
 Software Process Management:
A Model- Based Approach

 L. García-Borgoñon , J. A. García-García , M. Alba , and M. J. Escalona

 Abstract Business processes constitute one major asset in an organization
and software businesses are not an exception. Processes defi nition, maintenance,
and management are key aspects to control and defi ne how to build software
systems up and also to support decision-making. In this paper, a model-based
approach is proposed to facilitate these processes. Thus, a global environment for
business processes in software development is presented. The fi nal results are
illustrated through the NDTQ-Framework, a solution based on this approach that
is currently being used in software development organizations.

1 Introduction

 Since processes are recognized as fundamental asset in organizations, there is
always an evolving interest to defi ne, document, manage, and improve them. The
promise of achieving better quality and greater effi ciency and effectiveness in the
cost and effort resulting from product development has involved the adoption of
processes in several domains, some of which have reached a certain maturity level
in this fi eld. However, this is not the case of Software and System Processes,
which is still in its early usage days.

 In the last years software organizations are using Business Process Management
(BPM) as a mechanism to control and defi ne how to build software systems up.

Different techniques for business process modeling and business process execution,
as well as for their relationship, have been proposed. Business Process Modeling
Notation [23] has become a widely used standard in process modeling environment,
and Business Process Execution Language (BPEL) [24] has consolidated as the
language for business process execution.

 Software Process Engineering has been established as an independent research
area from general business process. Its main objective deals with improving soft-
ware development practices by proposing (a) better ways for designing the organi-
zation processes and (b) better ways for improving these processes both individually
and as a whole.

 In order to effi ciently defi ne and execute software development processes, it
should be necessary to establish (1) a process modeling language rich enough so
as to defi ne all main aspects of software processes, (2) an easy-to-use process
modeling environment that is fl exible enough for different project categories, and
(3) a process execution environment easy to be integrated into existing development
tool chains [25].

 The evolution of software process modeling has been studied during the past
decades. A myriad of process languages and models have been developed; however,
software process models are not executable and there are few process execution
environments.

 In the last years, the model-driven engineering (MDE) [26] has been established
as a usual approach for software development [27], what has shaped the software
industry to be model centric. Its aim is development through the evolution of one
model from requirement until deployment by means of a series of transformations,
which can progressively be achieved through coherence between software process
modeling and software development paradigm [28].

 This paper evaluates how a model-based approach can make easier the BPM in
information system development organizations, and it also illustrates a practical
example that uses this approach for software process defi nition, maintenance, and
improvement.

 The paper is structured as follows: Section 2 shows the main work related to
software processes. Section 3 introduces the proposed metamodel, and Sect. 4 pres-
ents the Unifi ed Modeling Language (UML) profi le, which is used to integrate the
metamodel into a tool. Section 5 analyzes a global environment for software process
management. These results are illustrated in the NDTQ-Framework, a solution
based on this approach that is currently being used in software development organi-
zations. Finally, Sect. 6 outlines conclusions from these studies as well as proposes
future work in these lines of research.

2 Related Works

 The fi rst section of this related work refers to different proposals that are referenced
in the organizational processes defi nition as guidelines.

 A process is defi ned as the set of partially ordered steps or activities, with sets of
related artifacts, human and computerized resources, and organizational structures
and constraints intended to produce and maintain the requested software deliverables
[1]. Support processes have been developed in order to facilitate software organiza-
tion activities, different standards, methodologies, and methods focused on manage-
ment, development, evaluation, and software life cycle and organizational life cycle.
At this point, it is necessary to highlight International Organization for Standardization
(ISO) standards that prescribe processes, each of them with a specifi c aim:

• ISO/IEC 122007:2008 [2] establishes a common framework for software life
cycle of processes with well-defi ned terminology that can be referenced by the
software industry.

• ISO/IEC 15288:2008 [3] establishes a common framework for describing
human-created life cycle of systems. It determines a set of processes and associ-
ated terminology that can be applied at any level in the hierarchy of a system’s
structure.

• ISO/IEC TR 24744:2007 [4] was defi ned through the large number of standards
with similar concepts used for describing process reference models whose
process descriptions vary in format, content, and level of prescription. Uniform
descriptions combine processes from different reference models, facilitating the
development and comparison of new models.

 The second section of this related work presents the most popular languages and
notations to process defi nitions.

 The usual comparison between software processes and manufactured processes
has entailed many efforts to describe and automate them. Thus, these efforts have
been addressed in different stages. First-generation languages, known as Software
Process Modeling Languages (SPMLs), were developed during the 1990s. Some of
them were rule based such as MARVEL [5]; others were Petri net-based such as
SPADE [6], or some others programming language-based such as SPELL or
APPL/A [7]. All of them were focused on executability, but their complexity and
emphasis on formality and infl exibility have made them not to succeed in the
industry.

 An alternative is BPMN, since it still remains as the preferred technology in the
industry. Its simplicity, standardization, and support for executing processes are
the key for being widely used. However, this language is more oriented towards
business processes description, which constitutes a less specifi c scope than this of
software processes.

 As a result, many UML-based approaches were developed and a new language
generation for software processes was introduced. Some of them were UML 1.3
based such as in Di Nitto et al. [8]; another uses a subset of UML 1.4 such as Chou’s
approach [9]. In addition, UML4SPM [10] was proposed as a candidate for the new
version of the Object Management Group’s (OMG) standard called Software
Process Engineering Metamodel (SPEM) [11]; nevertheless it is based on SPEM
1.1 and UML 2.0 behavior modeling concepts. It mainly focuses on the enactment
support and two alternatives were defi ned.

 From the standardization point of view and regarding the software-specifi c domain,
there are two main languages today: ISO/IEC 24744 [12] and SPEM 2.0. As it can be
noticed, both pursue the same objective despite they differ in some aspects:

• ISO/IEC 24744, Software Engineering Metamodel for Development
Methodologies, is an international standard that defi nes a metamodel for meth-
odologies of development in the software environment. It does not use OMG’s
strict metamodeling approach, but the power-type pattern that was adopted for
metamodeling in the methodologies domain in [13].

• SPEM 2.0 provides a language for software methodologies, takes the Meta- Object
Facility (MOF) [14] as a starting point, and is defi ned as a UML profi le. It has a very
diffi cult structure since it introduces extension mechanisms, compliance points,
and concepts to distinguish method contents from processes, what make the
specifi cation turns out very complex and diffi cult to understand.

 In recent years, model-based engineering has been established as a standard
approach for software development. MODAL (Model-Oriented Development
Application Language) [15] is a SPEM 2.0-based process modeling language that
introduces additional concepts to exploit the potential of MDE. Unlike SPEM, it is
more focused on process model execution, even though the standard complexity is
reproduced here.

 To summarize, efforts in Software Process Engineering area have been headed by
two different aspects: on the one hand, methods and standards defi nition in order to
prescribe what a process should accomplish and, on the other hand, the need to have
a language for the process defi nition. Last decades have witnessed the birth of many
approaches and a parallelism between software development paradigms and
processes for their development has always been evidenced. As a result, proposing
MDE for process engineering may be a solution to cope with this classic problem.

3 A Metamodel for Software Process Management

 Many approaches have been developed in order to recommend the required elements
in a process as well as describing it. The main element in all of them is Software
Process, but the concepts included in these approaches differ. This situation has
motivated the development of the standard ISO/IEC TR 24744, which is issued as a
guideline for the process description.

 These and the fact of using MDE to possibly manage the conceptual complexity
of Software Process Engineering have been the basis of our proposal, that is, a
metamodel for Software Process Support. This approach is presented in the form of
a MOF-compliant metamodel as it is shown in Fig. 1 .

 The Process metaclass is the main class in the metamodel. It represents a set of
ordered actions executed by someone in order to produce something. The attributes
in this metaclass, the name of the process and a short description of it, have been
incorporated in accordance with ISO/IEC TR 24744 standard.

 The actions included in a process are represented by the Activity metaclass.
These activities are arranged within the process, although one activity can also
contain several activities. This recursive relation is explicitly requested by the
standard.

 There are two kinds of stakeholders involved in performing an activity, which
are classifi ed depending on the involvement degree: an actor, who is the main exec-
utor of the activity, is represented by the Executes metaclass, whereas the Participates
metaclass represents the set of stakeholders who contribute, but is not directly the
main responsible for it. Each of them includes a name and a description attributes.
At least one executor is necessary to defi ne an activity.

 The Product metaclass represents the product resulting when executing a pro-
cess. This product can be developed from scratch, during the execution of the activi-
ties, or can be provided from a previous product. In this case, the original product
will be defi ned as an entry and modifi ed within the activity in order to obtain the
outcome.

 Finally, the Metric metaclass deals with process information elements. Metrics
in processes are limited-value established and represented through the Indicator
metaclass.

 The main feature of our approach is simplicity, unlike others presented in the
previous section. This metamodel offers a suitable mechanism for process defi nition
by covering the main software process concepts and being an ISO/IEC TR 24744
compliant. This simplicity must develop a whole model-based solution, as it will be
studied in next sections.

class ProccessMetamodel

«metaclass»
Process

- id :String
- name :String
- shortDescription :String

«metaclass»
Product

- id :String
- name :String
- shortDescription :String
- version :String
- date :Date

«metaclass»
Activity

- id :String
- name :String
- description :String

constraints

«metaclass»
Indicator

- limitedValueLower :Value
- limitedValueTop :Value

«metaclass»
Metric <Value>

- name :String
- description :String
- measure :String

«metaclass»
executes

- name :String
- description :String

«metaclass»
participes

- name :String
- description :String

0..*

participes

0..*

1..*

executes

0..*

0..*

1..*

Product

0..*

+isMeasure

1..* 1..*

1..*
{ordered}

1..*

+exit

1..*

1..*

+entry

0..*

{Invariant:: this.product.contains.intersect(this.process.exit).isEmpty() = false}

 Fig. 1 Process metamodel

4 An Enterprise Architecture Profi le

 A profi le is defi ned in a UML package through the stereotype <<profi le>>, indicat-
ing that it will extend a metamodel. There are three mechanisms used to defi ne these
profi les:

• Stereotypes. They are defi ned by a name and a series of elements of the
metamodel with which they can be associated. Graphically, the stereotypes are
set in boxes, <<stereotype>>.

• Restrictions. They impose conditions on the previously stereotyped elements of
the metamodel, so as to describe, among others, the conditions that they have to
check in a “well-built” model. A commonly used language of restriction is OCL. 1

 e.j: Invariant:: this.product.contains.intersect(this.process.exit).isEmpty()=false

• Tagged Values. There are additional meta-attributes that can be associated with
the metamodel of a metaclass extended through a profi le.

 To build the profi le, the software process metamodel should be used as shown
in Fig. 1 . A stereotype is included within the package <<profi le>> for each element
of the metamodel contained in the profi le. It is named as the metamodel elements;
thus a relationship between the metamodel and the profi le is established. Then, any
item needed to defi ne the metamodel can be labeled with a stereotype [29]. In this
case “Participies,” “Executes,” “Activity,” “Product,” “Process,” “Indicator,” and
“Metric” will be created.

 In our example, Participies and Executes extend of the metaclass “Actor;”
Activity and Process extend of the metaclass “Activity;” and Product, Metric, and
Indicator will extend of Artifact. Tagged values are defi ned as the profi le attributes
elements that appear in the metamodel. The defi nition of their types and possible
initial values must be included.

 In the given example, the attribute “measure” of the metaclass Metric and the
attributes LimitedValueTop and LimitedValueLower of the metaclass Indicator have
to be added as tagged values since the metaclass implicitly has other attributes.
We will defi ne the profi le constraints from the domain constraints. For example,
either the multiple associations listed in the domain metamodel or any individual’s
business rules of the application must be translated when the relevant restrictions are
defi ned. In this case, there is one the invariant of Activity (Fig. 2).

 Invariant:: this.product.contains.intersect(this.process.exit).isEmpty()=false

5 An Example: NDTQ-Framework

 NDTQ-Framework is based on the metamodel analyzed in Sect. 3 . It formally
defi nes all processes currently supported by NDT [16], although it is also fl exible
and can be adapted to different levels and typologies of developments.

1 http://www.omg.org/technology/documents/modeling_spec_catalog.htm#OCL .

http://www.omg.org/technology/documents/modeling_spec_catalog.htm#OCL

 NDTQ-Framework defi nes processes on the Enterprise Architect tool through a
specifi c pattern dealing with process description, based on the proposed ISO/IEC TR
24774:2007 and ISO12207. It thoroughly defi nes the six groups of processes that
include NDT-methodology. However, due to their extension, they will not be fully
explained in this paper, but briefl y introduced below. Only the requirements engineering
process, which belongs to the software development processes, will be pointed out.

• Processes of Software Development. These processes support different types of
life cycles: classical or sequential, agile, iterative, and incremental. They are
defi ned on the basis of NDT life cycle, although the terminology has been
referenced on ISO 12207 standard.

• Processes of Software Maintenance. These processes are based on the best prac-
tices defi ned both in ITIL [17] and CMMI [18]. This group only defi nes the
process beginning when the project is in production and ending when the system
falls into disuse.

• Processes of Testing. These processes are based on the fi rst results of ISO/IEC
29119 [19]. This group defi nes Testing Organization, Testing Management, and
Testing Execution.

• Processes of Software Quality. This group of processes is based on ISO
9001:2008 and the good practices of CMMI. This group defi nes the following
processes: Managing Corrective and Preventive Actions, Documentation,
Control and Records, Human Resource Management, Customer’s Satisfaction,
Data Analysis and Review by the Director of the Organization, Technology
Watch, Monitoring Indicators, Elaboration of Standards, and Internal Audits.

 pkg Software Process
«metaclass»

Activity

+ isReadOnly :Boolean = false
+ isSingleExecution :Boolean
+ parameterName :String
+ postcondition :String
+ precondition :String

«metaclass»
Actor

«metaclass»
Artifact

+ fileName :String

Executes Participant

Process Activity

Product Indicator

- limitedValueTop :int
- LimitedValueLower :int

«extends» «extends»

«extends» «extends»

«extends» «extends» «extends»

Metric

- measure :int

 Fig. 2 Software process profi le

• Processes of Project Management. They are based on some of the practices of the
Project Management Body of Knowledge (PMBOK) [20] and CMMI. This
group defi nes the following processes: Event Management, Personnel
Management, Project Monitoring, Change Management, Schedule Management,
and Cost Management.

• Processes of Security. This process is based on ISO 27001. This group defi nes the
following processes: Physical and Environmental Security, Asset Management, Risk
Analysis, Security Organization, Communications Management and Operations,
Security Incident Management, and Business Continuity Management.

 The following information is provided by each of the processes mentioned
above: roles or participants involved in its execution, indicators, tasks or activities,
and deliverables of the process. All this information matches with the attributes
included in the metamodel defi ned in Sect. 3 . To illustrate all the processes above is
out of the scope of this paper. However, in order to present the approach, the require-
ments engineering process will be explained in detail. Figure 3 shows the map of
activities for the requirements engineering process.

 The Requirements Engineering includes the necessary fl ow of activities to gener-
ate the system requirements document. NDT-Suite, which consists of a set of very
useful free tools to apply the NDT-methodology, can automatically create and revise
the requirement documents [21].

 After fi nishing this process, all participants must reach a consensus and approve
the fi nal system requirements document. The requirements engineering process
involves four roles or participants: Project Manager, Monitoring Committee, Project
Manager at SQA, and Responsible for User’s Area.

 The Project Manager must carry out the fi rst activity within the requirements
engineering process. This activity is referenced in Fig. 3 as “RS01-Get information
about the environment and defi ne objectives.” In this activity, the Project Manager
must approach to the environment where the system will be implemented. During
this activity, the terminology used in the project, users and customers who will par-
ticipate, as well as the main objectives must be set.

 In the next activity, the Monitoring Committee must approve the project scope
and objectives previously established. This activity is referenced in Fig. 3 as
“RS02-To approve the scope.” Once the objectives have been identifi ed, the system
requirements must be captured. This task is carried out by the Project Manager and
includes fi ve activities: (1) identifying and defi ning storage requirements, (2) iden-
tifying and defi ning actors, (3) identifying and defi ning functional requirements, (4)
identifying and defi ning interaction requirements, and (5) identifying and defi ning
nonfunctional requirements.

 After completing the system requirements document and before being reviewed
by the user, the document must be validated by the Project Manager at SQA. This
validation involves three other steps: automatic validation through NDT-Suite,
which will generate the corresponding report; validation of the technician
 responsible of SQA; and validation of the technical coordinator.

 The Responsible for User’s Area, after identifying and describing requirements,
must validate it. Audits, thesauri, or ontologies are techniques for requirements

validation. The fi nal aim of this task is to detect and correct as much errors found
during the description of requirements as possible. To elaborate the glossary,
NDT-Glossary [22] is recommended (this tool is included in NDT-Suite). Finally, if
the Responsible for User’s Area has not detected any error or inconsistency in the
requirements identifi cation, the Monitoring Committee approves the system require-
ments document.

 Fig. 3 Map of activities of the requirements engineering process

 As it has been discussed in this section, each process defi ned by the NDT-
methodology needs to indicate certain relevant information such as the participants
involved in its execution, indicators, tasks or activities, and deliverables of the
process.

 NDTQ-Framework allows quick and direct access to all information associated
with an element within the NDT-framework. For instance, from the process, it can
be accessed, among others, to all the information related to actors involved in its
execution, its associated indicators, its deliverables, or its associated tasks or activi-
ties. Besides, NDTQ-Framework guarantees the traceability among these elements.
It also offers a set of tools to orchestrate all NDT processes. Today, we are currently
working on this line of research (Fig. 4).

6 Conclusions and Future Works

 This paper presents a solution for software process defi nition founded on a model-
based approach according to ISO/IEC TR 24744, the standard guideline to establish
the concepts related to software processes. This solution is offered by a metamodel
and an UML profi le and is implemented in Enterprise Architect. A concrete solution
named NDTQ-Framework is also presented.

 It has been used in several real projects where some relevant conclusions can be
deduced. Firstly, a model-based mechanism to defi ne software processes can be
very useful, but, if concrete syntaxes and semantic to represent them are not provided,
it fails to be used in companies. Otherwise, communication problems can arise.

 Fig. 4 NDTQ-Framework screenshot

UML profi les and a UML-based tool seem to be good options to represent them in
the software process environment since the development team usually knows
this notation.

 A tool supposes a required and essential necessity to offer a solution for model
process defi nition. In fact, defi ning a process under a metamodel guarantees unifor-
mity and a correct defi nition according to the standard. However, if a suitable tool is
not defi ned, the maintenance of these processes can result too complex, and incon-
sistencies between the defi ned process and the real process can arise.

 One of the most important aspects concerning this process, which is widely
recommended in many standards and good practices manuals, is the continuous
improvement. To have a process map, a clear relationship between activities and
mechanisms for metric and defi nition measurement are elements to be taken into
account in a continuous improvement program. Consequently, to have a suitable
mechanism for defi ning and maintaining becomes necessary, and it can only be
obtained through a tool.

 The solution proposed in this paper entails that, in NDTQ-Framework, processes
are not only defi ned under the standard, but they are also connected and interrelated;
thus the mechanism to maintain them improves. Besides, this interrelation and con-
nection and the fact that it is based on UML notation reduce the learning curve.

 As future work, this approach is aimed for improving in different ways. Firstly,
we are working on extending our framework with new processes, like some frag-
ments of ITIL or PMBOK. Secondly, this tool can be improved with a mechanism
of orchestration oriented towards the idea of NDTQ-Framework as a whole solution
in order to process defi nition, documentation, and maintenance.

 Nevertheless, at this point, there is not support to processes execution, and com-
panies usually have a manual mechanism to solve this situation. In this sense, NDT-
Suite can offer a fi rst step to support it, although it is not enough. The processes
execution defi ned by our metamodel represents a very relevant line of research.

 Additionally, getting metrics and indicators during the process execution poses
another line of research. A solution may allow organizations to identify, extract, and
analyze data to support decision-making.

 Acknowledgements This research study has been supported by the Tempros project
(TIN2010-20057- C03-02) and Red CaSA (TIN 2010-12312-E) of the Ministerio de Ciencia e
Innovación, Spain, and NDTQ-Framework project of the Junta de Andalucía, Spain (TIC-5789).

 References

 1. Lonchamp J (1993) A structured conceptual and terminological framework for software pro-
cess engineering. In: Proceedings of the 2nd international conference on the software process
continuous software process improvement, pp 41–53

 2. ISO/IEC, ISO/IEC 12207:2008 (2008) Systems and software engineering – software life cycle
processes. International Organization for Standardization

 3. ISO/IEC, ISO/IEC 15288:2008 (2008) Systems and software engineering – system life cycle
processes. International Organization for Standardization

 4. ISO/IEC, ISO/IEC TR 24744:2007 (2007) Software and systems engineering – life cycle man-
agement – guidelines for process description. International Organization for Standardization

 5. Kaiser G, Barghuti N, Sokolsky M (1990) Preliminary experience with process modeling in
the marvel SDE kernel. In: Proceedings IEEE 23th Hawaii ICSS software track

 6. Bandinelli SC, Fuggetta A, Ghezzi C (1993) Software process model evolution in the SPADE
environment. IEEE T Software Eng 19(12):1128–1144

 7. Conradi R, Jaceheri M, Mazzi C, Nguyen M, Aarsten A (1992) Design, use and implementa-
tion of SPELL, a language for software process modeling and evolution. Software Process
Technology, pp 167–177

 8. Di Nitto E, Lavazza L, Schiavoni M, Tracanella E, Trombetta M (2002) Deriving executable
process descriptions from UML. In: Proceedings of the 24th international conference on
software engineering (ICSE 2002), Compendex, pp 155–165

 9. Chou S-C (2002) A process modeling language consisting of high level UML-based diagrams
and low Level process language. J Object Technol 1(4):137–163

 10. Bendraou R, Gervais M-P, Blanc X (2006) UML4SPM: an executable software process
modeling language providing high-level abstractions. Enterprise distributed object comput-
ing conference 2006 EDOC 06 10th IEEE International, vol. 6, no. 511731, pp 297–306

 11. OMG (2008) SPEM, software & systems process engineering metamodel specifi cation. http://
www.omg.org/spec/SPEM

 12. ISO/IEC, ISO/IEC 24744:2007 (2007) Software engineering – metamodel for development
methodologies. International Organization for Standardization

 13. Henderson-Sellers B, Gonzalez-Perez C (2005) The rationale of powertype-based metamodel-
ling to underpin software development methodologies. In: Proceedings of the 2nd Asia-Pacifi c
conference on conceptual modelling, vol. 43, pp 7–16

 14. OMG (2011) MOF, meta object facility. http://www.omg.org/spec/MOF/2.4.1
 15. Koudri A, Champeau J (2010) MODAL: a SPEM extension to improve co-design process

models. In: Proceedings of the 2010 international conference on new modeling concepts for
today’s software processes: software process, vol. 6195, pp 248–259

 16. Escalona MJ, Aragon G (2008) NDT. a model-driven approach for web requirements. IEEE T
Software Eng 34(3):377–390

 17. ITIL, Information technology infrastructure library. http://www.itil-offi cialsite.com
 18. Chrissis MB, Konrad M, Shrum S (2003) CMMI: guidelines for process integration and product

improvement. Addison Wesley, Reading, MA, p 688
 19. ISO/IEC, ISO/IEC 29119 Software engineering – software testing standard. International

Organization for Standardization
 20. Project Management Institute (2008) A guide to the project management body of knowledge

(PMBOK ® guide) – fourth edition. Project Management Institute, Newtown Square, PA, p 459
 21. (2011) NDT-Suite. www.iwt2.org
 22. García-García JA, Cutilla CR, Escalona MJ, Alba M (2011) NDT-glossary. A MDE approach

for glossary generation. In: Proceedings of the 13th international conference on enterprise
information systems. ICCEIS

 23. OMG (2011) BPMN, business process modeling notation, Version 2.0. http://www.omg.org/
spec/BPMN/2.0/

 24. OASIS (2007) WS-BPEL, Web services business process execution language, Version 2.0.
 http://www.oasis-open.org/standards#wsbpelv2.0

 25. Ellner R, Al-Hilank S, Drexler J, Jung M, Kips D, Philippsen M (2010) eSPEM – a SPEM
extension for enactable behavior modeling. In: Kühne T, Selic B, Gervais M-P, Terrier F (eds)
EdsModelling foundations and applications, vol 6138. Springer, Berlin, pp 116–131

 26. Ardagna D, Ghezzi C, Mirandola R (2008) Rethinking the use of models in software architec-
ture. In: Becker S, Plasil F, Reussner R (eds) Quality of software architectures models and
architectures, vol 5281. Springer, Heidelberg, pp 1–27

 27. Schmidt DC (2006) Model-driven engineering. Computer 39(2):25–31
 28. Van Der Straeten R, Mens T, Van Baelen S (2009) Challenges in model-driven software engi-

neering. In: Models in software engineering. Lect Notes Comp Sci 5421:35–47
 29. Fuentes L, Vallecillo A (2004) Una introducción a los perfi les UML. Novática 168:6–11

http://www.omg.org/spec/SPEM
http://www.omg.org/spec/SPEM
http://www.omg.org/spec/MOF/2.4.1
http://www.itil-officialsite.com/
http://www.iwt2.org/
http://www.omg.org/spec/BPMN/2.0/
http://www.omg.org/spec/BPMN/2.0/
http://www.oasis-open.org/standards#wsbpelv2.0

	Software Process Management: A Model- Based Approach
	1 Introduction
	2 Related Works
	3 A Metamodel for Software Process Management
	4 An Enterprise Architecture Profile
	5 An Example: NDTQ-Framework
	6 Conclusions and Future Works
	References

