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Abstract
Aims/hypothesis Bisphenol-A (BPA) is a widespread endocrine-disrupting chemical that has been associated with type 2 dia-
betes development. Low doses of BPA modify pancreatic beta cell function and induce insulin resistance; some of these effects
are mediated via activation of oestrogen receptors α (ERα) and β (ERβ). Here we investigated whether low doses of BPA
regulate the expression and function of ion channel subunits involved in beta cell function.
Methods Microarray gene profiling of isolated islets from vehicle- and BPA-treated (100 μg/kg per day for 4 days) mice was
performed using Affymetrix GeneChip Mouse Genome 430.2 Array. Expression level analysis was performed using the nor-
malisation method based on the processing algorithm ‘robust multi-array average’. Whole islets or dispersed islets from C57BL/
6J or oestrogen receptorβ (ERβ) knockout (Erβ−/−) mice were treated with vehicle or BPA (1 nmol/l) for 48 h.Whole-cell patch-
clamp recordings were used to measure Na+ and K+ currents. mRNA expression was evaluated by quantitative real-time PCR.
Results Microarray analysis showed that BPA modulated the expression of 1440 probe sets (1192 upregulated and 248 down-
regulated genes). Of these, more than 50 genes, including Scn9a, Kcnb2, Kcnma1 and Kcnip1, encoded important Na+ and K+

channel subunits. These findings were confirmed by quantitative RT-PCR in islets from C57BL/6J BPA-treated mice or whole
islets treated ex vivo. Electrophysiological measurements showed a decrease in both Na+ and K+ currents in BPA-treated islets.
The pharmacological profile indicated that BPA reduced currents mediated by voltage-activated K+ channels (Kv2.1/2.2 chan-
nels) and large-conductance Ca2+-activated K+ channels (KCa1.1 channels), which agrees with BPA’s effects on gene expression.
Beta cells from ERβ−/− mice did not present BPA-induced changes, suggesting that ERβ mediates BPA’s effects in pancreatic
islets. Finally, BPA increased burst duration, reduced the amplitude of the action potential and enlarged the action potential half-
width, leading to alteration in beta cell electrical activity.
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Conclusions/interpretation Our data suggest that BPAmodulates the expression and function of Na+ and K+ channels via ERβ in
mouse pancreatic islets. Furthermore, BPA alters beta cell electrical activity. Altogether, these BPA-induced changes in beta cells
might play a role in the diabetogenic action of BPA described in animal models.
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Abbreviations
BPA Bisphenol-A
Cav Voltage-activated Ca+ channel
DAVID Database for Annotation, Visualization and

Integrated Discovery
DEG Differentially expressed gene
DPN Diarylpropionitrile
EDC Endocrine-disrupting chemical
ERα Oestrogen receptor α
ERβ Oestrogen receptor β
GO Gene ontology
GSIS Glucose-stimulated insulin secretion
IbTx Iberiotoxin
KATP channel ATP-sensitive K+ channel
KCa1.1 channel Large-conductance Ca2+-activated

K+ channel
KCa2.3 channel Small-conductance Ca2+-activated

K+ channel
KEGG Kyoto Encyclopedia of Genes and

Genomes

Kv channel Voltage-activated K+ channel
Nav channel Voltage-activated Na+ channel
qRT-PCR Quantitative RT-PCR
ScTx1 Stromatoxin-1

Introduction

Pancreatic beta cells play a major role in glucose homeo-
stasis because they biosynthesise and release insulin, a
key hormone in blood glucose regulation. Decreased in-
sulin release in response to glucose results in chronic
hyperglycaemia, a hallmark of type 2 diabetes, a metabol-
ic disease that affects over 400 million people around the
world [1].

Glucose-stimulated insulin secretion (GSIS) from pancre-
atic beta cells is controlled by electrical activity. In the absence
of stimulatory glucose concentrations, beta cells maintain a
hyperpolarised membrane potential due to the high activity
of the ATP-sensitive K+ channel (KATP channel). Upon
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glucose stimulation, KATP channel activity decreases due to
the rise in the ATP : ADP ratio. This reduction in activity
increases membrane input resistance and, consequently, small
depolarising currents produce important changes in the mem-
brane potential, generating an oscillatory (bursting) electrical
activity that alternates between a hyperpolarised silent phase
and a depolarised phase with action potentials [2–4]. This
bursting pattern of electrical activity induces an oscillatory
pattern of intracellular Ca2+ concentration [5] and exocytosis
of insulin-containing vesicles [6]. In mouse beta cells, the
depolarisation phase of the action potential depends on the
activation of voltage-activated Ca2+ channels, while the
repolarisation phase depends on currents generated by delayed
rectifying voltage-activated K+ channels (Kv channels) Kv2.1/
2.2 [7–9] and large-conductance Ca2+-activated K+ channels
(KCa1.1 channels) [10]. Mouse beta cells express the voltage-
activated Na+ channels (Nav channels) Nav1.3 and Nav1.7.
Nav1.3 participates in the depolarisation of the action potential
and affects insulin secretion [11]; Nav1.7 does not participate
in insulin release, yet it might play a role in insulin production
[12] and beta cell survival [13]. The repolarisation phase be-
tween bursts of action potential is due to small-conductance
Ca2+-activated K+ channels (KCa2.3 channels) [6, 14, 15].

Type 2 diabetes results from gene–environment interac-
tions over time. Genetic alterations in the expression of
voltage-activated channels have important consequences for
beta cell function and the development of type 2 diabetes [6,
14]. Additionally, animal studies have shown that exposure to
bisphenol-A (BPA) alters beta cell function and induces insu-
lin resistance [16–19]. BPA is found in the urine of 93% of
USA citizens [20] and its concentrations in human serum
varies between 1 and 25 nmol/l, depending on sex, age and
geographical regions, among other factors [21]. BPA has been
added by the European Chemical Agency (ECHA) to the can-
didate list of substances of very high concern due to its
endocrine-disrupting properties [22]. In beta cells, low concen-
trations of BPA (e.g. 1 nmol/l, in vitro) trigger extranuclear-
initiated actions via oestrogen receptorsα (ERα) andβ (ERβ).
Within a fewminutes, BPA blocks KATP channels via ERβ and
potentiates GSIS [19]. Longer in vitro BPA treatments (up to
48 h) upregulate insulin mRNA expression and increase insu-
lin content as well as GSIS in an ERα-dependent manner [17].
Recent work demonstrated that BPA treatment for 48 h down-
regulated the voltage-activated Ca2+ channel Cav2.3 in an
ERβ-dependent manner, leading to decreased amplitude of
action potential and diminished exocytosis in the absence of
stimulatory glucose levels. Surprisingly, GSIS was still en-
hanced by BPA treatment [23].

Here, we investigated whether BPA modulated the ex-
pression and activity of ion channel subunits in pancreatic
islets. This study may help us to understand the regulation
of GSIS by this common endocrine-disrupting chemical
(EDC).

Methods

Chemical substances and animals The chemical substances
used herein are described in the electronic supplementary ma-
terial (ESM) Methods. Adult male mice, OF1 (11 weeks old;
Charles River, Barcelona, Spain) for in vivo treatment (shown
in Fig. 1) and C57BL/6J (10–14 weeks old; Envigo,
Barcelona, Spain) for the rest of the experiments, were kept
under standard housing conditions (12 h light–dark cycle,
food ad libitum) in polypropylene veterinary cages. Mice with
knockout of the Erβ gene (also known as Esr2) (Erβ−/−mice),
supplied by Jan-Åke Gustafsson’s laboratory, were generated
as previously described [24]. Wild-type littermates and Erβ−/−

mice were obtained from the same supplier and colony.
Animals were randomly assigned before BPA treatment.
Experimental procedures were carried out according to the
Spanish Royal Decree 1201/2005 and the European
Community Council directive 2010/63/EU. All methods used
herein were approved by the Ethics Committee from
Universidad Miguel Hernández de Elche (Alicante, Spain)
(protocols ID: UMH-IB-AN-01–14 and UMH-IB-AN-02-14).

BPA treatment For in vivo experiments (three to seven mice
per condition), BPAwas dissolved in tocopherol-stripped corn
oil; a total of 100 μg/kg per day (two injections of 50 μg/kg
per day) was administered subcutaneously for 4 days. The
same volume of tocopherol-stripped corn oil (100 μl) was
used as vehicle. Sixteen hours after the last injection, mice
were killed and islets were isolated. For ex vivo experiments,
BPAwas prepared each week by dissolution in DMSO (used
as vehicle).

Culture of islets and dispersed islet cells Pancreatic islets were
isolated using collagenase (Sigma, St Louis, MO, USA) as
described [25]. For some experiments, pancreatic islets were
dispersed into isolated cells [26]. Before any treatment, whole
islets and dispersed cells were cultured for 48 h at 37°C in a
humidified atmosphere of 95% O2 and 5% CO2. See ESM
Methods for further details.

Microarray analysis Islets from three BPA-treated OF1 male
mice were isolated. Total RNA was isolated using the RNeasy
Mini Kit (Qiagen, Venlo, the Netherlands) and 1 μg was used to
obtain the gene expression profile of each sample. Biotinylated
cRNA (10 μg) prepared from total RNAwas hybridised on an
Affymetrix GeneChip Mouse Genome 430 2.0 Array
(Affymetrix, Santa Clara, CA, USA). Microarrays were scanned
using GeneChip Scanner 3000 7G (Affymetrix, Santa Clara,
CA, USA) and were processed with GeneChip Operating
System (GCOS) 1.4.0.036 (Affymetrix) to generate the CEL file
expression data. All analyses were conducted according to the
manufacturer’s instructions. Statistical data analyses were per-
formed using the Limma package (affylmGUI interface) of the
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R Bioconductor project (http://www.bioconductor.org; R
package version 2.7.0). Genes were considered significantly
upregulated or downregulated when their expression values
were fold change (linear) >1.5 and p value <0.05. Functional
annotation and biological term enrichment were performed using
Database for Annotation, Visualization and IntegratedDiscovery
(DAVID 6.8; https://david.ncifcrf.gov). Enrichment of Gene
Ontology (GO; http://www.geneontology.org) Biological
Process terms were considered as statistically significant when
p < 0.05 (Genomic core facility of CABIMER) [27, 28].

Dendrograms and hierarchical clustering heat maps were
generated using the open-source data analysis Multiple
Experiment Viewer (MeV) software package version 4.0, avail-
able at: http://mev.tm4.org/.

Na+ and K+ currents In Figs 2 and 4 and ESM Figs 2, 4 and 5,
the whole-cell patch-clamp configuration was used, while in
Fig. 5 and ESMFig. 1 we used the perforated patch whole-cell
recording mode. Data were acquired using an Axopatch 200B
patch-clamp amplifier (Axon Instruments, San Jose, CA,

Fig. 1 Microarray analysis of islets from mice treated with vehicle (con-
trol) or BPA 100 μg/kg per day for 4 days. (a) Dendrogram and hierar-
chical clustering heat map of gene subsets with similar expression pat-
terns using the open-source data analysis Multiple Experiment Viewer
(MeV) software package, between control and BPA-treated islets (3 rep-
licates each). Genes are grouped together and are connected by a series of
branches (clustering tree or dendrogram) according to the average linkage
method (cluster-to-cluster distance is defined as the average distance be-
tween all members of one cluster and all members of another cluster)
using the Euclidean distance (distance threshold = 3.26) as a measure of
similarity. The rows in the heat map represent cluster genes and their
measurements, while columns represent different experimental condi-
tions; the scales were assessed by the unweighted pair group method with
arithmetic mean (UPGMA) algorithm, which associates the similarity
between the samples (top right scale: 0, 0.45 and 18.9) and the genes
(top left scale: 0, 6.28 and 12.57). The coloured support boxes to the right
highlight clusters (1 to 7). The scaled expression value, denoted as the
row z-score, is plotted in yellow–blue colour scale with blue indicating

decreased expression (low), black indicating unchanged expression and
yellow indicating increased expression (high). Expression data are shown
for genes with log2 (fold change) differences of expression >0.58
(p<0.05). (b) Expanded view of hierarchical clustering heat maps for
pancreatic genes of interest detected within clusters 2 (blue box), 3 (green
box) and 7 (black box), showing the expression signatures of gene can-
didates in PBA-treated mice, as determined by applying k means cluster-
ing algorithms (k=10; maximum iterations 50). (c) Scatter plot with log2
fold change of DEGs between control and BPA-treated islets (p<0.05).
Selected upregulated and downregulated genes in islets are highlighted in
blue (indicating decreased expression) and in yellow (indicating increased
expression) (n=3 mice per group). (d) The predicted Biological Process
GO terms identified to be upregulated (n=18 terms) or downregulated
(n=10 terms) in BPA-treated islets. The p value was used to determine
the significance of enrichment or overrepresentation of terms for each
annotation. The ranking score was obtained using enrichment −log10(p
value) from the predicted target genes. The x-axis represents score and the
y-axis represents the top enriched signalling pathways

1670 Diabetologia (2019) 62:1667–1680

http://www.bioconductor.org
https://david.ncifcrf.gov
http://www.geneontology.org
http://mev.tm4.org/


USA). All experiments were performed at 32–34°C. See Ref.
[23] and ESM Methods for further details.

Real-time PCR Quantitative RT-PCR (qRT-PCR) was per-
formed using the CFX96 Real-Time System (Bio-Rad
Laboratories, Hercules, CA, USA). RNAwas extracted using
RNeasy Micro kit (Qiagen) and reverse-transcribed using the
High-Capacity cDNA Reverse Transcription kit (Applied
Biosystems, Foster City, CA, USA). Amplification reactions
were performed as described [23]. Values were analysed with
CFX Manager Version 1.6 (Bio-Rad) and expressed as the

relative expression in respect of control values (2−ΔΔCt ) [29].
Hprt was used as housekeeping gene. Similar results were
obtained when Gapdh was used as housekeeping gene (data
not shown). The primers used herein are listed in ESM
Table 1.

Statistical analysis Experimenters were not blind to group as-
signment and outcome assessment. GraphPad Prism 5.0 soft-
ware (GraphPad Software, La Jolla, CA, USA) was used for
most statistical analyses. Data are expressed as the mean ±
SEM. To assess differences between groups, we used two-

Fig. 2 BPA inhibits Na+ currents in mouse pancreatic beta cells. (a)
mRNA expression of Scn9a in islets frommice treated with vehicle (con-
trol; grey bars) or BPA 100 μg/kg per day (white bars) for four days. (b)
Scn9a mRNA expression in islets treated ex vivo with vehicle (control;
light grey bars) or BPA 1 nmol/l (white bars) for 48 h. (c, d) Scn9amRNA
expression in islets from wild-type (c) and Erβ−/− (d) mice treated ex vivo
with vehicle (control; light grey bars) or BPA 1 nmol/l (white bars) for
48 h. mRNA expression in (a–d) was measured by qRT-PCR and nor-
malised to the housekeeping gene Hprt1 and is shown as fold vs control.
Data are shown as means ± SEM of: six or seven (a), seven or eight (b),
five or six (c) or eight (d) independent experiments: *p≤0.05, **p≤0.01
(Student’s t test). (e) Representative recordings of Na+ and Ca2+ currents
in response to a depolarising voltage pulse (−70 mV to +10 mV; 5 ms

duration) after conditioning prepulses (from −150 mV to 0 mV) (inset) in
dispersed cells treated with vehicle (control) or BPA 1 nmol/l for 48 h.
Na+ currents are clearly distinguishable from Ca2+ currents by their faster
activation and inactivation kinetics (indicated by arrows). (f, g)
Relationship between Na+ current density (Na+ currents in pA normalised
to the cell capacitance in pF) and the voltage of the prepulses in dispersed
cells from wild-type (WT) (f) and Erβ−/− (g) mice treated ex vivo with
vehicle (control, n=9 beta cells) or BPA 1 nmol/l (n=12 beta cells) for
48 h. Data are shown as means ± SEM of the number of cells recorded.
These cells were isolated from five (f) or three (g) mice on at least three
different days: *p≤0.05, **p≤0.01 vs control at the same Vh (Student’s t
test). Vh, holding potential
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tailed Student’s t test or ANOVAwhen appropriate. For non-
parametric data we used Mann–Whitney and Kruskal–Wallis
ANOVA tests (followed by Dunn’s test), depending on the
experimental groups involved in the comparison. Except for
the microarray analysis (see above), a p value ≤0.05 was con-
sidered statistically significant.

Results

BPA regulates ion channel subunits expression inmouse islets
To study the effects of BPA on beta cell gene expression, we
treated adult OF1 male mice with vehicle (control; n = 3) or
BPA 100 μg/kg per day (n = 3) for 4 days. Afterwards, we
performed a microarray analysis of islets obtained from both
groups. Hierarchical clustering analysis of differentially
expressed genes showed a clear separation between control
and BPA-treated islets (Fig. 1a). In vivo BPA treatment sig-
nificantly modified the expression of 1440 probe sets, of
which 1192 were upregulated and 248 downregulated.
Overall, our analysis identified 50 genes related to ion channel
subunits within clusters 2, 3 and 7, including Cacn2d1,
Kcnma1 and Scn9a (Fig. 1b,c and Table 1). Based on these
observations, we performed a DAVID analysis to identify po-
tentially enriched biological processes among the putative tar-
get genes of the differentially expressed genes (DEGs) using
GO terms (http://www.geneontology.org), and to identify the
related pathways using the Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway database (https://www.genome.
jp/kegg; Release 89.0, January 1, 2019). Gene ontology
enrichment analysis revealed several DEGs related to ion
channel subunit regulation (Fig. 1c). Besides, based on these
DEGs, 18 upregulated and ten downregulated signalling path-
ways were identified in BPA-treated islets predicted to be
mainly related to ion channels (Fig. 1d).

BPA reduces the expression of Na+ channel subunits and Na+

currents via ERβ The Nav1.7 channel is the most abundant Na+

channel in mouse beta cells, contributing to approximately
85% of the Na+ current [30]. Our microarray analysis indicat-
ed that expression of the Nav1.7 channel, encoded by Scn9a,
was downregulated upon BPA exposure (Fig. 1, Table 1). To
confirm these data, we measured Scn9a expression in islets
from C57BL/6J BPA-treated mice (100 μg/kg per day for
4 days) or mouse islets treated ex vivo (BPA 1 nmol/l for
48 h). We observed that BPA treatment diminished Scn9a
expression in mouse islets in vivo and ex vivo (Fig. 2a,b).
To assess whether this downregulation affected Na+ currents
in beta cells, we recorded the currents using perforated patch-
clamp whole-cell recordings in response to a depolarising
pulse from −70 mV to 10 mV, preceded by a prepulse from
−150 mV to 0 mV to remove inactivation of Nav1.7 channel
currents [11] (ESM Fig. 1). As expected, BPA treatment

significantly reduced voltage-activated Na+ currents, possibly
due to Scn9a downregulation. Of note, expression of Scn3a,
which encodes the Nav1.3 channel, was not modified by BPA
treatment (Table 1). As a positive control of the oestrogenic
effects of BPA, we measured Na+ currents in control and 17β-
oestradiol-treated beta cells. The 17β-oestradiol-treated beta
cells presented reduced voltage-activated Na+ currents when
compared with control beta cells (ESM Fig. 2a,b).

Our recent findings suggest that, in pancreatic islets, BPA
1 nmol/l downregulates the voltage-activated Ca2+ channel
Cav2.3 and decreases the R-type Ca2+ current in an ERβ-
dependent manner [23]. To evaluate whether ERβ played a
role in the regulation of Na+ currents upon BPA exposure, we
treated islets from wild-type and Erβ−/− mice with BPA
1 nmol/l for 48 h. While BPA decreased Scn9a expression
(Fig. 2c) andNa+ currents (Fig. 2e,f) in wild-type mouse islets,
its effects on Scn9a expression (Fig. 2d) and Na+ currents
(Fig. 2g) were abolished in islets from Erβ−/− mice.
Moreover, treatment with the ERβ agonist diarylpropionitrile
(DPN, 1 nmol/l) decreased Na+ currents (ESM Fig. 2c), which
supports a role for ERβ in the modulation of Na+ currents.

BPA modulates the expression of different K+ channel sub-
units As demonstrated by our microarray analysis, BPA mod-
ulated the expression of several genes related to K+ channels
(see Table 1). To confirm these changes, we measured
Kcnab2, Kcnc4 and Kcnj12 mRNA expression in islets from
BPA-treated mice (100 μg/kg per day for 4 days) or mouse
islets treated ex vivo (BPA 1 nmol/l for 48 h) (ESM Fig. 3). As
observed in the microarray analysis, Kcnab2 and Kcnc4 ex-
pressionwas increased (ESMFig. 2a,b,d,e), whileKcnj12was
downregulated by BPA treatment (ESM Fig. 3c,f).

BPA reduces the expression of K+ channel subunits and K+

currents via ERβ The voltage-activated K+ channels Kv2.1
(encoded by Kcnb1) and Kv2.2 (Kcnb2), as well as the
KCa1.1 channel (Kcnma1), are major contributors of the
repolarisation phase of the action potential in beta cells [10,
15, 31]. Furthermore, K+ channel-interacting protein 1
(encoded by Kcnip) seems to be important for GSIS [32].
We assessed whether BPA treatment modulated the expres-
sion of these channel subunits and observed that, except for
Kcnb1, mRNA expression of Kcnb2, Kcnma1 and Kcnip1
was decreased by BPA treatment in vivo (Fig. 3a–d) and
ex vivo (Fig. 3e–h). BPA’s effects on Kcnb2, Kcnip1 and
Kcnma1 mRNA expression was abrogated in islets from
Erβ−/− mice (Fig. 3m–p) when compared with wild-type lit-
termate control mice (Fig. 3i–l).

To determine whether BPA-induced downregulation of
these K+ channels would be reflected in the K+ efflux, we
recorded K+ currents in beta cells from wild-type and Erβ−/−

mice using the patch-clamp technique in the whole-cell con-
figuration. Figure 4a shows the recordings of the K+ currents
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in response to depolarising voltage pulses from −60 mV to
+80 mV from a holding potential of −70 mV in cells from
wild-type mice. When compared with vehicle-treated cells,
currents were significantly smaller in BPA-treated cells
starting from 0 mV, which is about the peak of glucose-
induced action potentials (Fig. 4b). Measurements of the
whole-cell K+ currents showed that BPA had no effect on peak
current density in beta cells from Erβ−/− mice (Fig. 4c). We

further assessed whether ERβ was indeed involved in the
regulation of K+ currents by measuring K+ currents in control
and DPN-treated cells. We observed that DPN treatment de-
creased K+ currents, supporting a role for ERβ in the modu-
lation of K+ currents (ESM Fig. 4).

K+ currents result from the passage of K+ through several
types of voltage- and Ca2+-activated K+ channels whose ex-
pression was changed by BPA exposure (Figs 1 and 3,

Fig. 3 BPA inhibits expression of
K+ channel subunits in mouse
pancreatic beta cells. (a–d)
mRNA expression of Kcnb1 (a),
Kcnb2 (b), Kcnma1 (c) and
Kcnip1 (d) in islets from mice
treated with vehicle (control; grey
bars) or BPA 100 μg/kg per day
(white bars) for 4 days. (e–h)
mRNA expression of Kcnb1 (e),
Kcnb2 (f), Kcnma1 (g) and
Kcnip1 (h) in whole mouse islets
treated ex vivo with vehicle
(control; light grey bars) or BPA
1 nmol/l (white bars) for 48 h. (i–
p) mRNA expression ofKcnb1 (i,
m), Kcnb2 (j, n), Kcnma1 (k, o)
and Kcnip1 (l, p) in islets from
wild-type (i–l) and Erβ−/− (m–p)
mice treated ex vivo with vehicle
(control; light grey bars) or BPA
1 nmol/l (white bars) for 48 h.
mRNA expression was measured
by qRT-PCR and normalised to
the housekeeping gene Hprt1 and
is shown as fold vs control. Data
are shown as means ± SEM of:
six to seven (a–d), nine (e–h),
four to six (i–l) or eight (m–p)
independent experiments:
*p≤0.05, **p≤0.01, ***p≤0.001
(Student’s t test)
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Table 1, ESM Fig. 2). To determine which K+-channel sub-
types were altered by BPA exposure, we measured K+ current
in mouse beta cells in the absence or presence of iberiotoxin
(IbTx, a specific blocker of KCa1.1 channels), or stromatoxin-
1 (ScTx1, a selective inhibitor of the homotetrameric Kv2.1
and Kv2.2 channels). In the presence of 100 nmol/l IbTx, the
peak current density was decreased by BPA, although to a
lesser extent than in the absence of the blocker (Fig. 4d).
Similarly, BPA diminished K+ currents even in the presence
of ScTx1 100 nmol/l (Fig. 4e). These results show that BPA
reduces both Kv2.1/2.2 and KCa1.1 channel subtypes, consis-
tent with the BPA-induced downregulation of Kcnb2 and
Kcnma1. To evaluate whether the effects of BPA on K+

currents were due to its oestrogenic activity, we measured
K+ currents in control and 17β-oestradiol-treated cells.
Surprisingly, contrary to its effect on Na+ currents (ESM
Fig. 2a,b), 17β-oestradiol did not modify K+ currents (ESM
Fig. 5).

BPA alters electrical activity The electrical activity in response
to an increase in the external glucose concentration (from
0 mmol/l to 11 mmol/l) was recorded from dissociated beta
cells using the perforated patch-clamp technique (see details
in ESM Fig. 6). Compared with vehicle-treated control beta
cells (Fig. 5a), BPA treatment altered the characteristic single
burst of dissociated beta cells (Fig. 5b). The burst duration,

Fig. 4 BPA inhibits K+ currents in mouse pancreatic beta cells. (a)
Representative recordings of K+ currents in response to depolarising volt-
age pulses (−60 mV to +80 mV from a holding potential of −70 mV,
500 ms duration [inset]) in isolated beta cells treated with vehicle (con-
trol) or BPA 1 nmol/l for 48 h. (b, c) Relationship between K+ current
density (K+ currents in pA normalised to the cell capacitance in pF) and
the voltage of the pulses in dispersed cells from wild-type (WT) (b) and
Erβ−/− (c) mice treated ex vivo with vehicle (control; n=15 beta cells) or
BPA 1 nmol/l (n=18 beta cells) for 48 h. (d) Relationship between K+

current density (K+ currents in pA normalised to the cell capacitance in
pF) and the voltage of the pulses in dispersed cells treated ex vivo with
vehicle (control; n=11 beta cells) or BPA 1 nmol/l (n = 11 beta cells) for
48 h in the presence of IbTX (100 nmol/l) to block KCa1.1 currents. (e)
The same experiment as in (d) but in the presence of ScTx (100 nmol/l) to
block Kv2.1/2.2 currents. Data are shown as means ± SEM of the number
of cells recorded. Cells were isolated from five (b), two (c), or four (d, e)
mice on at least three different days: *p≤0.05, **p≤0.01, ***p≤0.001 vs
control at the same Vpulse (Student’s t test)
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measured as the time of action potential firing (Fig. 5c) or as
the percentage of time firing action potentials in the burst (Fig.
5d), was increased by BPA. As previously shown, a reduction
in the amplitude of action potentials was due to decreased
Ca2+ currents after BPA-induced Cav2.3 downregulation.
Here we show that BPA reduced the amplitude of the action
potential after hyperpolarisation (Fig. 5e,f) and enlarged the
half-width of the action potential (Fig. 5g), indicating that
BPA induced a reduction in K+ currents as reported above.
Furthermore, because of the changes in the action potential
waveform, the AUC of the action potential also diminished
(Fig. 5h).

Discussion

Pancreatic beta cells encode information with electrical sig-
nals. In response to glucose, beta cells produce bursts of action
potentials, generated by the activation of ion channels
expressed in their membrane, which ultimately stimulate in-
sulin secretion. Thus, any alteration in the expression and/or
activation of ion channels in beta cells leads to alteration of
insulin secretion and disturbance of glucose homeostasis. Our
findings indicate that environmentally relevant doses of BPA
alter ion channel expression in beta cells in an ERβ-dependent
manner. Consequently, whole-cell Ca2+ [23], K+ and Na+ cur-
rents were reduced, altering the shape of action potentials and
modifying beta cell electrical activity. Studies in humans and
animal models suggest that anomalies in beta cell function,
including alterations of beta cell electrical activity, play im-
portant roles in the aetiology of type 2 diabetes [33, 34]. Thus,
the changes in the expression and activity of ion channels
described herein might contribute to the diabetogenic action
of BPA observed in animal models [16, 35, 36] and in epide-
miological human studies [37–39].

Microarray analysis indicated that the expression of more
than 50 genes encoding ion channel subunits were either up-
regulated or downregulated in response to BPA treatment
in vivo. It has been shown that the treatment used here induces
insulin resistance and hyperinsulinaemia in the non-fasted
state [16, 18]. This BPA dose can be considered low as it is
only twice the ‘reference dose’ (50 μg/kg per day) believed by
the US Environmental Protection Agency to be safe over a
lifetime. An oral dose of BPA equal to this reference dose
rapidly altered GSIS, decreasing GSIS second phase in obese
individuals (mean BMI 31 kg/m2) [40]. In 2015, the European
Union reduced the tolerable BPA daily intake to 4 μg/kg [41].

The changes in gene expression observed in vivo were
reproduced in primary cultured beta cells treated with BPA
1 nmol/l. Of note, this BPA concentration is similar to that
found in human serum [20]. The fact that BPA alters ion
channel expression in primary cells indicates that BPA acts
directly on beta cells and, therefore, the changes observed

Fig. 5 BPA alters glucose-induced electrical activity in mouse pancreatic
beta cells. (a, b) Response of pancreatic beta cell electrical activity to a
stimulatory glucose level (11 mmol/l), recorded using the perforated
patch-clamp technique in dispersed cells treated ex vivo with vehicle (con-
trol, n=15 beta cells) (a) or BPA 1 nmol/l (n=18 beta cells) (b) for 48 h. (c)
Burst duration at 11 mmol/l glucose in dispersed cells treated ex vivo with
vehicle (control, n=7 beta cells) or BPA 1 nmol/l (n=7 beta cells) for 48 h.
(d) The same experiment as in (c) but expressed as percentage of burst
duration vs time depolarised at 11 mmol/l glucose. Data in (c,d) are shown
as the means ± SEM of the number of cells recorded. Cells were isolated
from seven mice on at least three different days: **p≤0.01, ***p≤0.001
(Student’s t test). (e) Superimposed representative action potentials at
11 mmol/l glucose in dispersed beta cells treated ex vivo with vehicle
(control) or BPA 1 nmol/l for 48 h. (f) After-hyperpolarisation (AHP) am-
plitude following action potentials in dispersed beta cells treated ex vivo
with vehicle (control; 1600 action potentials from n=11 beta cells) or BPA
1 nmol/l (1780 action potentials from n=11 beta cells) for 48 h. (g) Action
potential half-width in dispersed beta cells treated ex vivo with vehicle
(control; 1452 action potentials from n=11 beta cells) or BPA 1 nmol/l
(1342 action potentials from n=11 beta cells) for 48 h. (h) AUC of action
potential area in dispersed beta cells treated ex vivo with vehicle (control;
1780 action potentials from n=11 beta cells) or BPA 1 nmol/l (1780 action
potentials from n=11 beta cells) for 48 h. Data in (f–h) are shown as the
means ± SEM of the number of cells recorded. These cells were isolated
from five mice on at least three different days: ***p≤0.001 (Student’s t test)
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in vivo are not the result of islet adaptation to counteract in-
sulin resistance. Nonetheless, we cannot completely discount
some indirect effects of BPA in our in vivo results.

Voltage-activated K+ channels are responsible for the out-
ward currents underlying the falling phase of the action po-
tential [42].Kcnb2, encoding the Kv2.2 channel, is involved in

Table 1 Microarray results showing genes related to ion channel subunits differentially expressed between vehicle- and BPA-treated mice

Affymetrix ID Symbol Name Fold change
(linear)a

Up/Downb p value

1416956_at Kcnab2 Potassium voltage-gated channel, shaker-related subfamily, beta member 2 1.2476 Up 0.0197*

1422871_at Kcnj12 Potassium inwardly rectifying channel, subfamily J, member 12 1.2790 Down 0.0299*

1425090_s_at Kcnc4 Potassium voltage-gated channel, Shaw-related subfamily, member 4 1.2227 Up 0.0394*

1436275_at Kcnip2 Kv channel-interacting protein 2 1.1990 Up 0.0458*

1447418_at Kcnq1 Potassium voltage-gated channel, subfamily Q, member 1 1.3404 Up 0.0029**

1451595_a_at Kcnq2 Potassium voltage-gated channel, subfamily Q, member 2 1.2349 Up 0.0235*

1451808_at Kcnj4 Potassium inwardly rectifying channel, subfamily J, member 4 1.1710 Up 0.0307*

1457152_at Kcnb2 Potassium voltage-gated channel, Shab-related subfamily, member 2 1.9101 Down 0.0184*

1458781_at Kcnk13 Potassium channel, subfamily K, member 13 1.2643 Down 0.0110*

1440728_at Kcnma1 Potassium large-conductance calcium-activated channel, subfamily M,
alpha member 1

1.8547 Down 0.1541

1421762_at Kcnj5 Potassium inwardly rectifying channel, subfamily J, member 5 1.1236 Up 0.1008

1416785_at Kcnip1 Kv channel-interacting protein 1 1.3834 Up 0.0732

1454504_at Kcnip1 Kv channel-interacting protein 1 1.1438 Down 0.1488

1421038_a_at Kcnn4 Potassium intermediate/small-conductance calcium-activated channel,
subfamily N, member 4

1.1745 Up 0.0774

1421518_at Kcns1 K+ voltage-gated channel, subfamily S, 1 1.1587 Up 0.1943

1421619_at Kcnh3 Potassium voltage-gated channel, subfamily H (eag-related), member 3 1.1148 Up 0.1554

1423179_at Kcnb1 Potassium voltage-gated channel, Shab-related subfamily, member 1 1.2613 Down 0.0559

1423950_at Kcnab3 Potassium voltage-gated channel, shaker-related subfamily, beta member 3 1.1621 Up 0.1338

1434838_at Kcng2 Potassium voltage-gated channel, subfamily G, member 2 1.1154 Up 0.1787

1435342_at Kcnk6 Potassium inwardly rectifying channel, subfamily K, member 6 1.1731 Up 0.1549

1435994_at Kcnh1 Potassium voltage-gated channel, subfamily H (eag-related), member 1 1.2855 Up 0.0904

1437631_at Kcnip4 Kv channel-interacting protein 4 1.4100 Up 0.0793

1438613_at Kcna4 Potassium voltage-gated channel, shaker-related subfamily, member 4 1.1025 Up 0.1270

1443855_at Kcnc1 Potassium voltage-gated channel, Shaw-related subfamily, member 1 1.1791 Down 0.1849

1450712_at Kcnj9 Potassium inwardly rectifying channel, subfamily J, member 9 1.2029 Up 0.1105

1450773_at Kcnd2 Potassium voltage-gated channel, Shal-related family, member 2 1.1453 Down 0.0839

1453273_at Kcnv1 Potassium channel, subfamily V, member 1 1.1089 Up 0.1512

1454043_a_at Kcnab1 Potassium voltage-gated channel, shaker-related subfamily, beta member 1 1.1660 Up 0.0856

1454768_at Kcnf1 Potassium voltage-gated channel, subfamily F, member 1 1.2682 Up 0.0781

1455258_at Kcnc2 Potassium voltage-gated channel, Shaw-related subfamily, member 2 1.1891 Down 0.1366

1455514_at Kcnd1 Potassium voltage-gated channel, Shal-related family, member 1 1.1907 Up 0.1266

1459308_at Kcnn3 Potassium intermediate/small conductance calcium-activated channel,
subfamily N, member 3

1.2065 Down 0.1581

1455765_a_at Abcc8 ATP-binding cassette, subfamily C (CFTR/MRP), member 8 1.0076 Up 0.9912

1450515_at Kcnj11 Potassium inwardly rectifying channel, subfamily J, member 11 1.0856 Down 0.9190

1442333_a_at Scn9a Sodium channel, voltage-gated, type IX, alpha 2.5511 Down 0.0014**

1421705_at Scn3a Sodium channel, voltage-gated, type III, alpha 1.0387 Down 0.5566

1441608_at Cacna2d1 Calcium channel, voltage-dependent, alpha2/delta subunit 1 1.8741 Down 0.0266*

Islets from vehicle- and BPA-treated mice were isolated and a microarray analysis was performed
a Changes between islets from BPA-treated mice and islets from vehicle-treated mice. Differentially expressed genes were selected using a linear model
approach and implemented in the Linear Models for Microarray Bioconductor package (http://www.bioconductor.org; R package version 2.7.0)
b Direction of gene regulation

*p<0.05; **p<0.01
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the mouse beta cell electrical activity and its inhibition impairs
GSIS [43]. Here, Kcnb2 expression was decreased by BPA
both in vivo and ex vivo. The related channel Kv2.1 (encoded
by Kcnb1) is responsible for most of the outward current dur-
ing action potential repolarisation and its ablation increases
insulin release [31, 44]. However, the expression of Kcnb1
did not significantly change upon BPA exposure. BPA treat-
ment also decreased expression of Kcnip1, which encodes the
major β-subunit of Kv channels expressed in mouse beta cells
[32]. Although the role ofKcnip1 is poorly understood, silenc-
ing of Kcnip1 potentiates GSIS without altering insulin tran-
scription in MIN6N8 beta cells [32].

Our patch-clamp experiments showed that BPA reduced K+

outward currents. To study BPA’s effects on Kv channels in
isolation, we blocked the KCa1.1 channel (which would be
activated with the voltage-clamp protocol employed) with
iberiotoxin. We observed a reduction in BPA-induced volt-
age-activated K+ currents. However, we cannot differentiate
between the closely related Kv2.1 and Kv2.2 channels in these
experiments. The BPA-induced decrease in K+ current could
be caused by the diminished expression of Kv2.2 channel sub-
units, although we cannot rule out a BPA-elicited change in the
biophysical properties of some K+ channels, particularly the
Kv2.1 channel whose gene expression remained unchanged.

In addition to the effect of BPA in voltage-activated Kv2.1/
Kv2.2 channels, we investigated whether BPA affected KCa1.1
channels, which are critical in action potential shaping [6]. For

this purpose, we employed ScTx1 as a blocker of Kv2.1/Kv2.2
channels. Our results indicate that BPA decreased a fraction of
the large outward current that was resistant to ScTx1 and
hence carried by KCa1.1 channels, indicating that KCa1.1
channels are sensitive to BPA. This effect could be attributed
to the BPA-induced downregulation of Kcnma1, which en-
codes the α1 subunit of KCa1.1 channels. KCa1.1 channels
are Ca2+- and voltage-dependent channels that, in mouse beta
cells, play a part mostly in cells with large Ca2+ currents, in
which KCa1.1 channel blockade increased spike amplitude
and potentiated GSIS [10].

Changes in the expression of Kv and KCa1.1 channel sub-
units could explain the change in the shape of action potentials
and the alteration of the electrical activity pattern induced by
BPA exposure. The decreased activity of Cav2.3 channels in
the presence of 1 nmol/l BPA [23] could be responsible for the
diminished amplitude of the action potential. A decrease in
Ca2+ entry would contribute to a diminished activation of
KCa1.1 channels that, together with downregulation of
KCa1.1 and Kv2.2 channels, results in wider action potentials.
Given the role of K+ current in beta cell electrical activity [6],
this effect of BPA exposure should cause longer bursts of
electrical activity (present data) and may explain, at least par-
tially, the enhanced GSIS already described in BPA-exposed
beta cells [16, 17, 23].

Mouse beta cells express two main types of Na+ channels,
Nav1.3 and Nav1.7, whose roles are less understood compared

Fig. 6 Stimulus–secretion coupling model showing Ca2+ and K+ chan-
nels downregulated by BPA in mouse pancreatic beta cells. (a) The main
ion channels involved in glucose-induced electrical activity in mouse
pancreatic beta cells. The KATP channel is responsible for the resting
membrane potential and the voltage-gated Cav1.2, Cav2.3, Kv2.1, Kv2.2
and KCa1.1 channels remain closed in the absence of stimuli. BPA
downregulates the expression and the currents mediated by Cav2.3 (see
[23]), Kv2.2, and KCa1.1 channels. (b) Upon an increase in extracellular
glucose levels, glucose enters the cell and is metabolised, which causes a

rise in the ATP:ADP ratio. Subsequently, KATP channels are closed, lead-
ing to membrane depolarisation and opening of the voltage-gated Ca2+

and K+ channels. The subsequent Ca2+ influx triggers insulin release.
BPA-induced downregulation of Cav2.3, Kv2.2 and KCa1.1 channels
helps to explain the modified shape of the action potential elicited by
BPA (Fig. 5e), which culminates in increased insulin release. Note that
the Na+ channels Nav1.3 and Nav1.7 are not included because their role in
the stimulus–secretion coupling model is still unclear. GK, glucokinase;
Vm, membrane potential
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with Ca2+ and K+ channels. The Nav1.3 channel is responsible
for only a small part of the total Na+ current and it may play a
role in the depolarisation of the action potential [30].
Alternatively, the Nav1.7 channel, encoded by Scn9a, corre-
sponds to 85% of the Na+ current [30], although its role is yet
to be unveiled as the Nav1.7 channel is inactivated at physio-
logical membrane potentials. While no alterations in GSIS are
observed in Scn9a−/− mice, these mice present higher insulin
content relative to wild-type counterparts [12]. Furthermore,
Nav1.7 channel inhibition increases both Ins1 and Ins2mRNA
expression [12]. These data suggest that Nav1.7 channels may
be associated with insulin biosynthesis. It has been shown that
BPA augments insulin content through an ERα/ERK pathway
[17]. However, it remains to be determined whether the BPA-
induced Snc9a downregulation observed in the present study
is associated with the increase in insulin content observed in
BPA-treated beta cells.

Of note, our experiments using beta cells from Erβ−/− mice
indicated that BPA decreased Scn9a, Kcnb2 and Kcnma1 ex-
pression, as well as Na+ and K+ currents, in an ERβ-dependent
manner. The use of a global Erβ knockout may represent a
handicap in our study as the ERβ receptor is important for
other tissues involved in glucose homeostasis. Hence, it might
be suggested that the absence of ERβ could indirectly affect
beta cells in vivo. Nevertheless, this in vivo component seems
unlikely in our model, at least considering the ion channels
studied herein. If we carefully analyse the current–voltage
curves for beta cells from wild-type and Erβ−/− mice, we can
see that they are identical. Moreover, our data with DPN, an
ERβ agonist, fully reproduced BPA’s effects on Na+ and K+

currents, reinforcing the role played by ERβ in the BPA-
induced changes identified in beta cells. Of note, our findings
do not rule out the involvement of other oestrogen receptors,
such as ERα and G protein-coupled oestrogen receptor 1
(GPER), in the pathway activated by BPA.

The changes in the expression of ion channel subunits, ion
channel-mediated currents and electrical activity presented
here suggest that low doses of BPA alter beta cell function
via ERβ. These effects of BPA could be responsible, at least
in part, for the previously described increase in GSIS in vivo
and ex vivo [16, 17, 23]. Moreover, Nav1.7 channel downreg-
ulation opens the possibility of a new regulatory pathway
activated by ERβ to regulate insulin biosynthesis. As the
BPA concentration used herein was similar to that found in
the human population, these results reinforce the likely diabe-
togenic action of BPA.

Thus, our present results establish a mechanistic link to
explain the BPA-induced enhancement in GSIS, placing the
main channels involved in beta cell electrical activity as key
targets of a diabetogenic EDC (Fig. 6). Moreover, understand-
ing how BPA regulates the shape of action potentials in beta
cells is important for revealing the mechanisms by which this
EDC acts in other excitable cells, including neurons and

cardiac, skeletal and smooth muscle cells. This may be rele-
vant to explain the actions of BPA on the nervous system and
its effects in cardiovascular disease [45].
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