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ABSTRACT 
This paper presents a detailed study of the effect of the non-lin- 

ear settling on the harmonic distortion of Bandeass ZA Modula- 
tors (BP-UMs) realized using Fully Differential (FD) 
&vlrched-current (SI) circuits. Based on the analysis of building 
blocks, closed-form expressions are derived for the third-order in- 
termodulation distortion of BP-XAMs due to defective settling, on 
the one hand, and to the non-linexities of the sampling process, 
on the other. Time-domain simulations and measurements taken 
from a 0.8pm CMOS 4th-order BPSAh4 silicon prototype vali- 
date our approach.(*) 

1. INTRODUCTION 
Up to now, the potential of Sw&c/ted-currerit (SI) circuits has 

been barely demonstrated through actual, practical circuits. Thus, 
in the case of XA Modulators (CAMS), performances featured by 
reported SI silicon prototypes are well below than those of 
- Switched-Capacitor (SC) counterparts, even if the latter are real- 
ized in standard technologies without good passive capacitors. 
Such poorer performances are partly due to the larger influence of 
SI non-idealities, as well as to the incomplete modeling of their 
influence. Particularly, for &md&ss CaMs (BP-XAMs), and due 
to the necessity to cope with the frequency specifications required 
for modem digital wireless communication systems [I], harmonic 
distortion due to non-linear settling becomes one of the dominant 
limiting factors. 

There have been several attempts to model the non-linear tran- 
sient response of SI memory cells [2][3][4][5][6]. Regarding har- 
monic distortion, a precise study of the isolated SI memory cell 
was presented in [5], but its mathematical complexity precludes to 
extend its usage to circuits containing heavily coupled memory 
cells, as it happens for ZAMs. The simplified model for Fully Dif- 
ferential (FD) memory cells presented in this paper enables hierar- 
chical systematic analysis of SI circuits composed of memory 
cells, such as integrators and resonators. This analysis provides 
closed-form expressions for the third-order intermodulation dis- 
tortion of B P - U s  caused by two non-linearities: the incomplete 
settling and the sampling process at the modulator front-end. The 
latter causes large harmonic distortion levels even for a low set- 
tling error, as confirmed by measurements from a 0.8pm CMOS 
4th-order BP-XAM [7] .  

2. FD MEMORY CELLS WITH NON-LINEAR 
SETTLING ERROR 
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Figure 1. FD memory cell with non-linear settling error. a) Sche- 
matic. b) Equivalent circuit during the sampling phase. 

sistance is much smaller than that due to the gate-source capaci- 
tance, C,, , and the small-signal transcbnductance, g H I Q .  In such 
a case, the cell can be modelled by the equivalent circuit in 
Fig.l(b) during the sampling phase, $,. In this circuit, the large.- 
signal behaviour is modelled by g,,,, and g,,,-, which re resent 
the transconductances of M+,-. given by g,,,-= g f , l Q , / k - ,  
where mi+,. = ij+.-/Ibia,, ii+.- = f i i / 2 ,  and i j  is the input cur.- 
rent [3]. Assuming that i i  keeps stationary during the sampling 
phase, and that the switch becomes OFF at ( n  - 1 / 2 ) T ,  ( T ,  is 
the sampling period) the differential drain current, i, = id+-id- , 
can be calculated by solving the circuit in Fig.l(b) for the initial 
condition I' = 19 + I ,  giving: s+.. SI ... 11 - 1 

' d .  11 - I/' = ' j ,  11 - 1 /Z - y ( n l j .  11 - 1 /') 1 + 
(1:) 

+ 'd .  it  - lY("' i ,  t i  - I / ? )  

where 

with T = C / x , , , ~  and m i , f l  = i i ~ l I / ( 2 1 b f a s ) .  

current, io = io+ - i o - ,  is given by: 

3 ,  
At the end of the ri-th hold phase, Q2, the differential outpul 

( 3 )  ' a  I 1  = -'d. I1 - 1/1 

From (1)-(3) and considering id. , I  - I = i, - 3 / 2  , one obtains: 

To calculate the harmonic distortion, the function Y ( . )  must be 
approximated by a polynomial inside a given interval. For that pur- 
pose, we have combined Taylor series expansion for mi (( l and 
numerical fitting for -0.5 5 i n j  5 0.5 , 0.01 % < E , ~  < 10% , to 
obtain the following approximation: 

Fig.l(a) shows a FD second-generation memory cell. In what ( 5 )  
follo& it will be assumed that the incomplete settling is the dom- 
inant non-ideality. Therefore, the effect of the charge injection er- 
ror and the finite output conductance, analysed elsewhere [SI, will 

where E, = exp[-k,l is the line,. settling error, k ,  = T,,(2t) , 
= a,EJks[( I + k,v(321tfa,\1, and a, = 3/2  is a fitting 

not be considered. Besides, in most practical cases the time con- 
stant formed by the drain-source capacitance and the switch-on re- 

'*'This work has been supported by the Spanish CICYT Project 
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SubstiNting ( 5 )  into (4), yields: 

where 

Thus the analysis of a FD memory cell with non-linear settling 
error can be accomplished considering a memory cell with linear 
error, E , ,  which has an input current equal to (7). If i t  is a shewave 
of amplitude Z i  and frequency f i  , io will contain harmonics of 
f i  . In FD circuits, the Total &r"nnic Distortion ( T H D  ) is 
approximately equal to the third-order harmonic distortion, HD3 . 
The analysis of HD3 can be simplified if io is approximated by 
its first-order harmonic, such that io, E -Zjsin(2sr f p T , )  . Per- 
forming a Fourier series expansion of (7) it can be shown that the 
amplitude of the third-order harmonic is approximately given by: 

where f, = 1/T, is the sampling frequency, and H D 3  is: 

with Mi = z ; / ( 2 Z b j o , ) .  

Fig.' compares the theoretical model with HSPICE by plotting 
H D 3  vs. f ;/ f ,  , using the same example as in [3] [5] with 
level47 MOS models of a 0.8pm standard CMOS technology. 
In that example, gnIQ = 82 .8pAN,  C,, = 22.lpF, 
Zbias  = 20pA,  M i  = 0.5 and f ,  = 5 I2kHz. Note that predic- 
tions given by (9) agree with HSPICE and with those made by the 
model in [ 5 ] .  However, as a difference to this latter model, the new 
one can also be used for predicting the harmonic distortion of 
higher-level SI blocks, such as integrators and resonators, and fi- 
nally, complete BP-ZAMs. 

3. HARMONIC DISTORTION IN SI RESONATORS 
Resonators are the basic building blocks of BP-UMs,  playing 

the same role as integrators in LP-CAMS. Most of BP-XAMs re- 
ported in the literature obtain their architecture by applying the 
transformation : + -z to the corresponding LP-ZAMs [I]. 
As a consequence of this transformation, the original integrators 
become resonators with a transfer function Fa/( 1 + I-') , where 
0 < a 5 2 . This function can be realized by several filter structures 
[I]. Fig.3(a) shows the block diagram of one based on LD Integra- 
tors (LDI's). This structure is advantageous as compared to the 

-1 -2 

HD3 

Figure models. 

others because it remains stable under changes in the loop coeffi- 
cients. Let us consider that the integrators are realized as shown in 
Fig.3(b) and analyse their isolate operation, assuming that memo- 
ry cells are described by (4). After clock phase , the differential 
drain current of cell 2, is: 

L 1  - y(i.r, n ) l i x ,  n + 'ds, ,,,- Iv(ix, TI) (lo) 

(idsl+,,, - 'ds, .,,,) repre- 

idsz.,, E ids2+,,, - 

where 'x, ir = ' i ,  I ,  - 'ds ,,,,- and ' ds  ],,, 
sents the differential drain current of cell 1 .After clock phase $? , 

i dsl,,,+1,2 -y(-ids2,,,)]id~2.,, + idsl~~,~ly(-ids2~,J) ( I1 )  

Assuming that the output stage (represented in Fig.3(b) as a simple 
current mirror) is ideal, the output current of the integrator is: 

From (5) and 

i, =. 
with 

Thus, the analysis of a SI FD integrator formed by memory cells 
with non-linear settling error can be accomplished considering an 
integrator with linear settling error whose input is equal to (14). 

Let us consider the resonator of Fig.3(a). Assuming that the in- 
tegrators can be modelled by (13) and (14), the finite-difference 
equations that govern the behaviour of the resonator are: 

(15) 

(16) 

. .  
l l , , l  = l;,,,-'o,,, 

;2, , l=-(l  - & , ) j l . , , _ 1 / 2 + & , i , . , , - 3 / 2 + i 2  ,,,- 1 + i ? H . , ,  

~ O . , l ~ - ( ~ - ~ , ~ ~ 2 , , ~ - I / 2 + ~ ~ ~ 2 . , , - 3 / 2 + ~ 0 , , 1 - 1  + i O H , I ,  (17) 
where i, and i2 are respectively the input and the output of the 
first integrator in the loop and iZH and io, are non-linear terms, 
respectively given by: 

(19) 

2 , 0 1 2  N 1 , solving for i?.,, in (17) and 

' .  
' O H ,  . , I  = - E  sz c2 '0. ,112. . ,I - I / ?  + i,. , I  - 1'2. , I  - 3 / 2 )  

Assuming that E,, 

substituting it in (16), obtains: 

io. ,, ( 1  - 2&,Vj ,  ,, + 4&,jo, ,, - I - ( 1  - 4&,)iO, ,I - (20) 

Figure 3. LDI-loop Resonator. a )  Block diagram. b) SI FD LDI. 
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Figure 4. H D ,  at the output of a LDI-loop resonator, with f; : 
a) 0.001 f ,/4 . b) 0.002 f ,/4 . c) 0.003 f ,/4 . 

where yi, ,I = ; ; , , I  - I + ( i o H ,  ,I - ;,ff, ,I - 1 - &ff, ,, - , , 2 )  ' 

The harmonic distortion referred to the resonator input can be cal- 
culated by analysing the harmonic content of the above expression. 
Therefore, assuming that ii is a sinewave of amplitude I ;  and fre- 
quency f , the output of the resonator will be a quasi-sinusoidal 
signal, with an amplitude approximately given by: 

Performing a Fourier series expnnsion of ri, ,I , it can be shown that 
the amplitude of the third-order harmonic at the resonator input is 
given by: 

(22) 

where, f ,' = f , - f,/4 and f ,'T, (( 1 has been assumed. 
Multiplying A ,  by the resonator gain (evaluated at 3f, ) and 
dividing the result by I , ,  obtains H D 3  at the resonator output. 
This analysis has been validated by time-domain simulation using 
the behavioural simulator for SI circuits reported in [9]. Figd 
shows H D ,  at the output of the resonator as a function of E, , for 
different values of f , ' .  This simulation was done by changing 
g l I r Q ,  for Cs5 = I p F ,  I ,  = 0.5yA and Ibios = 200yA, when 
clocked at f, = lOMHz . Note that H D ,  does not increase with 
E ,  because the open loop gain of the resonator is also attenuated 
by the linear error. Although simulated behaviour is well predicted 
by theory, their differences become larger when the condition 
f , ' T s  <( I is not satisfied as assumed in theory. 

4. HARMONIC DISTORTION IN SI BANDPASS XA 
MODULATORS 

Let us consider the 4th-order BP-ZAM shown in Fig.5, where 
A,,,? = 2A,,,,A,,, , and assume that LDI's are realized as 
in Fig.3(b). For the analysis of the harmonic distortion, the follow- 
ing considerations have been taken into account: 

*The harmonic distortion referred to the modulator input is equal 
to the harmonic distortion referred to the modulator output 
because the signal transfer function is unity in the signal band. 

Figure 5. Block diagram of the 4th-order BP-ZAM. 

*The contribution of the second resonator will not be considesed 
because it is attenuated by the gain of the first resonator in the 
signal band. 

*The quantization error, modelled as an additive white noise 
source, does not contribute to the harmonic distortion. 

The analysis of the modulator in Fig.5 reveals that the amplitude of 
the first resonator output is given by: 

(23) 

where A ,  is the input amplitude. Substituting (23) into (22), 
assuming that AD,,, = -1 and dividing by A , ,  obtains that 
H D ,  at the output of the modulator is: 

HD, G 4..&A:( 1 + 5n f ,'T,) E 4&,,A: (24) 

Note that due to the oversampling, it is f , ' T ,  (< I , and hence HL), 
practically does not depend on f , . A more appropriate parameter 
for characterizing the harmonic distortion in BP-ZAMs is the 
third-order intermodulation distortion, given by: 

where I,,, is the DAC output current and nb .= I b i o s / t D A C .  
This expression has been validated by time-domrun simulation as 
shown in Fig.6(a) by representing I M ,  vs. E, t2 for different val- 
ues of I,,, with A ~ = IDAC/2,  Ibias  = 200pA, C,, = 1 pF 
and f, = IOh4Hz. The input signal consisted on two tones of 
amplitude A 'I/ 4 and frequencies f , I s 0.247 f , and 
fl? = 0.248fS. As an illustration, Fig.G(b) shows the output spec- 
trum corresponding to E, = 1 % and I,,, = 5 0 p A .  Note that, 
other intermodulation products appears - not critical since they are 
outside the signal band. 

- 'Iheory 
.Simulation 

Frequency (MHz) 

Figure 6. a) IM, vs. E, for different values of I,,, . b) Outpllt 
spectrum for E, = 1 % and IDAC = 5 0 p A .  

t2.  
O . I % < E , < l % .  

The sin~ulation was canied out by varying g n r p  such that 
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5. EFFECT OF S/H PROCESS AT THE FRONT-END 
OF SI BANDPASS ZA MODULATORS 

In the previous analysis it has been assumed that the input cur- 
rent is constant during the sampling phase. However this assump- 
tion does not apply to the memory cell connected at the input node 
of a BP-EAM. In this case, the ratio between fi and f, is close to 
unity ( f i / f s  = 1/4  in the case of the modulator in Fig.5) and 
hence, there will be large variations of the input current during the 
sampling phase. As a consequence, additional harmonic distortion 
will appear even if E, (< I , which can not be explained by (9). 

The harmonic distortion in memory cells connected to continu- 
ous-time sinewave currents was analysed in [6] .  Here, we will ex- 
tend that analysis to BP-XAMs. Let us consider first the cell in 
Fig.I(a) and assume a sinewave input current of frequency fi and 
amplitude I i .  In this case, id can not be solved as an step-re- 
sponse. In order to find an explicit solution, the circuit in Fig.l(b) 
was solved for gm+,- = g n I p .  with the initial condition 
17 = vg+ 
pkced by g,,p JKi, yielding to t3: 

Once the solution was found, gmQ was re- 

io* ll z - ‘ i , r ? - l / ~ ~ l ~ ~ l / ~ ~ ‘ i . r l - l / ~ ~  + 

+ [ ‘ i . r 7 - 1 ~ ~ ~ - , ( ’ i , r 1 - 1 / ~ ) y ( ’ i , 1 1 - 1 , ~ )  + ‘ ~ , i ~ - l ~ ( ’ i , i ~ - ~ , ~ ) l  
(26) 

being, 

1 - 2xfizcot(2xfinT,) 6nfizcot(2xfi~1Ts) ,2 
qll(ii) E 1; (27) 

1 + (2x f 32I;;, ,  

where i i / Ih ias  <( I has been assumed. Following the same proce- 
dure as in Section 2, it can be shown that, for xfiz (< 1 , 

371 f iT 

16( 21,,i0,)- 
A H .  3 71; (28) 

In BP-XAMs, only the first memory cell connected to the input sig- 
nal will contain the above harmonic. To calculate IM, at the out- 
put of the modulator, it is necessary to express I i  as a function of 
A., . The analysis of Fig.5 gives Ii 3 2&A,v. Substituting this 
expression in (28), and dividing by A., it can be shown that: 

(29) 

where fi zf,/4 has been assumed. Fig.7(a) compares (29) with 
time-domain behavioural simulation by plotting IM, vs. z for 

IM3(dBi 

fc = SO MHz 

-60 

-70 
A A  

Figure 7. I M ,  due to the S/H process at the front-end. a)  I M 3  
vs. z . b) Comparison with I M ,  due to non-linear E,. 

~ ~~ 

t3 .  A more rigorous analysis can be done by using the Volterra series 
method as we demonstrated in [SI. yielding to similar results. 

O 

,IM3 = -54m 

do 

f = 2 M H z  

-en . 

-%23 023 02s 

Figure 8. Measured output spectra for different values off,. 

. Relative frequency (to&, Relative frequency (tof,) 

different values off,, nb = 4 and AX/IDAg = 1/2.  The theo- 
retical model accurately predicts the simulatlon results except for 
some cases where a maximum error of 4dB occurs. In these cases 
a more exact analysis using the Volterra series method should be 
used. 

To conclude this study, Fig.7(b) compares ZM, caused by the 
non-linear settling error and the S/H process for fs = loMHz 
and A , / I D A ,  = 1/2 .  Note that, for E, > 3% , both expressions 
approximately converge. However, for practical designs, i.e, for 

< 0.1 % , IM, due to the S/H process dominates, limiting the 
performance of SI B P - U M s  unless a S/H circuit will be used at 
the front-end. This fact has been confirmed by experimental re- 
sults from a 0.8pm CMOS 4th-order BP-CAM [7].  Fig.8 shows 
two measured output spectra for A,/ l , , ,  = 0.42 when clocked 
at f, = 2MHz and f, = IOMHz, obtaining I M ,  = -61dB and 
-54dB respectively. In this case, g, - 360pAN and 
Cgs = 2.8pF ( E ,  = 0.16% at f, = 10MI-f~; which according 
to (29) gives I M ,  = -64dB and I M ,  = -55dB respectively. 

6. CONCLUSIONS 
The effect of non-linear dynamic SI errors on the harmonic dis- 

tortion of FD BP-ZAMs has been analysed in detail. Closed-form 
expressions, validated through time-domain simulation, have been 
derived for I M ,  due to the non-linear settling and the sampling 
process. The latter constitutes the main source of harmonic distor- 
tion in practical designs as demonstrated by experimental results. 
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