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Abstract 

The influence of one dimensional substrate patterns on the nanocolumnar growth of thin films 

deposited by magnetron sputtering at oblique angles is theoretically and experimentally studied. A 
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well-established growth model has been used to study the interplay between the substrate 

topography and the thin film morphology. A critical thickness has been defined, below which the 

columnar growth is modulated by the substrate topography, while for thicknesses above, the impact 

of substrate features is progressively lost in two stages; first columns grown on taller features take 

over neighboring ones, and later the film morphology evolves independently of substrate features. 

These results have been experimentally tested by analyzing the nanocolumnar growth of SiO2 thin 

films on ion-induced patterned substrates. 
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Introduction 

Nanocolumnar porous thin films deposited at oblique geometries are nowadays receiving much 

attention due to their unique morphological features and remarkable properties.[1] While their high 

specific surface can be exploited for the development of gas or liquid sensor devices,[2-4] the 

possibility to fine tune their density[5] and connectivity among pores[6-7] make them also suitable for 

other applications in technological fields such as biomedicine, plasmonics, microfluidics, batteries 

or photonics, among others.[8-13] In all these cases, the relevant specific features of the 

nanocolumnar structures (e.g. their size, tilt, average distance, anisotropic distributions, 

preferential direction of coalescence, etc.) are intimately connected to the governing growth 

mechanisms. In this regard, the surface shadowing phenomenon emerges as a key 

nanostructuration process mediating the formation of nanocolumns with typical diameters in the 

order of few tens of nanometers.[14-15] This mechanism takes place whenever gaseous deposition 

species arrive at a substrate along a preferential oblique direction, whereby taller features on the 

film surface inhibit the deposition in neighbor regions, giving rise to different nanocolumnar 

arrays.[16] 

From an experimental point of view, porous nanocolumnar thin films have been classically grown 

by evaporating a given material in vacuum and promoting the glancing incidence of gaseous 

deposition species onto a tilted substrate, in a so-called Glancing Angle Deposition.[1] Yet, and due 

to difficulties to upscale this technique to typical industrial standards,[17] other alternatives have 

been analyzed to achieve nanocolumnar structures.[18] Among them, the magnetron sputtering 

technique operated at oblique angles (MS-OAD), also called magnetron sputtering at glancing angles 

(MS-GLAD), has emerged as one of the most interesting procedures in terms of efficiency, reliability, 

reproducibility and potential industrial scalability. It relies on the interaction of a plasma and a solid 
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target to vaporize atomic species from the latter that, emitted preferentially in the normal direction 

with respect to its surface, are subsequently deposited on a substrate.[19] In this way, when the 

substrate is tilted with respect to the target, sputtered species may arrive along a preferential 

oblique direction.[20] In the last decade, MS-OAD has managed not only to reproduce similar film 

morphologies as those classically obtained by the evaporation technique, but also to widen its 

possibilities. For instance, in refs. [21-22], we studied the influence of some experimental 

controllable parameters (e.g. deposition pressure, tilt angle of the substrate, ion impingement, etc.) 

on the film morphology, finding different tilted nanocolumnar structures with mass densities 

ranging from 100% to near 30% with respect to the compact layer, or even sponge-like vertically-

aligned coalescent structures. 

The variety of typical porous morphologies that can be achieved by MS-OAD is rich, permitting the 

customization of film nanostructures with optimum performance in numerous functional 

applications (see for instance [23-25]). However, to our knowledge, there are important unexplored 

conditions that require further study and that might widen the possibilities of the method even 

more. For instance, in ref. [26] we demonstrated that when a thin porous layer is grown on top of a 

rough nanocolumnar film, the former reproduces the surface features of the latter, in a so-called 

structural propagation phenomenon, which is of special relevance when growing periodic multilayer 

structures (e.g. photonic crystals or Bragg reflectors).[9] On the other hand, and even though there 

has been an increasing amount of publications dealing with the influence of substrate features on 

the film growth (see for instance [27-30]), to our knowledge, no general framework analyzing the 

interplay between both has been put forward yet. In this paper we aim at developing such 

framework by studying how substrate features may affect the film nanostructure when using the 

MS-OAD technique. In particular, we focus on the effect of one dimensional quasi-periodic 

patterned substrates, characterized by peak-to-peak distances in the order of few hundred 
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nanometers, very similar to those experimentally obtained by ion beam sputtering.[31-39] To address 

this problem, we have first used a well-accepted model to theoretically simulate and analyze the 

growth of a thin film on purely periodic and near periodic patterned substrates at oblique angles 

and, subsequently, experimentally test these results by analyzing the growth of porous SiO2 thin 

films on quasi-periodic ion-induced patterned Si substrates. We have chosen this particular film 

composition because it is a well-known material, whose properties have been widely studied in the 

literature. However, our aim is general and our results can be easily extrapolated to more general 

conditions and other materials. Based on this analysis, relevant general conclusions can be achieved 

on the influence of substrate features on the structural development of porous nanocolumnar thin 

films. 

 

Growth Model 

The growth model has already been described in detail in refs. [21, 40] and references therein, 

where it was proven adequate to describe the growth of numerous materials by MS-OAD in the 

absence of ion bombardment and at low temperatures, i.e. in the so-called zone I of the Thornton 

Structure Zone Model.[41-42] We describe it here, although for further details refs. [21, 40] are 

recommended. The model considers the deposition of Si effective particles on a cubic three-

dimensional NLxNLxNH grid with periodic boundary conditions, whose cells may take the values 0 

(empty cell) or 1. Each cell represents a Si atom in the network that becomes fully oxidized once it 

is deposited. Thus, the size of each cell is assimilated to the typical volume of a SiO2 molecule in the 

material (i.e., a typical length of ~0.5 nm). A number of deposition particles per unit time and unit 

surface are thrown towards the substrate from an initial random position above the film, following 
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the direction defined by an incident angle distribution function. This distribution is calculated as a 

function of the experimental conditions (reactor geometry, tilt angle of the substrate and other 

geometrical constrains) by the widely accepted SIMTRA code.[43-44] This software describes the 

collisional transport of sputtered species through the plasma gas by means of binary collisions. The 

angle and energy distribution of sputtered species at the target are calculated by the software SRIM, 

[45] which is typically used to describe the ion-assisted sputtering process. An average gas 

temperature of 350 K and a screened Coulomb potential (Molière type) were considered in the 

simulations under the assumption of a circular racetrack with a radius of 2 cm. We have run our 

simulations in small scales (NL and NH up to 2000 cells) to first analyze the general dependence 

between substrate features and the morphology of the film, and subsequently extrapolate the 

results to comply with the larger spatial scales of the experimental data (in the order of few 

microns). 

 

Experimental Details 

Quasi-periodic patterned Si substrates were prepared by irradiation with 500 eV Ar+ ions as 

described in ref. [46]. Depending on the irradiation conditions, this technique allows the formation 

of different patterns on the substrate, from surface ripples to elongated islands.[33] The ion beam 

was extracted from a broad beam Kaufman ion source (3 cm) at a base and working pressures of 

5x10-4 and 2x10-2 Pa, respectively, and impinged on the substrates at an incidence angle of 75º with 

respect to the surface normal. The experiments were performed for an average current density on 

the target of 300A/cm2 and an ion dose of 2.3x1018 ions/cm2 (irradiation time was 240 minutes). 

The target was water-cooled during the irradiation, reaching a temperature of 30ºC. 
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A set of amorphous SiO2 thin films were grown on the patterned substrates using reactive MS-OAD. 

A 3 in. diameter Silicon target was employed for the depositions, placing the substrate holder at a 

distance of 7 cm and a discharge power of 200 W. Deposition time in each case was chosen to grow 

films with thicknesses between 200 and 3000 nm, as determined by means of cross-sectional Field 

Emission Scanning Electron Microscopy (FESEM) images. The base pressure of the deposition 

reactor was 7x10-4 Pa. The argon and oxygen partial pressures during depositions was kept at 0.2 

and 0.05 Pa, respectively, which was enough to operate in the oxidic mode of the discharge and get 

fully oxidized films.[19] Samples were prepared simultaneously on flat and patterned substrates, 

tilting them 80º (see figure 1). 

The morphology of the SiO2 nanocolumns from the film surface to the substrate was studied by 

transmission electron microscopy (TEM) at the scientific integrated services (SC-ICYT) of the 

University of Cádiz (Spain). High-angle annular dark-field (HAADF) imaging of the sample was 

performed in a 200 kV JEOL 2010F microscope using the scanning TEM (STEM) mode with a probe 

size of about 1 nm. Prior to observation, cross-sectional specimens were prepared using the flat-

type tripod polishing approach in order to thin the sample down to a few micrometers, followed by 

a final ion milling step with 3-3.5 keV Ar+ ions up to electron transparency.  

The surface topography of the substrates and films were imaged by atomic force microscopy (AFM). 

The measurements were performed in the non-contact dynamic mode with a Nanoscope IIIa 

equipment (Veeco@) and with PicoPlus 5500 (Agilent). Silicon cantilevers with nominal tip radius of 

curvature of 8 nm were used. Images were composed of 512 x 512 up to 2048 x 2048 pixels. FESEM 

pictures were also recorded for each film using a Hitachi S4800 microscope at the Instituto de 

Ciencia de Materiales de Sevilla (CSIC-US, Seville, Spain). The surface roughness, 𝑤, and correlation 

length, 𝑙, of the samples were obtained using the Gwyddion freeware package[47] using the formula 
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 𝑤 = √∫ 𝑑𝑥𝑑𝑦 [𝑧(𝑥, 𝑦) − 𝑧̅]2/S, 

where 𝑥 and 𝑦 denote the position coordinates of the substrate, 𝑆 the surface area under analysis, 

𝑧 the height of the film and 𝑧̅ the mean height. Moreover, 𝑙 has been calculated along the 𝑥 axis 

(see figure 1) by obtaining the first minimum, 𝑟0, of the (one dimensional) height-height correlation 

function, ℎ, as a function of the distance, 𝑟, defined as 

ℎ(𝑟) = ∫ 𝑑𝑥𝑑𝑦𝑑𝑥′𝑑𝑦′(𝑧(𝑥, 𝑦) − 𝑧̅)(𝑧(𝑥′, 𝑦′) − 𝑧̅) /𝑤2 , 

with 𝑟 = |𝑥 − 𝑥′| and 𝑦 = 𝑦′. In this way, the surface correlation length is defined as 𝑙 = 2𝑟0. 

 

Simulation analysis  

To illustrate the results of the simulations we first assume that the patterns possess a typical 

sinusoidal shape in the 𝑥𝑦 plane defined as 𝑧𝑠(𝑥, 𝑦) = 𝐴[1 + 𝑠𝑖𝑛(2𝜋𝑥/𝜆)], where 𝑧𝑠 is the substrate 

height, 𝜆 the wavelength and 𝐴 the amplitude of the ripples. For this surface topography, the 

correlation length of the substrate in the 𝑥 direction, 𝑙𝑠, is 𝑙𝑠 = 𝜆, and the surface roughness of the 

substrate, 𝑤𝑠, is  𝑤𝑠 = 𝐴/√2. We have performed different simulations for values of 𝜆 and 𝐴 up to 

𝜆=500 and 𝐴=50cells. In figure 2a we illustrate the results by showing the cross-sectional views of 

four generic cases, when 𝜆=80 and 160 cells and 𝐴=5 and 25 cells. There, different columnar 

arrangements are visible depending on substrate features, from which three important conclusions 

can be drawn: i) the column tilt angle is rather independent of the substrate features, ii) each column 

grows on top of a ripple, and iii) column diameter strongly depends on 𝜆 and very weakly on 𝐴. 

These three main evidences stem from the fact that surface shadowing promotes the growth of 

taller surface features over lower ones and thus induces that a column grows on top of each ripple, 
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depicting a tilt angle and diameter that mainly depends on the incident angle distribution of 

deposition particles and not on any specific substrate feature.[1, 16]  

In order to further analyze the columnar growth, in figure 2b we also show the evolution of 𝑙 as a 

function of film thickness, ∆. In this way, for small film thicknesses, the relation 𝑙=𝑙𝑠 is fulfilled, i.e. 

the film grows following the arrangement of the ripples. Yet, when ∆ reaches a certain critical 

threshold, the correlation length departs from this value, implying that the typical correlation 

distances over the film surface do no longer follow that of the ripples. Due to its importance in this 

work, we dub this thickness oblivion thickness, ∆𝑂. Moreover, according to figure 2b, when ∆> ∆𝑂, 

the curve converges to that of a film deposited on a flat surface (also shown in figure 2b), i.e. the 

film growth becomes independent of substrate features. A similar analysis can be performed 

regarding the evolution of the surface roughness, also depicted in figure 2b. Remarkably, and 

despite the different original roughness of the substrates, 𝑤 increases with ∆ when ∆< ∆𝑂,  mainly 

due to the preferential development of the columns on top of the ripples. This trend continues until 

the valleys between columns are no longer visible from the top, decreasing or reaching a plateau 

for ∆≳ ∆𝑂, when the roughness values converge to those of a film grown on a flat substrate.  

The two growth regimes described above are illustrated in figure 3, where we show top views of 

simulated films using flat and periodic rippled substrates (case with 𝜆 = 80  and 𝐴 = 25 cells) for 

three values of ∆. There, it is apparent that columns arrange according to the ripple pattern when 

∆< ∆𝑂. However, when ∆≳ ∆𝑂 the pattern starts to vanish until, for ∆≫ ∆𝑂 , the film surface looks 

very similar to that of a film grown on a flat substrate. In figure 4 we show the calculated values of 

∆𝑂 as a function of 𝐴 and 𝜆, finding a weak and strong dependence on these two parameters, 

respectively. This relation can be understood as an outcome of a shadowing dominated growth, by 

which the taller a surface feature is the more species are deposited on it, rapidly amplifying any 

initial surface protuberance. Hence, a surface with small ripple amplitudes would develop similarly 
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to another with larger ones, as long as these are spatially distributed similarly. Interestingly, we have 

found a clear relation between ∆𝑂 and 𝜆 as a power law in the studied spatial range,  

∆𝑂∝ 𝜆𝛾,     (1) 

with 𝛾 = 1.55 ± 0.04. Once we have analyzed the growth of thin films when the patterns follow 

well-defined periodic ripples, we analyze more realistic situations when 𝜆 and 𝐴 are allowed to 

fluctuate around average values. We have therefore carried out the same analysis as before but 

assuming variations of 𝜆 and 𝐴 over the averaged values 〈𝜆〉 = 80 and 〈𝐴〉 = 25 cells, with a 

dispersion of 25%. The cross-sectional views of these films in figure 5a show how fluctuations in 𝜆 

lead to a columnar growth similar to that of the purely periodic case: the value of 𝑙 as a function of 

∆ appears in figure 5b which yields 𝑙 = 〈𝜆〉 in the initial stages of growth, departing from this 

behavior at a similar oblivion thickness as in the purely periodic substrate case. The top view of this 

film for different values of ∆, reported in figure 3, corroborate the similarities between both cases. 

Figures 5a-b report the simulation results when 𝐴 fluctuates and show that the development of the 

film nanostructure drastically changes from the previous cases: after an initial development defined 

by the relation 𝑙 = 〈𝜆〉, a new growth stage emerges. In this new stage, columns grown on taller 

mounds take over neighboring ones suppressing their growth, in agreement with a well-known 

phenomenon associated to the shadowing mechanism and the abovementioned preferential 

growth of taller features over lower ones.[1, 16] This columnar cannibalization process ends up with 

the formation of tilted thick structures that introduce a new correlation length over the film surface, 

as evidenced in figure 5b. Once these structures are formed, for large film thicknesses, 𝑙 evolves 

parallel to that of a film grown on a flat surface, i.e. the growth is equivalent to that of a thicker film 

deposited on a flat substrate. Same behavior can be found regarding the surface roughness 

evolution of the films, also depicted in figure 5b. 
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According to the discussion above, three stages of growth are found as a function of thickness when 

the amplitude of the substrate ripples is allowed to fluctuate: 

i) A Substrate-driven (SD) growth when Δ < Δ𝑜, similar to that appearing in the pure 

periodic case, where a column grows on top of each ripple with 𝑙 = 〈𝜆〉 (see figure 3). 

This type of growth dominates the morphological development of the film until the 

thickness reaches the oblivion point. In this regard, Δ𝑜 shows now a strong dependence 

on both, the wavelength and the amplitude fluctuations of the ripple pattern, and 

results in a lower value than in the absence of amplitude fluctuations. Under these 

conditions, the calculated trend in eq. (1) must be understood as an upper bound for 

the actual oblivion thickness. 

ii) A Columnar Aggregation (CA) stage when ∆≳ ∆0, in which taller columns take over 

surrounding ones and form large tilted structures. These structures introduce a new 

correlation length over the surface and evolve with thickness very differently to those 

obtained on a flat substrate (see figure 3). 

iii) A Free Growth Stage (FG) when ∆≫ ∆0, in which the film grows independently of the 

substrate feature (see figure 3). 

To complete this analysis, we have included the results of the simulations when both 𝜆 and 𝐴 

fluctuate in figure 5b, finding a similar trend than that when only 𝐴 fluctuates. 
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Experimental Results and Discussion 

In the previous section we have studied the phenomenology when the films grow on periodic and 

quasi-periodic patterned substrates. Among all the cases studied, the most relevant one 

corresponds to that when the amplitudes were allowed to fluctuate: this case did not only show a 

characteristic phenomenology that includes all relevant effects present in the remaining two 

situations under study, but also introduced new phenomena regarding the columnar growth. That 

is why, from an experimental point of view, we have focused on this particular problem and used a 

patterned substrate containing fluctuations in amplitude and wavelengths to test the theoretical 

framework developed in the previous section.  

In figure 6 we show the topography of an as-prepared patterned substrate, measured by AFM, along 

with a cross sectional height profile along the direction defined by the arrow. The analysis of this 

surface map yields values of roughness and correlation length of 𝑤𝑠~32 nm and 𝑙𝑠~550 nm, 

respectively. As described in the Experimental Details section, we have simultaneously deposited 

SiO2 thin films on patterned and flat substrates. Deposition was carried out at oblique geometries 

with particle incidence in the direction of the arrow in figure 6. For the sake of clarity, from now 

forth we label the film grown on a flat substrate with the format “F-film thickness”, whereas the film 

grown on a patterned substrate will be labeled as “P-film thickness”. In figure 7a we show the top 

SEM images of the two substrates and those of F-380 nm and P-380 nm films. These two latter cases 

present profound differences: while a typical granular surface topography is found in the former 

type of films, the latter shows larger nanostructures that retain the distribution pattern of substrate 

features. This is more evident in figure 7b, where the calculated correlation length indicates that for 

the sample P-380 nm, the relation 𝑙 = 𝑙𝑠  holds, i.e. the columns follow the substrate pattern, while 

for sample F-380 nm the correlation length is much shorter. This implies that for P-380 nm film, the 
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substrate features have modulated the morphological evolution of the film in a typical SD growth 

regime. Here is important to mention that due to the fluctuating nature of the heights defining the 

substrate in different spatial scales (see top image in figure 6), the development of the film does not 

follow every minor detail on the substrate, but only those that are tall enough to define the 

correlation length, and that will serve as nucleation sites for the subsequent columnar development. 

This mound-selection mechanism, by which the growth of small surface protuberances becomes 

inhibited in favor of larger ones, is present in this type of depositions since early stages of growth.[1] 

Differences are more pronounced when the film thickness is 640 nm: as expected, the F-640 nm film 

in figure 7a shows a similar morphology than the F-380 nm case, but with larger grains. Remarkably, 

the P-640 nm film surface strongly differs from that of the P-380 nm film and is characterized by 

numerous piled up slices of material that appear aligned with the original substrate patterns. 

Indeed, this morphology defines a new correlation length and suggests that the substrate pattern 

effect is vanishing from the film surface. This is corroborated in figure 7b, where the relation 𝑙 > 𝑙𝑠 

for P-640 means that ∆𝑜 should stay between 380 and 640 nm, below the estimated value for a pure 

periodic substrate (figure 5), above ~1800 nm, as deduced from our simulations and the discussion 

above. This is evident regarding the cases P-1000, P-2000 nm and P-3000 nm, where we appreciate 

that i) the slices of material have disappeared, and ii) a mounded topography is now evident in all 

these cases, with grain size much larger than those appearing on the films grown on flat substrates. 

This latter result is more evident in figure 7b, where we see that the correlation lengths of P-1000 

nm, P-2000 nm and P-3000 nm follow a trend parallel to that of the films deposited on flat 

substrates, implying that the growth is equivalent to that of a ~3.5 m thicker film deposited on a 

flat substrate (see figure 7b for details). The analysis on the roughness evolution, also shown in 

figure 7b, yields similar conclusions. 
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In order to further illustrate the differences between the films grown on flat and patterned 

substrates, in figure 8a we show a cross-sectional SEM image of the P-1000 nm film, where we notice 

the good agreement between the calculated tilt angle of the columns and the experimental value 

(~35º in both cases), corroborating the adequacy of the simulations. Moreover, the STEM-HAADF 

image of a 3 m thick film grown on a patterned substrate is shown in figure 8b (note that plane of 

cut is not the same than in figure 8a). There, it is apparent an intrinsic relation between substrate 

mounds and the appearance of columns, which only seems to grow on top of medium and large-

size surface protuberances. Remarkably, in figure 8b it is also apparent that at heights between ~500 

and ~1000 nm some columns are incorporated onto larger columnar structures (note that for larger 

thicknesses some columns have also been removed when polishing the sample for the STEM-HAADF 

measurement). This is also in agreement with the simulation results on the influence of patterns on 

the film growth where, for this range of thickness, we demonstrated the existence of a CA regime 

where columns on taller mounds take over neighboring ones, forming large tilted structures. From 

figure 8b, this means that ∆0 in this case should be around 500 nm, in agreement with our discussion 

above. Finally, once these larger tilted structures are formed (for film thicknesses above ~1000 nm), 

they grow homogeneously in a FG regime. These results corroborate our discussion above on the 

existence of an oblivion thickness and on the existence of three stages of growth as a function of 

thickness. 

The generalization of our results to more complex situations, e.g. when using two dimensional 

patterned substrates, is not straightforward, although it seems plausible that the obtained growth 

regimes could anisotropically emerge depending on the complexity of the pattern.  Therefore, and 

even though this paper has focused on the growth of nanocolumns on patterned substrates, some 

generic conclusions can be extrapolated to numerous situations where these substrates contain 

patterns whose characteristic length or amplitude fluctuate. For instance, our results suggest that 
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the intrinsic roughness of (non-polished) substrates could have a strong impact on the film 

morphology, especially when any surface height correlation might define a characteristic 

wavelength with fluctuating amplitude. In this case, it is likely that the columnar development is 

strongly affected by substrate features. Moreover, our results also explain the structural 

propagation mechanism when growing thin porous layers on top of a rough surface, by which the 

growth of the former tend to follow the features of the latter.[26] Under the light of our results, this 

issue arises when the thickness of each porous monolayer is below the oblivion thickness, which 

imposes a dependence between its morphology and that of the surface below. 

 

Conclusions  

In this paper we have analyzed the influence of substrate patterns on the nanocolumnar 

development of thin films grown by magnetron sputtering at oblique angles. For this, we have firstly 

made a simulation analysis on how the amplitude and the wavelength of the substrate pattern affect 

the morphological evolution of the films, finding that i) the column tilt angle is rather independent 

of the substrate features, ii) columns seem to grow on top of each seed in the studied spatial range, 

and iii) column diameter strongly depends on the substrate wavelength and weakly on the 

amplitude. Moreover, for low film thicknesses we have obtained that columns tend to arrange 

following the substrate features, in a Substrate Driven growth mode, while for higher thicknesses 

there is a critical thickness, the so-called oblivion thickness, above which the information on the 

substrate features is progressively lost. This process takes place through two well differentiated 

phases for increasing film thicknesses: a first one, dubbed Columnar Aggregation stage, in which 

columns grown on taller features take over neighboring ones and form large tilted structures, and 

a second one, where the film morphology evolves independently of substrate features, in a so-called 
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Free Growth regime, where the growth is equivalent to that of a thicker film deposited on a flat 

substrate. 

The theoretical framework developed herein has been experimentally tested by performing 

numerous depositions on flat and ion-induced patterned substrates with height variations, finding 

an overall good agreement between theory and experiments. Indeed, three growth regimes have 

been identified, finding a Substrate Driven growth for thicknesses below ~500 nm, a Columnar 

Aggregation regime for thicknesses between ~500 and ~1000 nm, and a Free growth for thicknesses 

above ~1000 nm. In this regard, the obtained results do not only explain the influence of substrate 

features on the film morphology as a function of thickness, but also indicate the importance of the 

substrate roughness and correlation length on the film characteristics. 
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Figure caption 

Figure 1.- Experimental setup and definition of the 𝑥 axis of the patterned substrate. 

Figure 2.- a) Cross-sectional images of simulated films grown on periodic patterned substrates (𝜆 =

80, 160 cells and 𝐴 = 5, 25 cells). Note that the substrate ripples appear with different color. b) 

Surface correlation length and roughness of these films as a function of thickness. 

Figure 3.- Top views of simulated films grown on a flat substrate , a periodic patterned substrate 

with 𝜆 = 80 and 𝐴 = 25 cells , a patterned substrate with fluctuating 𝜆, with 〈𝜆〉 = 80 and 𝐴 = 25 

cells, and a patterned substrate with fluctuating 𝐴, with 𝜆 = 80 and 〈𝐴〉 = 25 cells. The arrows 

indicate the incidence of the deposition flux. 

Figure 4.- Oblivion Thickness as a function of substrate pattern amplitude and wavelength.  

Figure 5.- a) Cross-sectional images of simulated films grown on patterned substrates  (periodic  

substrate with 𝜆 = 80 and 𝐴 = 25 cells, patterned substrate with fluctuating 𝜆, with 〈𝜆〉 = 80 and 

𝐴 = 25 cells, patterned substrate with fluctuating 𝐴, with 𝜆 = 80 and 〈𝐴〉 = 25 cells and a 

patterned substrate with fluctuating 𝐴 and 𝜆, with 〈𝜆〉 = 80 and 〈𝐴〉 = 25 cells). Note that the 

substrate ripples are depicted with different color. b) Surface correlation length and roughness of 

these films as a function of thickness. 

Figure 6.- Topography of the patterned substrate, as obtained by AFM (the ion beam irradiation to 

create the patterns was from top to bottom of the image). The arrow indicates the incidence of the 

deposition flux. A cross-sectional height profile in the direction of the arrow is also shown. 
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Figure 7.- a) Top view SEM images of the films grown on flat and patterned substrates as a function 

of thickness. The arrows indicate the incidence of the deposition flux. b) Correlation length and 

roughness as obtained from the surface topography of these films measured by AFM.  

Figure 8.- a) Cross-sectional SEM image of the 1 𝜇𝑚 thick thin film grown on the patterned substrate. 

The arrow indicates the incidence of the deposition flux. b) Cross-sectional STEM-HAADF image of 

the same film. The three stages of growth as a function of thickness are identified: for thicknesses 

below ~500 nm the film follows the substrate features in a Substrate Driven regime, while for 

thicknesses between ~500 and ~1000 nm columns merge and form large structures in a typical 

Columnar Aggregation regime. Finally, for thicknesses above ~1000 nm, columns develop 

independent of substrate features in a typical Free Growth regime. 
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The influence of substrate patterns on the nanocolumnar growth of SiO2 thin films at oblique angles 

is studied. A critical thickness has been determined, below which the columnar growth is modulated 

by the substrate topography. For thicknesses above, pattern height fluctuations are responsible for 

the appearance of large tilted structures that grow independent of substrate features. 
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