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Abstract 

Flow Blurring® (FB) atomization is a highly efficient method to produce aerosols. It originates from 

an unexpected turbulent back flow motion in the interior of the atomizer. The onset for the appearance 

of such pattern is dictated by a geometrical parameter, φ, that is, the ratio of the distance between the 

tip of the liquid feeding tube and the discharge orifice (H), and the diameter of the discharge orifice 

(D). In this work, a FB atomizer with a nominal φ = 1/6 was used to produce water and ethanol 

droplets into pressurized environments (> 1 MPa). The droplet size distributions and mean droplet 

speeds were investigated using 1) direct visualization with an ultra-high speed video camera coupled 

with an automated droplet measurement (ADM) program and 2) using a light scattering instrument. 

Light scattering measurements, with water and ethanol, varying the driving pressure to produce the 

aerosol (∆P), indicate a power dependence of ~2/5 of the dimensionless mean droplet diameter 

(D50/Do) on the dimensionless liquid flow rate (Q/Qo). At higher liquid flow rate, the optical resolution 

of the droplets is improved compared to lower volumetric flow rates, thus facilitating analyses with 

the ADM program. The approach outlined herein provides a guideline for characterization and 

implementation of the FB technology in high-pressure applications. 

 

KEYWORDS: Flow blurring, Liquid atomization, High pressure, Droplet size, Scaling parameter, 

High-speed video 
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Introduction 

Liquid atomization requires conversion of a fraction of an energy input into surface energy. In 

pneumatic atomization, the interaction of gas and liquid flows is typically accompanied by turbulent 

motions that result in the generation of droplets of relatively small size. An efficient atomization is 

achieved by maximizing the surface area of the liquid flow and preventing droplet coalescence 

simultaneously minimizing the gas expense. 

Gañán-Calvo (2005) proposed the so-called Flow Blurring® (FB) mechanism for efficient 

atomization of liquids. In FB, an unexpected back-flow pattern in the interior of the atomizer produces 

small scale perturbations, thus resulting in an efficient mixing between the gas and liquid phases 

(Gañán-Calvo, 2005) at the atomizer outlet. FB nozzle atomizers use a simple yet robust design in 

which the interaction of the liquid and gas flows is controlled by a geometrical parameter (φ), that is, 

the ratio H/D, where H is the gap between the tip of the liquid feeding tube (capillary) and the 

discharge orifice, and D is the diameter of the discharge orifice, as indicated in Figure 1a. The same 

geometrical configuration can lead to different modes of spraying only by varying φ. Relatively small 

values of φ lead to production of droplets with a wide range of sizes, in the FB mode. If; however, φ 

is increased above 0.6, the liquid flow forms a jet that, for a range of Weber numbers, is steady and 

breaks up periodically into monodisperse droplets, in what is known as flow focusing (FF) (Gañán-

Calvo, 1998; 2005). The FB technique generates from five to fifty times more surface area than other 

methods, for a given energy input (Gañán-Calvo, 2005; Rosell-Llompart and Gañán-Calvo, 2008, 

Simmons and Agrawal, 2012). Such capabilities make FB nozzles suitable for many cutting-edge 

applications. 

FB nozzles have been used in spectrometric techniques for generation of analyte droplets 

(Kovachev et al., 2009; Aguirre et al., 2010; Pereira et al., 2014) and in atomization of biofuels 

(Simmons and Agrawal, 2012). Recently, we have proposed the direct atomization of water with FB 

nozzles into a combustion engine aiming at reduction of emissions (Modesto-López and Gañán-

Calvo, 2017). The approaches to use water in combustion engines include either direct injection or 
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mixing with the fuel (Sahin et al., 2014; Bedford et al., 2000). In both cases, the size of the droplets is 

a key parameter influencing the droplets’ evaporation timescale and their transport characteristics, and 

thus combustion efficiency as indicated by earlier studies (Hiroyasu and Kadota, 1976; Witting et al., 

1988). Most of the research on these topics has been performed at ambient or relatively low pressure 

conditions. However, FB in high-pressure environments, where many processes occur, remain largely 

unexplored. Thus, a detailed characterization of droplet size is of paramount importance to understand 

the spray dynamics.  

Several tools for characterization of dense sprays are available, most of which are based on 

the interaction of the droplets with light. High-speed tomographic approaches are also employed for 

such systems where the dynamics of droplets or bubbles are demanding (Johansen, Hampel, and 

Hjertaker, 2009). Nevertheless, recently Tan, Gañán-Calvo and collaborators have developed a so-

called automated droplet measurement (ADM) program for characterization of drops and bubbles in 

microfluidic systems (Chong et al., 2016). Here, we also demonstrate that the same tool can provide, 

upon careful tuning of the program operation parameters, valuable information of high-throughput 

sprays, in which droplets are generally polydisperse and with varying velocities. 

In this work, we study the characteristics of sprays in high-pressure environments produced 

by a FB nozzle. We coupled real-time visual methods with light scattering techniques to obtain the 

size distribution and the speed profile of the aerosol droplets in the vicinity of the FB nozzle. The key 

process parameters controlling FB atomization are the liquid flow rate, Q, the inlet gas pressure, Po, 

the chamber pressure, Pi, and thus the pressure difference ∆P = Po - Pi. We also investigated a wide 

range of ∆P values for three different liquid flow rate to obtain a correlation in terms of dimensionless 

parameters. 

  

Experimental Section 

Materials 
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Deionized (DI) water (milliQ) and absolute ethanol (Sigma-Aldrich) were used as test fluids. 

The spraying nozzle consisted of a stainless steel (SS) body designed in-house, in which a commercial 

FB® nozzle tip (Ingeniatrics Tecnologías S. L., Sevilla, Spain) was assembled (Figure 1a). The tip, 

made of a corrosion resistant plastic (LCP), had a geometrical configuration as depicted in Figure 1a 

with the diameter of the discharge orifice, D = 240 µm; the distance from the exit of the liquid feeding 

capillary to the discharge orifice, H = 40 µm (nominal); and thus φ = 1/6. The internal and external 

diameters of the tip’s liquid feeding capillary are Dci, = D and Dco = 1 mm, respectively. The angle of 

the discharge orifice, θ, is 120 o. Hereafter, the radial direction, r, is defined as the length from the 

centerline of the discharge orifice towards the exterior (see Figure 1a), and the axial direction, y, is the 

height from the discharge orifice downwards, in the direction of the spray. The AA’ view of the FB 

tip is depicted in Figure S1 in the supporting information file. 

 

Figure 1 

 

Test Chamber 

The in-house designed high-pressure chamber comprised three main components: 1) the FB 

nozzle (described above) and a corona to supply sheath gas, 2) a spray visualization section, and 3) a 

discharge converging flow region, as depicted in Figure 1b. The FB nozzle discharges into the 

visualization section, which consists of a cube with a cylindrical interior space. The cube had three 

circular perforations designed to house flat-surface, sapphire windows, thus allowing observation of 

the spray. The windows were purchased from IBSA LASER (Madrid, Spain) and were 5-mm thick 

with a diameter of 50 mm and were coated with an anti-reflective material on both planar surfaces. 

The sheath gas was introduced through a corona consisting of 40 cylindrical channels of 500 µm in 

diameter. The channels were distributed circularly around the FB nozzle and were fabricated in such a 

way to prevent direct interaction of the sheath gas with the spray. The gas flow rate was adjusted 

accordingly to achieve the desired chamber pressure. The discharge converging flow region, which 
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has a converging shape (see white lines in Figures 1a and 1b), had the function of accelerating the 

flow of the aerosol, thus preventing excessive droplets’ accumulation in the visualization section. The 

pressure in the chamber was adjusted through head loss by gradually increasing the resistance of the 

exhaust tube. During all experiments, the pressure was measured at the gas inlet of the FB nozzle and 

in the chamber interior as depicted in Figures 1b and 1c. The measured pressures are gauge values, 

which were converted to absolute values for the calculations performed herein. 

 

Ultra-high Speed Visualization Experiments 

An ultra-high speed Shimadzu video camera (HPV-2), capable of recording up to 106 frames-

per-second (fps), was focused through one of the sapphire windows, and illuminated with a high-

intensity flash placed on the opposite side (Figure 1b). The flash was synchronized with the video 

camera through an external trigger. The camera began recording 1 ms after the trigger was manually 

switched on. DI water or ethanol was fed to the FB nozzle with a Shimadzu high-performance liquid 

chromatography (HPLC) pump (model LC-10AD). The gas inlet pressure (Po) and chamber pressure 

(Pi) were monitored with digital, high-pressure WIKA manometers capable of measuring up to 10 

MPa (model CPG1000). Additional gas was supplied through the ‘corona’ around the FB nozzle (see 

previous subsection), to increase the chamber pressure up to a desired value. The gas inlet pressure, 

Po, was varied in the range 1.2 MPa to 5 MPa and, the chamber pressure, Pi, was maintained from 200 

kPa to 3 MPa below Po, as indicated in each set of measurements. Typical liquid flow rates, Q, used in 

this work were 0.3 mL/min and 0.5 mL/min (low range), 1 mL/min (medium range), and 5 mL/min 

(high range). 

As-recorded ultra-high speed videos were processed with the widely known, freeware 

software ImageJ (Schneider et al., 2012) to adjust their brightness/contrast and remove optical noise 

before being analyzed with the ADM program. Although, the processing step with ImageJ is generally 

unnecessary, in our case it is useful given the large number of droplets that simultaneously appear at 

any recording time. The frame of ultra-high speed videos had a field of view of 1.4 mm (width, x-
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axis) x 1.2 mm (height, y-axis), which allows analyses in a region very close to the spray emission 

point. Besides its superior image processing capability, the ADM program has an inherent feature of 

background subtracting, thus removing optical artifacts which remain static through the sequence of 

frames, such as stains on the surfaces of lenses and windows. The ADM data reported herein are time-

averaged values over the field of view. A brief description of the ADM program is included in the 

Supporting Information file. For detailed software setting parameters and operation conditions refer to 

Chong et al. (2016) and to the webpage link provided therein. The number-based droplet size 

distributions obtained with the ADM were converted to volume-based distributions to compare them 

with those from light scattering measurements. 

 

Light Scattering Measurements (LSM) 

Light scattering measurements (LSM) were performed with a Malvern Spraytec® instrument 

equipped with a 632.8-nm He-Ne laser of 15 mm in diameter and with a 300-nm range lens system 

capable of measuring particles with size in the range 0.1 µm to 900 µm. The detection system consists 

of 36 elements log-spaced silicon diode array. It has a maximum acquisition rate of 2.5 kHz (Rapid 

mode).  

The high-pressure chamber was placed between the laser emitter and the detector lenses of 

the Spraytec, as shown in Figure 1c. Measurements were performed using Sprayect’s internal trigger 

based on a transmission threshold, that is, the detectors started acquiring data once the light 

transmission level dropped to 70 % of the initial value. The data were recorded at a rate of 1 kHz and 

averaged over a period of, typically, 100 ms. The spray generation conditions were similar as those 

described in the previous section, that is, ∆P = 200 kPa, 1 MPa, or 3 MPa; while Q was varied in the 

range Q = 0.5 - 5 mL/min. Note that measurements using a Q = 0.3 mL/min (similar to that in the 

high-speed visualization experiments) resulted in poor scattering signal, indicating that perhaps the 

liquid throughput was below the instrument’s detection limit and thus Q = 0.5 mL/min was used 

instead. Nevertheless, an increment from 0.3 mL/min to 0.5 mL/min is expected to increase the mean 
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droplet diameter by less than 10 %, according to the FB model of Rosell-Llompart and Gañán-Calvo 

(2008).  

Additionally, ancillary LS measurements, with DI water and ethanol, were carried out within 

a wide range of ∆P values (> 200 kPa, and Po in the range 500 kPa - 6 MPa) to investigate the droplet 

size in high pressure environments as a function of process parameters. 

 

Results and Discussion 

Typical images of aerosols obtained with the ultra-high speed video camera are shown in 

Figure 2 for ∆P = 200 kPa, Po = 4.2 MPa, and Q = 0.3 mL/min (Figs. 2a and 2b), Q = 1 mL/min (Figs. 

2c and 2d), and Q = 5 mL/min (Figs. 2d and 2f). The images correspond to a single frame out of 

hundred recorded. Figures 2b, 2d, and 2f are the magnified rectangles marked in Figures 2a, 2c, and 

2e, respectively. As a guide, some of the droplets are circled with a dashed line. The presented images 

have been processed with the ImageJ software. Qualitatively, an increase in the droplet size is 

observed with rising of the liquid flow rate, as would be expected for mass and momentum 

conservation, which is particularly clear at the higher flow rate, Q = 5 mL/min (Figs. 2e and f). The 

size increase is also accompanied with an apparent broadening of the lower and upper size limits. The 

ADM program processes a sequence of 102 frames to track each droplet’s position, average size, and 

speed in every frame while subtracting the static background.  Note that the ADM was developed for 

microfluidics applications, where droplets’ images are generally neatly defined. In dense sprays; 

however, there is a wide range of droplet sizes coming out simultaneously. For these cases, the 

accuracy of the ADM program depends on the quality of the recorded video. Thus, larger droplets 

with a sharp perimeter have higher probability of being detected by the software. Smaller droplets 

without a clear edge and poor contrast with their background go through, in some cases, undetected. 

Nevertheless, a careful manipulation of the ADM program’s features still allows to obtain useful 

information from FB generated sprays, at least partially. Figure S2 shows a frame of a typical FB 

atomization extracted from a high-speed video and the observed motions are indicated by arrows. In 
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the image, the background, including optical artifacts and stains, has been removed with ImageJ, thus 

the black spots are individual droplets or groups of droplets. Although the image may appear blurry, it 

is the result of a processing with ImageJ to illustrate the overall fluid motions in the chamber. Along 

the centerline of the spray plume, at a radial distance of zero, there exists a high-speed zone which 

extends relatively far beyond the frame’s vertical length (1.2 mm). At the periphery of the spray 

plume; however, a low speed zone (dashed ovals) is created, where relatively large droplets are 

observed. Furthermore, between the low and high speed zones there appears a motion from the 

periphery that accelerates droplets towards the inner part of the plume (curved, large arrows). In some 

videos, it is observed how droplets of relatively large size are pulled into the spray plume by this 

motion, from the exterior towards r = 0, and further accelerated downstream. 

 

Figure 2 

 

Droplet size distribution data from LSM and ADM analyses are discussed in this section. The 

number-based data collected with the ADM program were converted to a volume-based size 

distribution using a lognormal distribution function. Figure 3 shows volume-based droplet size 

distributions of aqueous aerosols generated with ∆P of 200 kPa (Figs. 3a-d), 1 MPa (Figure 3e), and 2 

MPa (Figure 3f), with varying Po, and low liquid flow rates, Q = 0.3 mL/min and Q = 0.5 mL/min for 

ADM and LSM, respectively. The red circles were obtained from analyses of high-speed videos with 

a frame width of 1.4 mm and height of 1.2 mm. Note that despite the difference in Q in these set of 

data, the variation in mean droplet diameter is expected to be less than 10 % based on the model 

developed by Rosell-Llompart and Gañán-Calvo (2008). In the four cases, with ∆P = 200 kPa, the 

distributions obtained with ADM (red circles) match those from the curve of LS measurements (black 

line). With ADM, despite the relatively low liquid throughput (0.3 mL/min), a reasonably good size 

distribution is obtained. For the same Q, the aerosol concentration laid below the detection limit of the 

LS instrument, as confirmed through many measurements where no reliable signal was obtained. The 

Page 9 of 33



10 

accuracy of the ADM program may be improved by using higher magnification lenses during 

recording, at the expense of reducing the field of view. The mean droplet diameter and geometric 

standard deviation recorded through LSM are summarized in Table 1. For constant ∆P (200 kPa) and 

Q (0.5 mL/min), there seems to be an apparent increase in mean droplet diameter from 8 µm at Po = 

1.2 MPa to 10 µm at Po = 4.2 MPa, although such variation may be within the experimental error. 

Additionally, the standard deviation appears as though it varies slightly from 0.7 down to 0.6 for the 

same pressure range, thus indicating narrowing of the distribution. That is, for a constant ∆P (and also 

Q) the mean diameter is not expected to vary significantly. Conversely, as ∆P is increased up to 1 and 

2 MPa the mean droplet diameter shifts towards smaller sizes. Such downsize is accompanied by a 

slight broadening of the distribution, as evidenced by a rise of the standard deviation from ~ 0.55 to ~ 

0.70: a bigger ∆P obviously implies not only a larger amount of turbulent energy invested in surface 

generation per unit liquid volume, but also a wider range of length scales of the turbulent energy 

cascade. 

 

Table 1 

 

Figure 3 

 

In the case of Q = 1 mL/min for ∆P = 200 kPa and varying Po, the size distributions obtained 

with ADM fall again under the curve of the LSM, indicating a relatively good correlation (Figure 4). 

For these set of data, too, increasing Po from 1.2 MPa to 4.2 MPa apparently raised the mean droplet 

diameter by nearly 3 µm and the distributions also undergo a slight narrowing, as indicated by a 

decreasing of the standard deviation (Table 1). Again, as in the previous case, the increase may be 

within experimental error. For ∆P of 1 MPa and 2 MPa, the mean droplet diameter is smaller than that 

of ∆P = 200 kPa and the diameter reduction is also accompanied by a broadening of the distribution; 

as mentioned above, bigger ∆P means larger turbulent energy input, thus resulting in larger liquid 
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surfaces (i.e., smaller droplets) with wider range of scales. Furthermore, the mean diameters are larger 

than those obtained with Q = 0.5 mL/min, for the same ∆P, consistently with the expected decrease of 

surface generated per unit volume (i.e. the inverse of the Sauter Mean Diameter) under the same 

energy input.  

 

Figure 4 

As Q is further increased up to 5 mL/min, for a ∆P of 200 kPa, LSM and ADM analyses 

match closely (Figure 5). Such results may arise, partially, due to an increase in the size of the 

droplets, thus improving the resolution of the analyses with ADM. Note also that while LSM produces 

a relatively smooth curve, ADM analyses generate discrete sizes and are dependent on the counts of 

droplets in each frame. However, in the distributions presented herein, the data have been converted 

to a lognormal distribution. The mean droplet diameter shows an irregular trend for the range of Po 

explored in the current work. Compared to the smaller Q cases, the larger mean sizes obtained in this 

data set is justified by an increase in the mass of liquid supplied to the system. 

 

Figure 5 

 

Furthermore, the droplets’ speed was investigated with ADM. The average droplet speed 

distributions of the cases discussed above are shown in Figures 6, 7, and 8 for Q = 0.3 mL/min, Q = 1 

mL/min, and Q = 5 mL/min, respectively. The speed has been made non-dimensional by the 

theoretical speed, Vth, of the gas exiting through the geometrical gap with dimension H, the so-called 

lateral cylindrical passageway (LCP) (Gañán-Calvo, 2005), as depicted in Figure 1a. Vth was 

calculated using Equation (1) below and assuming adiabatic expansion of the gas as it exits to the 

pressurized environment, and the values are listed in Table 1: 

��� = ��� �
	
�

�/�
   (1), 
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where M is the Mach number, γ is the adiabatic expansion coefficient, R is the ideal gas constant, m is 

the molecular weight of the gas, and T is the absolute temperature of the gas at the exit. Since M = 1 

for a convergent discharge geometry like the one considered here, then ��� = � �����
�
	
��

�/�
, where 
�  

is the ambient temperature. For the cases with low Po and low/medium Q values (Figs 6a-b and 7a-b), 

the distribution depicts a nearly flat profile along the centerline of the spray, that is, at a radial 

distance of zero, and the speeds in that region are much smaller than Vth.  

Figure 6 

 

As Po is increased, still for low/medium Q values (Figs. 6c and 7c), the flat front disappears and 

instead the distributions become sharper, with the maximum speed being achieved at a radial distance 

of r = 0. In those cases, the maximum measured mean speed reaches nearly the 20 % of Vth. Further 

increase of Po up to 4.2 MPa, for the same flow rates (Figs. 6d and 7d), results in speed distributions 

with a marked sharp profile, where the maximum speed was attained at a radial distance of zero, that 

is along the centerline of the spray plume, and with values of the order of 30 % of the theoretical 

speed. For the cases with ∆P ≥ 1 MPa and low/medium values of Q (Figs. 6e-f and 7e-f), the 

distributions are significantly different to the previous cases. It appears as if the droplets, particularly, 

in the central region (r =0) of the plume, move faster than the recording threshold speed of the video 

camera. Indeed, the maximum speed values detected with the ADM program do not reach the 10 % of 

the theoretical speed. In the case of the highest Q (5 mL/min), the speed distributions clearly show a 

sharp profile (Figures 8a-d), even for the lowest Po case, which at lower flow rates showed a flat 

profile.  

 

Figure 7 
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However, the maximum measured speeds still do not reach their theoretical values. Even when Po is 

increased > 3.2 MPa, droplets in the plume at a radial distance of zero reach approximately 25 % of 

Vth. The speed distributions (for ∆P = 200 kPa) have been fitted with Gaussian profiles (blue line) and 

it appears they correlate well, except for the data set where the speed profile is nearly flat (Figure 6a). 

The speed data obtained with ADM agrees qualitatively with FB results reported by other authors 

(Jiang and Agrawal, 2015; Fisher et al., 2017; and Niguse and Agrawal, 2017). They as well observe 

a maximum at the radial distance of zero. Fisher et al (2017) also report a sharp speed profile in the 

region near the spray emission point and it transitions to a flat profile at an axial position further away 

from the emission point (100 mm). 

Figure 8 

 

Gañán-Calvo (2005) derived a scaling law for FB at ambient pressure (Pi) in terms of Weber 

(We) and Ohnesorge (Oh) numbers, and the gas-to-liquid mass ratio (GLR) in the atomizer. The We 

have been calculated with ρgUg
2D(2σ)-1 and using the gas density (ρg) and velocity (Ug = Vth) at the 

exit of the LCP assuming adiabatic expansion of the gas. Surface tension values, σ, of water and 

ethanol were calculated as a function of the temperature at the exit of the LCP. The Ohnesorge 

number, Oh, is given by µ(ρlσD)-1/2, where µ and ρl are the liquid viscosity and density, respectively. 

The expression of Gañán-Calvo (2005), Equation (2), relates a measured mass median diameter 

(MMD), through a dimensionless parameter δ (= MMD/D), with the dimensionless quantities: We, 

Oh, and GLR.  

� = 0.42����.��1 + 18 ℎ"�1 + #$%��"�.�  (2) 

In Figure 9a, we have plotted a similar relationship using a dimensionless parameter, δ*. That is, the 

blue circle data points were obtained with ��∗ = MMDexp/D, where the MMDexp was calculated from 

our experimental D50 data with ��'()* = '+����.+�,-./"
0
 and using the geometric standard 

deviation of the distribution, 12. In the case of the green squares, ��∗ was calculated by introducing a 

(D50/D)1/3 factor to the expression of Gañán-Calvo (2005), that is, ��∗ 	= 0.42�'+� '⁄ "�/5����.��1 +
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18 ℎ"�1 + #$%��"�.�. The closed symbols in the plot correspond to data at M ≥ 1. In Figure 9a, the 

black, solid line shows the model of Gañán-Calvo (2005) for FB at relatively low pressure conditions. 

The data points calculated using ��∗ (MMDexp) spread above the FB model and they appear to be 

independent of the Mach number. Although, the data follow the general trend of the FB model, there 

is a relatively large dispersion around a power fit (black, dashed line), which results in  ��∗���.�/�1 +

18 ℎ" = 0.95 + 1.3#$%��.�+. Conversely, data points calculated with ��∗	 are aligned below the FB 

model and the data collapse is improved, compared to the ��∗ case, resulting in a power fit (black, 

dotted line) of ��∗���.�/�1 + 18 ℎ" = 0.10 + 2.8#$%��.�+. In this data set, too, the trend appears to 

be independent of the Mach number. 

 

Figure 9 

 

Another scaling relationship is established by the dimensionless mean droplet diameter D50/Do 

as function of the dimensionless liquid flow rate Q/Qo, which is plotted in Figure 9b, where Do = σ/∆P 

and Qo = (σ
4
/ρl∆P

3
)

1/2
 are of the order of the minimum attainable diameter and flow rate, respectively 

(Rosell-Llompart and Gañán-Calvo, 2008). The blue, closed circles correspond to data of ethanol. In 

the same graph, the lowest limit of a FB model, at relatively low pressure, by Rosell-Llompart and 

Gañán-Calvo (2008) is also plotted (black solid line) along with an upper boundary set by the so-

called Rayleigh + Flow Focusing regime (green, dotted line), in which a liquid micro jet breaks up by 

growth of axisymmetric waves at a critical hydrodynamic We. Our data lays out between both limits, 

similarly as reported by Rosell-Llompart and Gañán-Calvo (2008), thus indicating the occurrence of 

the flow blurring phenomenon. A fitting of the data gives �'+� '�⁄ " = 0.47�: :�⁄ "�.;+. Note the 

exponent of approximately 2/5, for the pressure range measured in this work, which is 1/5 for the 

lower limit as established by the FB model (Rosell-Llompart and Gañán-Calvo, 2008). In Figure 9c 

we have plotted a dimensionless droplet diameter (D50/D) as a function of We, Oh, the GLR, and the 

Mach number, which are parameters strongly affecting the described FB process. The blue circles 
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indicate data points recorded at M ≥ 1. A relatively good collapse of the data is observed 

independently of the liquids’ properties and the pressure conditions (subsonic or supersonic). The data 

are fitted by the expression �'+� '⁄ " = 0.005 + 0.023����.+ ℎ	#$%	�"��.;�.  In Figure 9d, D50/Do 

is depicted as function of Q/Qo, GLR, and M. In this case, a slightly improved data collapse is 

observed with respect to Figure 9b, in which D50/Do is a sole function Q/Qo. A power fit results in an 

exponent of approximately ~1/2 for our experimental data. The proposed scaling expressions relate 

D50 and MMD to the main parameters of FB atomization in high pressure environments. They provide 

a guideline for the analyses of droplet sizes in such conditions.   

 

Conclusions 

 Aqueous and ethanol aerosols produced by a FB® nebulizer under high pressure conditions 

have been investigated both with direct visualization, using an ultra-high speed video camera coupled 

with an in-house developed program, and with light scattering measurements. The ADM program, 

typically used for analyses of micro-fluidic systems, was successfully applied to aerosols with 

relatively high throughput and turbulent motions. Droplet size distributions obtained with the ADM 

program are comparable to those obtained with LSM. Particularly, a good fit is found at the highest 

liquid flow rate, where the droplets are larger and can be readily detected during image processing. 

With LS instrument, mean droplet diameters in the range 8 µm - 26 µm were obtained with a ∆P = 

200 kPa and liquid flow rates in the range 0.3 - 5 mL/min. Increasing ∆P up to 1 MPa and 2 MPa 

caused a significant reduction of the mean droplet diameter. As Po is increased (constant ∆P = 200 

kPa) the mean droplet speed shifts from a relatively flat profile at low Q to a sharp distribution at 

medium Q. At high liquid flow rate; however, the mean droplet speed approaches a Gaussian 

distribution, even for low Po values. Fitting of a number of FB experiments (φ = 1/6) for ∆P in the 

range 200 kPa - 3 MPa, and Po as low as 500 kPa, result in (D50/Do) = 0.47 (Q/Qo)
0.45

. The 

experimental mass median diameter obtained at high pressure conditions appears to have a similar 

trend as the FB scaling law of Gañán-Calvo (2005) for atmospheric discharge pressure (Pi). Based on 
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the same scaling law, a modified parameter in terms of (D50/D)
1/3

 was proposed to fit the data as a 

function of the gas-to-liquid mass ratio. In addition, other scaling relationships for the mean droplet 

diameter of sprays produced by FB at relatively high pressure conditions were established, which 

incorporate the effect of the external pressure through the Mach number. The approach presented in 

this study may be a guideline for implementation of FB in high-pressure applications, for instance, in 

combustion technology. 
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FIGURE CAPTIONS 

 

Figure 1. a) Diagram of a cross-sectional view of the FB tip. Schematics of the experimental setup 

used for b) high-speed visualization experiments and c) light-scattering measurements. 

 

Figure 2. Photographs of water aerosols recorded with the ultra-high speed camera for ∆P = 200 kPa, 

Po = 4.2 MPa, and Q = 0.3 mL/min (a and b), Q = 1 mL/min (c and d), and Q = 5 mL/min (e and f). 

The white line at the top indicates the nebulizer’s tip. Images b, d, and f are magnified views of the 

rectangles in images a, b, and c, respectively. 

 

Figure 3. Particle size distributions of water droplets obtained with the ADM program (red circles, Q 

= 0.3 mL/min) and with light scattering (black line, Q = 0.5 mL/min) at ∆P = 200 kPa, and Po of a) 

1.2 MPa, b) 2.2 MPa, c) 3.2 MPa, and d) 4.2 MPa; e) ∆P = 1 MPa (Po = 4 MPa); f) ∆P = 2 MPa (Po = 

5 MPa). 

 

Figure 4. Particle size distributions of water droplets obtained with the ADM program (red circles) 

and with light scattering (black line) at Q = 1 mL/min, ∆P = 200 kPa, and Po of a) 1.2 MPa, b) 2.2 

MPa, c) 3.2 MPa, and d) 4.2 MPa; e) ∆P = 1 MPa (Po = 4 MPa); f) ∆P = 2 MPa (Po = 5 MPa). 

 

Figure 5. Particle size distributions of water droplets obtained with the ADM program (red circles) 

and with light scattering (black line) at Q = 5 mL/min, ∆P = 200 kPa, and Po of a) 1.2 MPa, b) 2.2 

MPa, c) 3.2 MPa, and d) 4.2 MPa. 
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Figure 6. Average speed profile of water droplets obtained with the ADM at Q = 0.3 mL/min and ∆P 

= 200 kPa, and Po of a) 1.2 MPa, b) 2.2 MPa, c) 3.2 MPa, and d) 4.2 MPa; e) ∆P = 1 MPa (Po = 4 

MPa); f) ∆P = 2 MPa (Po = 5 MPa). 

 

Figure 7. Average speed profile of water droplets obtained with the ADM at Q = 1 mL/min and ∆P = 

200 kPa, and Po of a) 1.2 MPa, b) 2.2 MPa, c) 3.2 MPa, and d) 4.2 MPa; e) ∆P = 1 MPa (Po = 4 MPa); 

f) ∆P = 2 MPa (Po = 5 MPa). 

 

Figure 8. Average speed profile of water droplets obtained with the ADM at Q = 5 mL/min and ∆P = 

200 kPa, and Po of a) 1.2 MPa, b) 2.2 MPa, c) 3.2 MPa, and d) 4.2 MPa. 

 

Figure 9. a) �∗���.��1 + 18 ℎ"�� as function of GLR, where �∗ is given by MMD/D (blue circles) 

and 0.42�'+� '⁄ "�/5����.��1 + 18 ℎ"�1 + #$%��"�.� (green squares). The black solid line depicts 

the model of Gañán-Calvo (2005). The closed symbols correspond to data at M ≥ 1. Red symbols are 

data of ethanol. b) Dimensionless average mean diameter, �'+� '�⁄ ", as a function of the 

dimensionless liquid flow rate, (Q/Qo). The blue, closed circles indicate data of ethanol. The dashed, 

blue line shows a power fitting �'+� '�⁄ " = 0.47�: :�⁄ "�.;+. The black line depicts the lowest limit 

of the FB model and the green, dotted line shows the upper boundary delimited by the Rayleigh + 

Flow Focusing regime. c) �'+� '⁄ "as a function of ���.+ ℎ	#$%	�. The blue circles are data points 

at M ≥ 1 and the green circles are data of ethanol. d) �'+� '�⁄ " plotted as a function of  �: :�⁄ "�1 +

#$%��"�.5���.�. The closed, blue circles correspond to data of ethanol. 
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Figure 1. a) Diagram of a cross-sectional view of the FB tip. Schematics of the experimental setup used for 
b) high-speed visualization experiments and c) light-scattering measurements.  
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Figure 2. Photographs of water aerosols recorded with the ultra-high speed camera for ∆P = 200 kPa, Po = 
4.2 MPa, and Q = 0.3 mL/min (a and b), Q = 1 mL/min (c and d), and Q = 5 mL/min (e and f). The white 

line at the top indicates the nebulizer’s tip. Images b, d, and f are magnified views of the rectangles in 
images a, b, and c, respectively.  
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Figure 3. Particle size distributions of water droplets obtained with the ADM program (red circles, Q = 0.3 
mL/min) and with light scattering (black line, Q = 0.5 mL/min) at ∆P = 200 kPa, and Po of a) 1.2 MPa, b) 

2.2 MPa, c) 3.2 MPa, and d) 4.2 MPa; e) ∆P = 1 MPa (Po = 4 MPa); f) ∆P = 2 MPa (Po = 5 MPa).  
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Figure 4. Particle size distributions of water droplets obtained with the ADM program (red circles) and with 
light scattering (black line) at Q = 1 mL/min, ∆P = 200 kPa, and ∆P of a) 1.2 MPa, b) 2.2 MPa, c) 3.2 MPa, 

and d) 4.2 MPa; e) ∆P = 1 MPa (Po = 4 MPa); f) ∆P = 2 MPa (Po = 5 MPa).  

 
330x402mm (300 x 300 DPI)  

 

 

Page 24 of 33



  

 

 

Figure 5. Particle size distributions of water droplets obtained with the ADM program (red circles) and with 
light scattering (black line) at Q = 5 mL/min, ∆P = 200 kPa, and Po of a) 1.2 MPa, b) 2.2 MPa, c) 3.2 MPa, 

and d) 4.2 MPa.  
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Figure 6. Average speed profile of water droplets obtained with the ADM at Q = 0.3 mL/min and ∆P = 200 
kPa, and Po of a) 1.2 MPa, b) 2.2 MPa, c) 3.2 MPa, and d) 4.2 MPa; e) ∆P = 1 MPa (Po = 4 MPa); f) ∆P = 2 

MPa (Po = 5 MPa).  
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Figure 7. Average speed profile of water droplets obtained with the ADM at Q = 1 mL/min and ∆P = 200 
kPa, and Po of a) 1.2 MPa, b) 2.2 MPa, c) 3.2 MPa, and d) 4.2 MPa; e) ∆P = 1 MPa (Po = 4 MPa); f) ∆P = 2 

MPa (Po = 5 MPa).  
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Figure 8. Average speed profile of water droplets obtained with the ADM at Q = 5 mL/min and ∆P = 200 
kPa, and Po of a) 1.2 MPa, b) 2.2 MPa, c) 3.2 MPa, and d) 4.2 MPa.  
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Figure 9. a) δ*We0.6 (1+18Oh)-1 as function of GLR, where δ* is given by MMDexp/D (blue circles) and 
0.42(D50⁄D)1/3We-0.6 (1+18Oh)(1+GLR-1)1.2 (green squares). The black solid line depicts the model of Gañán-

Calvo (2005). The closed symbols correspond to data at M ≥ 1. Red symbols are data of ethanol. b) 
Dimensionless average mean diameter, (D50/Do), as a function of the dimensionless liquid flow rate, (Q/Qo). 

The blue, closed circles indicate data of ethanol. The dashed, blue line shows a power fitting (D50⁄Do ) = 
0.47(Q⁄Qo)

0.45. The black line depicts the lowest limit of the FB model and the green, dotted line shows the 
upper boundary delimited by the Rayleigh + Flow Focusing regime. c) (D50⁄D) as a function of We0.5 Oh GLR 
M. The blue circles are data points at M ≥ 1 and the green circles are data of ethanol. d) (D50⁄Do) plotted as 

a function of (Q⁄Qo)(1+GLR-1)0.3 M-0.6. The closed, blue circles correspond to data of ethanol.  
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TABLES 

Table 1. Mean droplet diameter and standard deviation based on LS measurements. 

   Q = 0.5 (mL/min) Q = 1 (mL/min) Q = 5 (mL/min)  

Po 

(MPa) 

Pi 

(MPa) 

∆P/Po 

(%) 

Mean 

diameter 

(µm) 

Standard 

deviation 

(µm) 

Mean 

diameter 

(µm) 

Standard 

deviation 

(µm) 

Mean 

diameter 

(µm) 

Standard 

deviation 

(µm) 

Vth 

(m/s) 

1.2 1.0 16.7 8.0 0.700 12.0 0.699 33.6 0.810 179 

2.2 2.0 9.1 9.1 0.625 13.6 0.648 39.1 0.722 129 

3.2 3.0 6.2 9.8 0.654 14.7 0.669 31.0 0.803 106 

4.2 4.0 4.8 10.0 0.600 14.9 0.645 26.0 0.716 92 

4.0 3.0 25 4.7 0.547 6.5 0.623   223 

5.0 3.0 40 3.7 0.696 4.7 0.698   303 
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Supporting Information 

 

Visualization and Size-Measurement of Droplets Generated by Flow Blurring® in a High-Pressure 

Environment 

Luis B. Modesto-López* and Alfonso M. Gañán-Calvo 

*Contact: lmodesto@us.es 

1. Schematics of Flow Blurring tip 

 

Figure S1. AA’ view of FB tip (see Figure 1a in main text) 
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1. Automated Droplet Measurement (ADM) program 

A brief description of the ADM program is provided here. For further details on the functioning 

of the program, readers are encouraged to refer to ‘Chong Z. Z., Tor S. B., Gañán-Calvo A. M., 

Chong Z. J., Loh N. H., and Nguyen N. T. (2016). Automated droplet measurement (ADM): an 

enhanced video processing software for rapid droplet measurements. Microfluid. Nanofluid., 20:66’ 

and to the website http://a-d-m.weebly.com/ from where ADM can be freely obtained. 

The ADM software addresses bottlenecks that hinder the currently available software to 

perform rapid droplet measurements, such as processing speed. The program incorporates 

background as well as threshold finding algorithms, thus eliminating the need to perform those 

processes manually.  

 

General ADM program operation steps: 

1.1 First, the user must select a number of operation parameters, being the following crucial for 

our purposes: droplet circularity (where the value of 1 represents a perfect circle), video 

recording speed, size range (in pixels) of droplets to be analyzed, and the scale of the video 

(i.e., the length in µm per pixel). The procedure to find the operation parameters that best 

suit the video recording conditions is based on trial and error. In addition, the user may 

select the parameters that would like to analyze, such as droplet equivalent diameter and 

droplet speed. They may be reported as timely-averaged over the entire video duration. 

 

1.2 Then, the program performs the background extraction operation (BEO) automatically, 

using the as-recorded video, thus taking into account the experimental conditions under 

which the video was taken and eliminating the need to acquire a background for every 

experimental condition. Here, background refers to chamber walls, stains, and optical 

artifacts, that is, still or non-moving objects. 

 

1.3 The ADM software then performs the analyses. It identifies the droplets (i.e., their contour) 

based on the operation parameters introduced in 1.1 and assigns them an ‘object number’. 

The software then tracks the position of each droplet on each video frame to obtain their 

trajectory. The droplet equivalent diameter is calculated with:   
�4 × ����	
� �
 ���
���� × ���/���
���

�  

 

The droplet speed (that is the speed of the centroid of the droplet) is calculated with: 

���
������ �� ��� + ��
������ �� ��� 

and updated every video frame. Here X and Y refer to the horizontal (width of the video 

frame) and vertical (height of the video frame) directions, respectively.  

 

 

2. FB spray motion in high pressure chamber 
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Figure S2. Images from ultra-high speed videos to illustrate overall spray motions in the 

high-pressure chamber, recorded at different magnifications. The liquid is deionized water. 

a) lens zoom = 5.0x, and Po = 5 MPa, Pi = 3 MPa, Q = 5 mL/min; and b) lens zoom = 

1.25x, and Po = 4.5MPa, Pi = 0.5 MPa, Q = 3 mL/min.  
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