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Abstract. The aim of this paper is to show the existence of renormalized solutions to a parabolic-
elliptic system with unbounded diffusion coefficients. This system may be regarded as a modified 
version of the well-known thermistor problem; in this case, the unknowns are the temperature in a 
conductor and the electrical potential.
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1. Introduction. This paper is concerned with the resolution of the nonlinear
parabolic-elliptic system⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂u

∂t
−∇ · (a(u)∇u) =σ(u)|∇ϕ|2 in Q = Ω × (0, T ),

−∇ · (σ(u)∇ϕ) =∇ · F (u) in Q,
u= 0 on ∂Ω × (0, T ),
ϕ= 0 on ∂Ω × (0, T ),

u(·, 0) =u0 in Ω,

(1)

where Ω ⊂ R
N is a bounded domain, T > 0, a(x, t, s), σ(x, t, s), and F (x, t, s), F =

(F1, . . . , FN )′, are Caratheodory functions defined in Q×R. This problem has a similar
structure to the so-called thermistor problem arising in electromagnetism ([4, 12]); in
that particular context, Ω stands for the domain occupied by the thermistor, u is the
temperature, u0 the initial temperature, ϕ is a shifted electric potential, F (x, t, s) =
σ(s)∇ϕ0(x, t), ϕ0 is a given function, and σ is a continuous and bounded function.
Indeed, the actual electric potential is ψ = ϕ+ϕ0, and thus ϕ0 is the electric potential
Dirichlet boundary data on ∂Ω × (0, T ). In our analysis, and from a mathematical
standpoint, we will consider more general functions F (x, t, s).

A great deal of attention has been paid to the thermistor problem during the last
two decades by several authors ([2, 4, 13, 26], etc.). In these works, many situations
and different hypotheses have been considered, but both a and σ are assumed to be
bounded in all these referred works.

The goal of this paper is to analyze problem (1) in the case of nonbounded diffusion
coefficients a and σ. Moreover, no asymptotic behavior on a, σ, and F is assumed.

Under these general assumptions, one readily realizes that weak solutions (in the
sense of distributions) are not well suited in this context. Note that even if u or ϕ
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belong to some Banach space of the form Lq(W 1,q(Ω)), the terms a(u)∇u, σ(u)∇ϕ,
or F (u) may not belong to any Lr(Q) space, r ≥ 1. For this reason, we consider the
notion of renormalized solutions adapted to our setting. The concept of renormalized
solution was fist introduced by DiPerna and Lions ([15, 16]) in the framework of
the Fokker–Plank–Boltzmann equations; later on, it was applied to more general
situations (for instance, in the resolution of nonlinear elliptic equations ([9, 22, 23]),
or in the resolution of nonlinear parabolic equations ([6, 7, 8])).

The fact that a and σ are unbounded is not the only difficulty we may encounter
in the resolution of problem (1). Indeed, the parabolic equation needs a special
treatment due to the nonlinear right-hand side belonging to L1(Q).

In order to solve problem (1) under the assumptions stated below, we use trun-
cation and approximate solutions. This work is organized as follows.

In section 2, we set up the notation used in the paper; this leads to the introduction
of some functional spaces. We also recall certain compactness results and give an
existence theorem for problem (1) in the case of bounded data.

Section 3 enumerates the hypotheses and introduces the concept of renormalized
solution adapted to our context. Finally, we give the existence result.

Section 4 develops the proof of the existence result; it is split into three steps,
namely: setting of approximate problems, derivation of estimates, and passing to the
limit and conclusion.

2. Notation and functional spaces. Let Ω ⊂ R
N , N ≥ 1, be an open bounded

domain, and ∂Ω its boundary. Then we define D(Ω) as the space of all C∞–functions
in Ω with compact support.

For p ∈ [1,+∞], let W 1,p(Ω) be the first order Sobolev space given as

W 1,p(Ω) =
{
v ∈ Lp(Ω) /∇v ∈ Lp(Ω)N

}
,

where the gradient ∇v =
(

∂v
∂x1

, . . . , ∂v
∂xN

)′
is taken in the sense of distributions (here,

the prime symbol stands for vector transposition). It is well-known that W 1,p(Ω) is
a Banach space with norm

‖v‖W 1,p(Ω) =
(
‖v‖pLp(Ω) + ‖∇v‖p

Lp(Ω)N

)1/p

, p ∈ [1,+∞),

‖v‖W 1,∞(Ω) = ‖v‖L∞(Ω) + ‖∇v‖L∞(Ω)N ;

moreover, if p = 2, then we write H1(Ω) = W 1,2(Ω), which is a Hilbert space.
Since we deal with homogenous Dirichlet boundary conditions, it is interesting to

introduce the space W 1,p
0 (Ω) defined as the closure of D(Ω) with respect to ‖·‖W 1,p(Ω),

that is,

W 1,p
0 (Ω) = D(Ω)

W 1,p(Ω)
, p ∈ [1,+∞).

It is known that if ∂Ω is smooth enough (for instance, Lipschitz continuous), W 1,p
0 (Ω)

is characterized by the following property:

W 1,p
0 (Ω) = {v ∈ W 1,p(Ω) / v|∂Ω

= 0}, p ∈ [1,+∞).

Also we put H1
0 (Ω) = W 1,2

0 (Ω). W 1,p
0 (Ω) and H1

0 (Ω) are, respectively, Banach and
Hilbert spaces. By Poincaré’s inequality, the seminorm |v|W 1,p(Ω) = ‖∇v‖Lp(Ω)N is a



norm in W 1,p
0 (Ω) equivalent to ‖ · ‖W 1,p(Ω) on W 1,p

0 (Ω). The space W−1,p′
(Ω) stands

for the dual space of W 1,p
0 (Ω), p ∈ [1,+∞).

We now introduce some notation according to the parabolic equation of (1). For
a Banach space X and 1 ≤ p ≤ +∞, let Lp(X) denote the space Lp([0, T ];X), that
is, the set of (equivalence class of) measurable functions f : [0, T ] → X such that
t ∈ [0, T ] 
→ ‖f(t)‖X is in Lp(0, T ). If f ∈ Lp(X), we define

‖f‖Lp(X) =

(∫ T

0

‖f(t)‖pX

)1/p

, 1 ≤ p < +∞, ‖f‖L∞(X) = ess sup
t∈[0,T ]

‖f(t)‖X ;

and thus
(
Lp(X), ‖ · ‖Lp(X)

)
is a Banach space. By Fubini’s theorem we can identify

the space Lp(Lp(Ω)) with Lp(Q), Q being the cylinder Ω × (0, T ).
Let X and Y be two Banach spaces, X ↪→ Y with continuous inclusion, and set

W =

{
v ∈ Lp(X) /

dv

dt
∈ Lq(Y )

}
, p, q ∈ [1,+∞],

provided with the standard norm ‖w‖W = ‖w‖Lp(X) +
∥∥dv

dt

∥∥
Lq(Y )

. Then (W, ‖ · ‖W )

is a Banach space and the inclusion W ↪→ C0 ([0, T ];Y ) holds and is continuous.
However, it will be very interesting and useful to know if a particular compactness
embedding involving these spaces holds. The answer is given by the following two
lemmas ([24]).

Lemma 1. Let X, B, and Y be three Banach spaces such that X ↪→ B ↪→ Y , every
embedding being continuous and the inclusion X ↪→ B compact. Let 1 ≤ p < +∞ and
1 ≤ q ≤ +∞. Then, the inclusion W ↪→ Lp(B) holds and is compact.

Lemma 2. Let X, B and Y be as in Lemma 1, and E ⊂ L∞(X) be a bounded
set such that

(i) dv
dt ∈ L1(Y ) for all v ∈ E, and

(ii) there exist h ∈ L1(0, T ), s > 1 and a bounded set Z ⊂ Ls(0, T ) such that∥∥∥∥dv

dt

∥∥∥∥
Y

≤ h + zv, for all v ∈ E, zv ∈ Z and a.e. in (0, T ).

Then, E is relatively compact in C0 ([0, T ];B).
The approximate problems in section 4.1 are defined via truncation functions.

For this purpose, we introduce, for each j > 0 in R, the truncation function at height
j to be

Tj(s) = sign(s) min(j, |s|), sign(s) =

{
0 if s = 0,
s/|s| if s �= 0.

(2)

We will also make use of the following lemma, due to Boccardo and Gallouët ([10])
and ([19]).

Lemma 3. Let (vn) be a sequence of measurable functions in Q such that
1. (vn) is bounded in L∞(L1(Ω)).
2. For all j > 0, n ≥ 0, Tj(vn) ∈ L2(H1

0 (Ω)).
3. There exists a constant C > 0 such that∫

{m≤|vn|<m+1}
|∇vn|2 ≤ C for all m, n ≥ 0.



Then (vn) is bounded in the space Lq(W 1,q(Ω)) for all q < N+2
N+1 if N ≥ 2, and for all

q < 2 if N = 1.
If g : Q× R is a Caratheodory function and u is measurable in Q, we write g(u)

for the measurable function in Q defined as (x, t) ∈ Q 
→ g(x, t, u(x, t)).
In what follows, C > 0 stands for generic constant values which only depend on

initial data.
The introduction of the approximate solutions relies on the following result.
Theorem 4. Assume that the Caratheodory functions a, σ and F are such that

a, σ ∈ L∞(Q× R), F ∈ L∞(Q× R)N and there exist two constant values a0 > 0 and
σ0 satisfying

a(x, t, s) ≥ a0, σ(x, t, s) ≥ σ0, for all s ∈ R, a.e. (x, t) ∈ Q.

Finally, let u0 ∈ L2(Ω). Then, for every j > 0, there exists u ∈ L2(H1
0 (Ω)) and

ϕ ∈ L∞(H1
0 (Ω)) such that

du

dt
∈ L2(H−1(Ω)), u(·, 0) = u0 in Ω,

and⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∫ T

0

〈
du

dt
, v

〉
+

∫
Q

a(u)∇u∇v =

∫
Q

Tj

(
σ(u)|∇ϕ|2

)
v, for all v ∈ L2(H1

0 (Ω)),

∫
Ω

σ(u)∇ϕ∇ψ =

∫
Ω

F (u)∇ψ, for all ψ ∈ H1
0 (Ω), a.e. t ∈ (0, T ).

(3)

For the proof of this result one may follow the same arguments as in the proof of
the existence theorem for the thermistor problem ([4]).

3. The main result. We make the following assumptions:
(H.1) a, σ : Q×R → R and F : Q×R → R

N are Caratheodory functions and there
exists a nondecreasing function γ : R

+ → R
+ such that

max (a(x, t, s), σ(x, t, s), |F (x, t, s)|) ≤ γ(|s|), for all s ∈ R, a.e. in Q.

(H.2) There exist two constant values a0 > 0 and σ0 > 0 such that

a(x, t, s) ≥ a0, σ(x, t, s) ≥ σ0, for all s ∈ R, a.e. in Q.

(H.3) There exists a function Γ ∈ L1(Q) such that

|F (x, t, s)|2 ≤ Γ(x, t)σ(x, t, s), for all s ∈ R, a.e. in Q.

(H.4) max
k≤|s|≤2k

ess sup
Q

1

k

σ(x, t, s)

a(x, t, s)
= ω(k) as k → +∞, where ω(k) stands for a null

sequence, that is, limk→∞ ω(k) = 0.
(H.5) u0 ∈ L1(Ω).

Hypothesis (H.1) is one of the main difficulties in the resolution of problem (1).
As it has been stated in section 1, we cannot expect to search for weak solutions.
However, assumptions (H.3) and (H.4) give a relation of the asymptotic behavior of
a(s), σ(s) and F (s) for large values of s.

We introduce now the definition of renormalized solutions to problem (1).
Definition 5. A couple of functions (u, ϕ) is called a renormalized solution to

problem (1) if the following conditions are fulfilled:



(R.1) u ∈ L1(Ω), ϕ ∈ L2(H1
0 (Ω)), and

∫
Q
σ(u)|∇ϕ|2 < +∞;

(R.2) TM (u) ∈ L2(H1
0 (Ω)) for all M > 0;

(R.3) lim
n→∞

∫
{n≤|u|<n+1}

a(u)∇u∇u = 0;

(R.4) For all S ∈ C∞(R) with supp S′ compact,

∂S(u)

∂t
−∇ · [a(u)∇uS′(u)] + S′′(u)a(u)∇u∇u = σ(u)|∇ϕ|2S′(u) in D′(Q),

S(u(·, 0)) = S(u0) in Ω;

(R.5) For all ψ ∈ L2(H1
0 (Ω)) such that

∫
Q
σ(u)|∇ψ|2 < +∞, we have∫

Q

σ(u)∇ϕ∇ψ = −
∫
Q

F (u)∇ψ.

Remark. Properties (R.1)–(R.4) on u are the usual conditions verified by renor-
malized solutions of parabolic equations ([7]). On the other hand, (R.5) says in
particular that the set of test functions in the equation for ϕ depends upon the solu-
tion u.

We can now state the main result of this work.
Theorem 6. Under hypotheses (H.1)–(H.5), system (1) admits a renormalized

solution (u, ϕ) in the sense of Definition 5.

4. Proof of Theorem 6. The proof is divided into three steps: first, we intro-
duce a sequence of approximate problems; then, we derive certain estimates for the
approximate solutions; and finally, we pass to the limit and conclude.

4.1. Setting of the approximate problems. For every j > 0, we consider
the truncation functions defined by

aj(x, t, s) = a(x, t, Tj(s)), σj(x, t, s) = σ(x, t, Tj(s)), Fj(x, t, s) = F (x, t, Tj(s)),

where Tj is defined in (2). Thanks to aj , σj ∈ L∞(Q× R) and Fj ∈ L∞(Q× R)N .
The approximate problems are stated as follows: to find uj ∈ L2(H1

0 (Ω)) and

ϕj ∈ L∞(H1
0 (Ω)) such that

duj

dt ∈ L2(H−1(Ω)), uj(·, 0) = Tj(u0) in Ω and⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∫ T

0

〈
duj

dt
, v

〉
+

∫
Q

aj(uj)∇uj∇v=

∫
Q

Tj

(
σj(uj)|∇ϕj |2

)
v, for all v∈L2(H1

0 (Ω)),

∫
Ω

σj(uj)∇ϕj∇ψ = −
∫

Ω

Fj(uj)∇ψ, for all ψ ∈ H1
0 (Ω), a.e. t ∈ (0, T ).

(4)

By virtue of Theorem 4, we know that for each j > 0, there exists (uj , ϕj) verifying
all these conditions.

4.2. Estimates for (uj) and (ϕj). Choosing ψ = ϕj in the equation for ϕj

and integrating over Q yields,∫
Q

σj(uj)|∇ϕj |2 =−
∫
Q

Fj(uj)∇ϕj≤
(∫

Q

σj(uj)
−1|Fj(uj)|2

)1/2(∫
Q

σj(uj)|∇ϕj |2
)1/2

,

hence, using (H.3),∫
Q

σj(uj)|∇ϕj |2 ≤
∫
Q

σj(uj)
−1|Fj(uj)|2 ≤

∫
Q

Γ = C.(5)



In this way, the sequence
(
σj(uj)|∇ϕj |2

)
is bounded in L1(Q). We may rewrite the

parabolic equation of (4) as⎧⎨
⎩

∫ T

0

〈
duj

dt
, v

〉
+

∫
Q

aj(uj)∇uj∇v =

∫
Q

fjv, for all v ∈ L2(H1
0 (Ω)),

uj(·, 0) = Tj(u0),

(6)

where fj = Tj

(
σj(uj)|∇ϕj |2

)
. Since the sequences (fj) and (Tj(u0)) are bounded

in L1(Q) and L1(Ω), respectively, we may deduce some well-known estimates for the
sequence of solutions to (6) (uj) in suitable Banach spaces ([7, 10]), namely

(uj) is bounded in L∞(L1(Ω));(7)

for all M > 0 and j ≥ 1, there exists a constant C > 0, not depending upon M and
j, such that ∫

Q

|∇TM (uj)|2 ≤ CM,(8)

∫
{M≤|uj |<M+1}

|∇uj |2 ≤ C,(9)

and also ∫
{M≤|uj |<M+1}

aj(uj) |∇uj |2 ≤
∫
{|uj |>M}

|fj | +
∫
{|u0|>M}

|u0|.(10)

Owing to (7), (9), and Lemma 3, we have

(uj) is bounded in Lq(W 1,q
0 (Ω)), for all q <

N + 2

N + 1
if N ≥ 2, q < 2 if N = 1.(11)

As far as the parabolic term
duj

dt is concerned, we proceed as follows. Let S ∈ C∞(R)
with supp S′ ⊂ [−M,M ]. Taking v = S′(uj)φ, φ ∈ D(Ω), in (6), it yields

dS(uj)

dt
−∇ · [aj(uj)∇ujS

′(uj)] + S′′(uj)aj(uj)∇uj∇uj = fjS
′(uj) in D′(Ω).(12)

Thanks to (8) and (H.1) we obtain(
dS(uj)

dt

)
is bounded in L2(H−1(Ω)) + L1(Q).

Since L2(H−1(Ω)) + L1(Q) ↪→ L1(W−1,r(Ω)), r < N
N−1 , with continuous inclusion,

we have (
dS(uj)

dt

)
is bounded in L1(W−1,r(Ω)) for all r <

N

N − 1
.(13)

Furthermore, using (11), we readily have

(S(uj)) is bounded in Lq(W 1,q
0 (Ω)), for all q <

N + 2

N + 1
, if N ≥ 2, q < 2 if N = 1.



Now we apply the compactness result stated in Lemma 1. To do so, we take

X = W 1,q
0 (Ω), B = Lq(Ω), Y = W−1,r(Ω);

therefore,

(S(uj)) is relatively compact in Lq(Q) for all q <
N + 2

N + 1
.(14)

Property (14) is not enough to deduce the almost everywhere convergence of (uj)
modulo a subsequence. We must also use the estimates derived above. To this end,
let M > 0 and consider a function S ∈ C∞(R) satisfying

(i) supp S′ is compact,
(ii) S is nondecreasing, and
(iii) S(s) = s if |s| ≤ M .

Therefore, we have the identity TM (s) = TM (S(s)) for all s ∈ R, and, in particular,

TM (uj) = TM (S(uj)).(15)

According to (8), for every M > 0 there exist a subsequence, which will be denoted
in the same way, and a function zM ∈ L2(H1

0 (Ω)) such that

TM (uj) → zM weakly in L2(H1
0 (Ω)).(16)

On the other hand, from (14), there exist a subsequence, still denoted in the same
way, and a function ςS ∈ Lq(Q) such that

S(uj) → ςS strongly in Lq(Q) and a.e. in Q.(17)

Notice that (15) and (17) imply that TM (uj) converges almost everywhere to TM (ςS);
this fact, together with (16), implies that zM = TM (ςS).

Furthermore, from (11), there exist u ∈ Lq(W 1,q
0 (Ω)) and a subsequence of (uj)

such that

uj → u weakly in Lq(W 1,q
0 (Ω)), for all q <

N + 2

N + 1
if N ≥ 2, q < 2 if N = 1.

All these convergences lead to (modulo a subsequence) the almost everywhere con-
vergence of (uj). Indeed, this property can be readily derived from the next result
([19]).

Lemma 7. Let q ≥ 1, A ⊂ R
N a nonnegligible measurable set, (wj) ⊂ Lq(A),

w ∈ Lq(A) be such that

wj → w weakly in Lq(A).

Assume that for every M > 0 there exists vM ∈ L1(A) such that

TM (vj) → vM a.e. in A,

then TM (w) = vM , for all M > 0 (and in particular wj → w almost everywhere
in A).

Summing up, we have shown the existence of subsequences, still denoted in the
same way, (uj), (ϕj), and functions u ∈ Lq(W 1,q

0 (Ω)) and ϕ ∈ L2(H1
0 (Ω)) such that

uj → u weakly in Lq(W 1,q
0 (Ω)), for all q <

N + 2

N + 1
if N ≥ 2, q < 2 if N = 1,(18)



TM (uj) → TM (u) weakly in L2(H1
0 (Ω)),(19)

uj → u a.e. in Q,(20)

S(uj) → S(u) strongly in Lr(Q) for all r < +∞,(21)

dS(uj)

dt
→ dS(u)

dt
in D′(Q),(22)

ϕj → ϕ weakly in L2(H1
0 (Ω)),(23)

where (21) and (22) are valid for all S ∈ C∞(Ω) with supp S′ compact, and (23) is
obtained from (5) and (H.2).

Now we turn our attention to (ϕj) and ϕ. First of all, we show that

σj(uj)
1/2∇ϕj → σ(u)1/2∇ϕ weakly in L2(Q)N .(24)

Indeed, from (5), there exist a subsequence and Φ ∈ L2(Q)N such that

σj(uj)
1/2∇ϕj → Φ weakly in L2(Q)N .(25)

Using (20) and (H.2), it yields

σj(uj)
−1/2 → σ(u)−1/2 weakly–∗ in L∞(Q) and a.e. in Q.(26)

Putting

∇ϕj = σj(uj)
−1/2σj(uj)

1/2∇ϕj ,(27)

and passing to the limit, gathering (25)–(27), we obtain Φ = σ(u)1/2∇ϕ, and this
shows the statement (24). Notice that, in particular, σ(u)|∇ϕ|2 ∈ L1(Q).

One of the most delicate parts in the passing to the limit consists in showing the
convergence

σj(uj)
1/2∇ϕj → σ(u)1/2∇ϕ strongly in L2(Q)N .(28)

From (24), it is enough to show that∫
Q

σj(uj)|∇ϕj |2 →
∫
Q

σ(u)|∇ϕ|2.(29)

To do this, we first introduce the function Sk ∈ W 1,∞(R), k > 0, defined as

Sk(s) =

⎧⎨
⎩

1 if |s| ≤ k,
(2k − |s|)/k if k < |s| ≤ 2k,
0 if |s| > 2k.

(30)

Note that supp Sk = [−2k, 2k] and S′
k(s) = 1

k

(
χ(−2k,−k) − χ(k,2k)

)
. Then, we take

in (4) the test function ψ = Sk(uj)TM (ϕ) ∈ L∞(H1
0 (Ω)). The integration over (0, T )

leads to ∫
Q

σj(uj)∇ϕj∇TM (ϕ)Sk(uj) +

∫
Q

σj(uj)∇ϕj∇ujS
′
k(uj)TM (ϕ)

= −
∫
Q

Fj(uj)∇TM (ϕ)Sk(uj) −
∫
Q

Fj(uj)∇ujS
′
k(uj)TM (ϕ);



we call these terms (I)–(IV ) and study them separately.
(I). Since σj(uj)Sk(uj) = σj(T2k(uj))Sk(uj) ∈ L∞(Q) and is bounded in this space,
using (20) it yields

σj(uj)Sk(uj) → σ(u)Sk(u) weakly–∗ in L∞(Q) and a.e. in Q.

From (23), making j → ∞, we readily obtain∫
Q

σj(uj)∇ϕj∇TM (ϕ)Sk(uj) →
∫
Q

σ(u)∇ϕTM (ϕ)Sk(u).

Owing to Lebesgue’s theorem, we finally deduce

lim
M→∞

lim
k→∞

lim
j→∞

∫
Q

σj(uj)∇ϕj∇TM (ϕ)Sk(uj) =

∫
Q

σ(u)|∇ϕ|2.

(II). We first derive another estimate for (uj). Let Hk ∈ W 1,∞(R) be the function

Hk(s) =

⎧⎨
⎩

0 if |s| ≤ k,
(|s| − k)/k if k < |s| ≤ 2k,
|s|/s if |s| > 2k,

then put H̃k(s) =
∫ s

0
Hk(τ)dτ and Ek

j = {k < |uj | < 2k}. Choosing v = Hk(uj) in
(4) yields∫

Ω

H̃k(uj(T )) +
1

k

∫
Ek

j

aj(uj)|∇uj |2 =

∫
Q

fjHk(uj) +

∫
Ω

H̃k(Tj(u0));

therefore, for all j ≥ 1 and k > 0, there exists a constant C > 0, not depending upon
j and k, such that

1

k

∫
Q

aj(uj)|∇uj |2χEk
j
≤ C,

that is, (
1√
k
aj(uj)

1/2∇ujχEk
j

)
is bounded (in j and k) in L2(Q)N .(31)

Going back to (II)

(II) =

∫
Q

σj(uj)
1/2∇ϕjσj(uj)

1/2aj(uj)
−1/2aj(uj)

1/2∇ujS
′
k(uj)TM (ϕ),

thus

|(II)| ≤ M

∫
Q

∣∣∣∣σj(uj)
1/2∇ϕj

1√
k
σj(uj)

1/2aj(uj)
−1/2 1√

k
aj(uj)

1/2∇ujχEk
j

∣∣∣∣
≤ M

∥∥∥σj(uj)
1/2∇ϕj

∥∥∥
L2(Q)

·
∥∥∥∥ 1√

k
aj(uj)

1/2∇ujχEk
j

∥∥∥∥
L2(Q)

·
∥∥∥∥ 1√

k
σj(uj)

1/2aj(uj)
−1/2χEk

j

∥∥∥∥
L∞(Q)

.



Hence, from (H.4), (5), and (31), we deduce

|(II)| ≤ Cω(k),

which implies

lim
k→∞

lim sup
j→∞

∫
Q

σj(uj)∇ϕj∇ujS
′
k(uj)TM (ϕ) = 0.

(III). Lebesgue’s theorem easily shows that

lim
j→∞

∫
Q

Fj(uj)∇TM (ϕ)Sk(uj) =

∫
Q

F (u)∇TM (ϕ)Sk(u).

We now express this last integral as∫
Q

F (u)σ(u)−1/2σ(u)1/2∇TM (ϕ)Sk(u).

Owing to (H.3) and (24) we can apply again Lebesgue’s theorem, first in k, then in
M , to deduce finally that

lim
M→∞

lim
k→∞

lim
j→∞

∫
Q

Fj(uj)∇TM (ϕ)Sk(uj) =

∫
Q

F (u)∇ϕ.(32)

(IV ). Following the same techniques as in (II) and (III), it is straightforward that

lim
k→∞

lim sup
j→∞

∫
Q

Fj(uj)∇ujS
′
k(uj)TM (ϕ) = 0.

Gathering (27)–(32), ∫
Q

σ(u)|∇ϕ|2 = −
∫
Q

F (u)∇ϕ.(33)

On the other hand, taking ψ = ϕj in (4) and integrating over (0, T ), we obtain∫
Q

σj(uj)|∇ϕj |2 = −
∫
Q

Fj(uj)∇ϕj ;

since Fj(uj)∇ϕj = Fj(uj)σj(uj)
−1/2σj(uj)

1/2∇ϕj , and bearing in mind (H.3), (20),
and (24), we conclude that ∫

Q

Fj(uj)∇ϕj →
∫
Q

F (u)∇ϕ;(34)

putting together (33)–(34) gives directly (29), that is, σj(uj)
1/2∇ϕj → σ(u)1/2∇ϕ

strongly in L2(Q)N . This also implies that

fj = Tj

(
σj(uj)|∇ϕj |2

)
→ σ(u)|∇ϕ|2 strongly in L1(Q).(35)

The last relevant convergence to be shown before passing to the limit in the
approximate problems (4) is,

TM (uj) → TM (u) strongly in L2(H1
0 (Ω)), for every M > 0.(36)

In fact, this is a consequence of (6), (19), and (35), but it is not an immediate result;
for details of the proof of this property the reader is referred to [8].



4.3. Passing to the limit and conclusion. Let u and ϕ be the limit func-
tions given in (18) and (23). Here we show that both functions verify (R.1)–(R.5) of
Definition 5.

In fact, (R.1) and (R.2) have been already obtained.
By virtue of (19), (20), and (35), making j → ∞ in (10) yields∫

{M≤|u|<M+1}
a(u)|∇u|2 ≤

∫
{|u|>M}

σ(u)|∇ϕ|2 +

∫
|u0|>M

|u0|;

due to hypothesis (H.5) and making M → ∞ in this last expression, we can easily
derive (R.3).

In order to obtain (R.4), we just take v = S(uj)φ in (4) with S ∈ C∞(R),
supp S′ compact and φ ∈ D(Ω). Thanks to the convergence properties derived in the
preceding section, we can make j → ∞ and this yields the variational formulation
(R.4). Note that the strong convergence of the truncations function TM (uj) → TM (u)
in L2(H1

0 (Ω)) is essential in this stage. It remains to state the initial condition
S(u(·, 0)) = S(u0); to do so, we apply Lemma 2 with the following choices:

X = L∞(Ω), B = Y = W−1,r(Ω), any r <
N

N − 1
,

and put E = {S(uj)}j≥1, supp S′ = [−M,M ]. Obviously, E is bounded in L∞(X)
and, according to (13), dv

dt ∈ L1(Y ) for all v ∈ E. Also, by virtue of (12), we can write

dS(uj)

dt
= fjS

′(uj)−S′′(uj)aj(TM (uj))|∇TM (uj)|2+∇·[aj(TM (uj))∇TM (uj)S
′(uj)] .

Now, from (20) and (35), fjS
′(uj) converges strongly in L1(Q) and from (20) and

(36), S′′(uj)aj(TM (uj))|∇TM (uj)|2 converges strongly in L1(Q). Owing to Lebesgue’s
inverse theorem, there exists h̄ ∈ L1(Q) such that

|Φj | ≤ h̄ for all j ≥ 1 and a.e. in Q,

where Φj = fjS
′(uj) − S′′(uj)aj(uj)|∇uj |2. Consequently,

‖Φj‖W−1,r(Ω) ≤ C‖Φj‖L1(Ω) ≤ C‖h̄‖L1(Ω), for all r <
N

N − 1
, j ≥ 1, a.e. t ∈ (0, T ).

On the other hand, the last term ∇ · [aj(TM (uj))∇TM (uj)S
′(uj)] is bounded in

L2(H−1(Ω)), and therefore it is also bounded in L2(W−1,r(Ω)), for all r < N
N−1 .

Hence, we may take h = C‖h̄‖L1(Ω) ∈ L1(0, T ) and s = 2 to deduce that

∥∥∥∥dS(uj)

dt

∥∥∥∥
Y

≤ h + ‖∇ · [aj(TM (uj))∇TM (uj)S
′(uj)]‖Y , for all j ≥ 1, a.e. t ∈ (0, T ).

By Lemma 2, this means that (S(uj)) is relatively compact in C0
(
[0, T ];W−1,r(Ω)

)
for any r < N

N−1 and thus, there exists a subsequence, still denoted in the same way,

such that (S(uj)) converges in C0
(
[0, T ];W−1,r(Ω)

)
. From (21), this limit must be

S(u). In particular,

S(uj(·, 0)) → S(u(0)) in W−1,r(Ω),



and since S(uj(0)) = S(Tj(u0)) → S(u0) in L1(Ω)-strongly, we deduce the initial
condition

S(u(·, 0)) = S(u0) in W−1,r(Ω), r <
N

N − 1
.

Finally, in order to derive (R.5), we just take ψ = Sk(uj)TM (φ) in (3), where Sk is
defined in (30) and φ ∈ L2(H1

0 (Ω)) is such that
∫
Q
σ(u)|∇φ|2 < +∞. In this situation,

we can proceed as in (I)–(IV ) above: taking the iterate limits, first in j, then in k,
then in M , and the last expression becomes (R.5).

This ends the proof of Theorem 6.

5. Concluding remarks. The diffusion coefficients a and σ are scalar functions
in the setting given by hypotheses (H.1)–(H.4). We may consider a more general
setting in which a and σ are diffusion matrices of order N × N . The hypotheses on
this data read as follows:

(H.1) a, σ : Q× R → R
N×N and F : Q× R → R

N are Caratheodory functions and
there exists a nondecreasing function γ : R

+ → R
+ such that

max (‖a(x, t, s)‖, ‖σ(x, t, s)‖, |F (x, t, s)|) ≤ γ(|s|), for all s ∈ R, a.e. in Q,

where ‖ · ‖ stands for the spectral norm.
(H.2) There are two constant values a0 > 0 and σ0 > 0 so that

a(x, t, s)ξξ ≥ a0|ξ|2, σ(x, t, s)ξξ ≥ σ0|ξ|2, for all s ∈ R, ξ ∈ R
N , a.e. in Q.

(H.3) Γ ∈ L1(Q) is a function satisfying

|σ(x, t, s)−S/2F (x, t, s)|2 ≤ Γ(x, t), for all s ∈ R, a.e. in Q.

(H.4) max
k≤|s|≤2k

ess sup
Q

1√
k
‖σ(x, t, s)S/2a(x, t, s)−S/2‖ = ω(k) as k → +∞.

(H.5) u0 ∈ L1(Ω).

The notation in (H.3) and (H.4) is now explained: for a matrix B ∈ R
N×N , we denote

by BS the symmetric part of B, that is, BS = (B + B′)/2. From (H.2), σ(x, t, s)S

and a(x, t, s)S are positive definite; then σ(x, t, s)S/2 stands for the unique positive
definite square root of σ(x, t, s), whereas a(x, t, s)−S/2 represents the inverse matrix
of the unique positive definite square root of a(x, t, s)S.

In this situation, the existence result given in Theorem 6 still holds true.

The analysis described in this paper shows that the concept of renormalized so-
lutions may be applied to systems of parabolic-elliptic equations with unbounded dif-
fusion coefficients. The existence result relies on certain assumptions on data, apart
from the standard ones, describing the relation of the asymptotic behavior between
them.

The uniqueness of renormalized solution to problem (1) is a very complex task to
be deduced; this is due to the fact that all known uniqueness results for the thermistor
problem are derived from L∞ estimates verified by u and ϕ; this regularity may
be obtained under certain restrictive assumptions, including for instance F ∈ L∞,
a, σ ∈ L∞. In that setting, there is no need to search for renormalized solutions: one
reencounters the setting of weak solutions.
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