could reduce the CPU workload, as in §12.5.

Figure 12.5: Concurrent Application performance after a minute running.

105

CHAPTER 12. ITERATION #7: PARALLEL PROGRAMMING AND QUEUES

106

13

ITERATION #8: IMPLEMENTATION

OF THE FILTER IN THE APP

107

Life’s under no obligation to give us what we expect.

Margaret Mitchell (1900–1949),
Novelist

T his chapter includes how I initialize the Kalman filter matrices and the reason why
it didn’t work out. Section §13.1 explains how I could reduce the complexity of the
problem, Section §13.2 displays the initialization of the Kalman Filter used in that

version of the project and Section §13.3 explains the results after the filter was implemented in
my app.

CHAPTER 13. ITERATION #8: IMPLEMENTATION OF THE FILTER IN THE APP

13.1 FROM A 6X6 TO A 2X2 MATRIX

Although I could improve the performance of my code, the Kalman Filter is full of
matrices, thus, we need to multiply, transpose and inverse a lot of data. Both multipli-
cation and inversion are mathematical operation with a time complexity of O(n3), so
reducing the size of the matrix would improve the performance drastically.

In this project, I need to get velocities from accelerations. Both acceleration and
velocity are defined by 3 axes; X, Y and Z. In the Kalman Filter implementation, I
would need to work with 6x6 matrices. However, I don’t need to compute the six
component (3 axes per magnitude), only the acceleration and velocity in the gravity
axis. With these changes, I can reduce the workload of the app.

13.2 KALMAN FILTER INITIALIZATION

The most difficult part of the Kalman Filter is the initialization of the different ma-
trices. Next, I will explain the reason behind the values of every matrix:

x =

[
0
0

]
(13.1)

The state variables represent the value of the magnitudes we measure. We consider
that the device is at rest, so both acceleration and velocity are zero.

P =

[
16 0
0 16

]
(13.2)

The state covariance represents the covariance of the variables we measure. For the
first iteration we define it as an upper bound. I consider that the maximum velocity
and acceleration we can measure will be roughly 12 meters per second. This is 3σ. As
the diagonal of the matrix is σ2, we get that σ2 = 16. The rest of the matrix is set to zero
as we don’t know what is the covariance between the acceleration and the velocity.

F =

[
1 t_increment
0 1

]
(13.3)

108

13.3. FILTER RESULTS

The transition matrix is the one used in the examples. We have a magnitude and its
derivate so, it remains the same.

Q =

[
0 0
0 σsensor

]
(13.4)

The process covariance is set with zeros except the lower right element. That ele-
ment corresponds with the variance of the sensor, as there is no datasheet of the Apple
processor, we don’t know the exact value to choose.

B =

[
0 0
0 0

]
(13.5)

u =
[
0 0

]
(13.6)

Both B and U are set to zero because there are no control inputs. A control input
would be a lever that modifies the acceleration but in our problem, there is no such
thing.

H =
[
0 1

]
(13.7)

H is the measurement matrix, thus, the matrix that we use to compute the residual.
As we get accelerations from the sensor and they are placed in the second row of the
matrices, the first row should be a zero and the second one, a one.

R =
[
0.01

]
(13.8)

Finally, R is the measurement noise. As the variance of the sensor at rest always
lays between ±0.05, I considered 0.01 a good start.

13.3 FILTER RESULTS

After I set the matrices, I run a few tests. Unfortunately, the results were not what
I expected. The graphs in §13.1 showed almost the same results as was previously
getting.

109

CHAPTER 13. ITERATION #8: IMPLEMENTATION OF THE FILTER IN THE APP

Figure 13.1: Result after the implementation of the Kalman Filter.

After further study I can understand why this happens:

1. I don’t have enough information about the sensor. Apple does not deliver any
information about its sensors, so I have no way to initialize the filter with the
right values.

2. The userAcceleration we get from the sensor is an already filtered using a Kalman-
like filter so, the data cannot be further improved with this kind of filters.

3. I don’t have any control input that could improve the filter, so I have to rely on
the means and covariances I consider to be closest to the real ones.

After these results, I needed to reconsider how I was going to treat my data. In the
next chapter you will find how I get better estimates without using the Kalman filter
but applying the knowledge I have gain with its study.

110

14

ITERATION #9: DATA TREATMENT

111

Give me a place to stand, and a lever long enough, and I will move the world.

Archimedes (287 BC–212 BC),
Mathematician

T his chapter includes how I found a way to constraint the problem to a point where I
could get useful data. It also includes the treatment applied to the data. Section §14.1
explains how a real accelerometer works, Section §14.2 explains what’s the problem

with accelerometers, Section §14.3 develops the use of vector projections to calculate the vertical
velocity, Section §14.4 explains how I finally fixed the drift of the integrated velocity, Section
§14.5 explains how I studied the fixed data in order to get the information I wanted and Section
§14.6 talks about the update of the app where I finally the display the results.

CHAPTER 14. ITERATION #9: DATA TREATMENT

14.1 YOU GET FORCE, NOT ACCELERATION

If you recall from the chapter 8, there was a section called "You get acceleration,
not velocity". There, I explain that I thought I was going to be working with velocity
values and not with accelerations. I argued that thinking in terms of acceleration was
something anybody does in their day-by-day basis.

After getting those bad results from the implementation of the Kalman Filter and
having a tutorial with Alberto, he suggested I should search information about IMUs.
At that point I finally understood how an accelerometer works and how they measure
"acceleration".

IMUs (Inertial Measurement Units) are electronic devices that measures and reports
a body’s specific force, angular rate, and sometimes the magnetic field surrounding the
body, using a combination of accelerometers and gyroscopes, sometimes also magne-
tometers. We could agree that I was working with an IMU.

As I was using the accelerometer, I studied how they work in real life. As I did
with the Kalman Filter, I will explain how they work the same way I learned it. This
information can be found using this link [24].

When thinking about accelerometers it is often useful to image a box in shape of a
cube with a ball inside it, as seen in figure §14.1.

Figure 14.1: A representation of an object with no gravitational field.

112

14.1. YOU GET FORCE, NOT ACCELERATION

If we take this box in a place with no gravitation fields or with no other fields that
might affect the ball’s position, the ball will simply float in the middle of the box.

From the picture above you can see that we assign to each axis a pair of walls (we
removed the wall Y+ so we can look inside the box). Imagine that each wall is pressure
sensitive. If we move suddenly the box to the left (we accelerate it with acceleration
1G = 9.8m/s2), the ball will hit the wall X-. We then measure the pressure force that
the ball applies to the wall and output a value of −1G on the X-Axis, as seen in the
figure §14.2.

Figure 14.2: A representation of an object moving with an acceleration of 1G.

Please note that the accelerometer will actually detect a force that is directed in
the opposite direction from the acceleration vector. This force is often called Inertial
Force or Fictitious Force. An accelerometer measures acceleration indirectly through a
force that is applied to one of its walls (according to our model, it might be a spring or
something else in real life accelerometers). This force can be caused by the acceleration,
but as we’ll see in the next example it is not always caused by acceleration. This is
the reason why I was getting my charts inverted. When I was doing a movement in
straight up, the velocity used to be negative. I wasn’t getting wrong values, I was just
getting the inertial force that the sensor was detecting.

If we take our model and put it on Earth the ball will fall on the Z- wall and will
apply a force of 1G on the bottom wall, as shown in the picture §14.3:

113

CHAPTER 14. ITERATION #9: DATA TREATMENT

Figure 14.3: A representation of an object under the effect of the gravity.

In this case the box isn’t moving, but we still get a reading of −1G on the Z-Axis.
The pressure that the ball has applied on the wall was caused by a gravitation force.
In theory, it could be a different type of force – for example, if you imagine that our
ball is metallic, placing a magnet next to the box could move the ball so it hits another
wall. This was said just to prove that in essence accelerometer measures force not
acceleration. It just happens that acceleration causes an inertial force that is captured
by the force detection mechanism of the accelerometer.

While this model is not exactly how an accelerometer sensor is constructed, it is
often useful in solving accelerometer related problems.

So far we have analyzed the accelerometer output on a single axis and this is all
you’ll get with a single axis accelerometers. The real value of three-axis accelerometers
comes from the fact that they can detect inertial forces on all three axes. Let’s go back
to our box model, and let’s rotate the box 45 degrees to the right. The ball will touch 2
walls now: Z- and X- as shown in the picture §14.4:

114

14.1. YOU GET FORCE, NOT ACCELERATION

Figure 14.4: A representation of an object under the effect of the gravity where the force
affects two axes.

The values of 0.71 are not arbitrary, they are actually an approximation for the
square root of 1/2. Every force applied follows the Pythagorean theorem, thus, if we
name our vector R, and the projection of R is every axis, Rx, Ry, Rz we have that:

R2 =
√

R2
x + R2

y + R2
z (14.1)

If we use this equation with the data of the last image, we get this:

1 =

√√
1/2

2
+
√

0
2
+
√

1/2
2

(14.2)

We will use this theorem in future sections to obtain the vertical acceleration and
velocity of the device.

115

CHAPTER 14. ITERATION #9: DATA TREATMENT

14.2 THE PROBLEM WITH ACCELEROMETERS

IMUs gather many sensors for a reason. Accelerometers are good measuring iner-
tial force, but they are not that good with the rotation of the device.

As you have the force vectors, you can measure the rotation of the device comput-
ing the angle between t and t+1 vector with the gravity vector. If we do this we see
that, during a rotation, the graph presents a lot of noise.

Figure 14.5: A representation of the rotation of the accelerometer [13].

Gyroscopes, in the other hand, are very efficient detecting rotation changes but,
they drift over time due to the integration of the angular velocity to get angular posi-
tions.

Some authors use a filter called the Complementary Filter that mixes the accuracy of
the accelerometer tracking forces and the accuracy of the gyroscope tracking rotations.

116

14.3. USING VECTOR PROJECTIONS

Unfortunately, due to the extensive study of the Kalman Filter, there was little
time left so Alberto and I decided to keep the gyroscope study aside and focus on
how I was going to get the vertical velocity from the sensor and treat the data after we
got the entire sample and not in real time.

As this is a personal project that I decided to implement as my final project, the
study of the gyroscope would be an interesting improvement because I could get better
estimates and, if they are good enough, I could do the data treatment in real time. As
for now, I will only use the accelerometer.

14.3 USING VECTOR PROJECTIONS

As I wrote in previous sections, in this project I don’t need to compute the velocity
of the device itself, I only need the vertical velocity. By vertical, I mean the velocity of
the device parallel to the gravity vector.

With this constraint, I need to define the amount of userAcceleration (remember
that userAcceleration was the name of the acceleration that the user is giving to the
device) that is parallel to the gravity.

For example, if a move the device straight up, the full inertial force will be paral-
lel to the gravity. If I move it from left to right, the force is perpendicular it. However,
if I move the device from the bottom left to the top right, part of the force is used to lift
the device, to face the gravity. This force is the one we want to take account, not the
one used to move it from left to right.

How do we get the force in the gravity vector? Using the projection of the userAcceleration
onto the gravity vector. For this we will use this formula:

proj~a~b =
~a ∗~b
|~a|2 ∗~a (14.3)

With this formula, we obtain the projection onto the gravity. Although the gravity
vector is always perpendicular to the floor, the system of reference is not the Earth
but the device, so this delivers a 3 component vector. Now, we need to compute the
module of the vector to know the amount of force applied. The only problem left
is the fact that modules only deliver positive values (remember that we are using the
Pythagorean theorem so, it will be positive). What happens if we are moving the device

117

CHAPTER 14. ITERATION #9: DATA TREATMENT

straight down? We would receive the same value as if it goes straight up. The thing is
that we already have the answer.

If you recall the previous equation, we multiply both vectors. This multiplication
is called the Dot product [22]. This product delivers a sole value as we are multiplying
every component on each vector with its counterpart in the other one, thus, we multi-
ply the value of the X-Axis force in both vectors plus the product in the Y-Axis plus the
product of the Z-Axis. The important part of this is the sign of the Dot Product. If
the sign is positive, that means that both vectors are in the same direction; if not, they
are in opposite direction.

In our project, this could be resumed this way: If the Dot product is positive, the
projection points to the floor. If it’s negative, it points to the ceiling as gravity always
points to the floor.

This way I could get the vertical acceleration (and vertical velocity via integration)
of the device thanks to the gravity as a point of reference. As I said in previous chapters,
accelerometers are noisy and with the integration, some drift is expected up to this
point. Next section will explain how this was reduce thanks to further constraints
added to the system.

14.4 FIXING THE DRIFT

Drift is the main problem I’ve found in this project. As I don’t have a way to mea-
sure the velocity but the sensor itself, the only way I’ve found to verify it’s working
right is moving the device, stop it and verify that the final velocity comes back to zero.

That’s doesn’t happen in normal conditions. As I have said earlier, accelerometers
does not track rotations with much precision and values are biases when they are in
the axis facing gravity. When you move the device in a straight line, the values are
more likely to come back to zero, as we can see in Figure §14.6.

118

14.4. FIXING THE DRIFT

Figure 14.6: Example where, after a bottom-up movement, we get the vertical velocity
close to zero.

However, when there is a movement involved, the drift is way bigger as the bias is
present in every axis, as seen in §14.7. Remember, in this picture, vertical max velocities
are around 1 m/s. A drift of a 10% from the real final value is considered far from being
right.

Figure 14.7: Example where, after a press, we get the vertical velocity far from zero.

119

CHAPTER 14. ITERATION #9: DATA TREATMENT

Moreover, thanks to the Kalman Filter study, we have learned we should use all
the information we have about the system. As my project is about lifting weights, we
know that the final velocity must be zero.

We know that there is a bias in the sensor where the axis that face gravity has a
non-zero mean noise. This non-zero mean noise causes the integration to drift lineally,
so, we could try to remove this drift lineally too.

The method I have used is done after we have all the measurements. As I need the
final velocity to correct the sample, this cannot be achieved in real time.

• First, we suppose the final velocity should be zero. Then, we compute the final
drift of the sample. As the drift is mostly lineal, we can remove this drift lineally.

• Second, we calculate the slope of the drift. With the slope, we know the amount
of drift per time unit.

• Last, we lineally subtract (or add if we have negative values) the drift from the
sample. With this method, we get pretty good results. We can see that not only
the end of the sample but the stops between reps are now very close to zero.

This is the first time we get results that matches the real life behavior of the device,
so our next step is to treat the data to extract the useful information.

14.5 FINDING PATTERNS

As I explained in the first chapters, this is all about measuring the velocities of every
repetition during a barbell movement. Now, we have a system that tracks velocity
pretty accurate but, we don’t have a way to reduce thousands of values to a few that
represents the velocity of every rep.

Up until this point, I have been studying the system displaying the graphs in the
device but the goal is not to draw a graph in the Apple Watch but to display a few
values that summarize all the information of the graph.

Now, we must study how we are going to distinguish what values belong to
every rep. To do so, we have to think about what we have right now:

120

14.5. FINDING PATTERNS

1. We have a filtered sample that, at rest, shows values very close to zero, but not
zero. That means that we don’t get an array of zeros at rest, we get very different
values very close to zero, some positives and some negatives.

2. We know that the concentric phase of the lift happens when the velocity is
bigger than zero for a time frame. If we get a positive value and a negative
value right next, with a sample frequency of 100Hz, that is not a rep.

3. We know that the concentric phase of the lift ends when, after a significant time
frame, the values come back to zero.

4. Elite lifters, working with max weights display a bar speed close to 0.16 m/s and
more novice lifters, 0.3 m/s. That means that we are not likely to move the bar
at 0.005 m/s.

5. As the human body is a complex set of levers, there are sticking points where the
bar speed will go down. That means that max velocity is not useful by its own.
We need the mean velocity to contextualize the information.

With this information, I have designed the next algorithm to detect repetitions:

1. We declare a few variables that will store the starting and ending time spots of the
reps, the maximum velocity of the current rep and the max and mean velocities
of every rep.

2. As we won’t get zeros at rest, we will assume that every value between -0.1 m/s
and 0.1 m/s is considered to be zero. This can be assumed due to the fact that
we are not going to move the barbell slower. This can be understood as a lower
bound.

3. If the current value is bigger than zero and the max velocity of the rep is also
zero, that means that we are in the starting point of the rep. Also, if the current
value is bigger than the maximum value, we update the latter. With this we will
get the peak velocity of the rep.

4. If the current value is zero and the maximum velocity of the rep is not zero, we
have the ending point of the rep. Before we assume this is a valid rep, we need to
check if the time frame is bigger than a threshold. We assume that no repetition
is going to last less than 0.3 seconds. With this decision, the system won’t track
either the drift data if any or little movements of the lifter like the rebound after

121

CHAPTER 14. ITERATION #9: DATA TREATMENT

ending a rep (if you are squatting at 0.8 m/s and you stop suddenly, it’s very
likely that you won’t brake perfectly, the bar might bound a little and this bounce
could be registered as a rep)

5. If the rep is not considered valid, the last starting and ending points are removed
and the maximum velocity reset. If it’s valid, we compute the mean velocity in
this time frame.

14.6 DISPLAYING RESULTS IN SPEED GAUGE

Now that we have useful information, we need to display it. As my sample app
is full of graphics in its main view, I will need to create a separate view where this
information will be displayed.

The way we will present the information is using a TableViewController. This is a
class that inherit from ViewController (the one used in the main view) that displays
the information as a list. Every iOS app that display any kind of information in a table
uses this class.

By using this class we can access to another view, but we need to pass data from
one view to the other:

1. We need to declare a prepare function where we are going to get data from one
view and pass it to another.

2. We need to declare the variables that will contain the past information from the
original view in the destination view.

3. Once we have both, we just need to assign the information from the source to
the destination variables. Once we access the new view, the information of the
source view will be available.

Now, we need to display the data in the table. Thanks to the TableViewController
class there is some boilerplate code that let us to display it. The way I will be going
to display this information will be with one section per rep and a row per section to
display the information.

This would be way the information will be given to the user.

122

14.6. DISPLAYING RESULTS IN SPEED GAUGE

Figure 14.8: Figure of the table view in the app.

Finally, we have a full app that computes and display the information we want.
Next chapter will be about the development of the Apple Watch app as the final step
of the project.

123

CHAPTER 14. ITERATION #9: DATA TREATMENT

124

15

ITERATION #10: ATLAS

125

If you don’t know, the thing to do is not to get scared, but to learn.

Ayn Rand (1905–1982),
Novelist

T his chapter includes the final development of the Apple Watch app, the problems I
have found and how I fixed them. Section §15.1 develops the changes I needed to
make to port the app from iOS to watchOS, Section §15.2 explains how I had to

include Healthkit in my app, Section §15.3 explains how I had to deal with the watchOS life
cycle of the app and Section §15.4 displays the final features of the app.

CHAPTER 15. ITERATION #10: ATLAS

This will be the last iteration of the development. We have understood how the
accelerometer works, how to deal with external libraries, we’ve learned how to work
with real-time data and how to filter it (unless I couldn’t use it in the final version)
and we have understood that we should implement all the information we have about
a system in order to improve our dataset. Now it’s time to apply all the study and
research in the final product: the Apple Watch app that tracks velocities.

15.1 FROM IOS TO WATCHOS

All previous study of the accelerometer has been done using an iPhone. This
presents two main problems:

1. I’m not using the device as it will be used in the final version. I cannot tie the
phone to my forearm as I will do with the Apple Watch, so I could face that my
app does work as expected when I tested it in a real environment.

2. As I’m using a completely different device, I must port my code from iOS to
watchOS. The language used is the same (Swift) but the project organization
and life cycle of the app are different, so I will need to make some changes to
my app.

In order to follow the development, we will treat the second problem, first. I cannot
test the app as I will use it if I haven’t developed it yet.

watchOS was initially a collection of companion apps, thus, you develop an app
for iOS and then, you add an extension for the Apple Watch. This means that if don’t
have an iPhone nearby, the watch was kind of useless.

Fortunately, that changed a couple versions back. Now, you can develop fully
operational standalone apps. Thanks to this change, the app will be used without the
need of any other device but the watch.

However, this initial decision caused that an watchOS project still includes an iOS
bundle. Moreover, the way you install the app in the watch is; first, you install the iOS
bundle and then, the bundle installs the app in the watch. The watch is not completely
independent but, for the purpose of the project, that’s enough independence.

Let’s talk I little more about the "watchOs bundle". In fact, the bundle is made of
two independent targets: the watchOS app and the watchOS app extension, as seen

126

15.1. FROM IOS TO WATCHOS

in §15.1.

The watchOS Watchkit app includes the interface of the app, thus, the story-
board we will use. One of the purposes of the development was the will to learn how
to program views programatically but I later decided to use storyboards because ex-
ternal library rarely offer any support on how to code the interface. Unexpectedly, this
decision paid dividends. watchOS apps does not use coded interfaces, so Storyboards
are obligatory.

The watchOS Watchkit app extension included the logic of the app. The default
ViewController.swi f t file is called here Inter f aceController.swi f t and the iOS viewDidLoad
method is known as the awake method.

Figure 15.1: Project organization in an Apple Watch app.

This was one of the first changes I faced during the port. I wasn’t sure how much
different an iOS project and a watchOS project were, but I was sure I would need to do
a few changes. Next problem is something I never thought about and caused several
problems during the last stage of the development.

watchOS was thought to be a companion, thus, I look at it for a few seconds to
read a message or pick up a call but it was not designed to be used for longer periods
of time. That’s the reason why the foreground app goes to background when the screen
turns off. At first, it does not seem much problem but what happens when neither the
sensors nor the audio work by default in background mode? To address this issue I
had to include the Healthkit framework.

127

CHAPTER 15. ITERATION #10: ATLAS

15.2 INCLUDING HEALTHKIT

I don’t want to sound repetitive but the Apple Watch was designed as a companion
for the iPhone, however, I want to emphasize the "was". From watchOS 3.0, the watch
supports standalone apps. There must be a way to keep the app awake even if the
display goes dark.

For this purpose, Apple, with the Healthkit framework, introduce the concept of
workouts. During a workouts sensors wouldn’t turn off with the screen and more
sensors would become active, such as calorimeter or the heart rate sensor. We won’t
use these sensors as we only need the accelerometer, but we will take advantage of this
feature.

For this to work, we need to define what is a workout and when do they start and
end. To define a workout we will need to define the kind of activity and its location, in
this case, we use f unctionStrenghtTraining and indoor. Then, we will create a workout
and we tell the framework when it will start and end. The code used can be found in
the figure §15.2.

Figure 15.2: Code that implements how I start a workout in my app.

As workouts can be more energy demanding for the device, I have chosen to start

128

15.3. TURNING BACKGROUND TO FOREGROUND

a workout when we press the start button and stop when we press the pause button.
That’s not really a workout in Sport Science terms but as I only need the sensors to be
awake during the set of repetitions, this seemed a good choice.

15.3 TURNING BACKGROUND TO FOREGROUND

Unfortunately, this wasn’t the only problem. Healthkit takes care of the sensors
but not the audio. In my app I have implemented a timer. As you will have your
hands on the bar, there is no way to press a button without altering the data. This
timer let you choose from a default set of delays to add and the app itself will notify
you with a sound.

This sound comes from the library AVFoundation (also used in iOS) and it presents
the same problem as the sensors. To address this problem it’s necessary to set the
current audio session to active. Just with that change, the app will play audios even if
it’s in the background. The code used can be found in the figure §15.3.

Figure 15.3: Code that implements how to make the audio work in the background.

15.4 THE RESULT

At this point we finally have a working version of the project where we can:

1. Set a timer to add a specific delay to the start of the set.

2. Play an audio to notify when the set starts.

3. Keep track of the vertical acceleration and treat the data afterward.

129

CHAPTER 15. ITERATION #10: ATLAS

4. Stop the data to trigger the treatment.

5. Display the results in a table just after the data treatment. The user no longer
have to press a button to access the results.

The interface of the app can be seen in the figure §15.4.

Figure 15.4: Final watchOS application.

If you want to see a video of the application running, you can access the Github
repository [16] and download the two available videos.

130

CLOSING STAGE

PARTE IV

16

USER GUIDE

133

It just works.

Steve Jobs (1955–2011),
Businessman

T his chapter explains how to use the app. Section §16.1 explains the problem to solve
and the constraints I have supposed and Section §16.2 gives the instructions where I
explain how to use the app.

CHAPTER 16. USER GUIDE

16.1 PROBLEM TO SOLVE AND CONSTRAINTS

The purpose of this app is to record the vertical velocity of the barbell during a lift
like the Squat, Press or Deadlift.

As the lift is supposed to be done in a vertical straight line, no forward or backward
movement will be recorded.

This app does not require of any other hardware other than the Apple Watch itself.

16.2 INSTRUCTIONS

1. The Apple Watch must be securely tied to the wrist. If the Apple Watch moves
from the wrist, the recorded velocity will not match the reality.

2. The landing view includes a timer selector and a play button.

3. The timer selector includes several preset delays, from no delay at all to 30 sec-
onds. The user is able to choose the value of the timer using the fingertip or the
Apple Watch Digital Crown to scroll through the list.

4. The play button triggers the recording of the vertical velocity. This begins after
the delay. If you have chosen a delay of 5 seconds; the system will start the
measurement in 5 seconds from the moment the user pressed the button.

5. As this app is meant to be used with both hands on the bar, a notification sound
will be played after the delay, at the same time as the measure starts, to notify the
lifter that the app has started to record the velocities.

6. The measurement can only be paused if the user presses a pause button that will
replace the play button while the app is recording data.

7. Just after the measurement is paused, the system will display the results to the
user in a table. Each row includes the number of the repetition and the max and
mean velocity of every repetition.

8. In order to repeat the cycle, the user must press in the top left corner of the screen
to return to the landing view.

134

17

SUMMING-UP

135

The only kind of writing is rewriting.

Ernest Hemingway (1899–1961),
Novelist

T his chapter is a retrospective about the development of the project. Section §17.1
includes a post-mortem discussion about the project and Section §17.2 gives some
possible improvements for future updated of the project.

CHAPTER 17. SUMMING-UP

17.1 POST-MORTEM REPORT

Now that we have finished the project, it’s time for the lessons learned. This report
is a retrospective about what things went right, what others went wrong and discuss
the reasons why.

17.1.1 Things gone right

• The development of the Apple Watch app was a success.

• Improved skills and knowledge about the Apple framework.

• Improved knowledge about statistics, gaussians and bayesian probabilities.

• Positive first experience with real time data and sensors.

17.1.2 Things gone wrong

• Too much time spent in a filter I don’t use in the final version.

• Lack of real time feedback of the app.

• The initial planning didn’t match the real planning at all.

17.1.3 Discussion

Once I have finished the project, it’s a good idea to meditate about the flaws of the
development in order to avoid these in the future.

The main problem I have faced was how I was going to improve the data I was
getting from the sensor. To do so, I studied during 4 months how the Kalman Filter
works. I consider this was too much time spent on a filter but as I didn’t know if that
filter was going to be a lifesaver for my project, I needed to study it. It was way too
much time, but I couldn’t ditch a possible solution because "it would take too long". I
think the problem is more about the time than the fact that I had to study it. In a future
project, I would spend a month or two with it, but not four.

Another problem was the bad estimations of the initial planning. The initial plan-
ning was set to finish the project by April, but the project development didn’t move

136

17.2. FUTURE WORK

forward until mid-May. It too easy to say that I would try to plan better if I had to
start the project again but let be honest, with no previous experience in the platform
nor the problem, the initial planning should be very flexible to avoid a bad planning.
I would need to study more about project management to be able to plan projects like
this. Now, I lack this knowledge.

17.2 FUTURE WORK

Although the app finally worked, there are many improvements that could be done:

1. Add gyroscope data to improve the measurement. Use of the Complementary
filter to mix both accelerometer and gyroscope data. In the Complementary filter
we mix the long time reliability of the accelerometer with the short time reliability
of the gyroscope to help the device to track better the orientation changes that
affects the impact of the gravity on every axis.

2. Real-time results. Nowadays, the data correction is done after the measurement
ends. If the data is good enough, this correction may not be necessary and the
results could be display in real time.

3. Develop the iOS target. Now, the project is only an Apple Watch app but the iOS
app could let the coach to start and stop the measurement and give feedback at
real-time.

137

CHAPTER 17. SUMMING-UP

138

BIBLIOGRAPHY

139

[1] A high-accuracy step counting algorithm for iphones us-
ing accelerometer. https://pdfs.semanticscholar.org/0a3a/

c47dff1853631ba9fed73c996c57dfdcede0.pdf. (page 96).

[2] An introduction to the kalman filter. https://www.cs.unc.edu/~welch/media/

pdf/kalman_intro.pdf. (page 96).

[3] Chartdataset min and max values not recalculated when calling clear(). https:

//github.com/danielgindi/Charts/issues/3260. (page 57).

[4] An introduction to feature-driven development. https://dzone.com/articles/
introduction-feature-driven. Accessed: 2019-11-20. (page 14).

[5] How a kalman filter works, in pictures. http://www.bzarg.com/p/

how-a-kalman-filter-works-in-pictures/. (page 96).

[6] Implementing positioning algorithms using accelerometers. https://www.nxp.

com/docs/en/application-note/AN3397.pdf. (page 96).

[7] Introduction to the kalman filter and tuning its statistics for near optimal estimates
and cramer rao bound. https://arxiv.org/pdf/1503.04313.pdf. (page 96).

[8] Kalman filtering. https://c.mql5.com/forextsd/forum/29/kalman.pdf, .
(page 96).

[9] Kalman and bayesian filters in python. https://github.com/rlabbe/

Kalman-and-Bayesian-Filters-in-Python, . (page 61).

[10] Kalman filtering for drift correction in ir detectors. http://www.wseas.us/

e-library/conferences/2006madrid/papers/512-452.pdf, . (page 96).

[11] Realtime linechart poor performance due to calcminmax. https://github.com/
danielgindi/Charts/issues/3166. (page 56).

https://pdfs.semanticscholar.org/0a3a/c47dff1853631ba9fed73c996c57dfdcede0.pdf
https://pdfs.semanticscholar.org/0a3a/c47dff1853631ba9fed73c996c57dfdcede0.pdf
https://www.cs.unc.edu/~welch/media/pdf/kalman_intro.pdf
https://www.cs.unc.edu/~welch/media/pdf/kalman_intro.pdf
https://github.com/danielgindi/Charts/issues/3260
https://github.com/danielgindi/Charts/issues/3260
https://dzone.com/articles/introduction-feature-driven
https://dzone.com/articles/introduction-feature-driven
http://www.bzarg.com/p/how-a-kalman-filter-works-in-pictures/
http://www.bzarg.com/p/how-a-kalman-filter-works-in-pictures/
https://www.nxp.com/docs/en/application-note/AN3397.pdf
https://www.nxp.com/docs/en/application-note/AN3397.pdf
https://arxiv.org/pdf/1503.04313.pdf
https://c.mql5.com/forextsd/forum/29/kalman.pdf
https://github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python
https://github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python
http://www.wseas.us/e-library/conferences/2006madrid/papers/512-452.pdf
http://www.wseas.us/e-library/conferences/2006madrid/papers/512-452.pdf
https://github.com/danielgindi/Charts/issues/3166
https://github.com/danielgindi/Charts/issues/3166

BIBLIOGRAPHY

[12] The extended kalman filter: An interactive tutorial for non-experts. https://

home.wlu.edu/~levys/kalman_tutorial/. (page 96).

[13] Using a complementary filter to combine accelerometer
and gyroscopic data. http://blog.bitify.co.uk/2013/11/

using-complementary-filter-to-combine.html. (pages xiii, 116).

[14] Agencia tributaria. Tabla de coeficientes de amortización lineal. http://www.

agenciatributaria.es/AEAT.internet/Inicio/_Segmentos_/Empresas_

y_profesionales/Empresas/Impuesto_sobre_Sociedades/Periodos_

impositivos_a_partir_de_1_1_2015/Base_imponible/Amortizacion/Tabla_

de_coeficientes_de_amortizacion_lineal_.shtml. (page 24).

[15] AppCoda. ios concurrency: Getting started with nsoperation and dispatch
queues. https://www.appcoda.com/ios-concurrency, December 2015. (page
102).

[16] G. A. Gamero. Project atlas github repository. https://github.com/

guillermo-ag-95/Project-Atlas. (pages 96, 130).

[17] Google. Sensor fusion on android devices: A revolution in motion processing.
https://www.youtube.com/watch?v=C7JQ7Rpwn2k, August 2010. (page 60).

[18] Jordan Syatt. Developing explosive strength and power for athletic
performance. https://www.syattfitness.com/westside-barbell/

developing-explosive-strength-and-power-for-athletic-performance/.
(page 9).

[19] M. Israetel, J. Hoffman, and C.W. Smith. Scientific Principles of Strength Training.
Juggernaut Training Systems, 2015. (page 8).

[20] Ministerio de Empleo y Seguridad Social. Bases y tipos de coti-
zación 2018. http://www.seg-social.es/Internet_1/Trabajadores/

CotizacionRecaudaci10777/Basesytiposdecotiza36537/index.htm. (page
24).

[21] Oracle. What every computer scientist should know about floating-point arith-
metic. https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.

html. (page 99).

140

https://home.wlu.edu/~levys/kalman_tutorial/
https://home.wlu.edu/~levys/kalman_tutorial/
http://blog.bitify.co.uk/2013/11/using-complementary-filter-to-combine.html
http://blog.bitify.co.uk/2013/11/using-complementary-filter-to-combine.html
http://www.agenciatributaria.es/AEAT.internet/Inicio/_Segmentos_/Empresas_y_profesionales/Empresas/Impuesto_sobre_Sociedades/Periodos_impositivos_a_partir_de_1_1_2015/Base_imponible/Amortizacion/Tabla_de_coeficientes_de_amortizacion_lineal_.shtml
http://www.agenciatributaria.es/AEAT.internet/Inicio/_Segmentos_/Empresas_y_profesionales/Empresas/Impuesto_sobre_Sociedades/Periodos_impositivos_a_partir_de_1_1_2015/Base_imponible/Amortizacion/Tabla_de_coeficientes_de_amortizacion_lineal_.shtml
http://www.agenciatributaria.es/AEAT.internet/Inicio/_Segmentos_/Empresas_y_profesionales/Empresas/Impuesto_sobre_Sociedades/Periodos_impositivos_a_partir_de_1_1_2015/Base_imponible/Amortizacion/Tabla_de_coeficientes_de_amortizacion_lineal_.shtml
http://www.agenciatributaria.es/AEAT.internet/Inicio/_Segmentos_/Empresas_y_profesionales/Empresas/Impuesto_sobre_Sociedades/Periodos_impositivos_a_partir_de_1_1_2015/Base_imponible/Amortizacion/Tabla_de_coeficientes_de_amortizacion_lineal_.shtml
http://www.agenciatributaria.es/AEAT.internet/Inicio/_Segmentos_/Empresas_y_profesionales/Empresas/Impuesto_sobre_Sociedades/Periodos_impositivos_a_partir_de_1_1_2015/Base_imponible/Amortizacion/Tabla_de_coeficientes_de_amortizacion_lineal_.shtml
https://www.appcoda.com/ios-concurrency
https://github.com/guillermo-ag-95/Project-Atlas
https://github.com/guillermo-ag-95/Project-Atlas
https://www.youtube.com/watch?v=C7JQ7Rpwn2k
https://www.syattfitness.com/westside-barbell/developing-explosive-strength-and-power-for-athletic-performance/
https://www.syattfitness.com/westside-barbell/developing-explosive-strength-and-power-for-athletic-performance/
http://www.seg-social.es/Internet_1/Trabajadores/CotizacionRecaudaci10777/Basesytiposdecotiza36537/index.htm
http://www.seg-social.es/Internet_1/Trabajadores/CotizacionRecaudaci10777/Basesytiposdecotiza36537/index.htm
https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html

BIBLIOGRAPHY

[22] Oregon State. Dot products and projections. http://math.oregonstate.

edu/home/programs/undergrad/CalculusQuestStudyGuides/vcalc/dotprod/

dotprod.html, 1996. (page 118).

[23] Rogue Fitness. Levantadores - the basque strongman - a documentary film.
https://www.youtube.com/watch?v=vck32S27RmM, December 2015. (page 4).

[24] Starlino. A guide to using imu (accelerometer and gyroscope devices) in embed-
ded applications. http://www.starlino.com/imu_guide.html, December 2009.
(page 112).

[25] V. Zatsiorksky and W. Kraemer. Science and Practice of Strength Training. Human
Kinetics, 1995. (page 9).

141

http://math.oregonstate.edu/home/programs/undergrad/CalculusQuestStudyGuides/vcalc/dotprod/dotprod.html
http://math.oregonstate.edu/home/programs/undergrad/CalculusQuestStudyGuides/vcalc/dotprod/dotprod.html
http://math.oregonstate.edu/home/programs/undergrad/CalculusQuestStudyGuides/vcalc/dotprod/dotprod.html
https://www.youtube.com/watch?v=vck32S27RmM
http://www.starlino.com/imu_guide.html

	I Introduction
	Context
	Strength training in our society
	The use of technology in our everyday basis
	The fitness industry and a business opportunity

	Objectives
	The problem to solve
	The project itself
	List of objectives

	II Project organization
	Methodology
	Project's organizational structure
	Development methodology
	FDD Process #1: Develop an Overall Model
	FDD Process #2: Build a Features List
	FDD Process #3: Plan by Feature
	A word about FDD

	Planning
	Project temporal summary
	Initial Planning
	Project timing report

	Costs
	Project costs summary
	Personnel costs
	Material costs
	Indirect costs

	III Project development
	Iteration #1: Booting
	Feature List
	Architectonic Design

	Iteration #2: UI Design Patterns
	Coded views vs Storyboards

	Iteration #3: Understanding the accelerometer
	You get acceleration, not velocity
	Raw data bias
	Raw data vs User data
	From acceleration to velocity
	Velocity differs from zero with no movement
	Threshold filter
	From acceleration to velocity via Integration

	Iteration #4: Working with dependencies
	Cocoapods

	Iteration #5: Understanding the data
	Using charts to display both acceleration and velocity
	Adding Gravity chart
	Real time charts
	Dealing with library bugs

	Iteration #6: Filter the data
	Brainstorming of filters
	Research and study of the Kalman Filter
	The g-h Filter
	Formal terminology
	Discrete Bayes Filter
	Gaussian Probabilities
	One Dimensional Kalman Filters
	Multivariate Gaussians
	Multivariate Kalman Filters

	Implementing the filters
	Unit tests
	The Floating Point Problem
	Including external libraries in Unit Test files

	Iteration #7: Parallel programming and queues
	iOS Concurrency
	Concurrent code
	Performance improvements

	Iteration #8: Implementation of the filter in the app
	From a 6x6 to a 2x2 matrix
	Kalman filter initialization
	Filter results

	Iteration #9: Data treatment
	You get force, not acceleration
	The problem with Accelerometers
	Using vector projections
	Fixing the drift
	Finding patterns
	Displaying results in Speed Gauge

	Iteration #10: Atlas
	From iOS to watchOS
	Including Healthkit
	Turning background to foreground
	The result

	IV Closing stage
	User guide
	Problem to solve and constraints
	Instructions

	Summing-up
	Post-mortem report
	Things gone right
	Things gone wrong
	Discussion

	Future work

	Referencias bibliográficas

