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Summary/Resumen 

Summary 

The central objective in this PhD thesis has been the development of asymmetric 

catalysis methodologies for the atroposelective synthesis of (hetero)biaryls through 

dynamization strategies. These methodologies comprise resolution of both 

configurationally stable (DYKAT, for Dynamic Kinetic Asymmetric Transformation) or 

labile (DKR, for Dynamic Kinetic Resolution) heterobiaryl substrates. The obtained 

products possess appealing structures with potential applications as ligands for metal 

catalysis or precursors of bifunctional organocatalysts. 

Along Chapter I, the general considerations and contextualization of the developed 

work are first disclosed. Additionally, the state of the art of the different strategies for the 

atroposelective synthesis of (hetero)biaryls is reviewed. For that purpose, those approaches 

involving any dynamization process for the synthesis of the enantioenriched functionalized 

(hetero)biaryls are specially considered. 

In Chapter II, the first of the three developed methodologies during this PhD thesis 

is described. In this case, the Heck reaction (for which his discoverer was awarded with the 

Nobel Prize in Chemistry in 2010) has been combined with a DYKAT strategy, using 

configurationally stable heterobiaryl (pseudo)halides as substrates. This methodology has 

enabled the synthesis of highly functionalized heterobiaryls with the simultaneous 

generation of central and axial chirality elements, with an exquisite control on the regio-, 

diastereo-, and enantioselectivities. 

In Chapter III an alternative methodology for the synthesis of heterobiaryls bearing 

central and axial chirality is described. In this case, an asymmetric reduction of 

configurationally labile heterobiaryl ketones via dynamic kinetic resolution (DKR) was 

performed. Specifically, the zinc-catalyzed asymmetric hydrosilylation using chiral 

diamines as ligands has been employed to obtain the corresponding heterobiaryl carbinols 

with excellent diastereo- and enantioselectivities.  
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Finally, the development of a methodology for the synthesis of axially chiral 

diamines is disclosed along Chapter IV. In this strategy, the configurational lability of 

heterobiaryl aminals was exploited in Ru-catalyzed asymmetric transfer hydrogenation via 

dynamic kinetic resolution. This methodology is presented as an efficient pathway for the 

synthesis of homologues to BINAM and derivatives. 

All the developed methodologies during this PhD thesis have allowed for the 

efficient synthesis of a wide variety of (hetero)biaryl structures bearing central and axial 

chirality elements. 

Resumen 

El objetivo principal de la presente Tesis Doctoral ha sido el desarrollo de 

metodologías catalíticas asimétricas para la síntesis atroposelectiva de (hetero)biarilos a 

través de estrategias de dinamización. Estas metodologías comprenden la resolución de 

sustratos (hetero)biarílicos configuracionalmente estables (DYKAT, por sus siglas en 

inglés: Dynamic Kinetic Asymmetric Transformation) o lábiles (DKR, por sus siglas en 

inglés: Dynamic Kinetic Resolution). Estos compuestos son altamente interesantes como 

ligandos para metales o como organocatalizadores. 

A lo largo del capítulo I, se han desarrollado inicialmente las correspondientes 

consideraciones generales y puesta en contexto del trabajo. Además, se hace una revisión 

sobre el estado del arte en cuanto a las diferentes estrategias descritas para la síntesis 

atroposelectiva de (hetero)biarilos. Para ello, se tienen en cuenta todas las aproximaciones 

descrutas, prestando especial atención a aquellas que involucran alguna estrategia de 

dinamización para obtener los (hetero)biarilos funcionalizados enantioméricamente 

enriquecidos. 

En el capítulo II se describe la primera de las tres metodologías desarrolladas 

durante la presente tesis doctoral. En ella se ha hecho uso de la reacción de Heck asimétrica 

(gracias a la cual, su descubridor fue galardonado con el Premio Nobel de Química en 

2010) junto con una estrategia de transformación asimétrica cinética dinámica (DYKAT), 
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utilizando (pseudo)haluros de heterobiarilo configuracionalmente estables como sustratos. 

Esta metodología ha permitido la síntesis de heterobiarilos altamente funcionalizados con 

la generación simultánea de quiralidad axial y central, y con un control exquisito sobre la 

regio-, diastereo- y enantioselectividad de la misma. 

Por su parte, en el capítulo III se desarrolla una metodología alternativa para la 

síntesis de heterobiarilos con quiralidad axial y central basada en la reducción asimétrica 

de heterobiaril cetonas configuracionalmente lábiles (DKR). Concreamente, se ha 

empleado una reacción de hidrosililación asimétrica catalizada por complejos de zinc con 

diaminas quirales como ligandos, permitiendo obtener los correspondientes heterobiaril 

carbinoles con excelentes niveles de diastereo- y enantioselectividades. 

Por último, a lo largo del capítulo IV se detalla una metodología para la síntesis de 

diaminas con quiralidad axial. En esta estrategia, se ha aprovechado la inestabilidad 

configuracional de los hemiaminales de partida, para llevar a cabo una resolución cinética 

dinámica (DKR) a través de una reacción de aminación reductora mediante transferencia 

de hidrógeno catalizada por complejos de rutenio. Esta metodología se presenta como una 

ruta eficiente para la síntesis de homólogos estructurales al BINAM y sus derivados. 

Las metodologías desarrolladas a lo largo de esta Tesis Doctoral han permitido la 

síntesis eficiente y selectiva de una serie de (hetero)biarilos con quiralidad axial y central.  
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I. Introduction and Objectives.  

I.1. Asymmetric catalysis. 

Compounds of organic nature constitute the base of life existence. They comprise 

those which are mainly formed by carbon, hydrogen, nitrogen and oxygen atoms; however, 

other atoms like sulphur, phosphorous and halogens can be present in much lower amount. 

Organic Chemistry is the discipline responsible for the study of the synthesis and reactivity 

of these kind of compounds.  

This term was first used in 1807 by Berzelius1 in order to study those compounds 

derived directly from nature. By that time, it was thought that they held a special “vital 

force” that distinguished them from inorganic compounds, since they derived from living 

organisms. Furthermore, it was assumed that they could not be obtained synthetically and 

they could only be found directly in natural sources. It is because of this belief that Wöhler’s 

discovery in 18282 had such high importance. He was able to synthetically obtain urea, an 

organic compound isolable from animal urine, from two inorganic precursors such as 

ammonia and cyanic acid. It represented the first evidence of an organic compound 

synthetized in a laboratory and not obtained from natural sources, and many authors during 

history have considered Wöhler’s finding as the origin of modern organic chemistry3. 

The understanding of how atoms are spatially displaced has also played a very 

important role in the development of organic chemistry as we know it nowadays. The 

branch of chemistry that deals with the spatial arrangement of atoms and groups in 

molecules, and the relation with their properties is named Stereochemistry.  

In this context, a key concept is the symmetry, meaning for the property of an 

object of remaining invariant under a series of transformations as reflexion or rotation. 

However, in the framework of (organic) chemistry, it could be attributed more importance 

                                                                 
1 Perspectives in Catalysis: In Commemoration of J. J. Berzelius, ed. R. Larsson, CNK, Gleerup, 

Lund, Sweden, 1981. 
2 Wöhler, F. Poggendorffs Ann. 1828, 12, 253. 
3 Cohen, P. S.; Cohen, S. M. J. Chem. Educ. 1996, 73, 883. 
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to the absence of symmetry, defined as asymmetry by the IUPAC (International Union of 

Pure and Applied Chemistry). Regarding to this chemical meaning of asymmetry, it is 

closely related to chirality, and it refers to the geometric property of a rigid object of not 

being superimposable on its mirror image. The classical example to illustrate this property 

are the left and right, our hands are chiral – our right hand is a mirror image of our left hand 

– as are most of life’s constituting molecules. However, there are many other examples of 

objects that also present chirality (Figure I.1).  

 

Figure I.1 – Illustration for chiral objects. 

The most relevant contributions to the area of stereochemistry were made initially 

by Jean-Baptiste Biot4, followed by Louis Pasteur5 and later Jacobus van’t Hoff6 and 

Charles Le Bel7. In general terms, the first established that certain organic compounds are 

able to rotate the plane of polarization of light. Then, Louis Pasteur correlated this 

observation with an asymmetric spatial arrangement of the atoms within molecules. Few 

years later, van’t Hoff and Le Bel arranged the four valences of the carbon atom in a 

                                                                 
4 Biot, J. B. Bull. Soc. Philomath. Paris 1815, 190. 
5 Pasteur, L. Ann. Chim. Phys. 1850, 28, 56. 
6 Van’t Hoff, J. H. Arch. Neerl. Sci. Exactes Nat. 1874, 9, 445. 
7 Le-Bel, J. A. Bull. Soc. Chim. France 1874, 22, 337. 
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tetrahedral fashion, setting the subsequent ability of organic molecules to exist in mirror 

image forms. 

As mentioned, chiral molecules are not superimposable on their mirror images, and 

the pair of those mirror images conform what are called enantiomers. It is well-known that 

both enantiomers present different chemical properties, but the identical physical 

properties, except for their ability to rotate plane-polarized light by equal amounts but in 

opposite directions (D or L, depending if the light is rotated to the right or left side, 

respectively). 

Nature represents the most evident proof of the great importance of chirality. Some 

examples are the amino acids that constitute proteins of living beings, which are chiral 

molecules exclusively from L-configuration. Additionally, many metabolisms of living 

organisms depend upon specifics enzymes, hormones and other receptors, for a precise 

enantiomer of a particular molecule. Therefore, if the enantiomer that reaches this receptor 

is not the proper one, the metabolic route would not be initiated, or even, an undesired 

metabolism could occur. 

There are several examples of biologically active compounds that present different 

properties depending on which enantiomer is assimilated by the organism. For instance, 

the most notorious case in this context is represented by thalidomide. During the late 1950s 

this drug was prescribed to pregnant women as a sedative and to decrease the morning 

sickness. However, it was provided in its racemic mixture and it was later found that the 

desired bioactivity was provided by the (S)-thalidomide; whereas the opposite enantiomer, 

(R)-thalidomide was responsible for teratogenic deformities in children born after their 

mothers used it during pregnancies. Moreover, it was later discovered that racemization of 

the drug takes place in vivo and, therefore, it was taken off the market in 1961 (Figure I.2).  
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Figure I.2 – Enantiomers of thalidomide and their different biological properties. 

Nonetheless, there are other examples in which the difference between both 

enantiomers is not so dramatic, but existing, and some of these pairs of enantiomers are 

displayed on Figure I.3. For example, L-DOPA (also known as levodopa) is employed for 

the treatment of Parkinson disease when transformed in dopamine by a L-amino acid 

decarboxylase enzyme. However, its enantiomer D-DOPA is biologically inactive and 

could be dangerous if accumulated. An additional well-known example is that of limonene, 

for which each enantiomer presents different organoleptic properties, while (R)-limonene 

smells like orange, (S)-limonene does it to lemons. The case of propranolol can also be 

mentioned: the (S)-propranolol is a -blocker used to overcome anxiety issues (commonly 

known, in Spain, under the commercial name of Sumial) and to treat hypertension, while 

its R enantiomer is employed as a contraceptive, 

 

Figure I.3 – Different compounds with enantiomer-depending properties. 

Considering these examples, among others, it is evident that the pharmaceutical 

industry presents a very high interest on methods that allow the selective synthesis of one 
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of the two possible enantiomers of a given compound. However, also in the cosmetics and 

agrochemical industries, enantiomerically pure compounds have an important presence.  

In this context, the development of enantioselective synthetic methods is highly 

desirable. These methods can be clasified along three different approaches:  

- Chiral pool:8 this is based on the exploitation of natural enantiomerically 

pure starting materials (i.e. natural L-amino acids or D-monosaccharides) so that the 

absolute configuration of the final products is given by that of the substrates. This 

strategy presents a priori two main drawbacks: (i) first, the need of stoichiometric 

amounts of the enantiopure substrate, and (ii) second, the fact that the desired 

configuration is not always present in natural products. 

- Resolution of racemic mixtures:9 consisting on the reaction of an 

enantiopure reagent and a racemic mixture, obtaining a mixture of diastereomers that 

would be further separated due to their different physical properties. Then, the 

enantiopure reagent could be removed, if possible, in order to obtain the 

enantiomerically pure starting material (Scheme I.1). This method presents a huge 

limitation since a maximum of only 50% yield can be afforded. 

 

Scheme I.1 – Resolution of racemic mixture by diastereomers separation. 

- Asymmetric synthesis:10 consists on the construction of chiral elements 

form an achiral (or racemic) substrate. The chirality source could come from either a 

                                                                 
8 Classics in Total Synthesis III; Nicolau, K. C.; Snyder, S. A., Eds.; Wiley-VCH: Weinheim, 2011. 
9 Anderson, N. G. Org. Proc. Res. Dev. 2005, 9, 800. 
10 (a) Asymmetric Synthesis; Aitken, R. A.; Kilényi, S. N., Eds.; Chapman & Hall: Cambridge, 1992. 

(b) Comprehensive Asymmetric Catalysis; Jacobsen, E. N.; Pfaltz, A.; Yamamoto, H., Eds.; 

Springer: Berlin, 1999. 
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chiral auxiliary11 or a catalyst that could be enzymatic (biocatalysis) or non-enzymatic, 

and the latter could be based on metals (organometallic catalysis) or not 

(organocatalysis). 

The catalytic asymmetric synthesis approach presents the higher potential and 

applicability since only sub-stoichiometric amounts of the catalyst are needed to induce 

chirality in the final products, which results in atom-efficient processes.12 However, as 

mentioned above, the nature of the catalyst leads to different strategies: 

A. Biocatalysis:13 if specific enzymes or microorganisms are employed as 

catalysts. These systems present several benefits, such the mild conditions 

usually employed and high selectivities achieved, which might also become a 

detriment on its applicability because of the high specificity of enzymes.  

B. Organometallic catalysis:14 in this case, the vast majority of the catalysts 

employed are based on chiral organic ligands coordinated to a metal centre.  

C. Organocatalysis:15 if the catalyst is based on relatively low molecular weight 

organic molecules without metal atoms on their structure, which are usually 

air-stable, and do not require careful reaction conditions as is often the case in 

metal-based catalysts (such as anhydrous solvents, inert air,…). 

Despite the number of alternative approaches and strategies for the synthesis of 

enantiomerically pure compounds, most of the asymmetric catalysts developed are still 

                                                                 
11 Evans, D. A.; Helmchen, G.; Rueping, M. Chiral Auxiliaries in Asymmetric Synthesis. In 

Asymmetric Synthesis-The Essentials; Christmann, M.; Bräse, S., Eds.; Wiley-VCH: Weinheim, 

2007. 
12 (a) Sheldon, R. A. Pure Appl. Chem. 2000, 72,1233. (b)Trost, B. M. Science 1991, 254, 1471. 
13 (a) Biotransformations in Organic Synthesis; Faber, K., Ed.; Springer-Verlag: Berlin, 2011. (b) 

Hudlicky, T.; Reid, J. W. Chem. Soc. Rev. 2009, 38, 3117.  
14 (a) Murai, S.; Activation of Unreactive Bonds and Organic Synthesis. In Topics in Organometallic 

Chemistry; Beller, M.; Dixneuf, P. H.; Dupont, J.; Fürstner, A.; Glorius, F.; Gooßen, L. J.; Nolan, 

S. P.; Okuda, J.; Oro, L. A.; Willis, M.; Zhou, Q.-L., Eds.; Springer-Verlag: Berlin, 1999. (b) Ma, 

J.-A.; Cahard, D. Angew. Chem. Int. Ed. 2004, 43, 4566.  
15 (a) Enantioselective Organocatalysis; Dalko, P., Ed.; Wiley-VCH: Weinheim, 2007; (b) 

Asymmetric Organocatalysis, From Biomimetic Concepts to Applications in Asymmetric Synthesis; 

Berkessel, A.; Gröger, H., Eds.; Wiley-VCH: Weinheim, 2005. 



22 
 

based on organometallic species. This strategy presents a higher modularity since almost 

unlimited structural modifications can be introduced on the ligand moieties, while the metal 

centre can also be modified in order to tune the desired reactivity. 

The enormous importance of asymmetric catalysis was manifested in 2001, with 

the Nobel Prize in Chemistry awarded to Knowles,16 Noyori17 and Sharpless18 for their 

contributions to the field of asymmetric hydrogenations and oxidations. The breakthrough 

came in 1968 when William S. Knowles discovered that it was possible to use a transition 

metal based chiral catalyst that could transfer chirality to a non-chiral substrate in order to 

obtain a chiral product. In particular, the reaction performed was an asymmetric 

hydrogenation of olefins by rhodium/chiral complexes.19 Later, Noyori realised about the 

need for a more general catalyst that would broaden the applications of the asymmetric 

hydrogenation reactions, and found that Ru(II)-BINAP complexes succeeded in the 

asymmetric hydrogenation of many type of molecules with different functional groups.20 

In parallel, Sharpless also realised bout the need for an efficient catalyst to perform 

asymmetric oxidations, and his work in this field was exemplified by his chiral epoxidation 

reaction.21 

As mentioned previously, the discoveries by van’t Hoff and Le Bel about the 

tetrahedral arrangement of carbon atom valences set the bases for what it is known as an 

stereocentre. However, this the most common type of chirality that can be found in 

molecules, but not the only one. There are also other sources of chirality, that are 

summarized next: 

- Central chirality: in a general way, an stereogenic centre is characterised 

by an atom that has four different groups bonded. The most well-known case in organic 

                                                                 
16 Knowles, W. S. Angew. Chem. Int. Ed. 2002, 41, 1998. 
17 Noyori, R. Angew. Chem. Int. Ed. 2002, 41, 2008. 
18 Sharpless, K. B. Angew. Chem. Int. Ed. 2002, 41, 2024. 
19 Knowles, W. S.; Sabacky, M. S. Chem. Commun. (London), 1968, 1445. 
20 Noyori, R.; Ohta, M.; Hsiao, Y.; Kitamura, M.; Ohta, T.; Takaya, H. J. Am. Chem. Soc. 1986, 108, 

7117. 
21 Sharpless, K. B.; Michaelson, R. C. J. Am. Chem. Soc. 1973, 95, 6136. 
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chemistry are the central chirality by tetrahedral carbon atoms (Figure I.4A), but there 

are other atoms different than carbon that can appear as an stereogenic centre. Amines 

are not chiral, because they rapidly invert at room temperature (Figure I.4B). However, 

asymmetric quaternary ammonium salts,22 and compounds with an stereogenic 

phosphorous23 and sulphur24 centres are also chiral (Figure I.4C). 

 

Figure I.4 – Examples of stereogenic centres. 

- Axial chirality: refers to stereoisomerism resulting from the non-planar 

arrangement of four groups in pairs around a chiral axis. Depending on the nature of 

this axis, it can be found in allenes, spiro compounds or ortho-substituted 

(hetero)biaryls. The stereoisomers from the latter case, given the restricted rotation 

around a single bond due to steric factors, are also known as atropisomers (from greek, 

άτροπος, atropos, meaning "without turn") (Figure I.5A). 

                                                                 
22 Wua, H.-F.; Lin, W.-B.; Xia, L.-Z.; Luo, Y.-G.; Chen, X.-Z.; Li, G.-Y.; Zhang, G.-L.; Pan, X.-F. 

Helv. Chim. Acta 2009, 92, 677. 
23 (a) Knowles, W. S. J. Chem. Educ. 1986, 63, 222. (b) DiRocco, D. A.; Ji, Y.; Sherer, E. C.; 

Klapars, A.; Reibarkh, M.; Dropinski, J.; Mathew, R.; Maligres, P.; Hyde, A. M.; Limanto, J.; 

Brunskill, A.; Ruck, R. T.; Campeau, L.-C.; Davies, I. W. Science 2017, 356, 426. 
24 (a) Trost, B. M.; Rao, M. Angew. Chem. Int. Ed. 2015, 54, 5026. (b) Otocka, S.; Kwiatkowska, 

M.; Madalińska, L.; Kiełbasiński, P. Chem. Rev. 2017, 117, 4147. 
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- Planar chirality: corresponds to the stereoisomerism resulting from the 

arrangement of out-of-plane groups with respect to a plane (chiral plane). This chirality 

expression is seen in some cyclophanes or metallocenes (Figure I.5B). 

- Helical chirality: this is a particular case axial chirality, inherent from their 

three-dimensional shape. Is typical from helicenes, ortho-

condensed polycyclic aromatic compounds in which benzene rings or other aromatics 

are angularly annulated (Figure I.5C). 

 

Figure I.5 – Types of chirality. 

This PhD thesis is aimed at the development of synthetic procedures for the 

generation, principally, of axial chirality. Therefore, this type of chirality will be discussed 

deep .in the following sections. 

I.1.2. Axial Chirality: Atropisomerism.  

A particularly interesting area within the asymmetric catalysis concerns the 

enantioselective synthesis of compounds presenting axial chirality.  



25 
 

The first example of atropisomeric compounds was reported by Christie and 

Kenner in 192225 when they were able to isolate both atropisomers of 6,6’-dinitro-[1,1’-

biphenyl]-2,2’-dicarboxylic acid from the racemic mixture after fractional crystallization 

using brucine as resolution agent (Figure I.6).  

 

Figure I.6 – First report showing the resolution of atropisomers. 

Atropisomers are stereoisomers that can be interconverted by rotation about single 

bonds but where the rotational barrier (or atropisomerization barrier) is large enough to 

avoid the interconversion at room temperature, and they can be therefore separated. The 

rotational barrier is related to the configurational stability of the stereogenic axis, and this 

stability depends upon the substitutions at the ortho positions around the axis (6,6’ and 

2,2’): the bulkier the substituents, the higher the stability. 

Regarding the configuration in compounds with axial chirality, it is specified by 

the stereodescriptors Ra and Sa (the subscript a refers to axial), or M and P notations, for 

each atropisomer. The use of the first one is more extended, while the latter is generally 

used for helical chirality. Nevertheless, if the stereogenic axis is the only chirality element 

in the molecule, the subscript a can be omitted. The assignment of this absolute 

configuration has to be done as follows: 

1. According to Cahn-Ingold-Prelog rules, the substituents of each aromatic 

fragment ortho to the stereogenic axis are ordered separately. The aromatic 

unit bearing the highest atomic number substituent would have the priority 

numbers 1 and 2, and the other aryl, 3 and 4. 

                                                                 
25 Christie, G. H.; Kenner, J. J. Chem. Soc. 1922, 121, 614. 
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2. Then, the molecule is viewed in Newman projection along the axis, setting the 

aromatic unit with the highest priority in front. 

3. Finally, as for the stereogenic centres, the direction of a line from priority 1 to 

3 across 2, determines the configuration of the stereogenic axis. If it is 

clockwise, configuration Ra is assigned, and anti-clockwise means Sa 

configuration (Figure I.7). 

 

Figure I.7 – Assignation of the stereogenic axis configuration. 

Axially chiral biaryls are widely used as the key structural motif of chiral ligands 

and catalysts in asymmetric synthesis.26 For instance, in two of the named “privileged chiral 

ligands and catalysts”, BINAP (2,2′-bis(diphenylphosphino)-1,1′-binaphthyl) and BINOL 

(1,1′-bi-2-naphthol), the chirality source is an stereogenic axis (Figure I.8).27 

 

Figure I.8 – Examples of axially chiral (hetero)biaryls used as ligands or catalysts in asymmetric catalysis. 

                                                                 
26 For selected reviews and articles about axially chiral biaryls as ligands, see: (a) McCarthy, M.; 

Guiry, P. J. Tetrahedron 2001, 57, 3809. (b) Jindal, G.; Sunoj, R. B. Angew. Chem. Int. Ed. 2014, 

53, 4432. (c) Zhang, L.; Xiang, S.-H.; Wang, J.; Xiao, J.; Wang, J.-Q.; Tan, B. Nat. Comm. 2019, 

10, 566. 
27 Yoon, T. P.; Jacobsen, E. N. Science 2003, 299, 1691. 
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Additionally, these structures are also a very important motif observed in 

biologically active compounds.28 Some of the most representative examples are shown in 

Figure I.9. Vancomycin is an antibiotic prescribed to fight bacteria from intestines. (R)-

Gossypol, a natural product from cotton seeds, is an effective non-hormonal male 

contraceptive, however, it has also been documented to have irreversible effects on male 

fertility and is not recommended for this use. Moreover, (R)-gossypol is under 

investigations due to its capability to induce apoptosis and a cytoprotective form of 

autophagy in bladder cancer.29 

 

Figure I.9 – Examples of biologically active compounds bearing an stereogenic axis. 

                                                                 
28 For selected examples of biologically active compounds with axial chirality, see: (a) Bringmann, 

G.; Gulder, T.; Gulder, T. A. M.; Breuning, M. Chem. Rev. 2011, 111, 563. (b) Smyth, J. E.; Butler, 

N. M.; Keller, P. A. Nat. Proc. Prep. 2015, 32, 1562. (c) Bringmann, G.; Günther, C.; Ochse, M.; 

Schupp, O.; Tasler, S. Biaryls in Nature. In Progress in the Chemistry of Organic Natural Products; 

Herz, W.; Falk, H.; Kirby, G. W.; Moore R. E., Eds.; Springer: Vienna, 2001; Vol. 82; pp. 1–249. 
29 Mani, J.; Vallo, S.; Rakel, S.; Antonietti, P.; Gessler, F.; Blaheta, R.; Bartsch, G.; Michaelis, M.; 

Cinatl, J.; Haferkamp, A.; Kögel, D. BMC Cancer 2015, 15, 224. 
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Other examples includes -amino orcein, extracted from several lichen species, 

which is a reddish-brown dye used as a stain in microscopy to visualize chromosomes, 

Hepatitis B surface antigens, and copper-associated proteins. The last example depicted, 

Ancistrocladinium A, with S configuration at the stereogenic axis, has shown to be an 

effective anti-leishmanial activity.30  

As seen, the ability of natural receptors to possess differential binding affinities 

between atropisomers is an important factor when considering active and inactive 

atropisomeric drug. 

I.2. Atroposelective synthesis of axially chiral (hetero)biaryls. 

Owing to the importance of axially chiral (hetero)biaryl compounds, many 

excellent methods for their directed, atroposelective construction have been developed. 

However, it is still a hot topic that occupies the interest of many research groups in 

asymmetric catalysis, in order to develop new methods providing acces to new structures 

which, eventually, would find new applications. 

Fundamentally, there are three different approaches for the atroposelective 

synthesis of axially chiral (hetero)biaryl derivatives (Scheme I.2).31 The most 

straightforward method consists on the direct formation of the axis by a C−C asymmetric 

cross-coupling. The second approach comprises the de novo construction of one of the 

aromatic rings, and two main possibilities have been developed: (i) Rh- or Co-catalyzed 

[2+2+2] cycloaddition, and (ii) generation of an stereocentre followed by central-to-axial 

chirality transfer. Alternatively, the third approach consists on the atroposelective 

transformation of an already existing (hetero)biaryl system. The latter strategy, in turn, can 

                                                                 
30 Bringmann, G.; Kajahn, I.; Reichert, M.; Pedersen, S. E. H.; Faber, J. H.; Gulder, T.; Brun, R.; 

Christensen, S. B.; Ponte-Sucre, A.; Moll, H.; Heubl, G.; Mudogo, V. J. Org. Chem. 2006, 71, 9348. 
31 (a) Bringmann, G.; Mortimer, A. J. P.; Keller, P. A.; Gresser, M. J.; Garner, J.; Breuning, M. 

Angew. Chem. Int. Ed. 2005, 44, 5384.  (b) Loxq, P.; Manoury, E.; Poli, R.; Deydier, E.; Labande, 

A. Coord. Chem. Rev. 2016, 308, 131. 
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be divided in two main blocks depending on whether a dynamization process is involved 

or not. 

 

Scheme I.2 – Possible routes to access axially chiral (hetero)biaryls. 

The direct asymmetric cross-coupling for the construction of the stereogenic axis 

has been widely studied over the last two decades, and essentially, could be tackled through 

three different alternatives: (i) atroposelective cross-couplings, (ii) oxidative cross-

couplings, and (iii) organocatalytic atroposelective reactions.  

The two latter strategies have been employed for the synthesis of BINOL32 and 

BINAM derivatives, respectively. The synthesis of BINAM derivatives, and their 

limitations, will be discussed later along Chapter IV. 

                                                                 
32 For selected oxidative coupling reactions for the synthesis of BINOL and derivatives, see: (a) Li, 

X.; Yang, J.; Kozlowski, M. C. Org. Lett. 2001, 3, 1137. (b) Kim, K. H.; Lee, D.-W.; Lee, Y.-S.; 

Ko, D.-H.; Ha, D.-C. Tetrahedron 2004, 60, 9037. (c) Egami, H.; Katsuki, T. J. Am. Chem. Soc. 

2009, 131, 6082. 
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The atroposelective cross-coupling for the synthesis of the axis is the most 

extended approach to obtain axially chiral biaryls. Most of the reported examples are based 

on Pd-catalyzed Suzuki-Miyaura reaction,33 but other cross-couplings, as Kumada34 or 

Ullmann reactions35 have also been applied. The former strategy is considered the main 

approach, due to the functional groups tolerance and compatibility with many reaction 

media. 

However, the reported methodologies based on this strategy failed for the synthesis 

of axially chiral heterobiaryls, a fact that can be attributed to the interferences caused by 

coordination of the substrate to the metal catalyst, and to the low configurational stability 

of the resulting products at the relatively high temperatures usually required to perform this 

type of reactions. For instance, there is only one precedent to the date, reported by 

Sarandeses and co-workers in which a single heterobiaryl product was obtained with a 

disappointing 20% of enantiomeric excess (Scheme I.3). 

 

Scheme I.3 – Sarandeses’s cross-coupling reaction for the atroposelective synthesis of heterobiaryls. 

The second approach mentioned above for the synthesis of axially chiral biaryls 

consists on the formation of the stereogenic axis by a cyclization reaction. In this case, a 

preformed aryl−C single bond is transformed in an atroposelective manner into the biaryl 

axis upon construction of the second aromatic unit from an attached substituent, bearing an 

                                                                 
33 For selected examples of atroposelective Pd-catalyzed Suzuki-Miyaura cross-couplings, see: (a) 

Pan, C.; Zhu, Z., Zhang, M.; Gu, Z. Angew. Chem. Int. Ed. 2017, 56, 4777. (b) Shen, X.; Jones, G. 

O.; Watson, D. A.; Bhayana, B.; Buchwald, S. L. J. Am. Chem. Soc. 2010, 132, 11278. (c) Uozumi, 

Y.; Matsuura, Y.; Arakawa, T.; Yamada, Y. M. A. Angew. Chem., Int. Ed. 2009, 48, 2708. (d) 

Bermejo, A.; Ros, A.; Fernández, R.; Lassaletta, J. M. J. Am. Chem. Soc. 2008, 130, 15798. (e) 

Zhang, D.; Wang, Q. Coord. Chem. Rev. 2015, 286, 1. 
34 Hayashi, T.; Hayashizaki, K.; Kiyoi, T.; Ito, I. J. Am. Chem. Soc. 1988, 110, 8153. 
35 Wu, W.; Wang, S.; Zhou, Y.: He, Y.; Zhuang, Y.; Li, L.; Wan, P.; Wang, L.; Zhou, Z.; Qiu, L. 

Adv. Synth. Catal. 2012, 354, 2395. 
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stereogenic element, usually an stereogenic centre. Thus, a process of central-to-axial 

chirality transfer takes place since the stereogenic centre is lost in the cyclization, and the 

chiral information is transferred to the axis (Scheme I.4).36 

 

Scheme I.4 – Central-to-axial chirality transfer examples. 

Alternatively, de novo ring construction can be achieve through an atroposelective 

[2+2+2] cycloaddition. This reaction has been studied mainly with transition metals from 

Group 9 (Co,37 Rh38 and Ir39) in combination with chiral (bis)phosphine ligands, and scarce 

examples have been developed with different metals, or even organocatalyzed 

cycloadditions (Scheme I.5A). In contrast to the asymmetric cross-coupling reactions, this 

methodology has been extended for the synthesis of heterobiaryls with axial chirality 

(Scheme I.5B).40 This alternative has also considered as a reliable method for the 

atroposelective synthesis of (hetero)biaryls. 

                                                                 
36 (a) Nishii, Y.; Wakasugi, K.; Koga,, K.; Tanabe, Y. J. Am. Chem. Soc. 2004, 126, 5358. (b) Raut, 

V. S.; Jean, M.; Vanthuyne, N.; Roussel, C.; Constantieux, T.; Bressy, C.; Bugaut, X.; Bonne, D.; 

Rodriguez, J. J. Am. Chem. Soc. 2017, 139, 2140. 
37 Heller, B.; Gutnov, A.; Fischer, C.; Drexler, H.-J.; Spannenberg, A.; Redkin, D.; Sundermann, C.; 

Sundermann, B. Chem. Eur. J. 2007, 13, 1117. 
38 (a) Ogaki, S.; Shibata, Y.; Noguchi, K.; Tanaka, K. J. Org. Chem. 2011, 76, 1926. (b) Nishida, 

G.; Suzuki, N.; Noguchi, K.; Tanaka, K. Org. Lett. 2006, 8, 3489. 
39 (a) Shibata, T.; Fujimoto, T.; Yokota, K.; Takagi, K. J. Am. Chem. Soc. 2004, 126, 8382. (b)  

Shibata, T.; Yoshida, S.; Arai, Y.; Otsuka, M.; Endo, K. Tetrahedron 2008, 64, 821. 
40 (a) Tanaka, K.; Wada, A.; Noguchi, K. Org. Lett. 2005, 7, 4737. (b) Liu, Y.; Wu, X.; Li, S.; Xue, 

L.; Shan, C.; Zhao, Z.; Yan, H. Angew. Chem. Int. Ed. 2018, 57, 6491. (c) Sakiyama, N.; Hojo, D.; 

Noguchi, K.; Tanaka, K. Chem. Eur. J. 2011, 17, 1428. 
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Scheme I.5 – Tanaka’s group contrbutions to rhodium-catalyzed [2+2+2] cycloaddition reactions for the 

atroposelective construction of the stereogenic axis in (hetero)biaryl systems. 

Besides the described approaches for the construction of the stereogenic axis, either 

by a cross-coupling or a cyclization reaction, an important strategy is that based on an 

atroposelective transformation of an already existing (hetero)biaryl. This is an elegant 

alternative to obtain this type of highly functionalized compounds, and given its importance 

in the context of this PhD thesis, it will be discussed in the next separate section. 

I.3. Atroposelective transformations for the synthesis of axially chiral 

(hetero)biaryls. 

As commented above, the construction of the targeted axially chiral (hetero)biaryls 

in this strategy is based on the introduction of the stereochemical information at a 

preformed biaryl structure, and hence, the starting compounds could be considered as pro-

stereogenic. 

Four possible approaches can be described considering three main factors: (i) if the 

(hetero)biaryl substrate is chiral or achiral, (ii) its configurational stability, and (iii) if a 
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dynamization process is involved in the reaction, and its nature. Therefore, regarding this 

criteria, the different approaches are depicted in Scheme I.6. 

 

Scheme I.6 – Different strategies for the atroposelective transformation of (hetero)biaryl substrates. 

I.3.1. Desymmetrization. 

It is the only strategy based on the use of an achiral substrate. For instance, the 

(hetero)biaryl substrate employed in this case is a meso compound, as it contains an 

prostereogenic axis but also a mirror plane, and therefore, its chirality is lost and it does not 

rotate plane polarized light. 

 

Scheme I.7 –Possible desymmetrization routes for the asymmetric synthesis of (hetero)biaryls. 
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In order to obtain an stereogenic axis with a given configuration, the plane of 

symmetry from the molecule must be eliminated, and there are two different ways to afford 

this (Scheme I.7). 

A. Introduction of an additional substituent. 

If an additional functionality is introduced in the (hetero)aromatic fragment 

responsible for the existence of the mirror plane, the symmetry would be lost, and the now 

configurationally stable stereogenic axis would be generated. A representative example of 

this alternative was reported by the group of Akiyama, for the enantioselective synthesis of 

biaryls through an asymmetric bromination catalyzed by a chiral phosphoric acid (CPA), 

using N-bromothalimide (NBP) (Scheme I.8).41  

 

Scheme I.8 – Strategy for the desymmetryzation of biaryls developed Akiyama. 

B. Functionalization of ortho substituents.  

The second approach is based on the transformation of one of the enantiotopic 

ortho substituents into a different group (R1 to R4, in Scheme I.7) that results in the 

resolution of the stereogenic axis and the loss of symmetry elements at the molecule. This 

could be exemplified in the work developed by Matsumoto an co-workers for the 

enantioselective enzymatic hydrolysis of biaryl diacetates (Scheme I.9).42 

                                                                 
41 Mori, K.; Ichikawa, Y.; Kobayashi, M.; Shibata, Y.; Yamanaka, M.; Akiyama, T. J. Am. Chem. 

Soc. 2013, 135, 3964. 
42 Matsumoto, T.; Konegawa, T.; Nakamura, T.; Suzuki, K. Synlett 2002, 122. 
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Scheme I.9 – Biaryl desymmetrization strategy developed by the group of Matsumoto. 

In addition to these two strategies mentioned above, there are also other examples 

of atroposelective synthesis of (hetero)biaryls that could generate some debate about 

whether they are considered dynamic kinetic resolutions or desymmetrizations. One of 

them, consists on a peptide-catalyzed asymmetric bromination of biaryls developed by the 

group of Miller (Scheme I.10A).43 Despite the authors described the process as a dynamic 

kinetic resolution (DKR), we consider that it fits better as a desymmetrization because of 

the following reasons: (i) first, to be considered as a DKR, both atropisomers of the 

substrate should be detectable, but it is not possible due to its very low rotational barrier 

(~7 kcal/mol), and (ii), second, given this fast interconversion it could be assigned a formal 

co-planarity of both aromatic fragments, and in this way there would be a plane of 

symmetry along them. 

Furthermore, there is another methodology for the atroposelective synthesis of 

axially chiral (hetero)biaryls that can be assigned as a desymmetrization of a prostereogenic 

(hetero)biaryl compounds that concerns the C−H activation of substrates containing a 

configurationally unstable stereogenic axis. In this case, the substrate presents such a low 

rotational barrier that could be considered as achiral (planar), but the introduction of an 

additional ortho-substituent via asymmetric C−H activation leads to now configurationally 

stable (hetero)biaryl compounds (Scheme I.10B).44 

                                                                 
43 Gustafson, J. L.; Lim, D.; Miller, S. J. Science 2010, 328, 1251. 
44 For recent examples of atroposelective C−H activation, see: (a) Hazra, C. K.; Dherbassy, Q.; 

Wencel-Delord, J.; Colobert, F. Angew. Chem. Int. Ed. 2014, 53, 13871. (b) Li, S.-X.; Ma, Y.-N.; 

Yang, S.-D. Org. Lett. 2017, 19, 1482. (c) Liao, G.; Yao, Q.-J.; Zhang, Z.-Z.; Wu, Y.-J.; Huang, D.-

Y.; Shi, B.-F. Angew. Chem. Int. Ed. 2018, 57, 3661. (d) Luo, J.; Zhang, T.; Wang, L.; Liao, G.; 

Yao, Q.-J.; Wu, Y.-J.; Zhan, B.-B.; Lan, L.; Lin, X.-F.; Shi, B.-F. Angew. Chem. Int. Ed. 2019, 58, 

6708. 
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Scheme I.10 –Desymmetrization strategies for the synthesis of axially chiral (hetero)biaryls. 

Despite these approaches could generate a debate about the fundamental strategy 

involved, along this PhD thesis they would be considered as desymmetrizations because of 

the above mentioned reasons. 
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I.3.2. Kinetic Resolution (KR). 

Alternatively, if the starting substrate is chiral but there is no dynamic process 

involved in the stereochemical outcome of the reaction, then, a kinetic resolution (KR) 

could take place. 

In this case, the strategy is based on the different rates of reactivity of the two 

atropisomers of the substrate. Ideally, one of the atropisomers from the racemic mixture is 

fully transformed into the desired product, while the other is recovered unreacted (Scheme 

I.11). 

 

Scheme I.11 – Atroposelective synthesis of biaryls, kinetic resolution approach: concept and examples. 
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This strategy represents one of the most common methods for the synthesis of 

enantioenriched biaryls, and has been extensively applied to the synthesis of BINOL, 

BINAM and NOBIN derivatives.45  

In an ideal kinetic resolution, the main drawback is that the desired enantioenriched 

product can only be obtained with up to 50% yield, since only one atropisomer from the 

racemic mixture is reactive under KR conditions. Nonetheless, it is possible that a small 

amount of the less reactive atropisomer is converted into desired product, leading to more 

than 50% yield but also decreasing the enantiomeric excess of the major product. 

This limitation can be solved if there is a possible route through which both 

atropisomers of the substrate can interconvert into each other. It means that there is a 

dynamic process involved in the stereochemical outcome of the reaction. Then, two 

different approaches can be distinguished depending on the nature of the dynamic process: 

dynamic kinetic resolution (DKR), or dynamic kinetic asymmetric transformation 

(DYKAT). 

This PhD thesis, will focus on the development of novel dynamization strategies 

(DKRs and DYKATs) for the synthesis of axially chiral (hetero)biaryls. 

I.3.2. Dynamic Kinetic Resolution (DKR). 

In this case, the substrate is able to racemize, ensuring the constant transformation 

of the less reactive atropisomer into the more reactive one, and then to the desired 

enantioenriched product. This interconversion process enables the transformation of both 

atropisomers into a single stereoisomeric product in quantitative theoretical yield (Scheme 

I.12). 

                                                                 
45 For selected examples for the synthesis of BINOL and derivatives via KR, see: (a) Jones, B. A.; 

Balan, T.; Jolliffe, J. D.; Campbell, C. D.; Smith, M. D. Angew. Chem. Int. Ed. 2019, 58, 4596. (b) 

Lu, S.; Poh, B. S.; Zhao, Y. Angew. Chem. Int. Ed. 2014, 53, 11041. (c) Ma, G.; Deng, Y.; Sibi, M. 

P. Angew. Chem. Int. Ed. 2014, 53, 11818. (d) Aoyama, H.; Tokunaga, M.; Kiyosu, J.; Iwasawa, T.; 

Obora, Y.; Tsuji, Y. J. Am. Chem. Soc. 2005, 127, 10474. 
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As for kinetic resolutions, in DRKs the reaction rates for the two atropisomers of 

the substrate are different, but their interconversion is also possible. For an efficient DKR 

to occur, the racemization rate (krac, in Scheme I.12) needs to be equal or higher than the 

reaction rate for the more reactive atropisomer (kR, in Scheme I.12). 

 

Scheme I.12 – Dynamic kinetic resolution concept. 

In a dynamic kinetic resolution, this racemization process does not neccessarily 

involve a chiral catalyst. In general terms, the DKR will give higher enantiomeric excesses 

than the classic KR because the continuous racemization on the substrate will prevent the 

build-up of the opposite atropisomer from the starting material that affects negatively the 

KR.  

Several important reviews focusing on the theory and practical applications of 

DKR have been reported,46 but the DKR approaches to obtain enantiomerically pure 

(hetero)biaryls have been reported to a lesser extent. 

In the next section, DKR strategies for the atroposelective synthesis of 

(hetero)biaryls will be discussed. In particular, those dynamic processes in which the 

interconversion of both atropisomers of the starting (hetero)biaryl derivative is facilitated 

by formation of six-membered cyclic intermediates or transition states will be discussed. 

                                                                 
46 For selected reviews on DKR, see: (a) Pellissier, H. Adv. Synth. Catal. 2011, 353, 659. (b) 

Pellissier, H. Tetrahedron 2008, 64, 1563. (c) Steinreiber, J.; Faber, K.; Griengl, H. Chem. Eur. J. 

2008, 14, 8060. (d) Huerta, F. F.; Minidis, A. B. E.; Bäckvall, J.-E. Chem. Soc. Rev. 2001  ̧30, 321. 
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I.3.2.1. Bringmann’s Biaryl “Lactone Concept”. 

This concept was first introduced by Gerhard Bringmann, in 1992, when they 

reported an atropo-enantioselective lactone ring opening with a chiral hydride transfer 

reagent derived from a borane species.47 This approach is based on the formation of a 

lactone bridge responsible for the configurational instability of the biaryl axis, providing a 

rapid atropisomerization equilibrium. Then, an atroposelective transformation is performed 

to cleave the lactone bridge, leading to the corresponding, now configurationally stable, 

axially chiral biaryl compounds (Scheme I.13). 

 

Scheme I.13 – The concept of the “lactone strategy”. 

This methodology constitutes a very powerful tool that has been widely applied in 

the total synthesis of natural products containing an stereogenic axis (Figure I.10).48  

                                                                 
47 Seminal work: Bringmann, G.; Hartung, T. Angew. Chem. Int. Ed. 1992, 31, 761. 
48 (a) Bringmann, G.; Breuning, M.; Tasler, S. Synthesis 1999, 4, 525. (b) Bringmann, G.; Tasler, 

S.; Pfeifer, R. M.; Breuning, M. J. Organomet. Chem. 2002, 661, 49. (c) Bringmann, G.; Tasler, S.; 

Endress, H.; Mühlbacker, J. Chem. Commun. 2001, 761. 
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Figure I.10 – Representative examples of axially chiral natural producs synthetised through “lactone 

strategy”. 

Despite most of the developed strategies for the lactone ring cleavage consist on 

the reduction of the carbonyl functionality (Scheme I.14),47,49 not only hydrides could be 

employed as nucleophiles.  

 

Scheme I.14 – Atroposelective cleavege of bridged biaryl lactones using hydride as nucleophile. 

In this context, Bringmann’s group has also employed different N-50 and O-

nucleophiles51 for the atropo-enantio- and atropo-diastereoselective cleavage of 

configurationally unstable biaryl lactones (Scheme I.15). 

                                                                 
49 Bringmann, G.; Hartung, T. Tetrahedron 1993, 49, 7891. 
50 Bringmann, G.; Breuning, M.; Tasler, S.; Endress, H.; Ewers, C. L. J.; Göbel, L.; Peters, K.; Peters, 

E.-M. Chem. Eur. J. 1999, 5, 3029. 
51 (a) Seebach, D.; Jaeschke, G.; Gottwald, K.; Matsuda, K.; Formisano, R.; Chaplin, D. A.; 

Breuning, M.; Bringmann, G. Tetrahedron 1997, 53, 7539. (b) Bringmann, G.; Breuning, M.; 

Walter, R.; Wuzik, A.; Peters, K.; Peters, E.-M. Eur. J. Org. Chem. 1999, 3047. 
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Scheme I.15 – Chiral nucleophiles different than hydride reported by Bringmann for the lactone strategy. 

However, this strategy initially showed an important limitation regarding the need 

of stoichiometric amounts of the chiral nucleophile responsible for the lactone bridge 

cleavage. For instance, in 2002, ten years after the first report on this biaryl lactone bridge 

cleavage strategy, the first example of a catalytic reduction of biaryl lactones with 10 mol% 

of the Corey-Bakshi-Shibata (CBS) reagent was reported by Bringmann and co-workers 

(Scheme I.16).52 However, the reaction showed an slight decrease on the enantiomeric 

excess from 94 to 88 % when the CBS amount was reduced from 3.0 eq. to 0.1 eq., 

respectively (see Schemes I.14 vs I.16). 

                                                                 
52 Bringmann, G.; Breuning, M.; Henschel, P.; Hinrichs, J. Org. Synth. 2002, 79, 72. 
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Scheme I.16 – First catalytic atropo-enantioselective biaryl synthesis through the “lactone strategy”. 

This achievement supposed an important progress to the lactone strategy and 

captured the attention of other authors aiming to expand the synthetic utility of this tool. In 

2008, Yamada and co-workers developed an improved catalytic atropo-enantioselective 

reduction of biaryl lactones for the synthesis of axially chiral biaryls (Scheme I.17).53 

 

Scheme I.17 – Yamada’s report on the atroposelective Co-catalyzed biaryl lactone bridge reduction. 

This contribution expanded the scope of biaryl structures that was limited to only 

two examples in the original Bringmann’s report. In this case, sodium borohydride was 

employed to generate a chiral Co-H complex responsible for the reduction of the carbonyl 

functionality. Additional HPLC analysis of the starting biaryl lactone at different 

temperatures helped the authors to determine that at 30 °C the atropisomerization of the 

substrate was taking place fast enough to allow for an efficient dynamic kinetic resolution 

to occur. 

                                                                 
53 Ashizawa, T.; Tanaka, S.; Yamada, T. Org. Lett. 2008, 10, 2521. 
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Inspired by this work and the previous report by Bringmann in the atropo-

enantioselective ring-opening of biaryl lactones catalyzed by (iPrO)2Ti-TADDOL-ates 

acting as O-nucleophiles,51a the group of Yamada developed a silver-catalysed 

atroposelective ring-opening of biaryl lactones with methanol, although a large excess of 

the nucleophile was required (Scheme I.18).54 

 

Scheme I.18 – Atroposelective biaryl lactone ring-opening using methanol as O-nucleophile. 

A major breakthrough in the field was reported in 2016 by the group of Wei Wang, 

who reported a catalytic atroposelective transesterification of Bringmann lactones with 

enantiomeric excesses up to 99% using a chiral bifunctional quinine-based thiourea 

organocatalyst. In this report, the authors highlighted the effect of a synergistic activation 

mode of the thiourea as H-bond donor to the carbonyl, and the sp3 nitrogen at quinine as 

H-bond acceptor to activate the alcohol, crucial to achieve such high selectivities (Scheme 

I.19).55 

                                                                 
54 Ashizawa, T.; Yamada, T. Chem. Lett. 2009, 38, 246. 
55 Yu, C.; Huang, H.; Li, X.; Zhang, Y.; Wang, W. J. Am. Chem. Soc. 2016, 138, 6956. 
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Scheme I.19 – Highly atropo-enantioselective metal-free transesterification of biaryl lactones by Wang et al. 

By the same time, Akiyama and co-workers, developed an enantiodivergent 

atroposelective synthesis of axially chiral biaryl hemiaminals by asymmetric transfer 

hydrogenation catalyzed by a chiral phosphoric acid (CPA), also based on the Bringmann’s 

concept but with a significant difference. In that work, the authors demonstrated that the 

imine resulting from condensation of a cyclic biaryl acetal with an amine (hydroxyaniline) 

is also configurationally labile through the formation of an N,O-acetal in equilibrium with 

the open form, which is then reduced by using the Hantzsch ester and a CPA. Interestingly, 

it is possible to control the configuration of the final product by the proper choice of the 

hydroxyaniline derivative: whereas o-hydroxyanilines favoured the formation of the R 

isomer, the use of the m-hydroxyanilines reversed the atroposelectivity to furnish the S 

isomer of the biaryl, in both cases with high enantioselectivities (Scheme I.20).56 

                                                                 
56 Mori, K.; Itakura, T.; Akiyama, T. Angew. Chem. Int. Ed. 2016, 55, 11642. 
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Scheme I.20 – Enantiodivergent atroposelective synthesis of axially chiral biaryl amine-alcohols by the group  

of Akiyama. 

This catalytic methodology was applied to the synthesis of axially chiral amino-

alcohols in excellent yields and enantioselectivities. These frameworks exhibit interesting 

properties as catalysts, for example by promoting the asymmetric addition of organozinc 

reagents to aldehydes yielding the corresponding chiral products with high 

enantioselectivities.57 

Continuing with these studies, Jian Wang and co-workers developed a hydrogen 

borrowing reaction followed by a hydrogen transfer approach for the synthesis of similar 

compounds with an additional expansion of the scope (Scheme I.21).58 Indeed, these 

authors were able to synthesize up to 30 axially chiral amino-alcohols, introducing several 

structural variations both at the biaryl frame, and at the aromatic amine substituents.  

                                                                 
57 (a) Ko, D.-H.; Kim, K. H.; Ha, D.-C. Org. Lett. 2002, 4, 3759. (b) Kang, S.-W.; Ko, D.-H.; Kim, 

K. H.; Ha, D.-C. Org. Lett. 2003, 5,4517. 
58 Zhang, J.; Wang, J. Angew. Chem. Int. Ed. 2018, 130, 474. 
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Scheme I.21 –Hydrogen borrowing approach developed by Wang and co-workers. 

Additionally, the same authors reported in parallel an alternative method for the 

synthesis of axially chiral amino-alcohols based on a ruthenium-catalyzed atroposelective 

reductive amination via dynamic kinetic resolution (Scheme I.22).59 

 

Scheme I.22 – Ru-catalyzed synthesis of axially chiral amino-alcohols. 

Moreover, this methodology expanded the scope to alkyl amines, both primary and 

secondary and allowed for the synthesis of these structures in good to excellent yields and 

enantioselectivities. 

I.3.2.2. Clayden’s approach.  

In the labilization mechanism occurring at Bringmann’s biaryl “lactone strategy” a 

covalently attached bridged lactone ring is cleaved by a chiral nucleophile, while the system 

                                                                 
59 Guo, D.; Zhang, J.; Zhang, B.; Wang, J. Org. Lett. 2018, 20, 6284. 
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described by Akiyama relies on the labilization promoted by formation of a cyclic 

intermediate (hemiaminal). In contrast, the next strategy relies on the labilization facilitated 

by six-membered ring transition states for the atropisomerization event.  

In 2016, Clayden and co-workers developed a biocatalytic reduction for the atropo-

enantioselective synthesis of axially chiral heterobiaryl N-oxides via dynamic kinetic 

resolution (Scheme I.23).60 Particularly, a ketoreductase (KRED 130) is used for the 

reduction of a configurationally unstable heterobiaryl ketone under mild conditions, while 

glucose is oxidized to gluconic acid.  

 

Scheme I.23 – Biocatalytic reduction and DKR developed by Clayden et al. 

In this report, the dynamization process through which the atropisomerization of 

the substrate takes place involves an intramolecular interaction between the N-oxide 

oxygen atom and the aldehyde carbonyl atom, in a six-membered transition state that was 

supported by molecular modelling, in a close resembling to the mechanism for 

atropisomerization at Bringmann’s lactones. However, in contrast to the latter, there is no 

covalent bond formation in Clayden’s system, but a TS with a bonding interaction can be 

used instead. It is also worth to mention that Clayden et al. determined that the reaction 

with the corresponding aldehyde derived from naphthylisoquinoline N-oxide was not 

efficient due to the low racemization rate for this hindered tetra-ortho-substituted system, 

simply providing a kinetic resolution (Scheme I.24). Furthermore, when the substrate was 

                                                                 
60 Staniland, S.; Adams, R. W.; McDouall, J. J. W.; Maffucci, I.; Contini, A.; Grainger, D. M.; 

Turner, N. J.; Clayden, J. Angew. Chem. Int. Ed. 2016, 55, 10755. 



49 
 

heated over 100 ºC in order to determine the racemization rate, the product decomposition 

occurs before the racemization. 

 

Scheme I.24 – Biocatalytic reduction and kinetic resolution at hindered systems. 

Therefore, it can be concluded that, in the analysed systems, the labilization process 

through six-membered cyclic transition states (or intermediates) in not as efficient as those 

proceeding through covalently bonded intermediates. As a practical consequence, the 

substrate cannot be tetrasubstituted at ortho positions around the stereogenic axis in order 

to make possible an efficient DKR. 

I.3.2. Dynamic Kinetic Asymmetric Transformation (DYKAT). 

Compared to the previous strategy, in a dynamic kinetic asymmetric transformation 

the starting substrate is configurationally stable since the rotational barrier is high enough 

to avoid the spontaneous interconversion between both atropisomers, while the reaction 

conditions do not alter this situation. Therefore, the racemization event should be mediated 

by a chiral catalyst, involving the formation of either diastereomeric intermediates in which 

the configurational stability is compromised (DYKAT type I, Scheme I.25A), or a common 

intermediate (DYKAT type II, Scheme I.25B).61 

                                                                 
61 Steinreiber, J.; Faber, K.; Griengl, H. Chem. Eur. J. 2008, 14, 8060. 
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Scheme I.25 – Dynamic kinetic asymmetric transformation concept. 

With respect to the application of this DYKAT strategy for the synthesis of axially 

chiral compounds, all the reported examples are, to the best of our knowledge, based on 

heterobiaryl structures. 

In this context, our research group reported in 2013 the first example of an 

atroposelective synthesis of axially chiral heterobiaryls based on a DYKAT approach.62 As 

a first example of this strategy, a palladium-catalyzed asymmetric arylation of heterobiaryl 

triflates with arylboroxines using a TADDOL-derived phosphoramidite as ligand was 

developed (Scheme I.26). 

 

Scheme I.26 – Dynamic kinetic asymmetric cross-coupling for the synthesis of axially chiral heterobiaryls. 

                                                                 
62 Ros, A.; Estepa, B.; Ramírez-López, P.; Álvarez, E.; Fernández, R.; Lassaletta, J. M. J. Am. Chem. 

Soc. 2013, 135, 15730. 
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In this case, the starting heterobiaryl triflates are configurationally stable; the 

interconversion between both atropisomers is not possible at normal reaction temperatures. 

However, the Suzuki cross-coupling reaction involves first an oxidative addition step of 

the Pd into aryl−OTf bond, and given the poor coordinating ability of the resulting triflate 

anion, the isoquinoliyl/pyridyl nitrogen is expected to be incorporated to the coordination 

sphere of the metal centre. This results in the formation of a five-membered ring, with the 

subsequent widening of the angles involved in the configurational stability of the 

stereogenic axis; thus, making possible the interconversion between both diastereomeric 

intermediates (Scheme I.27). 

 

Scheme I.27 – Atropisomerization mechanism proposed by our group. 

In parallel, a similar strategy by Stoltz and Virgil for the atropo-enantioselective 

synthesis of QUINAP was simultaneously reported (Scheme I.28).63  

                                                                 
63 Bhat, V.; Wang, S.; Stoltz, B. M.; Virgil, S. C. J. Am. Chem. Soc. 2013, 135, 16829. 
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Scheme I.28 – Synthesis of QUINAP through DYKAT approach developed by Stoltz’s and Virgil’s group, and 

their proposed mechanism. 

However, the authors proposed a different mechanism for the isomerization of the 

diastereomeric species, in which the key racemization event takes place through an 

intermediate where a stabilizing agostic interaction occurs between the isoquinoline peri-

hydrogen and the cationic palladium atom resulting in a chelated structure (Scheme I.28). 

Nonetheless, this proposal is highly speculative compared to the previously described by 

our research group, that was convincingly supported by the isolation of the oxidative 

addition intermediate and its single crystan X-ray analysis (Scheme I.29). 

 

Scheme I.29 – Isolated oxidative addition intermediate in the DYKAT approach. 

This dynamic kinetic asymmetric transformation strategy for the synthesis of 

axially chiral heterobiaryls developed by our group was later extended to different cross-

coupling reactions. 



53 
 

Furthermore, it was also developed an alternative methodology for the synthesis of 

QUINAP and its derivatives, that resulted more versatile and efficient than the previous 

reported by Stoltz and Virgil.64 This methodology allowed for the synthesis of a wide 

variety of axially chiral heterobiaryls, with potential as P,N ligands such as QUINAP and 

analogues with high levels of enantioselectivity (Scheme I.30).  

 

Scheme I.30 – Dynamic kinetic asymmetric C−P cross-coupling. 

The atropisomerization mechanism previously reported, involving a five-

membered cationic palladacycle oxidative addition intermediates was further evidenced in 

this case. For instance, DFT calculations determined that there exists a much higher 

stabilization of the intermediates when isoquinolyl nitrogen is coordinated to Pd, compared 

to the agostic Pd−H interaction proposed by Virgil and Stoltz (ΔG = +9.3 kcal/mol), 

allowing to discard the latter (Figure I.11). 

 

Figure I.11 – Comparison of the stabilizing interactions on the atropisomerization mechanism proposed by 

Fernández and Lassaletta vs Virgil and Stoltz. 

Interestingly, the next extension of the strategy, a C−N atroposelective cross-

coupling through a Pd-catalyzed dynamic kinetic asymmetric Buchwald-Hartwig 

                                                                 
64 Ramírez-López, P.; Ros, A.; Estepa, B.; Fernández, R.; Fiser, B.; Gómez-Bengoa, E.; Lassaletta, 

J. M. ACS Catal. 2016, 6, 3955. 
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amination using QUINAP as ligand made use of the axially chiral P,N ligands prepared 

through the previously described methodology (Scheme I.31).65 

 

Scheme I.31 – Dynamic kinetic asymmetric C−N cross-coupling via Buchwald-Hartwig amination. 

Once again, the atropisomerization occurs at the oxidative addition cationic 

intermediate involving the coordination of isoquinolyl/pyridyl nitrogen to the Pd centre. In 

fact, when the reaction was performed with the corresponding heterobiaryl bromide 

(instead of sulfonate), a complex mixture of diastereomeric oxidative addition 

intermediates was formed including cationic and neutral forms. From this mixture crystals 

of the latter, suitable for X-ray diffraction analysis were isolated. As expected the bromide 

remained partially coordinated to palladium, and the isoquinoline/naphthyl rings arranged 

almost perpendicularly. This result indicates that the higher coordinating ability of bromide 

with respect to triflate prevents the coordination of the isoquinolyl nitrogen. In the presence 

of NaOtBu, however, sodium bromide precipitates and the cationic intermediate thereby 

formed enables the reaction to proceed in a similar manner as with the sulfonate analogues. 

(S)-QUINAP was also the ligand that provided the best results on the dynamic 

kinetic asymmetric alkynylation of configurationally stable heterobiaryl sulfonates, also  

developed in our research group.66 This methodology was used for the synthesis of axially 

chiral heterobiaryl alkynes with a broad reaction scope, under very mild conditions using 

a Cu-free atroposelective Sonogashira cross-coupling (Scheme I.32). This methodology 

                                                                 
65 Ramírez-López, P.; Ros, A.; Romero-Arenas, A.; Iglesias-Sigüenza, J.; Fernández, R.; Lassaletta, 

J. M. J. Am. Chem. Soc. 2016, 138, 12053. 
66 Hornillos, V.; Ros, A.; Ramírez-López, P.; Iglesias-Sigüenza, J.; Fernández, R.; Lassaletta, J. M. 

Chem. Commun. 2016, 52, 14121. 
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tolerates the use of aromatic and aliphatic terminal alkynes as coupling partners for the 

heterobiaryl sulfonates, and the catalyst loading could be decreased to 1 mol% when the 

reaction was performed at 2 mmol or larger scale.  

 

Scheme I.32 – Dynamic kinetic asymmetric alkynylation of heterobiaryl sulfonates reported by Hornillos, 

Fernández and Lassaletta. 

The growing number of reports focusing on different strategies for the 

atroposelective synthesis of axially chiral (hetero)biaryls reflect the importance of this class 

of chirality and compounds. In this context, the development of methodologies for the 

simultaneous generation of an additional element of chirality, such as an stereogenic centre, 

represent a more challenging goal. 

I.4. Simultaneous generation of central and axial chirality in (hetero)biaryls. 

This section will focus on the discussion of the existing methodologies for the 

synthesis of (hetero)biaryls with the simultaneous generation of central and axial chirality 

elements. The applications of (hetero)biaryls bearing both central and axial chirality as 

ligands for metals and catalysts has been illustrated in different occasions.67 However, their 

                                                                 
67 For selected examples, see: (a) Race, N. J.; Faulkner, A.; Fumagalli, G.; Yamauchi, T.; Scott, J. 

S.; Rydén-Landergren, M.; Sparkes, H. A.; Bower, J. F. Chem. Sci. 2017, 8, 1981. (b) Zhang, J.-W.; 

Xu, J.-H.; Cheng, D.-J.; Shi, C.; Liu, X.-Y.; Tan, B. Nat. Commun. 2016, 7, 10677. (c) Wang, S.; 

Li, J.; Miao, T.; Wu, W.; Li, Q.; Zhuang, Y.; Zhou, Z.; Qiu, L. Org. Lett. 2012, 14, 1966. (d) 

Shibatomi, K.; Soga, Y.; Narayama, A.; Fujisawa, I.; Iwasa, S. J. Am. Chem. Soc. 2012, 134, 9836. 

(e) Nareddy, P.; Mantilli, L.; Guénée, L.; Mazet, C. Angew. Chem. Int. Ed. 2012, 51, 3826. (f) Wang, 

D.-Y.; Hu, X.-P.; Huang, J.-D.; Deng, J.; Yu, S.-B.; Duan, Z.-C.; Xu, X.-F.; Zheng, Z. Angew. Chem. 

Int. Ed. 2007, 46, 7810. (g) Denmark, S. E.; Fan, Y. Tetrahedron: Asymmetry 2006, 17, 687. 
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synthesis usually requires complex multistep procedures, and there are scarce examples of 

catalytic strategies for that purpose. 

The existing methodologies could be classified according to the kind of 

transformation through which the desired chirality elements are generated. 

A. Formation of bridged biaryl structures. 

The high relevance of bridged biaryl skeletons, such as dibenzoazepines and 

derivatives, in biological systems is well documented. Then, their synthesis is a topic of 

current interest. Moreover, the possibility of introducing different chirality elements is 

highly appealing. 

To the best of our knowledge, the first method dealing with the simultaneous 

generation of central and axial chirality in biaryl structures was reported in 2007 by the 

group of Wallace.68 In this work, the authors developed a methodology for the formation 

of biaryl-fused lactams from configurationally unstable biaryl structures and commercially 

available aminoalcohols (Scheme I.33A).  

Additionally, the same research group extended this strategy for the synthesis of 

dibenzazepine derivatives with switchable axial chirality.69 They observed that when the 

secondary amine was N-Boc protected, the configuration at the stereogenic axis was 

inverted in a reversible process (Scheme I.33B). 

                                                                 
68 Edwards, D. J.; House, D.; Sheldrake, H. M.; Stone, S. J.; Wallace, T. W. Org. Biomol. Chem. 

2007, 5, 2658. 
69 Pira, S. L.; Wallace, T. W.; Graham, J. P.Org. Lett. 2009, 11, 1663. 
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Scheme I.33 – Cyclization approaches developed by Wallace’s group. 

Also very recently, the group of Yin and Zhang has reported an intramolecular 

asymmetric reductive amination of bridged biaryl derivatives for the synthesis of 

dibenzo[c,e]azepines (Scheme I.34).70 Despite the final products are similar to those 

synthetized by Wallace, this strategy consists on an intramolecular cyclization. Moreover, 

there is no need of a stoichiometric chiral reagent; a chiral Ir-catalyst is responsible for the 

asymmetric reduction of the corresponding imine formed after N-Boc cleavage and 

intramolecular condensation. 

 

Scheme I.34 – Yin and Zhang’s asymmetric reductive amination for the synthesis of dibenzo[c,e]azepines. 

                                                                 
70 Yang, T.; Guo, X.; Yin, Q.; Zhang, X. Chem. Sci. 2019, 10, 2473. 
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A previous work for the diastereoselective synthesis of central and axially chiral 

dibenzo[b,d]azepines was reported by the group of Luan consisting on a [5+2] oxidative 

annulation between o-arylanilines and alkynes (Scheme I.35).71 

 

Scheme I.35 – Diastereoselective [5+2] oxidative annulation for the synthesis of dibenzo[b,d]azepines. 

When symmetrical alkynes were employed, a single diastereomer was obtained; 

while the use of unsymmetrical alkynes, resulted in a mixture of regio- and diastereomers 

in variable ratios. 

B. Modification of bridged biaryl structures. 

An alternative that has also been recently exploited is the modification of already 

existing achiral or configurationally unstable bridged biaryl structures.  

In this regard, based on their previous work, Luan and co-workers reported a 

catalytic enantioselective enamine−imine tautomerization.72 These metastable enamines, 

which were synthetized through an alternative route, have been shown to convert, under 

acidic conditions, to the corresponding structurally and thermodynamically stable imine 

form. Therefore, the treatment of these enamines with a BINOL derived chiral phosphoric 

acid (CPA), results in the enantioselective tautomerization to the imine with the 

simultaneous establishment of central and axial chirality in good yields and excellent 

diastereo- and enantioselectivities (Scheme I.36). 

                                                                 
71 Zuo, Z.; Liu, J.; Nan, J.; Fan, L.; Sun, W.; Wang, Y.; Luan, X. Angew. Chem. Int. Ed. 2015, 54, 

15385. 
72 Liu, J.; Yang, X.; Zuo, Z.; Nan, J.; Wang, Y.; Luan, X. Org. Lett. 2018, 20, 244. 
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Scheme I.36 – CPA-catalyzed enantioselective enamine-imine tautomerization. 

Another methodology to access central and axially chiral biaryl structures based on 

a transformation on a bridged structure has also been described. In 2017, Yeung et al. 

reported an organocatalytic enantioselective semipinacol rearrangement which, combined 

with a dynamic kinetic resolution, allowed for the synthesis of the desired products 

(Scheme I.37).73  

 

Scheme I.37 – Organocatalyzed enantioselective semipinacol rearrangement developed by Yeung et al. 

Moreover, these biaryls can be subjected to a second ring expansion through an 

intramolecular Schmidt reaction to afford the corresponding dibenzolactams, with the 

inverted configuration at the stereogenic axis (Scheme I.37). 

C. Desymmetrization reactions. 

                                                                 
73 Liu, Y.; Tse, Y.-L. S.; Kwong, F. Y.; Yeung, Y.-Y. ACS Catal. 2017, 7, 4435. 
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Another alternative for the simultaneous construction of central and axial chirality 

is based on the desymmetrization of already existing biaryl structures.  

In this context, N-arylmaleimide architectures have attracted a particular interest. 

The first work in this regard was reported in 2014 by the group of Bencivenni, who 

developed an amino-catalytic desymmetrization of N-arylmaleimides via vinylogous 

Michael addition. The desymmetrization occurs through the introduction of an additional 

substituent in order to eliminate the mirror plane existing at the meso-substrate (see Scheme 

I.7). The cyclohexenone is activated by a quinine derived primary amine, and the resulting 

enamine intermediate adds to the N-arylmaleimide with the simultaneous installation of an 

stereogenic axis and two stereocentres with moderate diastereoselectivities and excellent 

enantioselectivities (Scheme I.38). 

 

Scheme I.38 – N-Arylmaleimide desymmetrization for the construction of central and axial chirality. 

Another interesting work dealing with the desymmetrization of N-arylmaleimides 

was reported two years later by the group of Wang.74 In contrast to the above described 

method, this strategy is based on a Ag(I)-catalyzed 1,3-dipolar cycloaddition of azomethine 

ylides (Scheme I.39). 

                                                                 
74 Liu, H.-C.; Tao, H.-Y.; Cong, H.; Wang, C.-J. J. Org. Chem. 2016, 81, 3752. 
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Scheme I.39 – Desymmetrization of N-arylmaleimides via 1,3-dipolar Ag(I)-catalyzed cycloaddition. 

This methodology allows for the preparation of enantioenriched 

octahydropyrrolo[3,4-c]pyrrole derivatives containing four adjacent stereocenters and one 

N−C stereogenic axis with an excellent control on diastereo- and enantioselectivities. 

D. De novo construction of the stereogenic axis. 

An extended approach applied to the topic at issue consists on the de novo 

construction of the stereogenic axis through different synthetic routes. 

Thus, Shibata’s group developed the Rh-catalyzed intermolecular [2+2+2] 

cycloaddition for the synthesis of bicyclic cyclohexa-1,3-dienes with both axial and central 

chirality with high diastereo- and enantioselectivities (Scheme I.40).75 This methodology 

represents the first example of a transition metal-catalyzed cycloaddition reaction for the 

generation of two different chiral motifs. 

 

Scheme I.40 – Shibata’s [2+2+2] cycloaddition for the construction of central and axial chirality. 

                                                                 
75 Shibata, T.; Otomo, M.; Tahara, Y.; Endo, K. Org. Biomol. Chem., 2008, 6, 4296. 
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A few years later, in 2016, Nechab and co-workers reported an atroposelective 

palladium tandem catalysis for the synthesis of central and axially chiral indenes,76 a core 

with a broad spectrum of applications. This methodology involves the conversion of 

propargylic carbonates into allenes via Pd-catalyzed coupling with aryl boronic acids, 

followed by tandem intramolecular palladium-assisted Alder-ene cyclization, with good 

diastereocontrol in the formation of indenes containing two stereogenic elements, although 

in moderate yields (Scheme I.41). 

 

Scheme I.41 – Tandem Pd-catalysis for the synthesis of indenes with central and axial chirality. 

This compounds present structural similarities to indolines which are also present 

in many bioactive substances. For that reason, Seidel’s group developed a catalytic 

enantioselective methodology for the synthesis isoindolines with central and axial chirality 

elements from two achiral substrates, ortho-acyl benzaldehyde and ortho-substituted  

anilines (Scheme I.42).77 This methodology was applied to the total synthesis of axially 

chiral mariline A in 5% overall yield and 93% ee after 10 reaction steps. 

                                                                 
76 Borie, C.; Vanthuyne, N.; Bertrand, M. P.; Siri, D.; Nechab, M. ACS Catal. 2016, 6, 1559. 
77 Min, C.; Lin, Y.; Seidel, D. Angew. Chem. Int. Ed. 2017, 56, 15353. 
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Scheme I.42 – Synthesis of central and axially chiral isoindoline skeletons developed by Nechab’s group. 

A very interesting contribution was reported in 2018 by the group of Cramer and 

co-workers, which developed a methodology for the synthesis of biaryl phosphine oxides 

bearing axial chirality and a P-stereogenic centre through an Ir-catalyzed C−H arylation 

reaction (Scheme I.43).78 Depending on the structure of the substrates, the corresponding 

biaryls bearing only P- or axial chirality could also be accessed. Further reduction leads to 

chiral biaryl monodentate P-ligands with well-established importance in the field of 

asymmetric catalysis. 

 

Scheme I.43 – Atropo-enantioselective C−H arylation methodology for the synthesis of P- and axially chiral 

biaryls. 

                                                                 
78 Jang, Y.-S.; Woźniak, L.; Pedroni, J.; Cramer, N. Angew. Chem. Int. Ed. 2018, 57, 12901. 
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Additionally, the catalytic asymmetric construction of axially chiral 3,3’-bisindole 

skeletons has been published by the group of Shi (Scheme I.44).79 These structures are 

present in many natural alkaloids and other biologically relevant compounds. The method 

represents the first organocatalyzed asymmetric construction of 3,3’-bisindole skeletons 

with both axial and central chirality. 

 

Scheme I.44 – Asymmetric synthesis of 3,3’-bisindole skeletons bearing central and axial chirality. 

In a different context, the electrochemically catalyzed cyclization cascade for the 

synthesis of imidazopyridine moieties bearing both central and axial chirality elements was 

also very recently reported by Xu et al. The method makes use of a reticulated vitreous 

carbon (RVC) anode and a platinum plate cathode (Scheme I.45).80 

 

Scheme I.45 – Atroposelective electrochemically induced cyclization developed by Xu’s group. 

                                                                 
79 Ma, C.; Jiang, F.; Sheng, F.-T.; Jiao, Y.; Mei, G.-J.; Shi, F. Angew. Chem. Int. Ed. 2019, 58, 3014. 
80 Yan, H.; Mao, Z.-Y.; Hou, Z.-W.; Song, J.; Xu, H. C. Beilstein J. Org. Chem. 2019, 15, 795. 
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To conclude, the literature collected to cover the area of simultaneous generation 

of central and axial chirality elements in biaryl structures reveals a growing interest, with 

very recent contributions and many potential applications, but there is obviously need for 

additional developments, in particular for the synthesis of functionalized (hetero)biaryl 

skeletons with potential applications in Asymmetric Catalysis. In this PhD thesis, several 

strategies have been designed to accomplish this challenging goal. 

I.5. Objectives. 

The central objective of this PhD Thesis has been the development of catalytic 

methods that allow for the atroposelective synthesis of functionalized (hetero)biaryls using 

novel dynamization (racemization) strategies. Depending on the nature of the substrates, 

these methods can be classified as DYKAT (DYnamic Kinetic Asymmetric 

Transformations), if configurationally stable substrates are employed (Chapter II) or as 

Dynamic Kinetic Resolutions (DKR), for the use of configurationally labile (hetero)biaryl 

derivatives (Chapters III and IV). In this context, we also aimed to take advantage of these 

strategies for the simultaneous generation of central and axial chirality elements in 

(hetero)biaryl structures, as highly functionalized (hetero)biaryl skeletons with potential 

applications as ligands for metal catalysis and organocatalysts. The specific objectives 

pursued along the Thesis are listed below: 

- The development of a dynamic kinetic asymmetric Heck reaction using 

configurationally stable heterobiaryl sulfonates (Chapter II). 

 

- The asymmetric hydrosilylation reaction of configurationally labile 

heterobiaryl ketones via dynamic kinetic resolution (Chapter III). 

 

- The asymmetric Ru-catalyzed asymmetric transfer hydrogenation of biaryl 

aminals via dynamic kinetic resolution (Chapter IV). 
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CHAPTER II 

 

Dynamic Kinetic Asymmetric Heck 

Reaction for the Simultaneous Generation 

of Central and Axial Chirality 
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II. Dynamic Kinetic Asymmetric Heck Reaction for the Synthesis of 

Heterobiaryls with Central and Axial Chirality. 

II.1. Introduction: Palladium-catalyzed cross-coupling reactions. 

Organic molecules are mainly formed by carbon-carbon bonds. In fact, the majority 

of synthetic Organic Chemistry challenges are related to the built up of complex structures 

from simpler molecules, which will, of course, involve the construction of carbon-carbon 

bonds. 

In this context, a very powerful methodology for the formation of C−C bonds 

consists on metal-catalyzed cross-coupling reactions. In general, these cross-coupling 

reactions take place between organic electrophiles, typically aryl (pseudo)halides, and 

different carbon nucleophiles catalyzed by transition metal complexes.  

The huge importance of Pd-catalyzed cross-coupling reactions in the progress of 

modern chemistry was reflected when the pioneers of the development to this reactivity, 

Richard Heck, Akira Suzuki, Eiichi Negishi, were awarded with the Nobel Prize in 

Chemistry in 2010.81 Richard F. Heck first introduced these reactions in the late 1960s with 

the use of stoichiometric or catalytic amounts of palladium for the functionalization of 

olefins82. Since then, the inclusion of palladium as catalyst has provided an increasing 

number of remarkable reactions with an extraordinary potential and applicability in the 

field (Scheme II.1) that have been widely studied and developed during the last decades 

both in academic and industrial laboratories.83 

                                                                 
81 (a) Wu, X-F.; Anbarasan, P.; Neumann, H.; Beller, M. Angew. Chem. Int. Ed. 2010, 49, 9047. (b) 

Johansson Seechurn, C. C. C.; Kitching, M. O.; Colacot, T. J.; Snieckus, V. Angew. Chem. Int. Ed. 

2012, 51, 5062. 
82 Heck, R. F. J. Am. Chem. Soc. 1968, 90, 5518. 
83 For a revision see: (a) Biffis, A.; Centomo, P.; Del Zotto, A.; Zecca, M. Chem. Rev. 2018, 118, 

2249. (b) de Meijere, A.; Bräse, S.; Oestreich, M. (Eds.). (2014). Metal-Catalyzed Cross-Coupling 

Reactions and more (Vol. 1). Weinheim: Wiley-VCH. (c) Molnár, Á. (Ed). (2013). Palladium-

Catalyzed Coupling Reactions: Practical Aspects and Future Developments. Weinheim: Wiley-

VCH. (d) Xue, L.; Lin, Z. Chem. Soc. Rev. 2009, 39, 1692. (e) Nicolaou, K. C.; Bulger, P. G.; Sarlah, 

D. Angew. Chem. Int. Ed. 2005, 44, 4442.  
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Scheme II.1 – Palladium catalyzed cross-coupling reactions. 

These cross-coupling reactions present a general reaction pathway with three 

common main steps: (a) Oxidative addition, (b) Transmetalation, and (c) Reductive 

elimination (Scheme II.2). Nonetheless, the Heck reaction presents additional peculiarities 

that will be explained further on.  

 

Scheme II.2 – Common reaction steps for the cross-coupling reactions. 

As mentioned above, this chapter will focus on the dynamic kinetic asymmetric 

transformation of heterobiaryl sulfonates by an asymmetric Heck reaction. This reaction is 

also known as the Mizoroki-Heck reaction, since Mizoroki first found out this reactivity, 

although he could not continue his research because of his early death. 
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II.2. Introduction: The Mizoroki-Heck reaction. 

II.2.1. Precedents. 

In the early 1970’s Mizoroki84 and Heck85 independently reported the first 

examples of palladium-catalyzed arylation or alkenylation of alkenes. 

 

Scheme II.3 – General scheme for the Mizoroki-Heck reaction. 

This methodology, referred to as the Mizoroki-Heck reaction (from now on, Heck 

reaction), consists on a fundamental palladium-catalyzed C–C bond-forming 

transformation with numerous applications in the synthesis of natural products and valuable 

synthetic intermediates. It also provides the most efficient route for the vinylation of 

aryl/vinyl halides or triflates in the presence of a base.86 It has drawn much attention due to 

its high efficiency and simplicity; this methodology is very attractive from a synthetic 

perspective due to its extraordinary chemoselectivity and mild reaction conditions together 

with the low toxicity and relatively low cost of the reagents involved. 

Surprisingly, the first asymmetric version had to wait until 1989, when the groups 

of Shibasaki87 and Overman88 independently developed the first examples of 

intramolecular asymmetric Heck reaction (Scheme II.4A). Few years later, Hayashi and 

co-workers also reported the first intermolecular asymmetric variant (Scheme II.4B).89  

                                                                 
84 Mizoroki, T.; Mori, K.; Ozaki, A. Bull. Chem. Soc. Jpn. 1971, 44, 581. 
85 Heck, R. F.; Nolley, J. P. J. Org. Chem. 1972, 37, 2320. 
86 (a) Heck, R. F., Acc. Chem. Res., 1979, 12, 146. (b) The Mizoroki-Heck Reaction; Oestreich, M., 

Ed.; Wiley: New York, 2009. (c) Bras̈e, S.; de Meijere, A. In Metal-Catalyzed Cross-Coupling 

Reactions; de Meijere, A.; Bräse, S.; Oestreich, M., Eds.; Wiley-VCH: Weinheim, 2014; pp 533-

633. 
87 Sato, Y.; Sodeoka, M.; Shibasaki, M. J. Org. Chem. 1989, 54, 4738. 
88 Carpenter, N. E.; Kucera, D. J.; Overman, L. E. J. Org. Chem. 1989, 54, 5846. 
89 Ozawa, F.; Ku1bo, A.; Hayashi, T. J. Am. Chem. Soc. 1991, 113, 1417. 
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Scheme II.4 – First examples for intra- and intermolecular asymmetric Heck reaction. 

It should be noted that, despite its high potential, this coupling reaction has been 

often employed as a benchmark to validate the design of novel chiral ligands and catalysts 

rather than finding suitable applications in stereoselective organic synthesis.90 Only very 

recently, the synthetic utility of the asymmetric Heck reaction has been exploited because 

of the outstanding performance of chiral mixed phosphine/phosphine oxide ligands in 

several representative transformations.91 

                                                                 
90 (a) Loiseleur, O.; Hayashi, M.; Keenan, M.; Schmees, N.; Pfaltz, A. J. Organomet. Chem. 1999, 

576, 16. (b) Tietze, L. F.; Ila, H.; Bell, H. P. Chem. Rev. 2004, 104, 3453. (c) McCartney, D.; Guiry, 

P. J. Chem. Soc. Rev. 2011, 40, 5122. (d) Shibasaki, M.; Vogl, E. M.; Ohshima, T. Adv. Synth. Catal. 

2004, 346, 1533. 
91 (a) Wöste, T. H.; Oestreich, M. Chem. Eur. J. 2011, 17, 11914. (b) Hu, J.; Hirao, H.; Li, Y.; Zhou, 

J. Angew. Chem. Int. Ed. 2013, 52, 8676. (c) Hu, J.; Lu, Y.; Li, Y.; Zhou, J. Chem. Commun. 2013, 

49, 9425.  
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Additionally, the group of Zhou expanded the scope of the intermolecular Heck 

reaction. They developed new strategies to enable the use of previously elusive substrates 

such as benzylic electrophiles92 or aryl halides93 in asymmetric intermolecular Heck 

reactions, overcoming the difficulty of displacing a halide with a neutral olefin on Pd 

centres (Scheme II.5A). 

Moreover, the groups of Hou94  and Mazet95 independently developed 

methodologies for the construction of quaternary stereocenters from trisubstituted 

dihydrofurans in high yields and excellent enantioselectivities using an asymmetric Heck 

reaction (Scheme II.5B). So far, the only previous report for an asymmetric Heck reaction 

of 5-methyl-2,3-dihydrofuran with PhOTf afforded the corresponding Heck product in 38% 

yield and 98% ee.96 

 

Scheme II.5 – Asymmetric Heck reaction with challenging substrates for the construction of tertiary and 

quaternary stereocentres. 

                                                                 
92 Yang, Z.; Zhou, J. J. Am. Chem. Soc. 2012, 134, 11833. 
93 Wu, C.; Zhou, J. J. Am. Chem. Soc. 2014, 136, 650. 
94 Zhang, Q.-S.; Wan, S.-L.; Chen, D.; Ding, C.- H.; Hou, X.-L. Chem. Commun. 2015, 51, 12235. 
95 Borrajo-Calleja, G. M.; Bizet, V.; Bürgi, T.; Mazet, C. Chem. Sci. 2015, 6, 4807. 
96 Tschoerner, M.; Albinati, A.; Pregosin, P. S. Organometallics, 1999, 18, 670. 
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In 2012, the group of Sigman developed a redox-relay Heck reaction where the 

relay by palladium is controlled by a thermodynamic sink (an alcohol) on the substrate.97 

The unsaturation of the alkene is transferred to the alcohol to form aldehydes or ketones. 

This method installs stereogenic centers in remote positions from the resulting carbonyl 

group, thus expanding the synthetic value of the Heck reaction. The strategy was also 

extended by Sigman’s group to oxidative Heck reaction using boronic acids98 as reactants, 

allowing for the synthesis of quaternary stereocentres and -unsaturated carbonyls with 

an stereocentre at  position (Scheme II.6A). Additionally, the same group developed an 

enantioselective dehydrogenative redox-relay Heck reaction for the synthesis of indoles 

functionalized with quaternary stereocentres (Scheme II.6B).99 

 

Scheme II.6 – Sigman’s contribution to redox-relay Heck reaction. 

                                                                 
97 Werner, E. W.; Mei, T.-S.; Burckle, A. J.; Sigman, M. S. Science 2012, 338, 1455 
98 (a) Mei, T.-S.; Werner, E. W.; Burckle, A. J.; Sigman, M. S. J. Am. Chem. Soc. 2013, 135, 6830. (b) 
Mei, T.-S.; Patel, H. H.; Sigman, M. S. Nature 2014, 508, 340. (c) Zhang, C.; Santiago, C. B.; Kou, L.; 
Sigman, M. S. J. Am. Chem. Soc. 2015, 137, 7290. (d) Chen, Z. M.; Hilton, M. J.; Sigman, M. S. J. Am. 
Chem. Soc. 2016, 138, 11461. 
99 Zhang, C.; Santiago, C. B.; Crawford, J. M.; Sigman, M. S. J. Am. Chem. Soc. 2015, 137, 15668 
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At the same time, Correia’s group extended this redox-relay methodology to Heck-

Matsuda100 reactions with alkenyl alcohols for the synthesis of heterocycles functionalized 

with tertiary or quaternary stereocentres (Scheme II.7).101  

 

Scheme II.7 – Redox-relay enantioselective Heck-Matsuda reaction developed by Correia’s group. 

It is also worth to mention the desymmetrization of substituted cyclopentenes via 

an asymmetric Heck reaction developed by Zhou and co-workers, a process that was 

stereoselective only when a (bis)phosphine monoxide ligand was employed, providing the 

trans disubstituted cyclopentenes in high selectivities (Scheme II.8A).102 This family of 

ligands was also studied by the group of Hou for the kinetic resolution of 2-substituted-2,3- 

dihydrofurans via Pd-catalyzed asymmetric Heck reaction, leading to optically active 2-

substituted-dihydrofurans and trans-2,5-disubstituted dihydrofurans in high yield and good 

enantioselectivities (Scheme II.8B).103 

                                                                 
100 Kikukawa, K.; Matsuda, T. Chem. Lett. 1977, 6, 159. 
101 (a) Oliveira, C. C.; Angnes, R. A.; Correia, C. R. D. J. Org. Chem. 2013, 78, 4373. (b) Oliveira, 

C. C.; Pfaltz, A.; Correia, C. R. D. Angew. Chem., Int. Ed. 2015, 54, 14036. (c) Kattela, S.; Heerdt, 

G.; Correia, C. R. D. Adv. Synth. Catal. 2017, 359, 260. 
102 Liu, S.; Zhou, J. Chem. Commun. 2013, 49, 11758. 
103 Li, H.; Wan, S.-L.; Ding, C.-H.; Xu, B.; Hou, X.-L. RSC Adv. 2015, 5, 75411. 
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Scheme II.8 – Strategies for the desymmetrization and kinetic resolution of substituted cyclic alkenes based on 

a Pd-catalyzed asymmetric Heck reaction. 

II.2.2. Mechanism of the Heck reaction 

As mentioned above, the Heck reaction present some important mechanistic 

differences with respect to other cross-coupling reactions. All of them start with an 

oxidative addition step affording a common aryl palladium(II) intermediate. However, the 

next steps are different. In cross-coupling reactions, where stronger nucleophiles are 

commonly used, the substitution of the halide atom in the coordination sphere occurs via a 

neutral pathway. In Heck reactions, however, the weaker alkene nucleophile cannot directly 

substitute the halide, and there are consequently two possibilities for the reaction to 

proceed. One of them is to substitute a neutral ancillary ligand involving a prior dissociation 

of an hemilabile ligand (neutral pathway) and the second is to abstract the halide from the 

cationic palladium(II) with the help of a halide scavenger (cationic pathway).  
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Scheme II.9 – General catalytic cycle for the Heck reaction. 

Furthermore, the catalytic cycle for the Heck reaction does not proceed through a 

transmetalation step since there is no carbon-metal bond, and thus, syn-addition (insertion) 

and -hydride elimination take place instead (Scheme II.9).83c  

Details for these elemental steps are given below. 

A. Oxidative addition 

The first step of the catalytic cycle consists on an oxidative addition of the aryl 

halide to the 14 electrons Pd(0) source, providing the 16 electrons Pd(II) intermediates with 

square planar geometry. Often this is the rate determining step, and follows the next 

reactivity trend depending on the halide employed: ArI > ArOTf > ArBr >> ArCl.83b,104 

This order of reactivity has also been experimentally observed through the Hammett 

parameter of the corresponding aryl halides to Pd(0) species, and can be related to the 

reactivity of this halides towards oxidative addition.105 When strong -donnor ligands like 

phosphines or N-heterocyclic carbenes (NHCs) are employed, this step can also be 

                                                                 
104 Jutand, A.; Négri, S.; de Vries, J. G. Eur. J. Inorg. Chem. 2002, 7, 1711. 
105 Knowles, J. P.; Whiting, A. Org. Biomol. Chem. 2007, 5, 31. 
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accelerated, since the additional electron density provided by such ligands facilitates the 

oxidation of the metal. 

B. Alkene migratory insertion 

After oxidative addition, the trans-ArPdXL2 intermediate is ready for coordination 

and insertion of the alkene in the Pd−Ar bond in a syn manner. As mentioned above, this 

step can proceed over two different routes, (i) cationic pathway or (ii) neutral pathway 

(Scheme II.10).106 

(i) Cationic pathway: takes place if there is a (pseudo)halide that detaches the 

metal centre, thus leaving a coordination vacant site on the metal. It occurs 

when poorly coordinating pseudohalides (i.e. OTf, OAc) are employed or 

halide abstractors (i.e. Ag or Tl salts) are added. Since the chiral bidentate 

ligand remains fully coordinated, the chances for a good asymmetric 

induction are increased. 

(ii) Neutral pathway: in this case, there is a dissociation of one ligand prior the 

insertion of the alkene. It is favoured by the use of strong -donor halides 

acting as ligands. In contrast to the cationic route, the dissociation of one 

chelating arm of the ligand tends to result in a lower asymmetric induction 

in the final products. 

This step is crucial with respect to enantioselectivity and therefore, the nature of X 

in Ar−X (and consequently the Pd−X bond strength in the oxidative addition intermediate) 

is an important factor.  

The nature of the alkene is also a relevant aspect to consider: for electron poor 

olefins, which are weaker nucleophiles, it is easier to displace a neutral ancillary ligand 

rather than the halide and therefore the neutral pathway is facilitated; while the stronger 

nucleophilicity of electron-rich olefins favours the cationic route, ensuring that the 

                                                                 
106 Deeth, R. J.; Smith, A.; Brown, J. M. J. Am. Chem. Soc. 2004, 126, 7144. 
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displacement of halide could be afforded.107 As mentioned above, the cationic pathway 

gives rise to higher levels of enantioselectivity in general terms and, therefore electron rich 

alkenes are more suitable for the asymmetric Heck reaction. 

 

Scheme II.10 – Cationic vs neutral alkene insertion pathways. 

The next step after alkene coordination (-complex) consists on the insertion of the 

olefin into the Ar−Pd bond. 

This step controls the regioselectivity of the Heck reaction, since two isomeric σ-

complexes can be formed depending on an α or β arylation of the alkene, further leading to 

the branched or linear arylated alkene, respectively, after the -hydride elimination step. 

(Scheme II.10). The nature of π-complex is crucial in this aspect; a cationic π-complex 

leads to an increase of the polarization at the Pd−Ar bond and a selective migration of the 

aryl moiety (formally acting as anion) occurs at the more electrophilic carbon from the 

alkene, thus, leading preferentially to α-arylation and further branched product.108 

C. -Hydride elimination 

This step leads to the final product. As occurred with the alkene insertion, -

hydride elimination is a syn process, so an internal C−C bond rotation in the σ-

                                                                 
107 Cabri, W.; Candiani, I.; DeBernardinis, S.; Francalanci, F.; Penco, S.; Santi, R. J. Org. Chem. 

1991, 56, 5796. 
108 (a) Cabri, W.; Candiani, I. Acc. Chem. Res. 1995, 28, 2. (b) Andappan, M. M. S.; Nilsson, P.; von 

Schenck, H.; Larhed, M. J. Org. Chem. 2004, 69, 5212. 
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alkyl−palladium(II) halide, bringing a hydrogen at β position to a syn relative position with 

respect to the palladium atom is needed (Scheme II.11). A hydridopalladium(II) halide and 

the arylated alkene are the products from this reversible step, whose efficiency is related to 

the dissociation of the olefin from the [HPdXL2] complex. 

 

Scheme II.11 – C−C bond rotation prior to -hydride elimination. 

The reinsertion of the alkene into Pd−H bond and subsequent double bond 

migration may constitute a problem in terms of regioselectivity since it can lead to a 

mixture of products with migrated, and non-migrated double bonds. This problem difficults 

the use of cyclic alkenes, as well as long chain acyclic terminal alkenes. In this regard, the 

group of Teasdale has demonstrated that starting from aryl halides, it is possible to 

minimize the double bond migration by addition of a halide abstractor (Scheme II.12).109  

                                                                 
109 Grigg, R.; Loganathan, V.; Santhakumar, V.; Sridharan, V.; Teasdale, A.; Tetrahedron Lett. 

1991, 32, 687.  
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Scheme II.12 – Effect of halide abstractor additives in double bond migration. 

 (Bis)phosphine oxides can also help to increase selectivity since they are poorer 

-donor ligands and result in more electron-deficient, cationic Pd centres. This fact 

facilitates a fast deprotonation of Pd−H species versus olefin insertion, essential to 

regenerate Pd(0) species and minimize double bond migration.110 

Another problem in terms of regioselectivity may occur during this step when 

acyclic olefins are used, due to the possible - and ’-hydride elimination competition 

leading to isomeric products (Scheme II.13). 

 

Scheme II.13 – Competing - and ’-hydride elimination products. 

Most of the reported Heck reactions employ simple biased acrylate esters as 

substrates to prevent this competition. These acrylate esters present a high unsymmetrical 

steric and electronic environment, helping to prevent also regioselectivity issues during 

alkene migratory insertion step. As the main drawback, these systems present a limitation 

for the generation of either tertiary or quaternary chiral stereocentres because of the 

suppression of ’-hydride elimination pathway.90d Remarkably, regarding the arylation of 

                                                                 
110 (a) Hills, I. D.; Fu, G.; J. Am. Chem. Soc. 2004, 126, 13178. (b) Wheatley, B. M. M; Keay, B. 

A. J. Org. Chem. 2007, 72, 7253. 
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these simple acrylate esters, there is one precedent in the literature in which the 

regioselectivity can be inverted by the introduction of structural modifications at the ligand 

to destabilize the transition state for the 2,1-insertion via steric repulsions. In this way, the 

regioselectivity of the insertion of methyl acrylate into the Pd−C(Ph) bond can be inverted 

entirely to yield the opposite (regioirregular) products in stoichiometric reactions (Scheme 

II.14).111 

 

Scheme II.14 – Selective formation of regioirregular Heck products by catalyst design. 

An additional problem for the generation of an stereogenic centre is that the sp3 

carbon formed in the migratory syn-insertion step could be converted back to an sp2 centre 

after -hydride elimination. However, since this is a syn-process, the hydrogen atom at this 

sp3 centre is not syn to Pd, so that the -hydride elimination can only take place towards 

the opposite position. Therefore, a chiral centre would be generated at the arylated position. 

This situation applies for endocyclic alkenes, as the hydrogen at the functionalised sp3 

centre will always be anti to the Pd, and an internal C–C bond rotation of the Pd 

intermediate species is not feasible (Scheme II.15). 

                                                                 
111 Wucher, P.; Caporaso, L.; Roesle, P.; Ragone, F.; Cavallo, L.; Mecking, S.; Göttker-

Schnetmanna, I. Proc Natl Acad Sci USA 2011, 108, 8955. 
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Scheme II.15 – Generation of chiral sp3 centres in asymmetric Heck reactions with endocyclic alkenes. 

D. Reductive elimination 

It could be seen as the opposite to oxidative addition, and represents the last step 

of the catalytic cycle. After dissociation from the arylated alkene, the hydridopalladium(II) 

halide undergoes a reductive elimination to regenerate the catalytically active Pd(0) 

complex. Despite this process could be thought as a direct elimination to generate hydrogen 

halide and above mentioned Pd(0) complex, it can also be promoted by a base. Actually, in 

1998, Brown and co-workers demonstrated through DFT studies that the base-promoted 

elimination was more energetically favoured than the mechanism that considers a direct 

reductive elimination.112 

The groups to be eliminated need to be cis positioned. So, if they present a trans 

arrangement, a previous isomerization of the XLnPdH complex has to take place prior to 

the reductive elimination step (Scheme II.16). 

 

Scheme II.16 – XLnPdH complex trans-cis isomerization. 

                                                                 
112 Deeth, R. J.; Smith, A.; Hii, K. K.; Brown, J. M. Tetrahedron Lett. 1998, 39, 3229. 
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II.3 Results and discussion. 

In this context, an asymmetric Heck reaction combined with the dynamic kinetic 

asymmetric transformation strategy (see Chapter I), envisioned in the frame of our interest 

in the synthesis of functional axially chiral heterobiaryls, appears as an appealing strategy 

for the synthesis of derivatives with central and axial stereogenic elements. This 

transformation, however, is particularly challenging for two main reasons.  

First, when an heterobiaryl sulfonate such as 3b is used as substrate, the oxidative 

addition intermediate (IOA) has no vacant coordination sites, in contrast with the common 

cationic Heck reaction pathway. This happens because the relatively good 

isoquinolyl/pyridyl N ligand displaces the poor coordinating triflate/nonaflate, leading to a 

relatively stable palladacyclic intermediate. Now this good N-ligand must be further 

displaced by a neutral olefin on the Pd(II) centre (Scheme II.17).  

 

Scheme II.17 – Main problems raised from the present hypothesis. 

A second potential problem is that the reaction with endocyclic olefins can afford 

up to eight different Heck isomeric products considering the formation of two stereogenic 

elements and the possible double bond migration (Scheme II.18); a formidable challenge 

from the perspective of stereocontrol. 
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Scheme II.18 – The possible isomeric products of the reaction between 3b and 5-membered endocyclic alkenes. 

Therefore, the choice of the chiral ligand and reaction conditions will be decisive 

to control the stereoselectivity of a single isomer, or at least, to minimize stereodiversity. 

From here on, all the experimental work carried out for this chapter, as well as the 

conclusions obtained will be detailed and discussed. 

II.3.1. Synthesis of starting materials 

This chapter deals with the study of a dynamic kinetic asymmetric Heck reaction 

using racemic heterobiaryl sulfonates. Therefore, the first point to detail must be the 

synthesis of these substrates and their precursors. A retrosynthetic analysis of these 

structures suggests that the route displayed on Scheme II.19 should be followed. 
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Scheme II.19 – Retrosynthetic analysis for accessing naphthylisoquinoline triflate 3b. 

Nevertheless, the synthesis of the majority of these heterobiaryl sulfonates have 

been previously described in literature,62,64,66 and therefore, the corresponding procedures 

were extended to synthesize the non-described substrates and precursors. 

For mechanistic considerations (vide infra), the heterobiaryl bromide 3b(Br) has 

been employed instead of sulfonate 3b, and the synthetic route was different. In this case, 

the boronic acid coupling partner was not ortho-substituted with a methoxy group, but a 

hydrogen atom. After Suzuki cross-coupling reaction, the resulting product was subjected 

to nitrogen‐directed iridium‐catalyzed borylation, following a methodology previously 

developed by our group,113 and further treatment with copper(II) bromide, to afford the 

desired heterobiaryl bromide 3b(Br) (Scheme II.20). 

                                                                 
113 Ros, A.; Estepa, B.; López-Rodríguez, R.; Álvarez, E.; Fernández, R.; Lassaletta, J. M. Angew. 

Chem. Int. Ed. 2011, 50, 11724. 
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Scheme II.20 – Retrosynthetic analysis for accessing naphthylisoquinoline bromide 3b(Br). 

II.3.2. Preliminary studies 

In a preliminary experiment, it was observed that the reaction of 2-(pyridin-2-

yl)phenyl nonaflate 3a and 2,3-dihydrofuran 4 provides no reaction product under common 

asymmetric Heck conditions [Pd(dba)2/(R)-BINAP, DIPEA, toluene, 80 °C] (Scheme 

II.21). This fact confirmed our initial concerns of a difficult displacement of the pyridine 

N atom by a neutral olefin. It was assumed that, in this case, when R = R’ = H, a very stable 

oxidative addition cationic palladacycle intermediate 3a-IOA is formed, which does not 

dissociate to allow coordination of the olefin and further migratory insertion. This 

hypothesis was confirmed when the same experiment was performed using stoichiometric 

amounts of Pd-catalyst, and 31P-NMR analysis of reaction mixture showed mainly the 

presence of two doublets at 41.1 ppm and 14.7 ppm (J = 47.0 Hz), corresponding to the 

unsymmetrical phosphine ligands on IOA. 

Despite this discouraging result, we anticipated that the use of 1-(isoquinolin-1-

yl)naphthalene-2-yl nonaflate 3b, would result in a more strained 3b-IOA palladacycle. In 

contrast with 3a-IOA this would no longer constitute a thermodynamic sink, and 

dissociation of the N-Pd bond would be favoured by release of that steric strain (Scheme 

II.21). In fact, the reaction of 3b and 4 under the same conditions provided the desired 

product as a 10:1 mixture of regioisomers 5b:5’b (from here on, this ratio would be referred 

as to S factor), and a promising 82% ee for the major isomer 5b (entry 6, Table II.1). 
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Scheme II.21 – Preliminary experiments. Proof of concept. 

II.3.3. Dynamic kinetic asymmetric Heck reaction with cyclic alkenes 

With the confirmed proof of concept in hands, we then moved to optimize the 

methodology. 2,3-Dihydrofuran 4 is by far the most employed cyclic olefin when a new 

ligand, catalyst or substrate has to be studied in an asymmetric intermolecular Heck 

reaction.91a,114 Therefore, the asymmetric alkenylation of 1-(isoquinolin-1-yl)naphthalene-

2-yl nonaflate 3b with 4 was selected as the model reaction in order to study the 

optimization of the reaction parameters. 

Initially, we explored the influence of the anhydrous solvent to find the best one in 

terms of reactivity and selectivity, mantaining constant [Pd(dba)2/(R)-BINAP] as catalyst, 

and DIPEA as base, at 60 °C (Table II.1). 

                                                                 
114 For a recent revision, see: (a) Oestreich, M. Angew. Chem., Int. Ed. 2014, 53, 2282. (b) Rubina, 

M.; Sherrill, W. M.; Barkov, A. Y.; Rubin, M. Beilstein J. Org. Chem. 2014, 10, 1536. 
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Table II.1 – Solvent screening. 

 

Entrya Solvent Conv (%)b S (5b:5’b)b ee (%)c 

1 1,4-Dioxane 15 n.d. n.d. 

2 DMSO 26 3:1 n.d. 

3 MeOH <5 n.d. n.d. 

4 DMF 25 5:1 n.d. 

5 Toluene 28 6:1 88 

6d Toluene 50 10:1 82 

a Reaction performed at 0.1 mmol of rac-3b and 0.8 mmol of 4. b Determined by 1H-NMR 

spectroscopy. c Determined by chiral HPLC analysis. d Reaction temperature: 80 °C. 

From the screening of solvents, it is clear that toluene provides the best results in 

general terms (entries 5 and 6, Table II.1). Next, using toluene as solvent, a variety of 

commercially available ligands often employed in the asymmetric Heck reaction were 

tested, and the results were analysed after 18h (Table II.2). 
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Table II.2 – Commercial ligands screening. 
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Entrya Ligand (L) Conv (%)b S (5b:5’b)b ee (%)c 

1 (R)-H8-BINAP (L2) 27 11:1 82 

2 (R)-Tol-BINAP (L3) 16 8:1 96 

3 (R)-DM-BINAP (L4) 22 6:1 99 

4 (R)-MeO-BIPHEP (L5) 11 n.d. n.d. 

5 (R)-SDP (L6) n.r. n.d. n.d. 

6 (R)-DM-SEGPHOS (L7) 19 7:1 n.d. 

7 (R)-Ph-Garphos (L8) 7 n.d. n.d. 

8 SL-J002-1 (L9) <5 n.d. n.d. 

9 (R)-MOP (L10) 40 >1:20 13 

10 (S)-tBu-PHOX (L11) <5 n.d. n.d. 

11 (R)-BINAP(O) (L12) <5 n.d. n.d. 

12 (R,R)-Me-BozPhos (L13) <5 n.d. n.d. 

13 (R,R)-Me-DUPHOS (L14) 52 >20:1 89 

14 (R,R)-iPr-DUPHOS (L15) 5 n.d. n.d. 

15 (S,S)-Ph-BPE (L16) n.r. n.d. n.d. 

16 (R)-2-Furyl-MeOBIPHEP (L17) 5 n.d. n.d. 

a Reaction performed at 0.1 mmol of rac-3b and 0.8 mmol of 4. b Determined by 1H-NMR 

spectroscopy. c Determined by chiral HPLC analysis. 

Interestingly, BINAP derivatives provided the best results in terms of selectivities 

(entries 1 to 3, Table II2). In particular, (R)-DM-BINAP gave excellent enantiomeric 

excess of 5b and a good 5b:5’b selectivity, although the conversion remained low.  

No improvements were observed using related P,P ligands (entries 4 to 7, Table 

II.2), while Josiphos derivative L9 was unproductive (entry 8, Table II.2). Not surprisingly, 

hemilabile ligand L10 afforded the non-isomerized Heck product 5’b exclusively with high 

regioselectivity, although in low ee (entry 9, Table II.2). Remarkably, ligands L11, L12 or 

L13 were ineffective (entries 10 to 12, Table II.2), even though less σ-donating P,N and 

P,O ligands might favour a faster alkene insertion due to the more electrophilic character 

of the cationic palladium(II) centres. In this case, however, a stronger binding of the 
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isoquinoline nitrogen caused by the higher electrophilicity of cationic Pd(II) species, would 

prevent further coordination of the olefin. Although (R,R)-Me-DUPHOS L14 showed 

higher reactivity, the enantioselectivity suffered an slight decrease (entry 13, Table II.2). 

As mentioned above, (R)-DM-BINAP was identified from this screening as the 

most promising ligand in terms of enantioselectivity. Therefore, other reaction parameters 

were modified in order to improve the reactivity and regioselectivity, using this ligand 

(Table II.3).  

Table II.3 – Optimization of other reaction parameters. 

 

Entrya Solvent/T (°C) Other variations Conv (%)b S (5b:5’b)b ee (%)c 

1 Toluene / 70 - 60 11:1 98 

2 Toluene / 80 - >99 >20:1 97 

3 DMF / 80 - 81 18:1 96 

4 Toluene / 80 
[Pd-L] (5 mol%) 

20h 

96 (90% 

yield) 
>20:1 97 

5 Toluene / 80 [Pd-L] (5 mol%) 

Pd(OAc)2 

26 5:1 97 

6 Toluene / 80 [Pd-L] (5 mol%) 

Et3N 

>99 5:1 97 

a Reaction performed at 0.1 mmol of rac-3b and 0.8 mmol of 4. b Determined by 1H-NMR 

spectroscopy. c Determined by chiral HPLC analysis. 

To our delight, it was observed that increasing the temperature to 80 °C, resulted 

in a complete conversion without significantly compromising the enantioselectivity. 

Furthermore, the regioselectivity was also improved and only 5b was obtained, with no 

traces of 5’b observed by 1H-NMR analysis (entry 2, Table II.3). The use of DMF as solvent 

at 80 °C (entry 3, Table II.3), which provided the best regioselectivity values under the first 
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explored conditions (entry 4, Table II.1), did not improve the results obtained with toluene. 

Moreover, the catalyst loading could be decreased to 5 mol% of Pd(dba)2 + 6 mol% (R)-

DM-BINAP (effective, 5 mol% of catalyst), providing similar results (entry 4, Table II.3). 

No improvement was observed by using different palladium source or base as Pd(OAc)2, 

or Et3N, respectively. 

To conclude, the optimal conditions to explore the scope of the asymmetric Heck 

reaction with heterobiaryl sulfonates 3 (0.1 mmol) and 4 (8.0 eq.) conform the use of 

Pd(dba)2 (5 mol%), (R)-DM-BINAP (6 mol%), DIPEA (5.0 eq.) and toluene (0.5 mL) at 

80 °C. 

Importantly, this methodology could be also extended to other endocyclic olefins 

such as, N-Boc-2,3-dihydropyrrole 6. However, under the optimized conditions for 2,3-

dihydrofuran, a decrease in the 7b/7’b selectivity (S factor) was observed, and an additional 

optimization of the reaction conditions, particularly solvents, was required (Table II.4). 

Table II.4 – Solvent screening for the reaction between rac-3b and 6. 

 

Entrya Solvent Variations rac-3b:[7b:7’b]:1b(H)b ee (%)c 

1 Toluene - 6:[55:17]:22 98 

2 DMF - 35:[43:14]:8 n.d. 

3 DMSO - 1.2:[80:16]:2.8 98 

4 DMSO [Pd-L] (10 mol%) 2:[80:13]:5 98 

5 DMSO 36h 0:[81:14]:5 98 
a Reaction performed at 0.1 mmol of rac-3b and 0.5 mmol of 6. b Determined by 1H-NMR 

spectroscopy. c Determined by chiral HPLC analysis. 
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Under the optimized conditions for 2,3-dihydrofuran 4, a decrease in S selectivity 

factor was observed. Additionally, dehalogenated product 1b(H) was also observed, and 

not all rac-3b was consumed (entry 1, Table II.4). Nonetheless, this reaction showed 

excellent enantioselectivities but moderate regioselectivities. Using DMF as solvent lower 

reactivity was observed (entry 2, Table II.4). Fortunately, the use of DMSO led to full 

conversion to the desired products 7b and 7b’, together with a significant decrease of 1b(H) 

(entry 3, Table II.4). On the other hand, a longer reaction time of 36h was required to 

observe full conversion (entry 4, Table II.4), although a slightly increase in the formation 

of 1b(H) was also observed. Nevertheless, the consumption of rac-3b (entries 5 vs 3, Table 

II.4) was preferred to facilitate the further purification process. 

Once the asymmetric alkenylation reactions of rac-3b with both 2,3-dihydrofuran 

and N-Boc-2,3-dihydropyrrole were optimized, the next step was to extend the 

methodology to other endocyclic olefins (Table II.5). However, some limitations were 

found in this case. 

Table II.5 – Limitations of the method using other endocyclic olefins. 

 

Entrya Cyclic olefin Solvent Heck product (%)b 1b(H) (%)b 

1 

 

Toluene - >95 

2 DMSO 85% yield. Low S and ee - 

3 

 

Toluene - >95 

4 DMSO n.r. n.r. 

5 

 

Toluene  >95 

6 DMSO n.r. n.r. 
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7 

 

Toluene 31 69 

8 DMSO - 73 

9 

 

Toluene - 36 

10 DMSO - 39 

11 

 

Toluene - >95 

12 DMSO 46 (complex mixture) 54 

13 

 

Toluene - 41 

14 DMSO - >95 

a Reaction performed at 0.1 mmol of rac-3b. b Determined by 1H-NMR spectroscopy. 

Under the optimized conditions for the reaction of rac-3b with either 4 or 6, 

reactions performed with these cyclic olefins failed to give any products other than 

dehalogenation 1b(H). We attribute this lack of reactivity to the fact that the less electron-

rich olefins now employed are not capable to displace the isoquinolyl N atom in the IOA 

intermediate. Another contribution to their low reactivity could be related to the high level 

of steric crowding at this IOA palladacycle. 

Regarding the dehalogenation process, it could be rationalized considering DIPEA 

as a base and a hydride source, promoting a Pd-catalyzed dehalogenation reaction (Scheme 

II.22).115 In order to prevent this route, the use of an inorganic base as LiOAc was 

alternatively considered.107 Unfortunately, no reaction was observed under this conditions.  

                                                                 
115 (a) Coquerel, Y.; Bremond, P.; Rodriguez, J. J. Organomet. Chem. 2007, 692, 4805. (b) Xue, F. 

L.; Qi, J.; Peng, P.; Mo, G. Z.; Wang, Z.Y. Lett. Org. Chem. 2014, 11, 64. (c) Zawisza, A. M.; 

Muzart, J. Tetrahedron Lett. 2007, 48, 6738. 
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Scheme II.22 – Mechanism proposed for the Pd-catalyzed dehalogenation event. 

Considering these limitations, we focused on the use of 2,3-dihydrofuran 4 and N-

Boc-2,3-dihydropyrrole 6 cyclic olefin representatives. Notwithstanding, these two olefins 

can give access to a wide variety of highly functionalized products. 

Hence, the next step consisted on the introduction of structural modifications on 

the heterobiaryl sulfonate moiety and the study of the alkenylation under optimized 

conditions with the above mentioned olefins. These structural variations were divided on 

two main groups, depending on which fragment of the heterobiaryl is modified. With 

respect to the heteroaromatic counterpart, quinazoline (3c), phthalazine (3d) and picoline 

(3e) analogues were synthesized. And maintaining the isoquinoline fragment, different 

substitutions patterns could also be introduced on the naphthalene ring (3f-i) (Figure II.1).  
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Figure II.1 – Library of synthesized heterobiaryl sulfonates. 

It has been observed that both heterobiaryl triflates (OTf) and nonaflates (ONf) 

show no difference in reactivity under the optimized conditions, so, both were used 

depending on precursors availability at the required moment.  

With these selected heterobiaryl sulfonates (Figure II.1) in hands, their reactivity 

under the optimized reaction conditions with olefins 4 and/or 6 was explored (Schemes 

II.23 and II.25, respectively).  
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Scheme II.23 – Dynamic kinetic asymmetric Heck reaction using 2,3-dihydrofuran 4. Heterobiaryls scope. 

This methodology can be applied to the alkenylation of a variety of heterobiaryl 

sulfonates in very high selectivities. Quinazoline derivative 5c showed similar results than 

the model substrate. However, phthalazine analogue 5d was less reactive, possibly due to 

electronic effects caused by the two contiguous nitrogen atoms. The results obtained with 

the model substrate were even improved by the picoline derivative, obtaining complete 

reactivity and selectivity towards 5e. 

Heterobiaryl nonaflate 3f is a more challenging substrate for the undesired push-

pull effect conjugation with the OMe substituent at the cationic IOA, and it is based on two 

main factors. First, the partial double bond character and shorter bond length at the axis are 

expected to slow down the required atropisomerization event (Scheme II.24).116 Second, as 

                                                                 
116 Gómez-Gallego, M.; Martín-Ortiz, M.; Sierra, M. A. Eur. J. Org. Chem. 2011, 32, 6502. 
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a consequence of the higher electron density, and therefore, basicity of the isoquinoline N 

atom, the dissociation of the N−Pd bond is also more challenging.  

 

Scheme II.24 – Push-pull effect observed on 3f IOA. 

Indeed, 3f was not a suitable substrate in previous DYKAT-based strategies 

developed in our group,25b,117 with the exception of the asymmetric alkynylation reaction.25c 

To or delight, the dynamic kinetic asymmetric Heck reaction allowed the isolation of the 

corresponding product in moderate yields and excellent enantiomeric excess. 

Different substitution on the naphthalene ring were also tolerated by this 

methodology, thus, 5g and 5h were obtained in moderate to good yields, and excellent 

selectivities. Remarkably, 3i (Figure II.1) displayed no reactivity towards the expected 

product; instead, 1H-NMR analysis of the reaction crude showed only starting material and 

dehalogenation product 1b(H). 

Besides, the scope of heterobiaryl sulfonates with N-Boc-dihydropyrrole 6 was also 

studied in parallel (Scheme II.25). In general, the dynamic kinetic asymmetric Heck 

reactions using 6 were less regioselective than those with 4, albeit nearly perfect 

enantioselectivities were achieved in all cases. As a striking exception, the pyrenyl 7’h 

isomer was formed exclusively, although again with an excellent diastereo- and 

enantioselectivity. As a possible explanation, the high steric hindrance of the pyrenyl group 

may prevent reinsertion of the non-isomerized product. 

                                                                 
117 Ramírez-López, P.; Ros, A.; Romero-Arenas, A.; Iglesias-Sigüenza, J.; Fernández, R.; 

Lassaletta, J. M. J. Am. Chem. Soc. 2016, 138, 12053. 
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Scheme II.25 – Dynamic kinetic asymmetric Heck reaction using N-Boc-2,3-dihydropyrrole 6. Heterobiaryls 

scope. 

Importantly, the synthesis of 5b and 7b was scaled up to 1.8 and 1.5 mmol, 

respectively, and could also be performed with a lower catalyst loading (2 mol % Pd(dba)2 

and 2.4 mol % (R)-DM-BINAP) to obtain the products with similar results (5b: 81% yield, 

s > 20:1, dr >20:1, 97% ee; 5b: 60% yield, s 6:1, dr >20:1, 99% ee). Indeed, from these 

scale-up experiments, the absolute configuration of the two main products formed in the 

reaction were determined, since both 5b and the minor isomer 7’b could be crystalized and 

their structures analysed by X-Ray diffraction techniques (Figure II.2). 
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Figure II.2 – X-ray structures of (Sa,S)-5b and (Sa,S)-7′b. Thermal ellipsoids drawn for 50% probability. 

Remarkably, as observed in the above X-ray structures, both regioisomers present 

the same configuration at the stereogenic centre. These data indicate that in our case there 

is no kinetic resolution associated to the isomerization of the olefin, as observed by other 

authors.89,118 A similar trend has been previously reported for asymmetric Heck reactions 

using 3,3’-disubstituted DM-BINAP ligands.119 Additionally, the same absolute 

configuration was observed when an hemilabile ligand as BINAP(O) was used in the 

arylation of 2,3-dihydrofuran with either phenyltriflate or phenyliodide.91a 

II.3.4. Dynamic kinetic asymmetric Heck reaction with acyclic alkenes 

Subsequently, the scope of this new catalytic transformation was investigated with 

respect to acyclic olefins. As electron rich olefins are needed, butyl vinyl ether 8 was 

selected as an appropriate candidate for such purpose. It has to be considered that, with 

terminal alkenes, two different linear or branched products can be obtained depending on 

how they coordinate to the palladium complex. Previous studies have shown that cationic 

reaction pathways for the Heck reaction with terminal alkenes presents high preference for 

the internal arylation, leading mainly to the branched product.108a So, this trend is expected 

to be maintained in our system, since the combination of the poor coordinating ability of 

                                                                 
118(a) Ozawa, F.; Kubo, A.; Matsumoto, Y.; Hayashi, T.; Nishioka, E.; Yanagi, K.; Moriguchi, K. 

Organometallics 1993, 12, 4188. (b) Hii, K. K. M.; Claridge, T. D. W.; Brown. J. M.; Smith, A.; 

Deeth, R. J. Helv. Chim. Acta 2001, 84, 3043. 
119 Rankic, D. A.; Lucciola, D.; Keay, B. A. Tetrahedron Lett. 2010, 51, 5724. 
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triflate counteranion together with the coordination of isoquinoline N, promotes a cationic 

pathway for the dynamic kinetic asymmetric Heck reaction of heterobiaryl sulfonates. 

We first, employed the readily optimized conditions for endocyclic olefins. 

However, the reaction between rac-3b and 8 afforded the product 13b with good but not 

excellent enantioselectivity (entry 4, Table II.6), and an additional optimization was 

required, in particular regarding a screening of ligands (Table II.6). 

Table II.6 – Ligand screening for the reaction of rac-3b and butyl vinyl ether 8. 

 

Entrya Ligand (L) Conv. (%)b (S)-13:(S)-13’bb ee (%)c 

1 (R)-BINAP (L1) >99 >20:1 59 

2 (R)-H8-BINAP (L2) >99 >20:1 35 

3 (R)-Tol-BINAP (L3) >99 >20:1 33 

4 (R)-DM-BINAP (L4) >99 >20:1 83 

5 (R)-MeO-BIPHEP (L5) n.d. n.d. 51 

6 (R)-DM-SEGPHOS (L7) n.d. n.d. 73 

7 Josiphos SL-J002-1 (L9) 80 >20:1 92 

8 (R)-tBu-PHOX (L11) <5 n.d. n.d. 

9 (R,R)-Me-DUPHOS (L14) <5 n.d. n.d. 

10 (R)-3,5-Xyl-MeOBIPHEP (L18) n.d. n.d. 78 

11 (R)-DTBM-SEGPHOS (L19) <5 n.d. n.d. 

12 Walphos SL-W001-1 (L20) >99 >20:1 67 

13 Josiphos SL-J003-1 (L21) n.d. n.d. 34 

14 Josiphos SL-J005-1 (L22) n.d. n.d. 37 

15 Josiphos SL-J009-1 (L23) n.d. n.d. 35 
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16 Josiphos SL-J011-1 (L24) n.d. n.d. 81 

17 Josiphos SL-J013-1 (L25) 60 >20:1 90 

18 Josiphos SL-J216-1 (L26) n.d. n.d. 59 

19 Josiphos SL-J505-2 (L27) n.d. n.d. 82 

20d Josiphos SL-J002-1 (L9) 95 >20:1 92 

a Reaction performed at 0.1 mmol of rac-3b. b Determined by 1H-NMR spectroscopy. c Determined 

by chiral HPLC analysis. d Reaction allowed for 24h. 

As expected, full selectivity towards the branched product was observed with all 

the ligands screened; no traces of linear product appeared. Although full conversion was 

obtained with other BINAP analogues, there was no improvement on the enantioselectivity 

(entries 1-3, Table II.6). Only ferrocenyl-based Josiphos ligands provided better results 

than (R)-DM-BINAP. In particular, L9 and L25 allowed us to reach over 90% ee, although 

a slightly lower conversion was observed (entries 7 and 17, Table II.6, respectively). The 

Josiphos SL-J002-1 (L9) ligand showed the best equilibrium between reactivity and 

selectivity, with a 92% ee and 80% conversion, and was then used to explore the scope of 

this reaction. It was also observed that, under these conditions, longer reaction times (24h 

instead of 18h) resulted in almost full conversion with no erosion on selectivity. (entry 20, 

Table II.6). 



103 
 

 

Figure II.3 – Ligands screened for the dynamic kinetic asymmetric Heck reaction between rac-3b and 8. 

In this case, with acyclic terminal alkenes, the resulting heterobiaryls display only 

axial chirality; no additional stereocentres are generated. Nonetheless, highly interesting 

and functionalized axially chiral heterobiaryl structures are also obtained. 
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With the optimized conditions in hands, the scope of this transformation was 

explored using vinyl ethers with different alkyl substituents, and N-methyl vinyl acetamide 

(Scheme II.26).  

 

Scheme II.26 – Dynamic kinetic asymmetric Heck reaction: acyclic olefins scope. aL4 was used instead. 

The absolute configuration was assigned by analogy to that observed at the 

stereogenic axis for the reaction with endocyclic olefins. The resulting products could be 

isolated in good yields and good to excellent enantioselectivities. The best results, were 

obtained with the model heterobiaryl nonaflate rac-3b, with enantiomeric excesses over 

90% for all the vinyl ethers employed (13-16b). When structural modifications on the 

heterobiaryl frame were introduced (13c, 15b, 16e), the selectivities suffered a slightly 

decrease (80-87% ee), with moderate to good yields in all cases. 
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Remarkably, the use of vinyl acetamides was limited to N-methyl vinyl acetamide: 

other structural modifications resulted in disappointing results (Figure II.4). Unlike vinyl 

ethers, ligand L9 induced no reactivity, and (R)-DM-BINAP L4 was used instead. 

 

Figure II.4 – Different non-reactive vinyl acetamides studied under optimized conditions. 

It can be assumed that N-Boc protection of vinyl acetamide decreases the electronic 

richness of the alkene, preventing its coordination to the Pd(II) centre. Additionally, steric 

factors may also contribute to the lack of reactivity; as may occur with the N-benzyl 

derivative. 

II.3.5. Hydroarylation of 2,5-norbornadiene 

Some preliminary experiments also demonstrated that this DYKAT methodology 

could be extended to the hydroarylation of a bicylic olefin such as 2,5-norbornadiene.  

In fact, the reaction of 2,5-norbornadiene with rac-3b in the presence of formic 

acid as hydride source and L4 as the ligand afforded 18 as a single diastereomer in 98% ee, 

but in moderate yield. Remarkably, no double hydroarylation was observed in this 

transformation (Scheme II.27). The absolute configuration of product ent-18·HCl, isolated 

from a scale-up experiment using (S)-DM-BINAP as the ligand, was determined by single-

crystal X-ray diffraction analysis, showing an (Ra,S,R,R) configuration, as shown in 

Scheme II.28. Noteworthy, this axis configuration is consistent with the uniform 

stereochemical outcome observed for the dynamic kinetic asymmetric Heck products 5 or 

7. 
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Scheme II.27 – Hydroarylation of 2,5-norbornadiene with rac-3b. In this case, the reaction was repeated with 

L4 enantiomer (S)-DM-BINAP in higher scale. 

II.3.6. Control experiments 

In order to get insight about the reaction mechanism and limitations, some control 

experiments were performed (Scheme II.28). The first one consisted on the reaction 

between 2,3-dihydrofuran 4 with triflates rac-3j and rac-3k, affording the expected Heck 

product 5j and 5k, respectively, with migrated double bond exclusively. However, the 

resulting products proved to be configurationally labile: after isolation, the pure product 

appeared as 1:1 mixture of diastereomers. This phenomenom was also previously observed 

by other authors; changing from alkyl to O-alkyl substituent at the ortho position results in 

a significant decrease of the rotational barrier, and the consequent loss of configurational 

stability.120 

Then, the influence of a substitution at the C( to isoquinolyl nitrogen atom was 

also studied. A lack of reactivity was observed when introducing a phenyl group at this 

                                                                 
120 Min, C.; Lin, Y.; Seidel, D. Angew. Chem. Int. Ed. 2017, 56, 15353. 
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position (rac-3l). A possible explanation arises from the steric hindrance of the aryl ring 

that prevents the coordination of the nitrogen and further oxidative addition.  

 

Scheme II.28 – Control experiments. 

The reaction with biphenyl nonaflate 3m was also studied, leading to the expected 

Heck product in high selectivity but a negligible 9% ee. The result with this simpler system 

highlights the importance of a synergistic effect between the chiral ligand and the 

heterobiaryl moiety during the stereocontrolling step of the reaction. Moreover, no 

coupling product was formed in the reaction with the more sterically demanding 

heterobiaryl triflate analogue rac-3n, showing that the coordinating isoquinolyl N atom is 

required to assist the oxidative addition step. A similar situation appears with N-oxide rac-

3o, where the isoquinolyl N is blocked for coordination (and therefore assistance for the 

oxidative addition can only be provided by the oxygen) indicating that the formation of a 
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five membered cationic palladacycle is also essential to reactivity, and the six membered 

palladacycle is not a valid alternative. 

Finally, a very interesting result was obtained when 1-(2-bromonaphthalen-1-

yl)isoquinoline rac-3b(Br) was used as the starting material, in combination with NaOtBu 

as base. The non-isomerized product 5’b was exclusively formed in 93% ee. It is assumed 

that a Br→OtBu ligand exchange occurred, triggered by precipitation of NaBr, insoluble in 

toluene.117 Hence, the main difference with the reaction from 3b is the higher basicity and 

coordinating ability of OtBu counteranion compared to OTf. The lower reactivity observed 

could be then explained by the lower concentration of the reactive intermediate II, in 

equilibrium with the unproductive neutral species II(OtBu) since it is not easy for the 

neutral olefin to displace this counteranion (Scheme II.29A). The exclusive formation of 

5’b could be attributed to a fast deprotonation of the intermediate (Sa,S)-IV(OtBu) by the 

base with respect to the reinsertion of Pd (Scheme II.29B). 



109 
 

 

Scheme II.29 – Control experiment performed between rac-3b(Br) and 4. 

II.3.7. Representative transformations  

Compound (Sa,S)-7b was chosen to illustrate the synthetic utility of the products 

synthesized through this methodology. The most direct transformation with this compound 

is the deprotection of the N-Boc group. Treatment with TFA in dichloromethane afforded 

exclusively the imine product (Sa,S)-20b presumably formed from enamine (Sa,S)-19b after 

a rapid enamine-imine equilibrium (Scheme II.30). 
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Scheme II.30 – N-Boc deprotection of asymmetric Heck reaction product (Sa,S)-7b. 

This cyclic imine could be seen as a N,N ligand by itself. Moreover, it was 

employed in combination with [PdCl(allyl)]2 and AgSbF6 for the synthesis of the chiral Pd 

complex 21, in which the two possible conformations of the allyl ligand could be observed 

by NMR (Scheme II.31). 

  

Scheme II.31 – Synthesis of [Pd(allyl)(Sa,S)-20b] complex 21. 

Additionally, reduction of the imine (Sa,S)-20b with NaBH4, afforded a 

bifunctional pyrrolidine derivative (Sa,S)-22b with an appealing structural frame for its use 

in asymmetric organocatalysis as a proline-type bifunctional organocatalysts (Scheme 

II.32).  

 

Scheme II.32 – Reduction of imine (Sa,S)-20b for the synthesis of proline-type bifunctional organocatalyst. 
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Importantly, no epimerization was observed during any of these transformations, 

and highly functionalized heterobiaryls with both central and axial chirality with potential 

uses as ligands or catalysts have been obtained. 

II.3.8. Mechanistic study 

Later on, DFT calculations were carried out by Professor Enrique Gómez Bengoa 

from University of Pais Vasco (UPV-EHU) in order to gain a deeper insight into the 

mechanism and the origin of the high enantio- and diastereoselectivities observe in this 

reaction. 

We first assumed a fundamental catalytic cycle as the one described in II.2.1., 

consisting on: [a] oxidative addition of sulfonate substrates 3 to Pd(0) source providing 

cationic intermediate (→I), [b] transligation, or alkene coordination (→II), [c] migratory 

insertion of this alkene to PdII−C bond (→III), [d] double bond reinstallation by -hydride 

elimination (→IV), [e] palladium decoordination leading to final minor products 5’ or [f] 

reinsertion (→V) and a second -hydride elimination (→VI), to afford double bond 

migration products 5 after Pd decoordination (Scheme II.33).121 

                                                                 
121 For a theoretical study of the asymmetric Heck reaction using P,N-ligands see: Henriksen, S. 

T.; Norrby, P.-O.; Kaukoranta, P.; Andersson, P. G. J. Am. Chem. Soc. 2008, 130, 10414. 
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Scheme II.33 – Fundamental catalytic cycle. Depicted for the formation of (Sa,S)-5/7 and (Sa,S)-5’/7’. 

The model reaction between rac-3b and 4 using ligand L4 under the optimal 

conditions was chosen to perform the computational studies. As mentioned above, this 

reaction can lead to eight possible isomeric products by combination of the different 

configurations of the stereogenic axis and centre, and the final position of the double bond 

(see Scheme II.18). 



113 
 

 

Scheme II.34 – Computed energies for the atropisomerization process. 

The DFT studies started from diastereomeric complexes (Sa)-A (considered G = 0) 

and (Ra)-A (ΔG = +1.0 kcal/mol) formed after coordination of isoquinolyl nitrogen from 

both substrate enantiomers 3b to [Pd0(L4)] catalyst (Scheme II.34). Transition states (Ra)-

TS0 and (Sa)-TS0 for the oxidative addition step were located for both atropisomers at ΔG⧧ 

= 18.4 and 32.4 kcal/mol, respectively, leading to intermediates (Sa)-I and (Ra)-I of similar 

energies (ΔG = −17.5 and −17.4 kcal/mol). The displacement of the triflate by the 

isoquinoline N atom to form cationic intermediates (Sa)-I+ and (Ra)-I+ provides an 

additional stabilization of 20.2 and 22.5 kcal/mol, respectively. It is necessary that these 

diastereomeric Pd(II) intermediates interconvert into each other in a fast equilibrium for 
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the dynamic kinetic transformation to take place. Subsequently, the later steps must present 

different activation energies for the diverse diastereomeric transition states. In fact, a low 

barrier for this epimerization was computed (TSepi: ΔG⧧ = +21.0 kcal/mol), showing the 

affordability of the rotation around the stereogenic axis at this point. 

As was anticipated, the coordination of dihydrofuran 4 to form intermediates II in 

the next step requires decoordination of the isoquinolyl N and rotation of the biaryl group 

above or below the coordination plane; thus, fixing the configuration of the stereogenic 

axis. Surprisingly, calculations indicate that this ligand exchange process is concerted, 

which means that in the located transition states TS1, the dihydrofuran molecule is moving 

into the coordination sphere of palladium as the same time as the isoquinoline is rotating 

away from the metal centre. In (Sa)-TS1, the Pd−N and Pd−alkene distances are 3.2 and 

3.7 Å respectively. The high activation barrier for this process can be attributed to the 

crowded environment in which the ligands are moving (i.e. ΔG⧧ = 23.2 kcal/mol for (Ra)-

TS1) (Figure II.5).  
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Figure II.5 – Computed energies for key intermediates and transition states performed at the 

M06/def2tzvpp//B3LYP/6-31G(d,p) (Pd,SDD) (IEFPCM,toluene) level. Selected 3D strutures are inllustrated 

using CYLview.122 

In the next step, alkene insertion into the C(Aryl)−Pd bond, four different transition 

states (TS2) were located for the four forming diastereomers: the two orientations for the 

isoquinoline ring, and the two possible alkene coordination modes, above or below the 

coordination plane in each case. Noteworthy, some of them present relatively low 

activation energies, with a minimum of ΔG⧧ = 10.9 kcal/mol for (Ra,R)-TS2, with an energy 

value actually lower than that of the previous step, (Ra)-TS1. In contrast, the highest 

activation energy (ΔG⧧ = 13.9 kcal/mol) corresponds to (Sa,S)-TS2, which is in contrast 

with the experimental results, since Sa,S is always obtained as the major stereoisomer, with 

                                                                 
122 Legault, C. Y. CYLview, 1.0b; Université de Sherbrooke: Sherbrooke, Canada, 2009; 

http://www.cylview.org  
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high levels of selectivity (in some cases, the only isomer observed). This fact suggests that 

TS2 might not be the rate determining nor the stereocontrolling step, which should 

therefore be located at a later stage in the catalytic cycle. 

The reaction evolves through TS3 to reinstall the alkene functionality after a β-

hydride elimination. It was also found that this step presents an important activation barrier, 

especially due to the high stability of the insertion intermediate III. Interestingly, the 

isomer preference reverses at this point, and (Sa,S)-TS3 becomes the most favoured 

diastereomer (ΔG⧧
I→TS3 = 12.4 kcal/mol), in agreement with the experimental results. The 

corresponding diastereomeric transition states (Ra,S)-TS3 or (Sa,R)-TS3 are very high in 

energy (ΔG⧧
I→TS3 = 25.4 and 18.0 kcal/mol, respectively), while (Ra,R)-TS3 has an 

activation barrier of ΔG⧧
I→TS3 = 18.2 kcal/mol, consistent values for the high levels of 

diastereoselectivity observed. Therefore, TS3 becomes a solid candidate to be the 

stereodetermining step of the reaction. This proposal requires reversibility of TS2 step, and 

indeed, the barrier for the reverse process from (Ra,R)-III to (Ra,R)-TS2 shows an 

affordable energy value of 21.4 kcal/mol. On the other hand, after inspection of the 

structure of the elimination transition states (TS3) it becomes evident that they cannot be 

directly accessed from the previous III intermediates. A large reorganization of the biaryl 

moiety must take place to prepare the system for the β-hydride elimination step. 

Furthermore, a second intermediate structures III’ were located, presenting an agostic 

interaction of Pd with the adjacent C−H bond from the alkene, immediately preceding the 

β-hydride elimination. IRC calculations starting from TS2 and TS3 respectively, were also 

performed in order to confirm the participation of intermediates III and III’ in the 

mechanism. Unfortunately, suitable transition state(s) for the conversion of intermediates 

III into III’ were not possible to find, but looking closely at their structures, a comparative 

analysis reveals that it is required a major reorganization in a sterically very crowded 

environment. Moreover, this reorganization appears to be particularly complex for the 

(Ra,R) isomer. For instance, the required the change in the Psyn−Pd−C3(furane)−C4(furane) 

dihedral angle in these species is illustrative: from (Ra,R)-III to (Ra,R)-III’ this angle moves 

from 66.6° to 150.5°, while the same rotation in the (Sa,S) pairs is significantly shorter 
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(from −93.0° to −144.0°; Figure II.6). Furthermore, a potential energy surface scan (a 

mathematical function that gives the energy of a molecule as a function of its geometry123) 

was performed for the variation of the dihedral angle in (Sa,S)-III from 93° to 144° without 

any remarkable limitation, while the angle in (Ra,R)-III presents a restricted rotation at the 

interval between 67° and 110° due to the steric collision between the isoquinoline and the 

aryl phosphine moieties at that point; therefore, the rotation to 150.0° would not be easily 

affordable. To complete this rotation, the phosphines moieties have to move largely aside 

with the significant energetic cost associated. 

 

Figure II.6 – Comparison of intermediates III and III′ in (Sa,S) and (Ra,R) series. Ligands omitted for clarity. 

                                                                 
123 Lewars E.G. (Ed). (2011). The Concept of the Potential Energy Surface. In: Computational 

Chemistry. Dordrecht: Springer. 
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From this point forward, intermediates IV can evolve to either the minor detected 

products 5’ by decoordination or, after reinsertion [→V via TS4] and second β-hydride 

elimination [→VI via TS5], the major (or unique, in some cases) products 5. The activation 

energies for these last steps are very low (ΔG⧧ = 0.2 and 4.2 kcal/mol for (Sa,S)-TS4 and 

(Sa,S)-TS5, respectively) and, therefore, they would not have any relevant influence on the 

stereochemical outcome of the reaction.  

The main conclusion that could be drawn from this mechanistic discussion is that 

the combination of the reversibility at TS2, together with a large energy difference between 

the isomeric TS3 transition states and the difficulties for the reorganization from III to III’ 

can explain the preferential formation of the (Sa,S)-5/7 isomers. This analysis provides an 

unprecedented mechanistic profile that appears to be governed by the heterobiaryl moiety. 

In sharp contrast, the migratory insertion is responsible for the stereochemical outcome of 

the reaction in simpler systems and, in this cases, the asymmetric Heck reaction using (R)-

BINAP or (R)-DM-BINAP ligands results in the formation of major products with the R 

configuration in low to moderate enantiomeric excesses.  
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II.4 Conclusions.  

To summarize this chapter, we have developed a novel methodology for the 

synthesis of functionalized heterobiaryls bearing both central and axial chirality based on 

a dynamic kinetic asymmetric Heck reaction. The resulting products were obtained with 

excellent yields and regio-, diastereo- and enantioselectivities. Furthermore, the versatility 

of these enantioenriched products has been demonstrated through some transformations 

that allowed us to obtain highly interesting structures such as a N,N-ligand (Sa,S)-20b or a 

novel class of bifunctional proline-type organocatalyst (Sa,S)-22b with no precedents in 

literature. Importantly, no erosion on the enantiopurity was observed during any of these 

transformations. 

Additionally, it can be concluded that the previously described DYKAT approach 

for the synthesis of axially chiral heterobiaryls, can be extended, by selecting the proper 

transformation, to the simultaneous generation of central and axial chirality elements in 

heterobiaryl skeletons.  
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II.5. Experimental Section. 

II.5.1. Synthesis of alcohols precursors to nonaflates substrates. 

Synthesis of 1-(Isoquinolin-1-yl)-4-methylnaphthalen-2-ol 

 

Following the described procedure for borylation of 1-(4-methylnaphthalen-1-

yl)isoquinoline (933 mg, 3.47 mmol),113 without further purification of the resulting 

product, the reaction crude was dissolved in THF (50 mL) and treated with a 1:1 mixture 

of H2O2 (30%)/NaOH (20 mL, 2M aq.). After stirring for 30 min at room temperature, the 

reaction mixture was diluted with CH2Cl2 (5 mL) and washed with NH4Cl (aq.). The 

organic layer was dried over MgSO4, filtered, concentrated, and the residue was purified 

by flash chromatography on silica gel (1:1 EtOAc/n-hex) to give the desired product (950 

mg, 96%) as a yellowish amorphous solid. 

1H-NMR (400 MHz, CDCl3/MeOD):  8.58 (d, J = 5.7 Hz, 1H), 7.94 (d, J = 8.3 Hz, 1H), 

7.89 (d, J = 8.2 Hz, 1H), 7.74 (d, J = 5.7 Hz, 1H), 7.66 (t, J = 7.4 Hz, 1H), 7.55 (d, J = 8.4 

Hz, 1H), 7.36 (t, J = 7.9 Hz, 1H), 7.29 (t, J = 8.3 Hz, 1H), 7.17 (t, J = 7.9, Hz, 1H), 7.08 (s, 

1H), 6.98 (t, J = 8.2 Hz, 1H), 2.88 (br s, 1H), 2.66 (s, 3H).  

13C-NMR (100 MHz, CDCl3/MeOD): δ 157.9, 152.1, 141.6, 137.4, 136.7, 133.7, 130.7, 

128.6, 128.0, 127.8, 127.4, 126.8, 126.2, 125.1, 124.1, 122.9, 120.7, 119.2, 116.0, 19.4.  

HRMS (ESI) calculated for C20H16NO (M + H+) 286.1226. Found 286.1224. 
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II.5.2. General procedure for the synthesis of nonaflates 3g and 3h.  

Following a described procedure,124 over a suspension of alcohol precursor (1.0 

eq.) and K2CO3 (1.5 eq.) in dry acetonitrile (0.5 M), perfluorobutanesulfonyl fluoride (90%, 

1.2 eq.) was added in one portion, and the resulting mixture was vigorously stirred for 24 

h. After completion (TLC monitoring), the reaction mixture was filtered through a pad of 

celite, the solvent was removed in vacuum, and the residue was purified by flash column 

chromatography over silica gel.  

Synthesis of 1-(Isoquinolin-1-yl)-4-methylnaphthalen-2-yl-1-nonaflate. 3g 

 

Following the general procedure from the alcohol precursor, purification afforded 

3g (1.33 g, 70%) as a yellow amorphous solid. 

1H-NMR (400 MHz, CDCl3): δ 8.75 (d, J = 5.7 Hz, 1H), 8.13 (d, J = 8.5 Hz, 1H), 7.95 (d, 

J = 8.3 Hz, 1H), 7.82 (d, J = 5.7 Hz, 1H), 7.70 (t, J = 8.1 Hz, 1H), 7.59 (t, J = 8.1, Hz, 1H), 

7.45–7.37 (m, 4H), 7.27 (d, J = 8.1 Hz, 1H), 2.86 (s, 3H).  

13C-NMR (100 MHz, CDCl3): δ 154.2, 144.5, 142.5, 138.8, 136.3, 133.2, 131.8, 130.5, 

128.6, 127.6, 127.5, 127.4, 127.2, 127.0, 126.9, 124.5, 121.1, 119.9, 19.8, (C from 

nonaflate group not observed).  

19F-NMR (377 MHz, CDCl3): δ-80.74 (t, J = 9.7 Hz), -110.20 – -110.52 (m), -121.03 – -

121.38 (m), -125.82 – -126.37 (m).  

HRMS (ESI) calculated for C24H15F9NO3S (M + H+) 568.0623. Found 568.0613. 

                                                                 
124 Shekhar, S.; Dunn, T. B.; Kotecki, B. J.; Montavon, D. K.; Cullen, S. C., J Org Chem, 2011, 

76, 4552. 
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Synthesis of 1-(Isoquinolin-1-yl)pyren-2-yl-1-nonaflate. 3h 

 

Following the procedure for the synthesis of 1-(Isoquinolin-1-yl)-4-

methylnaphthalen-2-ol, starting from 1-(pyren-1-yl)isoquinoline¡Error! Marcador no definido. (830 

mg, 2.52 mmol), without isolation of the resulting alcohol, the residue was subjected to the 

described general procedure for the synthesis of nonaflates to afford 3h (285 mg, 18%) as 

a yellowish amorphous solid.  

1H-NMR (400 MHz, CDCl3): δ 8.83 (d, J = 5.7 Hz, 1H), 8.33 (d, J = 7.5 Hz, 1H), 8.29 (s, 

1H), 8.27 (d, J = 7.6 Hz, 1H), 8.24 (d, J = 7.6 Hz, 1H), 8.19 (d, J = 9.0 Hz, 1H), 8.10 (t, J 

= 7.6 Hz, 1H), 8.0 (d, J = 9.0 Hz, 2H), 7.89 (d, J = 5.7 Hz, 1H), 7.75–7.71 (m, 1H), 7.49 

(d, J = 9.2 Hz, 1H), 7.42 (d, J = 3.6 Hz, 2H).  

13C-NMR (100 MHz, CDCl3) δ 154.6, 145.3, 142.7, 136.4, 132.8, 132.1, 131.1, 130.6, 

130.5, 129.7, 129.6, 128.9, 127.7, 127.1, 127.0, 126.9, 126.7, 126.6, 126.6, 126.4, 124.8, 

124.0, 123.8, 121.2, 116.5, (C from nonaflate group not observed).  

19F-NMR (377 MHz, CDCl3): δ -76.49 – -88.67 (m), -107.89 – -113.04 (m), -120.07 – -

122.48 (m), -124.94 – -128.75 (m).  

HRMS (ESI) calculated for C29H15F9NO3S (M + H+) 628.0623. Found 628.0615. 

II.5.3. General procedure for the Dynamic Kinetic Asymmetric Heck Reaction 

A flame-dried Schlenk tube was charged with the corresponding heterobiaryl 

sulfonate rac-3b-i (0.1 mmol), Pd(dba)2 (5 mol%, 2.9 mg) and ligand L4 or L9 (6 mol%). 

After three cycles of vacuum-argon, anhydrous solvent (0.5 mL) was added and the 

resulting mixture was stirred for 20 min at room temperature. Then Et3N (0.3-0.5 mmol) 

and the corresponding olefin (8 eq. of 4, 5 eq. of 6 or 3 eq. of 8-12) were sequentially added 
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and the resulting mixture was stirred at 80 C for 18-96 hours. The reaction crude was 

allowed to reach room temperature, then brine (5 mL) was added and the resulting mixture 

was extracted with EtOAc (4  3 mL). The collected organic phases were dried over 

anhydrous Na2SO4, filtered, concentrated, and the residue was purified by column 

chromatography on silica gel using different CH2Cl2/EtOAc and Toluene/EtOAc mixtures.  

Note: The racemic products were prepared by heating at 80 C a mixture of the 

corresponding starting heterobiaryl sulfonate (1.0 eq.), DIPEA (3.0 eq.) and olefin (5.0-

8.0 eq.) in 1 mL of solvent, using ()-BINAP (12 mol%)/Pd(dba)2 (10 mol%) as catalyst. 

Then reaction mixture was subjected to the same work-up than described for the 

asymmetric version, and both isomeric products were separated from reaction crude by 

preparative TLC prior to HPLC analysis. 

Synthesis of (S)-1-{2-[(S)-2,3-Dihydrofuran-2-yl]naphthalen-1-

yl}isoquinoline. 5b 

 

Following the general procedure from 3b and 4, after 18 h and further purification 

by flash chromatography (CH2Cl225:1 CH2Cl2/EtOAc) afforded 5b (29 mg, 90%) as a 

light-yellow solid. The pure product was crystallized by slow diffusion of n-pentane into a 

solution of the product in DCM to give pale yellow prisms suitable for X-Ray analysis. 

[]20
D −4.7 (c 0.51, CHCl3) for 97% ee.  

1H-NMR (400 MHz, CDCl3): δ 8.71 (d, J = 5.7 Hz, 1H), 8.05 (d, J = 8.7 Hz, 1H), 7.93 (t, 

J = 7.7 Hz, 2H), 7.82 (d, J = 8.7 Hz, 1H), 7.78 (dd, J = 5.8 and 0.8 Hz, 1H), 7.69 (ddd, J = 

8.2, 6.7 and 1.3 Hz, 1H), 7.49 (dd, J = 8.5 and 1.1 Hz, 1H), 7.47–7.42 (m, 1H), 7.42–7.38 

(m, 1H), 7.25 (td, J = 7.6, 6.8 and 1.3 Hz, 1H), 7.01 (dd, J = 8.6 and 1.1 Hz, 1H), 6.38 (d, 

J = 2.6 Hz, 1H), 5.02 (t, J = 10.0 Hz, 1H), 4.90 (q, J = 2.6 Hz, -1H), 3.04–2.29 (m, 2H).  
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13C-NMR (100 MHz, CDCl3) δ 159.3, 145.3, 142.5, 139.3, 136.2, 133.3, 133.0, 132.3, 

130.6, 130.0, 128.5, 128.0, 127.8, 127.3, 126.9, 126.5, 126.2, 125.9, 123.0, 120.4, 99.6, 

80.3, 38.4.  

HRMS (ESI) calculated for C23H18NO (M + H+) 324.1383. Found 324.1381.  

HPLC (AD-H column, 85:15 n-hex/IPA , 30 C, 1.0 mL/min): tR 7.32 min (minor) and 9.56 

min (major). 

M. p. 68-70 °C. 

Synthesis of (S)-1-{2-[(S)-2,5-Dihydrofuran-2-yl]naphthalen-1-

yl}isoquinoline. 5’b 

 

Following the general procedure from 3b(Br)125 and 4, with NaOtBu instead of 

DIPEA, after 72 h and further purification by flash chromatography (CH2Cl225:1 

CH2Cl2/EtOAc) afforded 5’b (6.5 mg, 20%) as a light-yellow amorphous solid. 

[]20
D −80.8 (c 0.08, CHCl3) for 93% ee.  

1H-NMR (400 MHz, CDCl3): δ 8.75 (d, J = 5.8 Hz, 1H), 8.06 (d, J = 8.6 Hz, 1H), 8.00 (d, 

J = 8.2 Hz, 1H), 7.94 (d, J = 8.2 Hz, 1H), 7.88 (d, J = 5.9 Hz, 1H), 7.77 (t, J = 7.6 Hz, 1H), 

7.67 (d, J = 8.5 Hz, 1H), 7.57 (d, J = 8.4 Hz, 1H), 7.47 (td, J = 7.7 and 3.1 Hz, 2H), 7.28 

(dd, J = 8.5 and 7.0 Hz, 1H), 6.97 (d, J = 8.5 Hz, 1H), 6.12 – 6.02 (m, 1H), 5.96 (dt, J = 

6.3 and 1.9 Hz, 1H), 5.40 (td, J = 4.2 and 2.0 Hz, 1H), 4.92 (ddt, J = 12.9, 6.3 and 2.0 Hz, 

1H), 4.64 (ddt, J = 12.9, 4.2 and 1.9 Hz, 1H). 

                                                                 
125 Thaler, T.; Geittner, F.; Knochel, P. Synlett, 2007, 17, 2655. 
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13C-NMR (100 MHz, CDCl3) δ 159.0, 140.7, 138.9, 136.6, 133.0, 132.3, 131.5, 130.8, 

129.8, 128.5, 128.3, 128.1, 127.8, 126.9, 126.6, 126.0, 125.9, 125.9, 124.2, 121.0, 85.6, 

77.3, 76.4.  

HRMS (ESI) calculated for C23H18NO (M + H+) 324.1383. Found 324.1380. 

HPLC (IA column, 85:15 n-hex/IPA , 30 C, 1.0 mL/min): tR 6.52 min (minor) and 7.54 

min (major). 

Synthesis of (S)-4-{2-[(S)-2,3-Dihydrofuran-2-yl]naphthalen-1-

yl}quinazoline. 5c 

 

Following the general procedure from 3c and 4, after 48 h and further purification 

by flash chromatography (CH2Cl220:1 CH2Cl2/EtOAc) afforded 5c (30 mg, 92%) as a 

yellow amorphous solid. 

[]20
D +8.2 (c 0.61, CHCl3) for 94% ee.  

1H-NMR (400 MHz, CDCl3) δ 9.51 (s, 1H), 8.18 (dd, J = 8.6 and 1.0 Hz, 1H), 8.08 (d, J = 

8.7 Hz, 1H), 7.94 (d, J = 8.4 Hz, 2H), 7.82 (d, J = 8.7 Hz, 1H), 7.48 (ddd, J = 7.9, 4.6 and 

1.2 Hz, 3H), 7.30 (ddd, J = 8.3, 6.9 and 1.2 Hz, 1H), 7.00 (dd, J = 8.6 and 1.2 Hz, 1H), 6.37 

(q, J = 2.5 Hz, 1H), 5.01 (dd, J = 10.7 and 9.1 Hz, 1H), 4.92 (q, J = 2.6 Hz, 1H), 2.84 (ddt, 

J = 15.6, 10.7 and 2.4 Hz, 1H), 2.72 (ddt, J = 15.7, 9.1 and 2.4 Hz, 1H) 

13C-NMR (100 MHz, CDCl3): δ 168.5, 154.9, 150.4, 145.3, 139.2, 134.5, 132.9, 131.5, 

130.8, 130.4, 128.8, 128.4, 128.2, 127.0, 127.0, 126.2, 125.6, 125.2, 123.0, 99.6, 80.0, 38.6.  

HRMS (ESI) calculated for C22H17N2O (M + H+) 325.1335. Found 325.1332.  

HPLC (AD-H column, 90:10 n-hex/IPA , 30 C, 0.7 mL/min): tR 16.25 min (major) and 

17.61 min (minor). 
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Synthesis of (S)-1-{2-[(S)-2,3-Dihydrofuran-2-yl]naphthalen-1-

yl}phthalazine. 5d 

 

Following the general procedure from 3d and 4, after 72 h and further purification 

by flash chromatography (CH2Cl210:1 CH2Cl2/EtOAc) afforded 5d (17 mg, 52%) as a 

beige amorphous solid.  

[]20
D +3.4 (c 0.28, CHCl3) for 90% ee.  

1H-NMR (400 MHz, CDCl3): δ 9.67 (s, 1H), 8.10 (d, J = 8.7 Hz, 1H), 8.09 (dt, J = 8.2 and 

1.0 Hz, 1H), 7.94 (d, J = 7.9 Hz, 1H), 7.92 (ddd, J = 8.2, 7.0 and 1.1 Hz, 1H), 7.84 (d, J = 

8.7 Hz, 1H), 7.73 (ddd, J = 8.2, 7.0 and 1.1 Hz, 1H), 7.50–7.45 (m, 1H), 7.47–7.43 (m, 

1H), 7.31–7.25 (m, 1H), 7.01 (dd, J = 8.5 and 1.0 Hz, 1H), 6.36 (q, J = 2.4 Hz, 1H), 5.00 

(dd, J = 10.7 and 9.2 Hz, 1H), 4.93 (q, J = 2.6 Hz, 1H), 2.89 (ddt, J = 15.6, 10.7 and 2.4 

Hz, 1H), 2.78 (ddt, J = 15.9, 9.1 and 2.4 Hz, 1H).  

13C-NMR (100 MHz, CDCl3): δ 159.2, 151.1, 145.1, 140.0, 133.2, 132.9, 132.9, 132.2, 

130.3, 129.8, 128.2, 127.1, 126.8, 126.5, 126.4, 126.2, 126.1, 125.9, 123.1, 99.9, 80.2, 38.5.  

HRMS (ESI) calculated for C22H17N2O (M + H+) 325.1335. Found 325.1334.  

HPLC (AD-H column, 85:15 n-hex/IPA , 30 C, 1 mL/min): tR 18.18 min (minor) and 

24.54 min (major). 
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Synthesis of (S)-2-{2-[(S)-2,3-Dihydrofuran-2-yl]naphthalen-1-yl}-3-

methylpyridine. 5e 

 

Following the general procedure from 3e and 4, after 24 h and further purification 

by flash chromatography (CH2Cl210:1 CH2Cl2/EtOAc) afforded 5e (28.5 mg, 99%) as a 

beige amorphous solid. 

[]20
D −4.9 (c 0.35, CHCl3) for >99% ee.  

1H-NMR (400 MHz, CDCl3) δ 8.62 (dd, J = 4.9 and 1.7 Hz, 1H), 7.97 (d, J = 8.7 Hz, 1H), 

7.92–7.86 (m, 1H), 7.74 (d, J = 8.7 Hz, 1H), 7.72–7.66 (m, 1H), 7.46 (ddd, J = 8.2, 6.8 and 

1.2 Hz, 1H), 7.36 (ddd, J = 8.3, 6.8 and 1.4 Hz, 1H), 7.32 (dd, J = 7.7 and 4.8 Hz, 1H), 7.14 

(dd, J = 8.4 and 1.0 Hz, 1H), 6.44 (q, J = 2.6 Hz, 1H), 5.13 (dd, J = 10.7 and 9.2 Hz, 1H), 

4.95 (q, J = 2.6 Hz, 1H), 2.83 (ddt, J = 15.5, 10.7 and 2.4 Hz, 1H), 2.71 (ddt, J = 15.7, 9.2 

and 2.4 Hz, 1H), 2.03 (s, 3H). 

13C-NMR (100 MHz, CDCl3): δ 157.2, 147.3, 145.3, 137.9, 137.8, 134.8, 133.2, 133.1, 

131.3, 129.1, 128.1, 126.5, 125.8, 125.5, 123.1, 122.7, 99.7, 80.3, 38.2, 18.9.  

HRMS (ESI) calculated for C20H18NO (M + H+) 288.1383. Found 288.1385.  

HPLC (IB column, 98:2 n-hex/IPA , 30 C, 1 mL/min): tR 8.43 min (minor) and 8.92 min 

(major). 
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Synthesis of (S)-1-{2-[(S)-2,3-Dihydrofuran-2-yl]-4-methoxynaphthalen-1-

yl}isoquinoline. 5f 

 

Following the general procedure from 3f and 4, after 96 h and further purification 

by flash chromatography (CH2Cl225:1 CH2Cl2/EtOAc) afforded 5f (19 mg, 53%) as a 

beige amorphous solid. 

[]20
D −34.4 (c 0.17, CHCl3) for 99% ee.  

1H-NMR (400 MHz, CDCl3): δ 8.70 (d, J = 5.7 Hz, 1H), 8.34 (ddd, J = 8.4, 1.4 and 0.7 Hz, 

1H), 7.92 (dt, J = 8.3, 1.0 Hz, 1H), 7.75 (dd, J = 5.8 and 0.9 Hz, 1H), 7.68 (ddd, J = 8.2, 

6.8 and 1.3 Hz, 1H), 7.53 (dd, J = 8.5 and 1.1 Hz, 1H), 7.45–7.41 (m, 1H), 7.41–7.38 (m, 

1H), 7.28–7.24 (m, 1H), 7.12 (s, 1H), 6.95 (ddd, J = 8.5, 1.2 and 0.7 Hz, 1H), 6.40 (q, J = 

2.3 Hz, 1H), 5.01 (t, J = 10.1 Hz, 1H), 4.92–4.90 (m, 1H), 4.12 (s, 3H), 2.76 (q, J = 2.4 Hz, 

1H), 2.73 (q, J = 2.3 Hz, 1H).  

13C-NMR (100 MHz, CDCl3) δ 159.5, 156.5, 145.2, 142.5, 139.6, 136.3, 133.6, 130.5, 

128.8, 127.7, 127.4, 127.0, 126.8, 125.9, 125.3, 125.2, 122.0, 120.3, 100.3, 99.8, 80.7, 55.7, 

38.4.  

HRMS (ESI) calculated for C24H20NO2 (M + H+) 354.1489. Found 354.1487.  

HPLC (AD-H column, 85:15 n-hex/IPA , 30 C, 1.0 mL/min): tR 8.28 min (minor) and 

11.99 min (major). 
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Synthesis of (S)-1-{2-[(S)-2,3-Dihydrofuran-2-yl]-4-methylnaphthalen-1-

yl}isoquinoline. 5g 

 

Following the general procedure from 3g and 4, after 48 h and further purification 

by flash chromatography (CH2Cl210:1 CH2Cl2/EtOAc) afforded 5g (28 mg, 84%) as a 

beige amorphous solid. 

[]20
D −8.3 (c 0.37, CHCl3) for >99% ee.  

1H-NMR (400 MHz, CDCl3) δ 8.70 (d, J = 5.7 Hz, 1H), 8.07 (d, J = 8.4 Hz, 1H), 7.93 (d, 

J = 8.2 Hz, 1H), 7.76 (d, J = 5.7 Hz, 1H), 7.68 (t, J = 7.9 Hz, 1H), 7.64 (s, 1H), 7.51–7.46 

(m, 2H), 7.39 (t, J = 7.6 Hz, 1H), 7.26 (t, J = 8.4 Hz, 1H), 7.02 (d, J = 8.4 Hz, 1H), 6.38 (q, 

J = 2.5 Hz, 1H), 5.50 (t, J = 10.0 Hz, 1H), 4.90 (q, J = 2.5 Hz, 1H), 2.82 (s, 3H), 2.77–2.72 

(m, 2H). 

13C-NMR (100 MHz, CDCl3): δ 159.5, 145.2, 142.4, 138.7, 136.2, 136.0, 132.4, 132.2, 

131.7, 130.5, 128.6, 127.7, 127.4, 126.8, 126.1, 125.7, 124.2, 123.4, 120.3, 99.6, 80.3, 38.3, 

19.8. 

HRMS (ESI) calculated for C24H20NO (M + H+) 338.1539. Found 338.1535.  

HPLC (AD-H column, 90:10 n-hex/IPA , 30 C, 1 mL/min): tR 11.27 min (major, single 

peak observed). 
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Synthesis of (S)-1-{2-[(S)-2,3-Dihydrofuran-2-yl]pyren-1-yl}isoquinoline. 5h 

 

Following the general procedure from 3h and 4, after 48 h and further purification 

by flash chromatography (CH2Cl225:1 CH2Cl2/EtOAc) afforded 5h (26.4 mg, 66%) as a 

light yellow amorphous solid. 

[]20
D +116.4 (c 0.19, CHCl3) for 98% ee. 

1H-NMR (400 MHz, CDCl3): δ 8.82 (d, J = 5.7 Hz, 1H), 8.57 (s, 1H), 8.25 (d, J = 7.6 Hz, 

1H), 8.23 (d, 9.0 Hz, 1H), 8.18 (d, 9.2 Hz, 1H),  8.15 (d, J = 7.0 Hz, 1H), 8.04 (d, J = 7.6 

Hz, 1H), 8.00 (d, J = 8.3 Hz, 1H), 7.90 (d, J = 9.2 Hz, 1H), 7.87 (d, J = 5.7 Hz, 1H), 7.73 

(ddd, J = 8.2, 6.2, 1.7 Hz, 1H), 7.44–7.37 (m, 2H), 7.32 (d, J = 9.2 Hz, 1H), 6.54 (q, J = 

2.4 Hz, 1H), 5.30 (t, J = 9.9 Hz, 1H), 4.97 (q, J = 2.6 Hz, 1H), 2.87 (t, J = 2.4 Hz, 1H), 2.85 

(t, J = 2.4 Hz, 1H). 

13C-NMR (100 MHz, CDCl3) δ 159.5, 145.2, 142.5, 140.0, 136.2, 131.9, 131.3, 131.2, 

130.7, 130.6, 129.9, 128.7, 128.0, 127.9, 127.8, 127.6, 127.3, 126.9, 126.0, 125.4, 125.2, 

125.1, 124.5, 124.1, 121.4, 120.5, 99.5, 80.7, 39.2.  

HRMS (ESI) calculated for C29H20NO (M + H+) 398.1539. Found 398.1532. 

HPLC (AD-H column, 90:10 n-hex/IPA , 30 C, 1.0 mL/min): tR 14.73 min (major) and 

19.70 min (minor). 
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Synthesis of (S)-1-{2-[(S)-2,5-Dihydrofuran-2-yl]pyren-1-yl}isoquinoline. 5’h 

 

Following the general procedure from 3h and 4, after 48 h and further purification 

by flash chromatography (CH2Cl225:1 CH2Cl2/EtOAc) afforded 5’h (5 mg, 13%) as a 

light yellow amorphous solid.  

[]20
D +41.9 (c 0.14, CHCl3) for 91% ee. 

1H-NMR (400 MHz, CDCl3): δ 8.80 (d, J = 5.8 Hz, 1H), 8.40 (s, 1H), 8.22 (d, J = 7.5 Hz, 

1H), 8.16 (d, J = 9.1 Hz, 1H), 8.13 (d, J = 9.0 Hz, 1H), 8.12 (d, J = 7.6 Hz, 1H), 8.02–7.98 

(m, 2H), 7.89 (d, J = 5.8 Hz, 1H), 7.86 (d, J = 9.2 Hz, 1H), 7.74 (t, J = 6.8 Hz, 1H), 7.42–

7.36 (m, 2H), 7.23 (d, J = 9.2 Hz, 1H), 6.14 (br s, 1H), 5.95 (d, J = 4.5 Hz, 1H), 5.62 (br s, 

1H), 5.05 (dd, J = 12.6, 5.5 Hz, 1H), 4.71 (d, J = 12.6 Hz, 1H).  

13C-NMR (100 MHz, CDCl3) δ 159.7, 142.4, 139.3, 136.2, 131.8, 131.5, 131.4, 131.3, 

130.7, 130.6, 129.9, 128.9, 127.9, 127.8, 127.8, 127.6, 127.5, 126.8, 126.0, 125.4, 125.2, 

125.1, 124.5, 124.2, 122.8, 120.5, 86.0, 76.4. 

HRMS (ESI) calculated for C29H20NO (M + H+) 398.1539. Found 398.1532. 

HPLC (IA column, 90:10 n-hex/IPA , 30 C, 1.0 mL/min): tR 11.02 min (major) and 15.99 

min (minor). 
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Synthesis of N-Boc protected (S)-1-{2-[(S)-2,3-dihydro-1H-pyrrol-2-

yl]naphthalen-1-yl}isoquinoline. 7b 

 

Following the general procedure from 3b and 6, after 36 h and further purification 

by flash chromatography (CH2Cl225:1 CH2Cl2/EtOAc) afforded 7b (32 mg, 76%) as a 

light yellow amorphous solid. NMR spectra showed a ca. 3:2 mixture of Boc rotamers 

when the experiment was recorded at 298K. 

[]20
D −19.18 (c 0.50, CHCl3) for 99% ee.   

1H-NMR (400 MHz, CDCl3): δ 8.72 (br s, 1H), 7.98 (d, J = 8.8 Hz, 1H), 7.95–7.90 (m, 

2.4H), 7.78–7.76 (m, 1H), 7.71 (t, J = 7.2 Hz, 1H), 7.57 (br s, 0.6H), 7.52 (d, J = 8.6 Hz, 

1H), 7.41 (br s, 2H), 7.22 (br s, 1H), 6.97–6.90 (m, 1H), 6.77 (br s, 0.6H), 6.61 (br s, 0.4H), 

4.88 (br s, 1H), 4.77 (br s, 1H), 2.82–2.76 (m, 1.6H), 2.67 (br s, 0.4H), 1.40 (s, 3.6H), 1.26 

(s, 5.4H).  

13C-NMR (100 MHz, CDCl3) δ 159.3, 142.6 (br s), 142.4 (br s), 140.6 (br s), 136.3, 132.9, 

132.6 (br s), 130.5 (br s), 130.1 (br s), 129.1 (br s), 128.9 (br s), 127.9, 127.4 (br s), 126.9 

(br s), 126.3, 125.7, 125.3, 122.1 (br s), 121.8 (br s), 120.3, 106.4 (br s), 105.6 (br s), 80.5 

(br s), 58.7 (br s), 41.6 (br s), 28.4. 

HRMS (ESI) calculated for C28H27N2O2 (M + H+) 423.2067. Found 423.2064. 

HPLC (AD-H column, 85:15 n-hex/IPA , 30 C, 1.0 mL/min): tR 4.63 min (minor) and 5.48 

min (major). 
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Synthesis of N-Boc protected (S)-1-{2-[(S)-2,5-dihydro-1H-pyrrol-2-

yl]naphthalen-1-yl}isoquinoline. 7’b 

 

Following the general procedure from 3b and 6, after 36 h and further purification 

by flash chromatography (CH2Cl225:1 CH2Cl2/EtOAc) afforded 7’b (8 mg, 18%) as a 

light yellow solid. NMR spectra showed a ca. 7:3 mixture of Boc rotamers when the 

experiment was recorded at 298K. The pure product was crystallized by slow diffusion of 

n-pentane into a solution of the product in DCM to give pale yellow prisms suitable for X-

Ray analysis. 

[]20
D −205.1 (c 0.47, CHCl3) for 99% ee.   

1H-NMR (400 MHz, CDCl3): δ 8.78 (d, J = 5.7 Hz, 0.7H), 8.74 (d, J = 5.7 Hz, 0.3H), 7.96 

(ddt, J = 27.2, 18.9, 8.6 Hz, 3.4H), 7.82 (d, J = 5.7 Hz, 0.7H), 7.79 (d, J = 5.7 Hz, 0.3H), 

7.78 – 7.68 (m, 1H), 7.61 (d, J = 8.4 Hz, 0.7H), 7.56 (d, J = 8.7 Hz, 0.7H), 7.54 – 7.47 (m, 

0.4H), 7.45 (ddd, J = 8.1, 6.8, 1.1 Hz, 0.8H), 7.43 – 7.34 (m, 1H), 7.29 – 7.18 (m, 1H), 6.97 

(d, J = 8.5 Hz, 0.7H), 6.90 (d, J = 8.5 Hz, 0.3H), 6.07 (dq, J = 6.6, 2.2 Hz, 0.7H), 6.02 – 

5.90 (m, 0.3H), 5.73 – 5.67 (m, 1H), 5.24 (br s, 0.3H), 5.17 (dt, J = 5.3, 2.4 Hz, 0.7H), 4.50 

– 4.15 (m, 2H), 1.45 (s, 2H), 1.29 (s, 7H). 

13C-NMR (100 MHz, CDCl3) δ 159.7, 154.3, 142.6, 138.7, 136.3, 132.8, 132.7, 132.5, 

132.3, 131.9, 130.8, 130.5, 129.4, 129.2, 128.8, 128.2, 128.1, 127.9, 127.7, 127.4, 127.0, 

126.4, 125.7, 125.5, 125.4, 123.7, 123.4, 122.8, 120.5, 80.0, 79.2, 66.6, 54.6, 29.7, 28.6.  

HRMS (ESI) calculated for C28H27N2O2 (M + H+) 423.2067. Found 423.2067. 

HPLC (IA column, 98:2 n-hex/IPA , 30 C, 1.0 mL/min): tR 12.45 min (minor) and 15.45 

min (major). 

M.p. 152-157 °C. 
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Synthesis of N-Boc protected (S)-4-{2-[(S)-2,3-dihydro-1H-pyrrol-2-

yl]naphthalen-1-yl}quinazoline. 7c 

 

Following the general procedure from 3c and 6, after 48 h and further purification 

by flash chromatography (CH2Cl225:1 CH2Cl2/EtOAc) afforded 7c (32 mg, 76%) as a 

light yellow amorphous solid. NMR spectra showed a ca. 1:1 mixture of Boc rotamers 

when the experiment was recorded at 298K.  

[]20
D +6.13 (c 0.30, CHCl3) for 96% ee.  

1H-NMR (400 MHz, CDCl3): δ 9.53–9.49 (br s, 1H), 8.21–8.18 (br s, 1H), 8.01 (d, J = 9.0 

Hz, 1H), 7.97–7.88 (br s, 2H), 7.81 (br s, 0.5H), 7.54 (d, J = 8.5 Hz, 1H), 7.52–7.36 (br s, 

2.5H), 7.28–7.23 (m, 1H), 6.96–6.90 (m, 1H), 6.77 (br s, 0.5H), 6.59 (br s, 0.5H), 4.90–

4.85 (m, 1H), 4.74 (br s, 1H), 2.96–2.85 (m, 1H), 2.77–2.59 (m, 1H), 1.39 (s, 4.5H), 1.21 

(s, 4.5H). 

13C-NMR (100 MHz, CDCl3) δ 168.9, 154.9 (br s), 154.7, 150.7, 150.4, 140.7 (br s), 140.2 

(br s), 134.4 (br s), 134.3, 134.0, 133.6, 132.4  (br s), 132.0, 131.4, 130.3 (br s), 130.1 (br 

s), 129.9, 129.8 (br s), 128.9 (br s), 128.8, 128.4, 128.1 (br s), 127.8, 127.7, 127.3 (br s), 

126.8, 126.7, 126.3, 125.6, 125.4, 125.3, 125.0, 124.8, 122.1 (br s), 121.9 (br s), 106.1 (br 

s), 105.5 (br s), 80.5 (br s), 80.1 (br s), 58.5 (br s), 58.2 (br s), 41.9, 39.7, 28.3. 

HRMS (ESI) calculated for C27H26N3O2 (M + H+) 424.2020. Found 424.2014. 

HPLC (AD-H column, 85:15 n-hex/IPA , 30 C, 1.0 mL/min): tR 4.72 min (minor) and 5.87 

min (major). 
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Synthesis of N-Boc protected (S)-1-{2-[(S)-2,3-dihydro-1H-pyrrol-2-

yl]naphthalen-1-yl}phthalazine. 5d 

 

Following the general procedure from 3d and 6, after 60 h and further purification 

by flash chromatography (CH2Cl210:1 CH2Cl2/EtOAc) afforded 7d (34 mg, 80%) as a 

yellowish amorphous solid. The product was isolated as a mixture of 7d/7’d. NMR spectra 

showed a ca. 3:2 mixture of Boc rotamers when the experiment was recorded at 298K.   

[]20
D −2.3 (c 0.69, CHCl3) for 98% ee.  

1H-NMR (400 MHz, CDCl3): δ 9.66 (s, 1H), 8.11–8.02 (m, 2H), 7.98–7.91 (m, 2H), 7.78 

(br s, 1H), 7.73–7.64 (m, 0.6H), 7.56 (d, J = 8.6 Hz, 1H), 7.55–7.48 (m, 0.4H), 7.43 (br s, 

1H), 7.24 (br s, 1H), 6.96–6.87 (m, 1H), 6.76 (br s, 0.4H), 6.61 (br s, 0.6H), 4.91–4.88 (m, 

1H), 4.70 (br s, 1H), 2.97–2.70 (m, 2H), 1.38 (s, 5.4H), 1.20 (s, 3.6H). 

13C-NMR (100 MHz, CDCl3) δ 159.7 (br s), 151.0, 141.5 (br s), 141.1 (br s), 133.6, 132.8, 

132.8, 132.6, 132.5, 132.4, 130.2-129.6 (br s), 128.3, 128.0 (br s), 127.7 (br s), 126.6-126.4 

(br s), 126.1, 125.9 (br s), 125.6, 125.5, 125.4, 125.2, 122.9, 122.2 (br s), 121.9 (br s), 106.5 

(br s), 105.8 (br s), 80.4 (br s), 80.0 (br s), 58.3 (br s), 41.9 (br s), 39.7 (br s), 28.3. 

HRMS (ESI) calculated for C27H26N3O2 (M + H+) 424.2020. Found 424.2011. 

HPLC (AD-H column, 85:15 n-hex/IPA , 30 C, 1.0 mL/min): tR 7.68 min (minor) and 

13.40 min (major). 



136 
 

Synthesis of N-Boc protected (S)-2-{2-[(S)-2,3-dihydro-1H-pyrrol-2-

yl]naphthalen-1-yl}-3-methylpyridine. 7e 

 

Following the general procedure from 3e and 6, after 48 h and further purification 

by flash chromatography (CH2Cl210:1 CH2Cl2/EtOAc) afforded 7e (26 mg, 70%) as a 

light yellow amorphous solid. NMR spectra showed a ca. 3:2 mixture of Boc rotamers 

when the experiment was recorded at 298K. 

[]20
D −17.1 (c 0.86, CHCl3) for 99% ee. 

1H NMR (400 MHz, CDCl3): δ 8.61 (br s, 1H), 7.89 (d, J = 8.6 Hz, 1H), 7.86 (m, 1H), 7.69 

(d, J = 7.6 Hz, 1H), 7.44 (d, J = 8.6 Hz, 1H), 7.41 (m, 1H), 7.33–7.27 (m, 2H), 7.10 (d, J = 

8.4 Hz, 1H), 6.79 (br s, 0.4H), 6.65 (br s, 0.6H), 4.88 (br s, 1H), 4.80 (br s, 1H), 2.88–2.54 

(m, 2H), 2.18 (br s, 3H), 1.41 (s, 5.4H), 1.26 (s, 2.6H). 

13C NMR (100 MHz, CDCl3) δ 158.4, 157.6 (br s), 151.1 (br s), 147.3–146.9, 146.9, 139.3, 

138.2, 137.8, 137.8, 137.7, 134.1 (br s), 133.6, 132.7, 132.4, 131.9 (br s), 131.7 (br s), 

131.3, 130.3 (br s), 128.9, 128.8, 128.3, 128.3, 128.2, 128.0, 126.3, 126.3, 126.2, 125.7, 

125.3, 125.3, 125.2, 125.0, 122.5 (br s), 122.4, 121.8 (br s), 106.3 (br s), 105.8 (br s), 80.7 

(br s), 79.9 (br s), 58.7, (br s), 58.0 (br s), 39.6 (br s), 28.5, 28.4, 19.2, 18.9. 

HRMS (ESI) calcd for C25H27N2O2 (M + H+) 387.2067. Found 387.2062. 

HPLC (AD-H column, 90:10 n-hex/IPA , 30 C, 1.0 mL/min): tR 4.52 min (minor) and 5.10 

min (major). 
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Synthesis of N-Boc protected (S)-1-{2-[(S)-2,5-dihydro-1H-pyrrol-2-yl]pyren-

1-yl}isoquinoline. 7’h 

 

Following the general procedure from 3h and 6, after 48 h and further purification 

by flash chromatography (CH2Cl225:1 CH2Cl2/EtOAc) afforded 7’h (29.8 mg, 60%) as 

a light yellow amorphous solid. NMR spectra showed a ca 3:1 mixture of Boc rotamers 

when the experiment was recorded at 298K. Data for the major rotamer are given. 

[]20
D −27.6 (c 0.26 CHCl3) for >99% ee. 

1H NMR (400 MHz, CDCl3, 298K): δ 8.82 (d, J = 5.7 Hz, 1H), 8.23–8.18 (m, 2H), 8.16–

8.08 (m, 3H), 8.01–7.97 (m, 2H), 7.85 (d, J = 13.2 Hz, 1H), 7.84 (d, J = 8.7 Hz, 1H), 7.72 

(t, J = 7.6 Hz, 1H), 7.48 (d, J = 8.3 Hz, 1H), 7.32 (t, J = 7.6 Hz, 1H), 7.20 (d, J = 9.2 Hz, 

1H), 6.19 (d, J = 5.9 Hz, 1H), 5.70 (d, J = 6.1 Hz, 1H), 5.36 (br s, 1H), 4.55 (dd, J = 15.6 

and 5.2 Hz, 1H), 4.39 (dd, J = 15.6 and 1.6 Hz, 1H), 1.18 (s, 9H). 

13C NMR (100 MHz, CDCl3) δ 159.6, 154.4, 142.5, 139.1, 136.3, 132.7, 131.8, 131.2, 

130.6, 130.8, 130.3, 128.5, 128.0, 127.9, 127.5, 127.4, 127.0, 125.4, 125.2, 124.9, 124.7, 

124.5, 123.8, 123.2, 121.2, 120.7, 79.9, 66.8, 54.6, 28.5. 

HRMS (ESI) calculated for C34H29N2O2 (M + H+) 497.2214. Found 497.2224. 

HPLC (IA column, 90:10 n-hex/IPA , 30 C, 1.0 mL/min): tR 6.86 min (minor) and 10.08 

min (major). 
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Synthesis of (S)-1-[2-(1-Butoxyvinyl)naphthalen-1-yl]isoquinoline. 13b 

 

Following the general procedure from 3b and 8, after 18 h and further purification 

by flash chromatography (15:1 Toluene/EtOAc + 3% Et3N) afforded 13b (31 mg, 90%) as 

a light yellow amorphous solid. 

[]20
D −27.0 (c 0.65, CHCl3) for 92% ee. 

1H-NMR (400 MHz, CDCl3) δ 8.68 (d, J = 5.7 Hz, 1H), 7.99 (dd, J = 8.6, 0.9 Hz, 1H), 7.92 

(ddt, J = 8.2, 6.2, 0.9 Hz, 2H), 7.77 (d, J = 8.6 Hz, 1H), 7.74 (d, J = 5.8 Hz, 1H), 7.67 (ddd, 

J = 8.2, 6.8, 1.2 Hz, 1H), 7.54 (dq, J = 8.5, 1.0 Hz, 1H), 7.46 (ddd, J = 8.1, 6.7, 1.2 Hz, 

1H), 7.37 (ddd, J = 8.3, 6.8, 1.2 Hz, 1H), 7.28 (ddd, J = 8.3, 6.7, 1.3 Hz, 1H), 7.16 (dd, J = 

8.6, 1.1 Hz, 1H), 4.28 (d, J = 2.4 Hz, 1H), 4.05 (d, J = 2.4 Hz, 1H), 3.31 – 3.23 (m, 1H), 

3.23 – 3.15 (m, 1H), 1.06 – 0.76 (m, 4H), 0.68 (t, J = 7.1 Hz, 3H). 

13C-NMR (100 MHz, CDCl3) δ 161.1, 160.7, 142.1, 135.9, 135.2, 134.3, 133.5, 132.7, 

129.9, 128.9, 128.5, 127.9, 127.8, 126.8, 126.6, 126.5, 126.4, 126.4, 126.0, 119.6, 87.0, 

67.2, 30.3, 19.0, 13.7.  

HRMS (ESI) calculated for C25H24NO (M + H+) 354.1852. Found 354.1848. 

HPLC (IA column, 90:10 n-hex/IPA , 30 C, 1.0 mL/min): tR 6.15 min (minor) and 7.12 

min (major). 

Synthesis of (S)-4-[2-(1-Butoxyvinyl)naphthalen-1-yl]quinazoline. 13c 
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Following the general procedure from 3c and 8, after 18 h and further purification 

by flash chromatography (15:1 Toluene/EtOAc + 3% Et3N) afforded 13c (27.2 mg, 80%) 

as a light yellow amorphous solid. 

[]20
D −20.2 (c 0.40, CHCl3) for 84% ee. 

1H-NMR (400 MHz, CDCl3) δ 9.45 (s, 1H), 8.19 – 8.12 (m, 1H), 8.05 – 8.01 (m, 1H), 7.95 

(d, J = 8.0 Hz, 1H), 7.91 (ddd, J = 8.4, 6.8, 1.5 Hz, 1H), 7.78 (d, J = 8.6 Hz, 1H), 7.56 – 

7.53 (m, 1H), 7.50 (ddd, J = 8.1, 6.8, 1.2 Hz, 1H), 7.45 (ddd, J = 8.2, 6.8, 1.2 Hz, 1H), 7.33 

(ddd, J = 8.3, 6.8, 1.3 Hz, 1H), 7.17 (dd, J = 8.5, 1.0 Hz, 1H), 4.41 (d, J = 2.6 Hz, 1H), 4.12 

(d, J = 2.6 Hz, 1H), 3.22 (t, J = 6.2 Hz, 2H), 0.97 – 0.82 (m, 4H), 0.67 (t, J = 7.1 Hz, 3H). 

13C-NMR (100 MHz, CDCl3) δ 170.0, 160.6, 154.7, 149.9, 135.0, 133.7, 133.4, 131.8, 

131.5, 129.4, 128.4, 128.1, 127.4, 127.4, 126.9, 126.3, 126.2, 126.0, 125.6, 87.5, 67.3, 30.1, 

18.9, 13.6. 

HRMS (ESI) calculated for C24H23N2O (M + H+) 355.1805. Found 355.1809. 

HPLC (AS-H column, 98:2 n-hex/IPA , 30 C, 1.0 mL/min): tR 10.53 min (major) and 

12.92 min (minor). 

Synthesis of (S)-1-[2-(1-Ethoxyvinyl)naphthalen-1-yl]isoquinoline. 14b 

 

Following the general procedure from 3b and 9, after 24 h and further purification 

by flash chromatography (15:1 Toluene/EtOAc + 3% Et3N) afforded 27 mg of a 6:1 mixture 

of 14b (70%) and naphthylisoquinoline as a light yellow amorphous solid 

[]20
D −27.1 (c 0.25, CHCl3) for 94% ee.  

1H-NMR (400 MHz, CDCl3) δ 8.68 (d, J = 5.7 Hz, 1H), 7.99 (dd, J = 8.7, 0.8 Hz, 1H), 7.92 

(dd, J = 8.3, 6.7 Hz, 2H), 7.77 (d, J = 8.5 Hz, 1H), 7.74 (dd, J = 5.7, 0.9 Hz, 1H), 7.67 (ddd, 
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J = 8.2, 6.8, 1.2 Hz, 1H), 7.53 (d, J = 1.0 Hz, 1H), 7.47 (ddd, J = 8.1, 6.7, 1.2 Hz, 1H), 7.38 

(ddd, J = 8.4, 6.8, 1.2 Hz, 1H), 7.32 – 7.26 (m, 1H), 7.17 (dd, J = 8.5, 1.0 Hz, 1H), 4.30 (d, 

J = 2.4 Hz, 1H), 4.05 (d, J = 2.4 Hz, 1H), 3.34 – 3.18 (m, 2H), 0.54 (t, J = 7.0 Hz, 3H). 

13C NMR (100 MHz, CDCl3) δ 160.9, 160.7, 142.1, 135.9, 135.0, 134.3, 133.5, 132.7, 

129.9, 128.9, 128.5, 127.9, 127.8, 126.8, 126.6, 126.5, 126.4, 126.3, 126.0, 119.6, 87.0, 

62.8, 13.4. 

HRMS (ESI) calculated for C23H20NO (M + H+) 326.1539. Found 326.1541. 

HPLC (IA column, 95:5 n-hex/IPA , 30 C, 1.0 mL/min): tR 9.86 min (minor) and 11.15 

min (major). 

Synthesis of (S)-1-{2-[1-(Cyclohexyloxy)vinyl]naphthalen-1-yl}isoquinoline. 

15b 

 

Following the general procedure from 3b and 10, after 24 h and further purification 

by flash chromatography (15:1 Toluene/EtOAc + 3% Et3N) afforded 15b (35 mg, 90%) as 

a light yellow amorphous solid. 

[]20
D −9.3 (c 0.43, CHCl3) for 91% ee. 

1H-NMR (400 MHz, CDCl3) δ 8.68 (d, J = 5.7 Hz, 1H), 7.99 (d, J = 8.6 Hz, 1H), 7.93 (d, 

J = 5.4 Hz, 1H), 7.91 (d, J = 5.6 Hz, 1H), 7.76 (d, J = 8.7 Hz, 1H), 7.74 (d, J = 4.9 Hz, 1H), 

7.66 (ddd, J = 8.2, 6.8, 1.2 Hz, 1H), 7.54 (d, J = 8.4 Hz, 1H), 7.46 (ddd, J = 8.1, 6.8, 1.2 

Hz, 1H), 7.43 – 7.34 (m, 1H), 7.29 – 7.25 (m, 1H), 7.13 (d, J = 8.5 Hz, 1H), 4.27 (d, J = 

2.3 Hz, 1H), 4.04 (d, J = 2.3 Hz, 1H), 3.62 (tt, J = 9.1, 3.4 Hz, 1H), 1.48 (dd, J = 9.1, 3.2 

Hz, 1H), 1.47 – 1.33 (m, 2H), 1.15 – 1.04 (m, 2H), 1.04 – 0.95 (m, 1H), 0.96 – 0.81 (m, 

2H), 0.73 – 0.59 (m, 1H), 0.56 – 0.44 (m, 1H). 
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13C-NMR (100 MHz, CDCl3) δ 160.7, 158.8, 142.1, 136.0, 135.6, 134.3, 133.4, 132.7, 

129.9, 129.0, 128.4, 127.9, 127.8, 126.8, 126.6, 126.6, 126.4, 126.4, 125.9, 120.0, 87.7, 

74.2, 30.6, 30.3, 25.6, 23.8, 23.7. 

HRMS (ESI) calculated for C27H26NO (M + H+)380.2009. Found 380.2005. 

HPLC (IA column, 90:10 n-hex/IPA , 30 C, 1.0 mL/min): tR 6.67 min (minor) and 7.48 

min (major). 

Synthesis of (S)-4-{2-[1-(Cyclohexyloxy)vinyl]naphthalen-1-yl}quinazoline. 

15c 

 

Following the general procedure from 3c and 10, after 24 h and further purification 

by flash chromatography (15:1 Toluene/EtOAc + 3% Et3N) afforded 15c (26.6 mg, 70%) 

as a light yellow amorphous solid. 

[]20
D −19.6 (c 0.44, CHCl3) for 87% ee. 

1H-NMR (400 MHz, CDCl3) δ 9.46 (s, 1H), 8.15 (d, J = 8.5 Hz, 1H), 8.02 (d, J = 8.6 Hz, 

1H), 7.94 (d, J = 8.3 Hz, 1H), 7.90 (t, J = 7.6 Hz, 1H), 7.77 (d, J = 8.6 Hz, 1H), 7.55 (d, J 

= 8.3 Hz, 1H), 7.47 (dt, J = 16.1, 7.6 Hz, 2H), 7.35 – 7.29 (m, 1H), 7.14 (d, J = 8.5 Hz, 

1H), 4.40 (d, J = 2.5 Hz, 1H), 4.10 (d, J = 2.6 Hz, 1H), 3.61 (tt, J = 9.2, 3.6 Hz, 1H), 1.46 

– 1.35 (m, 3H), 1.15 – 0.83 (m, 5H), 0.58 – 0.37 (m, 2H). 

13C-NMR (100 MHz, CDCl3). δ 170.0, 158.4, 154.6, 150.0, 135.4, 133.7, 133.3, 131.8, 

131.4, 129.3, 128.3, 128.1, 127.5, 127.4, 126.9, 126.4, 126.7, 125.9, 125.8, 87.8, 74.5, 30.4, 

30.2, 25.4, 23.8, 23.7. 

HRMS (ESI) calculated for C26H25N2O (M + H+) 381.1961. Found 381.1958. 

HPLC (AD-H column, 85:15 n-hex/IPA , 30 C, 1.0 mL/min): tR 7.61 min (minor) and 8.22 

min (major). 
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Synthesis of (S)-1-{2-[1-(2-Chloroethoxy)vinyl]naphthalen-1-yl}isoquinoline. 

16b 

 

Following the general procedure from 3b and 11, after 18 h and further purification 

by flash chromatography (15:1 Toluene/EtOAc + 3% Et3N) afforded 16b (27 mg, 75%) as 

a yellowish amorphous solid. 

[]20
D −23.6 (c 0.68, CHCl3) for 94% ee.  

1H-NMR (400 MHz, CDCl3) δ 8.69 (d, J = 5.8 Hz, 1H), 8.01 (d, J = 8.5 Hz, 1H), 7.94 (d, 

J = 8.3 Hz, 2H), 7.77 (d, J = 8.6 Hz, 1H), 7.76 (dd, J = 5.7, 0.9 Hz, 1H), 7.70 (ddd, J = 8.2, 

6.8, 1.2 Hz, 1H), 7.54 (dd, J = 8.4, 1.1 Hz, 1H), 7.48 (ddd, J = 8.1, 6.8, 1.2 Hz, 1H), 7.40 

(ddd, J = 8.3, 6.8, 1.2 Hz, 1H), 7.30 (ddd, J = 8.3, 6.8, 1.3 Hz, 1H), 7.18 – 7.13 (m, 1H), 

4.35 (d, J = 2.9 Hz, 1H), 4.08 (d, J = 2.9 Hz, 1H), 3.55 (dt, J = 10.2, 6.5 Hz, 1H), 3.47 (ddd, 

J = 10.2, 6.5, 5.6 Hz, 1H), 2.97 (ddd, J = 11.1, 6.5, 5.6 Hz, 1H), 2.84 (dt, J = 11.2, 6.5 Hz, 

1H). 

13C-NMR (125 MHz, CDCl3) δ 160.6, 160.1, 142.1, 135.9, 134.5, 134.2, 133.6, 132.6, 

130.2, 128.8, 128.7, 127.9, 127.7, 127.1, 126.6, 126.6, 126.5, 126.2, 126.2, 119.8, 88.3, 

67.2, 40.6. 

HRMS (ESI) calculated for C23H19NOCl (M + H+) 360.1150. Found 360.1146. 

HPLC (IA column, 90:10 n-hex/IPA , 30 C, 1.0 mL/min): tR 8.08 min (minor) and 9.56 

min (major). 
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Synthesis of (S)-2-{2-[1-(2-Chloroethoxy)vinyl]naphthalen-1-yl}-3-

methylpyridine. 16e 

 

Following the general procedure from 3e and 11, after 18 h and further purification 

by flash chromatography (15:1 Toluene/EtOAc + 3% Et3N) afforded 16e (29 mg, 90%) as 

a yellowish amorphous solid. 

[]20
D +1.84 (c 0.52, CHCl3) for 80% ee. 

1H-NMR (400 MHz, CDCl3) δ 8.59 (d, J = 4.5 Hz, 1H), 7.91 (t, J = 7.3 Hz, 2H), 7.70 (d, J 

= 8.6 Hz, 1H), 7.64 (d, J = 7.6 Hz, 1H), 7.49 (t, J = 7.5 Hz, 1H), 7.38 (t, J = 7.6 Hz, 1H), 

7.33 – 7.25 (m, 1H), 7.22 (d, J = 8.5 Hz, 1H), 4.32 (d, J = 2.8 Hz, 1H), 4.21 (d, J = 2.8 Hz, 

1H), 3.84 (dt, J = 10.3, 6.4 Hz, 1H), 3.76 (dt, J = 10.7, 5.7 Hz, 1H), 3.45 (dt, J = 11.4, 5.7 

Hz, 1H), 3.32 (dt, J = 10.9, 6.4 Hz, 1H), 2.04 (s, 3H). 

13C-NMR (100 MHz, CDCl3) δ 160.3, 158.4, 146.5, 137.3, 135.7, 133.6, 133.4, 133.1, 

131.7, 128.1, 128.0, 126.6, 126.4, 126.2, 125.9, 122.2, 88.0, 67.5, 41.2, 19.0. 

HRMS (ESI) calculated for C20H19NOCl (M + H+) 324.1150. Found 324.1147. Found 

324.1381. 

HPLC (AD-H column, 85:15 n-hex/IPA , 30 C, 1.0 mL/min): tR 5.69 min (major) and 6.15 

min (minor). 
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Synthesis of (S)-N-{1-[1-(Isoquinolin-1-yl)naphthalen-2-yl]vinyl}-N-

methylacetamide. 17b 

 

Following the general procedure from 3b and 12, after 48 h and further purification 

by flash chromatography (3:1 Toluene/EtOAc + 3% Et3N) afforded 17b (31.7 mg, 90%) as 

a yellowish amorphous solid. 

[]20
D −14.7 (c 0.70, CHCl3) for 82% ee. 

1H-NMR (500 MHz, CDCl3) δ 8.71 (d, J = 5.7 Hz, 1H), 8.06 (d, J = 8.7 Hz, 1H), 7.96 (d, 

J = 8.3 Hz, 2H), 7.78 (d, J = 5.8 Hz, 1H), 7.74 – 7.67 (m, 1H), 7.63 (d, J = 8.6 Hz, 1H), 

7.52 (t, J = 7.6 Hz, 1H), 7.42 (d, J = 4.1 Hz, 2H), 7.32 (t, J = 7.8 Hz, 1H), 7.08 (d, J = 8.6 

Hz, 1H), 5.16 (s, 1H), 4.92 (s, 1H), 2.58 (s, 3H), 1.63 (s, 3H). 

13C-NMR (100 MHz, CDCl3) 170.5, 159.2, 148.7, 142.6, 136.2, 134.9, 134.2, 133.5, 132.9, 

130.5, 129.3, 128.4, 128.0, 127.5, 127.2, 127.1, 127.1, 126.7, 126.5, 126.5, 120.4, 114.7, 

34.8, 21.8. 

HRMS (ESI) calculated for C24H21N2O (M + H+) 497.2224. Found 353.1648. Found 

353.1645. 

HPLC (AD-H column, 85:15 n-hex/IPA , 30 C, 1.0 mL/min): tR 12.64 min (major) and 

14.48 min (minor). 
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II.5.4. Hydroarylation of 2,5-norbornadiene 

Synthesis of (S)-1-{2-[(1S,2R,4S)-Bicyclo[2.2.1]hept-5-en-2-yl]naphthalen-1-

yl}isoquinoline. 18 

 

Following the general procedure for the Dynamic Kinetic Asymmetric Heck 

Reaction from 3b (0.1 mmol) and 2,5-norbornadiene (8.0 eq.) in presence of formic acid 

(3.0 eq.), purification by flash chromatography (25:1 Toluene/EtOAc) afforded 18 (10.7 

mg, 31%) as a light yellow amorphous solid.  

[]20
D –32.8 (c 0.49, CHCl3) for 98% ee. 

1H-NMR (400 MHz, CDCl3) δ 8.73 (d, J = 5.7 Hz, 1H), 8.00 (d, J = 8.7 Hz, 1H), 7.96 (d, 

J = 8.3 Hz, 1H), 7.91 (d, J = 8.2 Hz, 1H), 7.77 (d, J = 5.8 Hz, 1H), 7.72 (d, J = 8.5 Hz, 2H), 

7.48 – 7.37 (m, 3H), 7.23 (ddd, J = 8.3, 6.8, 1.3 Hz, 1H), 6.92 (d, J = 8.5 Hz, 1H), 5.89 (dd, 

J = 5.7, 2.9 Hz, 1H), 5.69 (dd, J = 5.7, 3.2 Hz, 1H), 2.87 (d, J = 14.3 Hz, 2H), 2.28 (dd, J 

= 9.0, 5.0 Hz, 1H), 1.84 (d, J = 8.4 Hz, 1H), 1.77 (dt, J = 12.2, 4.4 Hz, 1H), 1.48 (d, J = 8.6 

Hz, 1H), 1.16 (ddd, J = 11.7, 9.1, 2.5 Hz, 1H). 

13C-NMR (100 MHz, CDCl3) δ 160.7, 142.6, 142.1, 137.1, 136.1, 135.5, 132.9, 131.8, 

130.2, 128.6, 128.5, 127.7, 127.3, 127.2, 126.9, 126.1, 125.7, 125.0, 123.9, 120.0, 47.2, 

46.7, 42.1, 41.2, 35.0. 

HRMS (ESI) calculated for C26H22N (M + H+) 348.1747. Found 348.1741. 

HPLC (IA column, 95:5 n-hex/IPA , 30 C, 1.0 mL/min): tR 9.48 min (minor) and 10.93 

min (major). 
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Synthesis of (R)-1-{2-[(1R,2S,4R)-Bicyclo[2.2.1]hept-5-en-2-yl]naphthalen-1-

yl}isoquinoline hydrochloride. ent-18·HCl 

 

Over a solution of ent-18 (10 mg, 0.029 mmol) in the minimum amount of diethyl 

ether, one drop of hydrochloric acid 37% was added. Further filtration afforded ent-18·HCl 

(10.7 mg, 31%) as a white solid. Crystallization by slow diffusion of n-pentane into a 

solution of the product in DCM afforded pale yellow prisms suitable for X-Ray analysis.  

[]20
D +109.1 (c 0.49, CHCl3) for 98% ee. 

1H-NMR (400 MHz, CDCl3) δ 8.89 (s, 1H), 8.30 (d, J = 29.3 Hz, 2H), 8.21 – 8.04 (m, 2H), 

7.96 (d, J = 7.8 Hz, 1H), 7.76 (d, J = 8.7 Hz, 2H), 7.65 (d, J = 8.3 Hz, 1H), 7.47 (d, J = 7.3 

Hz, 1H), 7.31 (s, 1H), 6.76 – 6.58 (m, 1H), 5.94 (dd, J = 5.7, 2.8 Hz, 1H), 5.72 (dd, J = 5.7, 

2.9 Hz, 1H), 2.99 (s, 1H), 2.90 (s, 1H), 2.01 – 2.14 (m, 2H), 1.85 (d, J = 8.6 Hz, 1H), 1.53 

(d, J = 8.6 Hz, 1H), 1.31 – 1.17 (m, 1H). 

13C-NMR (100 MHz, CDCl3) δ 157.3, 144.3, 138.6, 138.1, 136.6, 136.1, 132.8, 132.2, 

132.0, 131.6, 131.2, 129.2, 128.5, 128.2, 128.1, 127.9, 126.1, 125.7, 124.7, 124.3, 123.7, 

47.1, 46.9, 42.4, 42.1, 35.4. 

M.p. 72-75 °C. 
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II.5.5. Representative transformations from 7b. 

Synthesis of (Sa,S)-1-{2-[(S)-3,4-Dihydro-2H-pyrrol-2-yl]naphthalen-1-

yl}isoquinoline. 20b 

 

Over a cooled (0 °C) solution of 7b (0.1 mmol) in CH2Cl2 (0.5 mL) trifluoroacetic 

acid (0.25 mL) was added dropwise. Then solution was allowed to warm to r.t., and stirred 

for 30 min. The reaction mixture was neutralized with NaHCO3 sat. solution and extracted 

with CH2Cl2. After purification by flash chromatography (12:1 CH2Cl2/EtOAc), 20b (29 

mg, 90%) was afforded as a light yellow amorphous solid. A single product was observed 

by 1H-NMR of the reaction crude; hence epimerization did not occur. 

[]20
D −10.1 (c 0.52, CHCl3) for 99% ee.  

1H-NMR (400 MHz, CDCl3): δ 8.73 (d, J = 5.1 Hz, 1H), 7.99 (d, J = 8.6 Hz, 1H), 7.92 (d, 

J = 9.2 Hz, 1H), 7.89 (d, J = 9.3 Hz, 1H), 7.78–7.76 (m, 2H), 7.67 (t, J = 7.2 Hz, 1H), 7.61 

(d, J = 8.4 Hz, 1H), 7.43–7.39 (m, 3H), 7.24 (t, J = 7.2 Hz, 1H), 7.00 (d, J = 8.4 Hz, 1H), 

4.57 (t, J = 8.2 Hz, 1H), 2.70 (dd, J = 18.0 and 10.2 Hz, 1H), 2.37 (m, 1H),, 2.11 (m, 1H), 

1.71 (m, 1H).  

13C-NMR (100 MHz, CDCl3) δ 168.2, 159.9, 142.4, 140.3, 136.1, 133.7, 132.6, 132.5, 

130.5, 129.2, 128.5, 127.9, 127.8, 127.4, 126.7, 126.2, 126.0, 125.4, 123.6, 120.2, 73.8, 

37.6, 31.0. 

HRMS (ESI) calculated for C23H19N2 (M + H+) 323.1543. Found 324.1539. 
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Synthesis of the Pd-20b complex. 21 

 

Over a dried Schlenk tube containing a solution of [Pd(allyl)Cl]2 (0.025 mmol, 9.1 

mg) in anhydrous-deoxygenated DCM (1 mL), a solution of 20b (0.05 mmol, 16.1 mg) in 

anhydrous-deoxygenated DCM (1 mL) was added dropwise. The resulting mixture was 

stirred at rt for 1 hour, and then a solution of AgSbF6 (0.05 mmol, 17.2 mg) in dry THF 

(0.5 mL) was added. The reaction was stirred 3 hours in dark, filtered through celite and 

concentrated to dryness to afford 21 (33 mg, 94%) as a pale amorphous solid. NMR spectra 

showed a ca 1:1 mixture of rotamers around the Pd-allyl bond when the experiment was 

recorded at 298K. 

[]20
D 7.1 (c 0.25, CHCl3) for 99% ee. 

1H-NMR (400 MHz, CDCl3): δ 8.88 (d, J = 6.1 Hz, 0.5H), 8.52 (d, J = 6.1 Hz, 0.5H), 8.16 

(d, J = 8.4 Hz, 0.5H), 8.10-7.96 (m, 4H), 7.80 (t, J = 7.1 Hz, 0.5H), 7.79 (t, J = 7.6 Hz, 

0.5H), 7.71 (d, J = 8.4 Hz, 0.5H), 7.65 (s, 0.5H), 7.59 (d, J = 8.5 Hz, 0.5H), 7.55-7.50 (m, 

1H), 7.48-7.40 (m, 1H), 7.28-7.20 (m, 1H), 7.12 (d, J = 8.5 Hz, 0.5H), 7.03 (d, J = 8.5 Hz, 

0.5H), 6.64 (d, J = 8.6 Hz, 0.5H), 6.53 (d, J = 8.6 Hz, 0.5H), 5.66 (m, 0.5H), 5.30 (br s, 

0.5H), 5.12 (br s, 0.5H), 4.94 (m, 0.5H), 4.08 (d, J = 12.2 Hz, 0.5H), 4.07 (d, J = 12.8 Hz, 

0.5H), 4.00 (t, J = 7.2 Hz, 1H), 3.23 (d, J = 12.6 Hz, 1H), 2.59 (m, 1H), 2.52 (d, J = 12.2 

Hz, 0.5H), 2.43 (m, 1H), 2.32 (d, J = 12.8 Hz, 0.5H), 2.22 (m, 1H), 1.12 (m, 1H). 

13C-NMR (100 MHz, CDCl3) δ 175.4, 175.4, 160.0, 159.7, 142.8, 142.6, 136.8, 136.4, 

136.2, 136.1, 132.9, 132.8, 132.8, 132.6, 132.6, 132.4, 131.0, 130.6, 129.7, 129.7, 129.5, 

129.4, 128.4, 128.4, 128.3, 128.2, 127.7, 127.6, 127.4, 127.2, 127.1, 127.0, 126.8, 125.2, 

124.0, 124.0, 117.1, 116.5, 78.7, 78.5, 61.5, 60.3, 59.8, 59.0, 38.0, 37.8, 31.1, 31.0. 

19F NMR (377 MHz, CDCl3): δ −107.2. 
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HRMS (ESI) calculated for C26H23N2Pd (M+ - SbF6) 469.0896. Found 469.0893. 

Synthesis of (S)-1-{2-[(S)-Pyrrolidin-2-yl]naphthalen-1-yl}isoquinoline. 22b 

 

To a cooled (0 °C) solution of 20b (0.1 mmol) in MeOH (1 mL), NaBH4 (2.0 eq.) 

was added. Then solution was allowed to warm to rt, and stirred for 30 min. Then H2O (1 

mL) was added and the resulting mixture was extracted with CH2Cl2. After purification by 

flash chromatography (8:1 CH2Cl2/EtOAc), 22b (28 mg, 87%) was afforded as a light 

yellow amorphous solid. A single product was observed by 1H-NMR of the reaction crude; 

hence epimerization did not occur. 

[]20
D -26.1 (c 0.49, CHCl3) for 99% ee. 

1H-NMR (400 MHz, CDCl3): δ 8.70 (d, J = 5.8 Hz, 1H), 8.00 (d, J = 8.7 Hz, 1H), 7.94 (d, 

J = 8.2 Hz, 1H), 7.89–7.86 (m, 2H), 7.78 (d, J = 5.7 Hz, 1H), 7.69 (ddd, J = 8.2, 6.6 and 

1.4 Hz, 1H), 7.45–7.36 (m, 3H), 7.21 (ddd, J = 8.4, 6.7 and 1.3 Hz, 1H), 6.90 (d, J = 8.9 

Hz, 1H), 3.83 (t, J = 7.6 Hz, 1H), 3.51 (br s, 1H), 3.12 (dt, J = 9.8 and 6.8 Hz, 1H), 2.88 

(m, 1H), 2.04 (m, 1H), 1.82 (m, 1H), 1.74–1.60 (m, 2H). 

13C-NMR (100 MHz, CDCl3) δ 159.9, 142.3, 139.7, 136.2, 134.1, 132.7, 132.5, 130.6, 

129.4, 128.7, 127.9, 127.8, 127.2, 127.0, 126.3, 125.9, 125.6, 124.7, 120.4, 60.3, 47.0, 34.2, 

25.6. 

HRMS (ESI) calculated for C23H21N2 (M + H+) 325.1699. Found 325.1695. 
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II.5.6. Isolation of the Oxidative Addition Intermediate IOA
L1(OTf−). 

 

A flame-dried and deoxygenated Schlenk tube was charged with (R)-BINAP (0.1 

mmol, 62 mg) and 1-(isoquinolin-1-yl)naphthalene-2-yl triflate rac-3b(OTf) (0.1 mmol, 

40 mg). After three cycles of vacuum-N2, [Pd(Cp)(allyl)] (0.1 mmol, 21 mg) and dry and 

deuterated toluene (2 mL) were added. The reaction mixture was stirred for 2h at 80 °C and 

a yellow precipitated was formed. The solid was filtered and washed with cold toluene to 

afford IOA
L1(OTf−) (95 mg, 84%) as a yellow solid. Crystallization by slow diffusion of n-

pentane into a solution of THF gave pale yellow needles suitable for X-Ray analysis. 

Triflate counteranions are extremely disordered and cannot be modeled, even with 

restraints. The SQUEEZE routine of the PLATON software has therefore been used to 

cancel out the effects of those anions. The unmodified SQUEEZE map contains 260 

electrons per unit cell which is suitable with 4 triflate anions. 

[α]20
D= +351.4 (c 0.31, CHCl3). 

1H-NMR (400 MHz, CD2Cl2) δ 8.14 (br s, 2H), 8.04 (d, J = 8.7 Hz, 1H), 8.00 (br s, 1H), 

7.96 – 7.87 (m, 2H), 7.74 (d, J = 8.2 Hz, 1H), 7.70 – 7.49 (m, 12H), 7.49 −7.37 (m, 6H), 

7.36 – 7.10 (m, 10H), 7.05 – 6.92 (m, 3H), 6.86 – 6.72 (m, 4H), 6.68 (d, J = 8.6 Hz, 1H), 

6.56 (br s, 1H).  

13C-NMR (100 MHz, CD2Cl2) δ 169.7 (d, JC,P = 3.8 Hz), 168.2 (dd, JC,P = 118.7, 10.5 Hz), 

143.6, 142.7 (d, JC,P = 6.3 Hz), 139.3 (d, JC,P = 3.8 Hz), 139.2 (d, JC,P = 4.3 Hz), 138.9 (d, 

JC,P = 1.5 Hz), 138.9 (d, JC,P = 13.1 Hz), 137.6, 137.4, 137.2, 135.7 (d, JC,P = 12.5 Hz), 

134.7, 134.6, 134.1 (d, JC,P = 9.9 Hz), 133.7, 133.6, 132.9, 132.8, 132.7, 132.6, 132.0 (d, 

JC,P = 11.3 Hz), 131.9 (d, JC,P = 3.8 Hz), 131.3, 131.2, 130.8, 130.3, 130.2, 129.7, 129.6, 

129.5, 129.2, 129.1, 129.0, 128.9, 128.7, 128.5, 128.4, 128.3, 128.2, 128.2, 128.1, 128.0, 
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127.9, 127.8, 127.7, 127.6, 127.3, 127.3, 127.2, 127.1, 127.0, 127.0, 126.9, 126.2, 126.2, 

125.8, 125.5, 123.2, 122.8, 122.2, 121.6, 121.1 (q, JC,F = 321 Hz), 120.6. 

31P NMR (202 MHz, CD2Cl2) δ 40.9 (d, J = 47.4 Hz), 16.1 (d, J = 47.4 Hz). 

HRMS (ESI) calculated for C63H44NP2Pd (M+) 982.1978. Found 982.1993. 

II.5.7. Reaction of Oxidative Addition Intermediate IOA
L1(OTf−) with 2,3-

dihydrofuran 4. 

 

To a flame-dried Schlenk tube, IOA
L1(OTf−) (25 mg, 0.022 mmol) was added and 

dissolved in anhydrous toluene. Then DIPEA (5 eq.) and 4 (8 eq.) were subsequently added 

and heated at 80 °C for 20 h. The reaction crude was allowed to reach room temperature, 

water (5 mL) was added and the resulting mixture was extracted with EtOAc (4  3 mL). 

The organic layer was dried over anhydrous Na2SO4, filtered, concentrated, and the residue 

was purified by flash column chromatography on silica gel (CH2Cl225:1 CH2Cl2/EtOAc) 

affording 5b (6 mg, 82% yield, 77% ee) as a light-yellow solid. The spectroscopy and 

physical data matched those obtained with 5b afforded by following the general procedure 

for the Dynamic Kinetic Asymmetric Heck Reaction. 
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III. Dynamic Kinetic Resolution of Heterobiaryl Ketones by Zinc-catalyzed 

Asymmetric Hydrosilylation 

III.1. Introduction 

This chapter describes an unprecedented strategy for the atroposelective synthesis 

of heterobiaryls which consists on a dynamic kinetic resolution (DKR). In chapter II, the 

methodology was based on a DYKAT strategy and, therefore, racemic and 

configurationally stable heterobiaryl starting materials were employed. In this case, 

however, the substrate needs to be configurationally labile in order to make possible a DKR 

(Scheme III.1). 

 

Scheme III.1 – Atropisomerization through 5-membered cyclic TS or intermediates in DYKAT and DKR 

strategies for the asymmetric synthesis of heterobiaryls. FG = Lewis acidic functional group. 

Taking advantage of the nucleophilic character of the isoquinolyl nitrogen, we 

envisioned that the introduction of a Lewis acidic (electrophilic) functionality FG in the 

ortho position of the lower aromatic unit would result in a Lewis acid-base interaction with 

the nitrogen from the heteroaromatic counterpart (Scheme III.1). As a working hypothesis, 

we anticipated that a relatively fast racemization should be facilitated through the formation 

of a five-membered intermediate or transition state: as in the DYKAT case, this geometry 

produces the widening of the angles involved in the stereochemical stability of the 

stereogenic axis. In this scenario, any asymmetric transformation that destroys the Lewis 

acid character of such functional group FG should short out the interaction, thereby 

providing configurational stability and eventually resulting in a preferred atropisomeric 
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form. In other words, such transformation would constitute a dynamic kinetic 

atroposelective resolution.  

A similar behaviour to that proposed above was also observed during previous 

investigations by our research group on the N-directed borylation of (hetero)arenes.126 In 

this work, the authors suggest a similar interaction between a isoquinolyl/pyridyl nitrogen 

atom and the boron atom of a boryl group in a co-planar conformation of both aromatic and 

heteroaromatic rings, which compromises the configurational stability of the stereogenic 

axis. Noteworthy, the internal ‘ate’ complex in this type of products was the most stable 

product when there is no strong inhibition to co-planarity, while it is postulated as an 

intermediate in more crowded systems (Scheme III.2). 

 

Scheme III.2 – N-directed asymmetric borylation of (hetero)arenes developed by our group. 

Despite their modest Lewis acidity, formyl/acyl derivatives are appealing 

candidates considering the number of possible transformations (quaternizations) that would 

result in the loss of it’s the Lewis acid character of the carbonyl group with concomitant 

stabilization of the stereogenic axis. A good transformation to eliminate the electrophilic 

character of this carbonyl would consist on an asymmetric catalytic reduction. 

Indeed, the reduction of a carbonyl group to the corresponding alcohol represents 

one of the most important transformations in organic chemistry. In particular, the 

hydrosilylation reaction provides silyl ethers under mild conditions that can be easily 

hydrolysed to the corresponding alcohols, and is considered a well-established 

methodology in Synthesis (Scheme III.3). 

                                                                 
126 Ros, A.; Estepa, B.; López-Rodríguez, R.; Álvarez, E.; Fernández, R.; Lassaletta, J. M. Angew. 

Chem. Int. Ed. 2011, 50, 11724. 
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Scheme III.3 – General graph for carbonyl hydrosilylation followed by hydrolysis. 

Given the number of catalytic systems available, many of them based in 

nonprecious metals,127 the hydrosilylation of ketones was the first option to explore the 

stated hypothesis. One of the main benefits of the hydrosilylation procedure compared to 

other carbonyl reduction methods are the mild conditions usually required together with 

the use of silane as hydride donors, which are chemically stable, cheap and easy to handle. 

In these silanes, the Si−H bond has to be activated to make possible the hydride donation, 

and there are different modes to achieve that purpose including transition metal catalyzed 

methods, or even metal-free procedures128 (Scheme III.4).129 

                                                                 
127 For a revision see: (a) Marciniec, B.; Maciejewski, H.; Pietraszuk, C.; Pawluć, P. In 

Hydrosilylation: A Comprehensive Review on Recent Advances, Marciniec, B., Ed.; Springer: 

Berlin, 2009. (b) Li, Y.; Junge, K.; Beller, M. Zinc-Catalyzed Reductions of Unsaturated 

Compounds. In Zinc Catalysis: Applications in Organic Synthesis; Enthaler, S.; Wu, X. F., Eds.; 

Wiley-VCH: Weinheim, 2015, pp. 14-19. (c) Díez-González, S.; Nolan, S. P. Org. Prep. Proced. 

Int. 2007, 39, 523. (d) Marciniec, B. Coord. Chem. Rev. 2005, 249, 2374. 
128 Zhou, R.; Goh, Y. Y.; Liu, H.; Tao, H.; Li, L.; Wu, J. Angew. Chem. Int. Ed. 2017, 56, 16621. 
129 Rendler, S.; Oestreich, M. Diverse Modes of Silane Activation for the Hydrosilylation of 

Carbonyl Compounds. In Modern Reduction Methods, Andersson, P. G.; Munslow, I. M., Eds.; 

Wiley-VCH, Weinheim, 2008, pp. 183-207. 
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Scheme III.4 – Different activation modes for silane reagents. 

As mentioned above, the reduction of carbonyls via hydrosilylation reaction has 

been reported using different metals, although most of the reported systems are based on 

late transition metal complexes, and only scarce attention has been paid to early transition 

metal complexes, apart from titanium. 

The first hydrosilylation of carbonyl compounds was reported by Ojima and co-

workers using Wilkinson’s catalyst [RhCl(PPh3)3] (Scheme III.5A).130 Additionally, the 

pioneering work by Kagan et al.131 in 1973 on the first asymmetric hydrosilylation of 

ketones and imines catalyzed by Rh(I)/DIOP complexes (Scheme III.5B) inspired other 

authors to develop more efficient catalytic systems.132 During the first two decades after its 

discovery, the methodology mainly focused on the use of rhodium, iridium and ruthenium, 

although, catalytic systems based on iridium and ruthenium have not attracted as much 

interest compared to rhodium.133 Nonetheless, methods based on ruthenium catalysts have 

                                                                 
130 Ojima, I.; Nihonyan., M.; Nagai, Y. J. Chem. Soc., Chem. Commun. 1972, 938. 
131 Dumont, W.; Poulin, J. C.; Dang, T. P.; Kagan, H. B. J. Am. Chem. Soc. 1973, 95, 8295. 
132 (a) Riener, K.; Högerl, M. P.; Gigler, P.; Kühn, F. E. ACS Catal. 2012, 2, 613. (b) Duan, W. L.; 

Shi, M.; Rong, G. B. Chem. Commun. 2003, 23, 2916. (c) Hayashi, T.; Hayashi, C.; Uozumi, Y. 

Tetrahedron Asym. 1995, 6, 2503. 
133 Park, S.; Brookhart, M. Organometallics 2010, 29, 6057. 
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also been developed, since this metal is more readily available and less expensive than 

either rhodium or iridium. 

 

Scheme III.5 – First racemic and asymmetric versions of Rh-catalyzed hydrosilylation of ketones. 

One of the major breakthroughs in the asymmetric hydrosilylation of ketones 

occurred in the early 1990’s with the discovery of titanocene-based chiral catalysts by the 

groups of Buchwald,134 Halterman,135and Harrod136 (Figure III.1). 

 

Figure III.1 – Halterman, Buchwald and Harrod’s titanocene chiral catalysts for ketone hydrosilylation. 

A second important breakthrough in this field took place in 1999, when Mimoun 

et al. discovered new chiral catalysts based on zinc, where several chiral diamines, 

diimines, and aminoalcohols were used as ligands in combination with 

polymethylhydrosiloxane (PMHS) as silylating agent for the reduction of acetophenone 

                                                                 
134 Carter, M. B.; Schiott, B.; Gutiérrez, A.; Buchwald, S. L. J. Am. Chem. Soc. 1994, 116, 11667. 
135 Halterman, R. L.; Ramsey, T. M.; Chen, Z. J. Org. Chem. 1994, 59, 2642. 
136 Harrod, J. F.; Xin, S. Can. J. Chem. 1995, 73, 999. 
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derivatives (Scheme III.6A).137 Furthermore, a previous work from Mimoun showed that 

many transition metals (Mn, Co, Fe, Cu, Ni, Pd, Ru, Zr, Cd, and Zn) were able to catalyse 

the hydrosilylation of ketones with PMHS, using sodium borohydride as activating 

agent.138 Interestingly, experiments carried out on conjugated cyclohexenone showed that 

Ru, Cu, Ni, and Pd favoured alkene reduction, while the rest of the explored metals 

provided exclusively ketone reduction product (Scheme III.6B).  

 

Scheme III.6 Mimoun’s contribution to transition metal catalyzed asymmetric hydrosilylation of ketones. 

In 2004, the groups of Carpentier139 and Walsh140 et al. simultaneously reported 

some improvement to Mimoun’s work with respect to ligands design, in particular by using 

C2-symmetric 1,2-diaryldiamine ligands. The first was able to increase the enantiomeric 

excesses to 91%, and also to expand the scope to more functionalized ketones. Meanwhile, 

Walsh performed a similar study but did not reach enantiomeric purities over 89%. It is 

worth to mention that both authors showed that PMHS was not the only silylating agent 

that could be employed under these conditions. 

                                                                 
137 Mimoun, H.; De Saint Laumer, J. Y.; Giannini, L.; Scopelliti, R.; Floriani, C. J. Am. Chem. Soc. 

1999, 121, 6158. 
138 Mimoun, H. J. Org. Chem. 1999, 64, 2582. 
139 Bette, V.; Mortreux, A.; Savoia, D.; Carpentier, J.-F. Tetrahedron 2004, 60, 2837. 
140 Mastranzo, V. M.; Quintero, L.; de Parrodi, C. A.; Juaristi, E.; Walsh, P. J. Tetrahedron 2004, 

60, 1781. 
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Very interesting results were also found by Lipshutz’s group when copper catalysis 

was employed for the asymmetric hydrosilylation of aryl ketones.141 These authors found 

that combining CuCl with a bisphosphine ligand provided enantiomeric excesses up to 97% 

(Scheme III.7). 

 

Scheme III.7 – Cu-catalyzed asymmetric hydrosilylation of ketones developed by Lipshutz et al. 

More recently, a remarkable method was developed by Beller et al. in 2008, where 

they demonstrated for the first time that high enantioselectivity (up to 99% ee) can be 

achieved in the Fe-catalyzed hydrosilylation of ketones.142  

So far, it could be stated that catalysis has changed to meet present social demands 

of environmentally conscious processes using common metals such as iron, copper, or zinc. 

Hence, our initial concern has been to employ an inexpensive late transition metal such as 

zinc,143 for the activation of the silane. However, for the heterobiaryl ketones described 

during this chapter, the presence of the isoquinolyl nitrogen acting as Lewis base has to be 

considered, since it could also interfere in the activation of Si−H bond. So, the activation 

mode involved in this transformation is a priori not easy to predict. 

Regarding to the metal source, the hydrosilylation reaction promoted by inorganic 

Zn salts is still not well studied, in contrast to the well stablished application of 

diethylzinc.144 In 2009, Nishiyama developed a more sustainable metal source for the 

asymmetric hydrosilylation by replacing the highly reactive and hazardous dialkyl zinc 

                                                                 
141 Lipshutz, B. H.; Noson, K.; Chrisman, W. J. Am. Chem. Soc. 2001, 123, 12917. 
142 Shaikh, N.; Enthaler, S.; Junge, K.; Beller, M. Angew. Chem. Int. Ed. 2008, 47, 2497. 
143 Łowicki, D.; Baś, S.; Mlynarski, J. Tetrahedron 2015, 71, 1339. 
144 For selected examples catalyzed by ZnEt2: (a). (b) Ushio, H.; Mikami, K. Tetrahedron Lett. 

2005, 46, 2903. (c) Bette, V.; Mortreux, A.; Lehmannb, C. W.; Carpentier, J.-F. Chem. Commun. 

2003, 0, 332. 
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with a cheaper source such as zinc acetate in combination with chiral diamines.145 The latter 

has been consolidated among the optimal ligands for zinc catalyzed asymmetric 

hydrosilylation of ketones,146 and they were our first option for this study. 

Without considering the complexity of our system, and the possible effect of the 

isoquinolyl nitrogen atom, different mechanistic proposals have emerged depending on 

whether the diamine plays the role of a hydride source, or if it behaves just as a spectator 

ligand. However, some recent mechanistic studies suggest a certain preference for the latter 

mechanism.147  

Considering this mechanism, two different reaction pathways could be anticipated: 

a first one involving a Lewis acid activation of the carbonyl by the metal centre, and a 

second possibility in which Zn-hydride species are responsible for the reduction of the 

carbonyl group (Scheme III.8). 

                                                                 
145 Inagaki, T.; Yamada, Y.; Phong, L. T.; Furuta, A.; Ito, J. -I.; Nishiyama, H. Synlett 2009, 253. 
146 For selected examples using chiral diamines see: (a) Pang, S.; Peng, J.; Li, J.; Bai, Y.; Xiao, W.; 

Lai, G. Chirality 2013, 25, 275. (b) Szewczyk, M.; Stanek, F.; Bezłada, A.; Mlynarskia, J. Adv. 

Synth. Catal. 2015, 357, 3727. (c) Junge, K.; Mçller, K.; Wendt, B.; Das, S.; Gçrdes, D.; Thurow, 

K.; Beller, M. Chem. Asian J. 2012, 7, 314. (d) Bandini, M.; Melucci, M.; Piccinelli, F.; Sinisi, R.; 

Tomassi, S.; Umani-Ronchi, A. Chem. Commun. 2007, 43, 4519. 
147 Gajewy, J.; Gawronski, J.; Kwit, M. Eur. J. Org. Chem. 2013, 307. 
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Scheme III.8 – Proposed mechanisms for the Zn(OAc)2-diamine catalyzed hydrosilylation of ketones. 

The first reaction pathway (A, on Scheme III.8) initially involves the activation of 

the carbonyl by the zinc atom acting as a Lewis acid. Then, an heterolytic splitting of Si−H 

bond is responsible for the reduction of the carbonyl, releasing the resulting alcohol and 

the catalytically active metal species. On the other hand, in the second reaction pathway 

(B, on Scheme III.8), a hydride is transferred from the silane to the zinc, generating 

acetoxy-silane and a Zn−H species. Then, the carbonyl is inserted into this Zn−H bond, and 

the resulting alkoxide remains bonded to metal centre until it is displaced by a previously 

formed acetoxy-silane, regenerating the catalytically active species. The desired alkoxy-

silane would further be hydrolysed. 

III.2. Results and Discussion. 

III.2.1. Substrate design and synthesis. 

As a first task prior to develop the strategy, it is necessary to synthesize the starting 

materials and determine whether our initial hypothesis about the labilization of the substrate 
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is certain or not. Regarding the carbonyl functionality, there are two main possibilities that 

can be introduced into the heterobiaryl moiety: aldehyde or ketone. 

Initial studies focused on the corresponding aldehyde 23 because its higher 

electrophilicity and reactivity. Its synthesis was carried out by lithiation of starting 

naphthylisoquinoline bromide NI-Br, employed during the previous studies (see Chapter 

II), and then trapping with DMF at −78 °C. Unfortunately, the expected product was hardly 

detected and a rapid cyclization and dearomatization leading to 24 was observed. The 

structure of 24 was confirmed by single crystal X-ray analysis of a pure sample (Scheme 

III.9). 

 

Scheme III.9 – Attempt to synthesize the heterobiaryl aldehyde 23. 

Interestingly, while this work was ongoing, the group of Clayden described a 

biocatalytic reduction of carbonyl-N-oxides and they observed the formation of the same 

product148 when they tried to synthesize this substrate through Swern oxidation of the 

parent alcohol. However, the authors solved the problem by oxidation of isoquinolyl 

nitrogen in order to prevent cyclization and allow for the desired reactivity.  

The problem arose from this alternative is that the bonding interaction between the 

N-oxide and the aldehyde carbonyl leads to a six-membered transition state with a high 

rotational barrier for the atropisomerization that makes it not feasible to perform the DKR. 

Consequently, the use of heterobiaryls with reduced steric strain was required to make 

                                                                 
148 Staniland, S.; Adams, R. W.; McDouall, J. J. W.; Maffucci, I.; Contini, A.; Grainger, D. M.; 

Turner, N. J.; Clayden J. Angew. Chem. Int. Ed. 2016, 55, 10755. 
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possible the racemization. Specifically, one of the rings from either naphthyl to phenyl or 

isoquinoline to pyridine was removed (Figure III.2). 

 

Figure III.2 – Effect of the substitution around the stereogenic axis on the rotational barrier observed by 

Clayden and co-workers. 

In our case, we decided to explore the behaviour of a ketone as the substrate which, 

although presents a slightly lower electrophilicity than the aldehyde, would generate an 

additional carbon-based stereocentre. Moreover, is was anticipated that formation of five-

membered intermediates/transition states would make possible to perform dynamic 

resolutions with more strained systems than those used by Clayden and co-workers. 

For the synthesis of the target substrates, we considered two possible approaches. 

Taking advantage of available starting materials used for the dynamic kinetic asymmetric 

Heck reaction described in previous chapter, either an heterobiaryl sulfonate (Method A) 

or bromide (Method B) could be used (Scheme III. 10). 

 

Scheme III.10 – Different methods to synthetize the target substrate 25a. 

The first approach, Method A, consists on the hydrolysis in acid media of 

substituted vinyl ether 13b synthetized through a Pd-catalyzed Heck reaction from NI-ONf 

and butyl vinyl ether. The second, Method B, is based on lithiation and electrophilic 

trapping of bromide NI-Br, the same process showed in Scheme III.9 for the unsuccessful 
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synthesis of aldehyde 23. Fortunately, both methods provided the desired product 25a 

which proved to be stable and could be isolated in good yields. Interestingly, Method A 

requires a slow addition of the vinyl ether 13b over and excess of cooled aqueous HCl 

solution (conditions a); otherwise, if acid is added to the reaction media (conditions b), an 

unexpected intense green-coloured isoquinolynium salt is formed, presumably resulting 

from nucleophilic attack of isoquinolyl nitrogen to the activated (protonated) vinyl ether 

(Scheme III.11). 

 

Scheme III.11 – Different products from vinyl ether 13b hydrolysis with respect to the conditions employed. 

III.2.2. Configurational stability analysis of the substrates 

The main requirement for the newly synthesized substrates to be suitable for DKR, 

as mentioned previously, is that they have to be configurationally labile, at least at the 

reaction temperature, and the analysis of this behaviour is the aim of this section. We have 

performed this analysis both theoretically and experimentally. 

As commented above, our initial hypothesis for the labilization process is that it 

would proceed through the formation of a five-membered ring via a Lewis acid-base 

interaction between isoquinolyl nitrogen and carbonyl, leading to a zwitterionic 

intermediate (zI) or quasi-zwitterionic transition state (q-zTS). In this situation, the angles 

involved in the configurational stability of the stereogenic axis would be widened, 

facilitating the interconversion between both atropisomers of the heterobiaryl ketone 

(Scheme III.12). 
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Scheme III.12 – Proposed atropisomerization pathways for heterobiaryl ketone 25a. 

III.2.2.1. DFT calculations. 

Initially, Professor Joaquín López Serrano, from the University of Sevilla, studied 

the configurational stability of these heterobiaryl ketones through DFT calculations. To 

facilitate calculations, the heterobiaryl ketone 25c derived from picoline moiety and the 

alcohol resulting from its reduction were employed as model systems.  

The calculations showed a significant energetic difference between both rotational 

barriers. While that of heterobiaryl ketone was located at 22.1 kcal/mol, Relaxed Potential 

Energy Scan (PES) suggested that the loss of the interaction responsible for the 

atropisomerization when the ketone is reduced to the secondary alcohol, resulted in a 

rotational barrier of more than 35 kcal/mol (Scheme III.13). 
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Scheme III.13 – Calculated rotational barriers for 25c and 26c. 

Furthermore, these calculations allowed to obtain a DFT-optimized geometry of 

the transition state for the isomerization of ketone 25c. This structure confirmed our initial 

hypothesis for the atropisomerization pathway, since a distance of 1.63 Å N−C(O)Me 

showed an interaction and the formation of a quasi-zwitterionic transition state indicating 

the partial formation of a C−N bond. Also remarkable, the angles 1 and 2 responsible 

for the configurational stability of the stereogenic axis are widened to 137.1° and 133.4° 

respectively. 

III.2.2.2. Racemization experiments. 

Once this labilization process has been analysed through DFT calculations, 

showing that these heterobiaryl ketones appear to be configurationally unstable and 

therefore suitable substrates for DKR, it is also necessary to confirm experimentally what 

the calculations suggested. 

For that purpose, heterobiaryl ketone 25a was synthesized through the above 

mentioned Method A (Scheme III.10) and further reduced with NaBH4. Then, chiral HPLC 
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analysis of the reaction mixture showed the expected formation of the four possible 

stereoisomeric alcohols in ca. 1:1:1:1 ratio (Scheme III.14). 

 

Scheme III.14 – Experiment performed to analyse the racemization event at heterobiaryl ketone 25a. 

Remarkably, hydrolysis and further reduction with NaBH4 of the enantioenriched 

vinyl ether precursor (R)-13b [synthesized through an asymmetric Heck reaction (see 

Chapter II)], afforded exactly the same mixture as before: the four stereoisomers of the 

final carbinols in a racemic form. This result clearly shows that there is a complete loss of 

the enantiomeric purity at (R)-25a by a racemization process, which is in agreement with 

the calculations. 

In an attempt to further confirm the configurational instability of these heterobiaryl 

ketones, a second experiment was carried out, in this case a low temperature racemization 

analysis. It consisted on Thus, the hydrolysis of the enantioenriched vinyl ether (R)-13b 



169 
 

was performed at −30 °C. Then different aliquots were reduced and quenched by adding 

NaBH4 at different reaction times and the mixtures were analysed by chiral HPLC (Scheme 

III.15).  

 

Scheme III.15 – Low temperature racemization experiment. 

The aim of this analysis is to measure the ratio between the pair of enantiomers 

(Sa)-25a and (Ra)-25a along the time at –30 °C in order to determine if (Sa)-25a is 

racemizing at low temperature. To correlate them, we measured the ratio between the sum 

of the two pairs of diastereomers derived from the reduction of each enantiomer of the 
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starting ketone: (Sa,S)-26a + (Sa,R)-26a and (Ra,S)-26a + (Ra,R)-26a. Thus, it was observed 

a clear decrease on the enantiopurity of (Sa)-25a with respect to the time, showing that the 

racemization process occurs even at low temperature.  

With all these experimental evidences and DFT calculations, the initial hypothesis 

of the configurational lability of the selected substrate system could be confirmed. The 

quantitative data, however, must be taken with care, as the racemization must be obviously 

accelerated by the electrophilic activation of the carbonyl by any protic specie or Lewis 

acid. 

III.2.3. Reaction conditions optimization. 

As previously announced, the synthesized heterobiaryl ketones were subjected to 

zinc catalyzed asymmetric hydrosilylation; and 25a was chosen as model substrate to find 

the optimal reaction conditions. 

We started screening the reaction conditions for the asymmetric hydrosilylation of 

25a using Zn(OAc)2, (EtO)2MeSiH in THF, and using a variety of chiral diamines (Table 

III.1). 
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Table III.1 – Ligands screening for asymmetric hydrosilylation of heterobiaryl ketone 25a. 

 

 

Entrya L T (°C) t (h) Conv. (%)b d.r.b (Ra,R)-26a 

ee (%)c 

(Sa,R)-26a 

ee (%)c 

1 L28 20 24 >99 1.8:1 40 54 

2 L28 0 24 85 1.8:1 59 44 

3 L29 20 48 6 4:1 91 41 

4 L29 reflux 36 >99 4.5:1 83 52 

5 L29 55 36 >99 4.9:1 86 52 

6 L30 reflux 36 >99 4.6:1 85 53 

7 L31 reflux 36 >99 5:1 85 53 

8 L32 reflux 24 >99 4.2:1 91 72 

9 L33 reflux 48 >99 4.9:1 98 89 

10 L33 20 24 n.r. n.d. n.d. n.d. 

11 L33 50 24 12 2.8:1 97 81 
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12 L33 50 72 55 3:1 98 79 

13 L33 55 60 >99 4.4:1 98 83 

14d L33 reflux 36 >99 4.4:1 97 86 

15e L33 reflux 36 >99 5:1 97 90 

16e,f L33 reflux 36 >99 4.9:1 74 70 

17e,g L33 Reflux 36 n.r. n.d. n.d. n.d. 

18e,h L33 Reflux 36 n.r. n.d. n.d. n.d. 

a Reactions performed at 0.1 mmol scale of 25a. b Determined by 1H-NMR spectroscopy. c 

Determined by chiral HPLC analysis. d Zn(OAc)2 (5 mol%) and L (10 mol%). e Zn(OAc)2 (5 mol%) 

and L (6 mol%). f Waiting 5 min instead of 1h between the addition of the catalyst, silane and 

substrate 25a. g PMHS was used as silylating agent. h PhMe2SiH was used as silylating agent. 

 

Interestingly, a first promising result was observed when using (S,S)-N,N’-

dimethyl 1,2-diphenylethylenediamine as ligand (L28) at 20 °C, a 2:1 diastereomeric 

mixture of 26a, with a 40% ee for the major isomer (Ra,R)-26a (entry1, Table III.1). Decr 

A slight increase of the enantiomeric excess was observed at lower temperature, although 

it remained moderate (entry 2, Table III.1). Fortunately, the easy synthesis and modularity 

of these diamine ligands149 facilitated the introduction and analysis of several structural 

modifications. Surprisingly, changing from methyl to benzyl groups as in L29 led to a 

decrease on the reactivity at room temperature (entry 3, Table III.1), but when heated to 

reflux, full conversion was achieved with 4.5:1 diastereoselectivity and a good 83% ee 

(entry 4, Table III.1). Decreasing temperature to 55 °C, slightly increased 

diastereoselectivity to 4.9:1 and 86% ee for the major diastereomer (entry 5, Table III.1). 

Ligand L30 bearing additional tert-butyl groups at para position of the benzyl groups did 

not result in any major improvement on either reactivity or selectivities (entry 6, Table 

III.1). Moreover, L31 having 3,5-methoxy substitution of benzyl units produced a slight 

increase in selectivities with full conversion at reflux of THF (entry 7, Table III.1). 

However, a significant improvement on the enantioselectivity of both major and minor 

                                                                 
149 Kobayashi, S.; Matsubara, R.; Nakamura, Y.; Kitagawa, H.; Sugiura, M. J. Am. Chem. Soc. 

2003, 125, 2507. 
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diastereomers was achieved after introduction of ortho-methyl groups in L32 (91 and 72% 

ee respectively, entry 8, Table III.1). Finally, the use of L33 bearing bulky tert-butyl 

substituents in meta positions of the benzyl rings, yielded the desired product with excellent 

conversion and enantioselectivity and a good diastereomeric ratio of 4.9:1 (entry 9, Table 

III.1). Using L31, the reaction at different temperatures from 20 to 55 °C was analysed 

(entries 10 to 13, Table III.1), however it did not result in any improvement. Importantly, 

the catalyst loading could be decreased to 5 mol% of Zn(OAc)2 and 6 mol% of ligand L33 

with no erosion of activity nor selectivity (entry 15, Table III.1).  

In an attempt to reduce the time employed to set up the experiments, the reaction 

was performed by a different addition sequence of the reagents in such way that at the 

beginning, zinc acetate and the ligand were dissolved in THF and stirred for 1h, then silane 

was added and stirred for an additional hour, and finally ketone is added to the reaction 

media. Hence, it was also explored the effect of the intervals in the addition sequence of 

this reaction by decreasing to 5 minutes instead of 1 hour, but a decrease on the 

enantioselectivities of both major and minor diastereomers to 74 and 70% ee respectively 

was observed, although the diastereoselectivity remained the same (entry 16, Table III.1). 

Remarkable, alternative reducing silane ragents as PMHS and PhMe2SiH were 

totally inefficient (entries 17 and 18, Table III.1). A similar behaviour was also observed 

by Mlynarski and co-workers when screening different silanes in the reduction of aryl 

ketones.146b 

In conclusion, the evaluation of the reaction parameters discussed above allowed 

to identify the system consisting of Zn(OAc)2 (5 mol%), L33 (6 mol%), (EtO)2MeSiH (2.0 

eq.), THF as solvent, at reflux, followed by hydrolysis in aqueous HCl media, as the optimal 

catalysts and conditions to explore the scope of the reaction. 
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III.2.4. Reaction scope. 

With these optimal conditions in hand, we then moved to explore the dynamic 

kinetic resolution of different heterobiaryl ketones 25 via a Zn-catalyzed asymmetric 

hydrosilylation. 

A variety of substrates were synthesized introducing structural variations at the 

heterobiaryl frame in order to examine the robustness of the described methodology (Figure 

III.3). Method A was employed for the synthesis of substrates 25a-c and 25e-f. On the other 

hand, substrates 25d and 25h could not be prepared through the same route since the 

corresponding heterobiaryl sulfonates were not suitable substrates in the Heck reaction, as 

mentioned in Chapter II, and, therefore, Method B was used instead. This route was also 

employed for the synthesis of the heterobiaryl ketone 25g since the bromide precursor was 

available at the laboratory. 

 

Figure III.3 – Library of heterobiaryl ketones synthetized 25a-h. 

This methodology tolerates variations on the heterobiaryl scaffold, allowing for the 

synthesis of the corresponding carbinols bearing both central and axial chirality elements 

(Scheme III.16). In all the cases, the enantioselectivities obtained were excellent, especially 

for the major diastereomer. Moreover, moderate to good diastereomeric ratios were also 
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achieved and, importantly, both diastereomers could be easily separated by a simple 

column chromatography purification.  

It is worth to mention the particular case of quinazoline derivative 25b, yielding 

the higher diastereoselective ratio from the series (8.5:1). However, the separation of both 

diastereomers was not possible given the high polarity of the products. To solve the 

problem, we decided to acetylate the mixture of alcohols directly from the reaction mixture. 

Surprisingly, treatment with acetic anhydride and 4-dimethylaminopyridine 

(Ac2O/DMAP) yielded the acetylated product (Ra,R)-26’b along with the unexpected 

spirocyclic derivative (R,R)-26’’b. The latter formally results from an N-acetylation and 

intramolecular 1,2-addition of the hydroxyl group to the azomethine carbon involved in the 

stereogenic axis, thus dearomatizing the quinazoline moiety in an axial to central chirality 

transfer process. The absolute configuration of (R,R)-26’’b was determined by single 

crystal X-ray diffraction analysis.  
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Scheme III.16 – Heterobiaryl scaffolds scope. Only major diastereomer structures are drawn for simplicity. 
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The carbinol 26c resulting from the asymmetric hydrosilylation of the 1-

(naphthyl)picoline derivative could be obtained in high yield and enantioselectivity (93% 

overall yield, 96% and 82% ee for the major and minor diastereomers, respectively). 

The ketone 25e, bearing a methyl substituent at the 4 position of the naphthalene 

ring, performed excellently in the transformation to afford both diastereomeric carbinols in 

4.5:1 ratio with 97 and 89% ee respectively. The more sterically hindered methyl 1-(1-

pyrenyl)-isoquinoline derivative 25f also underwent the asymmetric hydrosilylation in high 

yield and enantioselectivity. Similar results in terms of diastereoselectivity were obtained 

for the alcohols 26g, although the major diastereomer displayed a slightly lower 

enantioselectivity (90% ee) with respect to other major diastereomers. Finally, the substrate 

bearing a phenyl group at the ortho position of the isoquinolyl nitrogen 25h was well 

tolerated by this methodology but provided the lower diastereoselectivity value, and the 

higher enantioselectivity for the minor diastereomer. Unfortunately, heterobiaryl ketone 

25d did not undergo the desired reaction and the starting material was fully recovered. 

Importantly, the zinc-catalyzed asymmetric hydrosilylation reaction of the model 

heterobiaryl ketones could also be scaled-up to 1 mmol, affording the carbinol 26a in higher 

yield (95%: 77% and 18% of isolated major and minor isomers, respectively), and 

diastereoselectivity (5.3:1) without compromising the excellent enantioselectivities (97% 

and 90% ee for major and minor isomers, respectively). 

The absolute configuration of (Ra,R)-26a was determined after single crystal X-ray 

analysis, while that of the minor isomer (Sa,R)-26a, was assigned by chemical correlation 

with the previously described product (Sa)-1-(2-vinylnaphthalen-1-yl)isoquinoline,66 

obtained after treatment of (Sa,R)-26a with mesyl chloride and triethylamine in 

dichloromethane at 40 °C (Scheme III.17). The absolute configuration of all other products 

26 was assigned by analogy. 



178 
 

 

Scheme III.17 – Absolute configuration assignment for (Ra,R)-26a and (Sa,R)-26a. Thermal ellipsoids drawn 

for 50% probability. 

The next step was to study the influence of ketone substituents different than 

methyl. The synthesis of these substrates is not affordable through the previously 

mentioned Method A (Scheme III.10), based on the hydrolysis of a vinyl ether precursor, 

since this route would always provide the corresponding methyl ketone independently of 

the vinyl ether employed (Scheme III.18). 

 

Scheme III.18 – Mechanism for the hydrolysis of vinyl ether derivatives under acidic conditions. 

Therefore, it was necessary to explore different alternatives to obtain these 

structures. The most direct way, Method B (Scheme III.10), consists on performing a 

lithium-halogen exchange of the NI-Br and trapping with acyl transfer reagents different 

from DMF. Some derivatives that can be employed in this case are esters, amides or 

aldehydes, among others.  
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Scheme III.19 – Synthesis of different heterobiaryl ketones through lithiation-electrophilic trapping method. 

Thus, this strategy was employed for the synthesis of some heterobiaryl ketones 

(Scheme III.19), although the yields remained moderate. TLC monitoring showed 

incomplete reactions even with longer reaction times or higher temperatures. It is also 

worth to mention that different electrophiles other than those displayed on the above 

scheme were unsuccessfully examined (Figure III.4). 

 

Figure III.4 – Unsuccessful synthesis of other heterobiaryl ketones. 

An alternative strategy for the synthesis of these ketones consists on the hydration 

of internal alkynes prepared through Sonogashira cross-coupling under previously reported 
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conditions by our research group.66 Different methods described for the hydration of 

alkynes were explored, based on gold catalysis150 and metal-free procedures.151 

Unfortunately, none of them led to the desired product, and only unreacted alkynes were 

recovered (Scheme III.20). 

 

Scheme III.20 – Attempted routes for the synthesis of heterobiaryl ketone through alkyne hydration. 

Considering the difficulty for the synthesis of heterobiaryl ketones with 

substitution different than methyl, the method depicted in Scheme III.19 was selected as 

the best option. Hence, the substrates subjected to zinc catalyzed asymmetric 

hydrosilylation in terms of ketones scope would be those synthetized through this method. 

                                                                 
150 (a) Li, F.; Wang, N.; Lu, L.; Zhu, G. J. Org. Chem. 2015, 80, 3538. (b) Marion, N.; Ramón, R. 

S.; Nolan, S. P. J. Am. Chem. Soc. 2009, 131, 448. 
151 (a) Liu, W.; Wang, H.; Li, C.-J. Org. Lett. 2016, 18, 2184. (b)Ye, M.; Wen, Y.; Li, H.; Fu, Y.; 

Wang, Q. Tetrahedron Lett. 2016, 57, 4983. (c) Liu, H.; Wei, Y.; Cai, C. Synlett 2016, 27, A–F. 
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Scheme III.21 – Aliphatic ketones scope with substitutions different than methyl. 

From this scope extension (Scheme III.21), it is clear that this methodology can 

also be applied to ketones with aliphatic substituents different than methyl. Unfortunately, 

not all substitutions were allowed, since heterobiaryl ketones 25l and 25m (Scheme III.19) 

did not provide the desired products, and the starting materials were completely recovered. 

Nonetheless, the asymmetric reduction of heterobiaryl ketones 25i-k could be satisfactorily 

performed. It is worth to highlight the result obtained from the reduction of a more sterically 

demanding ketone 25j, where a single diastereomer was formed although with a slight 

decrease on its enantioselectivity. Moreover, the synthesis of 26i and 26k displayed similar 

results than those obtained for the model heterobiaryl ketone 25a. 

So far, the scope of this dynamic kinetic resolution has provided up to eleven 

different carbinols with high yields, good diastereoselectivities and excellent 

enantioselectivities.  
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III.2.4. Representative transformations. 

During the previous section, the scope and limitations of the methodology was 

analyzed. Nonetheless, it is also necessary to show the versatility of the resulting products 

and their applicability. For this reason, the model heterobiaryl alcohol (Ra,R)-26a was 

chosen as a platform to carry out a variety of useful derivatizations.  

First, the N-oxidation of isoquinolyl nitrogen after treatment with meta-

chloroperbenzoic acid (m-CPBA) afforded (Ra,R)-27a in quantitative yield (Scheme 

III.22).  

 

Scheme III.22 – Isoquinolyl nitrogen oxidation for the synthesis of (Ra,R)-27a. 

It is worth to mention that the resulting N-oxide (Ra,R)-27a could have applications 

as Lewis base organocatalyst for the Sakurai–Hosomi–Denmark-type asymmetric addition 

of allylic trichlorosilanes to aldehydes given the structural similarities with the catalyst 

used by Kočovský (Scheme III.23).152 

 

Scheme III.23 – Allylation of aromatic aldehydes developed by the group of Kočovský. 

                                                                 
152 Malkov, A. V., Dufková, L.; Farrugia, L.; Kočovský, P. Angew. Chem. 2003, 115, 3802. 



183 
 

The next transformation was performed over the secondary alcohol. Thus, a variant 

of the Mitsunobu reaction was carried out on substrate (Ra,R)-26a using diphenyl 

phosphoryl azide (DPPA) in combination with 1,8-diazabicyclo(5.4.0)undec-7-ene (DBU) 

as base, to achieve the corresponding azide (Ra,S)-28a (Scheme III.24).153 The single crystal 

X-ray analysis showed the inversion of the absolute configuration at the stereogenic centre, 

as expected because of the involved SN2 mechanism. 

 

Scheme III.24 – Mitsunobu reaction over (Ra,R)-26a. Thermal ellipsoids drawn for 50% probability. 

This resulting azide (Ra,S)-28a shows a very interesting structure that was used for 

the next two transformations. The first one consisted on the reduction of the azide to the 

corresponding amine (Ra,S)-29a with excellent yield through a Staudinger reduction 

(Scheme III.25). 

                                                                 
153 Thompson, A. S.; Humphrey, G. R.; DeMarco, A. M.; Mathre, D. J.; Grabowski, E. J. J. J. Org. 

Chem. 1993, 58, 5886. 
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Scheme III.25 – Transformations carried out to azide (Ra,S)-28a. 

The second reaction that was performed on the azide functionality consisted on a 

copper-catalyzed alkyne-azide cycloaddition (CuAAC), also known as the most 

paradigmatic example of the “click Chemistry”, providing the 1,2,3-triazole (Ra,S)-30a in 

a quantitative fashion. 

Looking at the structure of the amine (Ra,S)-29a, its condensation with an 

iso(thio)cyanate to provide the corresponding (thio)urea could be anticipated. Indeed, a 

novel class of bifunctional thiourea organocatalyst (Ra,S)-31a was easily prepared when 

employing 1-isothiocyanato-3,5-bis(trifluoromethyl)benzene (Scheme III.26).  

 

Scheme III.26 – Isothiocyanate condensation to amine (Ra,S)-29a for the synthesis of (Ra,S)-31a. 
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However, this thiourea was obtained with moderate yield, a fact that was attributed 

to the sterically crowded environment around the amino group, hampering the 

condensation. The product from this reaction presents structural particularities that make it 

an appealing potential candidate as a bifunctional organocatalyst, and its performance will 

be evaluated in future projects within our research group. 

Summarizing, several functionalized structures have been synthetized using 

carbinol (Ra,R)-26a, derived from the Zn-catalyzed asymmetric hydrosilylation, without 

any erosion on the enantiopurity of the resulting products. Thus, the method provides an 

accessible route for the synthesis of a variety of ligands and organocatalysts containing 

both central and axial stereogenic elements. 

III.3. Conclusions. 

To summarize, along this chapter, an alternative methodology for the simultaneous 

generation of central and axial chirality elements has been described. In this case, a 

dynamic kinetic resolution (DKR) of heterobiaryl ketones has been employed together with 

an atroposelective reduction of these ketones by a Zn-catalyzed asymmetric hydrosilylation 

reaction we have developed a novel methodology for the synthesis of functionalized. This 

methodology has allowed for the synthesis of central and axially chiral heterobiaryl 

carbinols with high diastereo selectivities and excellent enantioselectivities. 

Moreover, the resulting products have been efficiently transformed without erosion 

on the enantiomerical purity, obtaining appealing highly functionalized structures with 

potential applications as ligands for metal and organocatalysts.  

From this strategy, in cat be concluded that the atropisomerization event through 

the formation of five-membered ring transition states can take place efficiently, allowing 

for the use of more sterically demanding substrates than the previously described in 

literature. 
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General procedure for the synthesis of ligands L28-L33 

To a suspension of (1S,2S)-(−)-1,2-diphenylethylenediamine (1.0 eq.) and K2CO3 

(4.0 eq.) in anhydrous DMF (2 mM) was added a solution of benzylic halide (2.0 eq.) in 

anhydrous DMF (1 mM). The reaction mixture was kept stirred for 16h at ambient 

temperature and then quenched by addition of water. The mixture was extracted with 

EtOAc and washed with water several times and brine. The organic layer was dried over 

anhydrous MgSO4. After removal of the drying agent by filtration, the filtrate was 

concentrated under vacuum. The crude mixture was purified by column chromatography. 

Experimental data matched those described in literature for L28, L29 and L31-

L33.  

Synthesis of (1S,2S)-N,N´-Bis[4-(tert-butyl)benzyl]-1-phenyl-2-

phosphanylethane-1,2-diamine. L30 

 

Following the general procedure, using 4-tert-butylbenzyl bromide (217 mg, 0.94 

mmol). White solid was obtained after column chromatography with n-hexane/EtOAc 12:1 

(160 mg, 67%).  

[]20
D +12.7 (c 0.71, CHCl3).  

1H-NMR (400 MHz, CDCl3): δ 7.33 (d, J = 8.3 Hz, 4H), 7.20-7.14 (m, 10H), 7.07 (dd, J = 

7.9 and 2.0 Hz, 4H), 3.77 (s, 2H), 3.64 (d, J = 13.1 Hz, 2H), 3.52 (d, J = 13.1 Hz, 2H), 1.34 

(s, 18H).  

13C-NMR (100 MHz, CDCl3): δ 149.7, 128.0, 127.9, 127.8, 126.9, 125.2, 68.4, 51.0, 34.4, 

31.4.  

HRMS (ESI) calculated for C36H45N2 (M + H+) 505.3577. Found 505.3574. 
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III.4.2. General procedures for the synthesis of heterobiaryl ketones. 

Procedure A: Synthesis via Pd-catalyzed Heck reaction with butyl vinyl ether. 

Following a described procedure, a flamed-dried Schlenk tube was charged with 

the corresponding sulfonate rac-3b-h, Pd(AcO)2 (5.6 mg, 0.0025 mmol) and dppp (12 mg, 

0.028 mmol). After three cycles of vacuum-argon, DMF (1.5 mL) was added and the 

resulting mixture was stirred for 20 min at room temperature. Then Et3N (0.14 mL, 1 mmol) 

and butyl vinyl ether (0.33 mL, 2.5 mmol) were sequentially added and the resulting 

mixture was stirred at 80 C for 72 hours. The reaction crude was allowed to reach room 

temperature and was slowly added over 10 min to 2M aq. HCl (15 mL) cooled in an ice-

water bath. The resulting mixture was stirred for 0.5 h and was poured into CH2Cl2 (20 

mL). NaHCO3 was then added until neutrality, the phases separated, and the aqueous layer 

was extracted with CH2Cl2 (3×10 mL). The combined organic layers were dried over 

anhydrous Na2SO4, filtered, concentrated, and the residue was purified by column 

chromatography on silica gel with n-hexane/EtOAc mixtures. 

Procedure B: Synthesis via bromide lithiation and electrophilic quenching. 

Over a solution of corresponding heterobiaryl bromide (1.0 eq.) in freshly distilled 

THF (0.05 M) at −80 °C, n-BuLi (1.3 eq., 1.6 M in hexane) was added dropwise. After 20 

min, the corresponding electrophile (3.0 – 4.0 eq.) was slowly added. The mixture was 

stirred for 2h, quenched with a saturated aqueous solution of NH4Cl and allowed to warm 

to room temperature. The resulting mixture was extracted with EtOAc, the combined 

organic layers were dried over anhydrous Na2SO4, filtered, concentrated, and the residue 

was purified by column chromatography on silica gel with n-hexane/EtOAc mixtures. 
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Synthesis of 1-[1-(Isoquinolin-1-yl)naphthalen-2-yl]ethan-1-one. 25a 

 

Following the general procedure A, using 3b (2.28 g, 4.10 mmol) afforded 25a 

(723 mg, 59%) as a yellow amorphous solid.  

1H-NMR (400 MHz, CDCl3): δ 8.69 (d, J = 5.7 Hz, 1H), 8.06 (d, J = 8.6 Hz, 1H), 7.98-

7.92 (m, 3H), 7.79 (d, J = 5.7 Hz, 1H), 7.66 (m, 1H), 7.54 (t, J = 7.5 Hz, 1H), 7.38-7.37 

(m, 2H), 7.31 (t, J = 8.0 Hz, 1H), 7.17 (d, J = 8.6, Hz, 1H), 2.13 (s, 3H).  

13C-NMR (100 MHz, CDCl3): δ 200.8, 159.7, 142.3, 137.0, 136.2, 135.9, 134.8, 132.4, 

130.3, 129.0, 128.9, 127.9, 127.7, 127.5, 127.4, 127.0, 127.0, 126.8, 124.9, 120.4, 29.6.  

HRMS (ESI) calculated for C21H16NO (M + H+) 298.1226. Found 298.1229. 

Synthesis of 1-[1-(Quinazolin-4-yl)naphthalen-2-yl]ethan-1-one. 25b 

 

Following the general procedure A, using 3c154 (184 mg, 0.5 mmol) afforded 25b (144 mg, 

75%) as a yellow amorphous solid.  

1H-NMR (400 MHz, CDCl3): δ 9.41 (s, 1H), 8.16 (d, J = 8.5 Hz, 1H), 8.12 (d, J = 8.7 Hz, 

1H), 8.01 (d, J = 8.6 Hz, 1H), 7.97 (d, J = 8.2 Hz, 1H), 7.87 (t, J = 8.1 Hz, 1H), 7.57 (t, J 

= 7.6 Hz, 1H), 7.40 (t, J = 7.9 Hz, 1H), 7.36-7.30 (m, 2H), 7.08 (d, J = 8.6 Hz, 1H), 2.46 

(s, 3H).  

                                                                 
154 Ramírez-López, P.; Ros, A.; Estepa, B.; Fernández, F.; Fiser, B.; Gómez-Bengoa, E.; Lassaletta, J. M., 

ACS Catal. 2016, 6, 3955. 
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13C-NMR (100 MHz, CDCl3): δ 199.1, 170.0, 154.7, 149.7, 135.0, 134.8, 134.6, 133.8, 

131.7, 129.8, 128.8, 128.2, 128.1, 127.9, 127.6, 127.0, 126.2, 125.5, 124.9, 28.9.  

HRMS (ESI) calculated for C20H15N2O (M + H+) 299.1179. Found 299.1182. 

Synthesis of 1-[1-(3-Methylpyridin-2-yl)naphthalen-2-yl]ethan-1-one. 25c 

 

Following the general procedure A, using 3e (603 mg, 1.16 mmol) afforded 25c (208 mg, 

69%) as a yellow amorphous solid.  

1H-NMR (400 MHz, CDCl3): δ 8.58 (d, J = 2.8 Hz, 1H), 7.96 (d, J = 8.7 Hz, 1H), 7.91 (d, 

J = 8.3 Hz, 1H), 7.86 (d, J = 8.6 Hz, 1H), 7.66 (d, J = 7.8 Hz, 1H), 7.54 (t, J = 7.8 Hz, 1H), 

7.41 (t, J = 7.6 Hz, 1H), 7.32 (t, J = 6.2 Hz, 1H), 7.25 (d, J = 9.0 Hz, 1H), 2.26 (s, 3H), 

1.99 (s, 3H).  

13C-NMR (100 MHz, CDCl3): δ 201.6, 157.5, 146.9, 137.9, 137.5, 135.5, 134.9, 133.6, 

131.5, 128.6, 128.1, 127.7, 127.2, 126.7, 124.8, 122.9, 29.9, 18.9.  

HRMS (ESI) calculated for C18H16NO (M + H+) 262.1226. Found 262.1225. 

Synthesis of 1-[1-(isoquinolin-1-yl)-4-methylnaphthalen-2-y])ethan-1-one. 25e 

 

Following the general procedure A, using 3g (284 mg, 0.5 mmol) afforded 25e 

(145 mg, 93%) as a yellow amorphous solid.   
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1H-NMR (400 MHz, CDCl3): δ 8.69 (d, J = 5.7 Hz, 1H), 8.11 (d, J = 8.4 Hz, 1H), 7.92 (d, 

J = 8.4 Hz, 1H), 7.81 (s, 1H), 7.78 (d, J = 5.7 Hz, 1H), 7.66 (t, J = 7.1 Hz, 1H), 7.58 (t, J = 

7.6 Hz, 1H), 7.40-7.28 (m, 3H), 7.20 (d, J = 8.8 Hz, 1H), 2.85 (s, 3H), 2.08 (s, 3H). 

13C-NMR (100 MHz, CDCl3): δ 201.1, 159.9, 142.3, 135.9, 135.9, 135.6, 135.2, 134.0, 

132.5, 130.2, 129.1, 128.1, 127.5, 127.5, 126.9, 126.9, 126.6, 125.4, 124.1, 120.4, 29.7, 

19.7.  

HRMS (ESI) calculated for C22H18NO (M + H+) 312.1383. Found 312.1386. 

Synthesis of 1-[1-(Isoquinolin-1-yl)pyren-2-yl]ethan-1-one. 25f. 

 

Following the general procedure A, using 3h (284 mg, 0.45 mmol) afforded 25f 

(125 mg, 76%) as a yellow amorphous solid.  

1H-NMR (400 MHz, CDCl3): δ 8.74 (d, J = 5.8 Hz, 1H), 7.70 (s, 1H), 8.27 (d, J = 7.7 Hz, 

1H), 8.22 (s, 2H), 8.16 (d, J = 7.5 Hz, 1H), 8.07 (t, J = 7.6 Hz, 1H), 7.98 (d, J = 8.3 Hz, 

1H), 7.90 (d, J = 9.2 Hz, 1H), 7.84 (d, J = 5.8 Hz, 1H), 7.69 (m, 1H), 7.40 (d, J = 9.2 Hz, 

1H), 7.36-7.35 (m, 2H), 2.40 (s, 3H).  

13C-NMR (100 MHz, CDCl3): δ 201.2, 160.3, 142.2, 136.7, 136.0, 132.6, 131.8, 131.1, 

130.5, 130.3, 129.3, 128.7, 128.6, 127.6, 127.5, 127.1, 127.1, 127.0, 126.2, 125.9, 125.7, 

125.5, 125.1, 124.1, 120.5, 29.5.  

HRMS (ESI) calcd. for C27H18NO (M + H+) 372.1383. Found 372.1383. 
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Synthesis of 1-[2-(Isoquinolin-1-yl)-3-methylphenyl]ethan-1-one. 25g 

 

Following the general procedure B, using 3i(Br)155 (191 mg, 0.64 mmol), and N,N-

dimethylacetamide (180 μL, 1.92 mmol) afforded 25g (109 mg, 58%) as a yellow 

amorphous solid.  

1H-NMR (400 MHz, CDCl3): δ 8.56 (d, J = 5.7 Hz, 1H), 7.86 (d, J = 8.2 Hz, 1H), 7.73 (dd, 

J = 6.7 and 2.3 Hz, 1H), 7.66-7.62 (m, 2H), 7.49-7.41 (m, 4H), 2.14 (s, 3H), 1.93 (s, 3H).  

13C-NMR (100 MHz, CDCl3): δ 200.3, 160.8, 142.1, 139.0, 137.9, 137.8, 135.8, 133.7, 

130.0, 128.3, 127.9, 127.4, 127.0, 126.7, 126.3, 119.9, 28.9 19.7.  

HRMS (ESI) calculated for C18H16NO (M + H+) 262.1226. Found 262.1227. 

Synthesis of 1-[1-(3-Phenylisoquinolin-1-yl)naphthalen-2-yl]ethan-1-one. 25h 

 

Following the general procedure A, using 3l¡Error! Marcador no definido. (315 

mg, 0.5 mmol) afforded 25h (109 mg, 58%) as a yellow amorphous solid. 

1H-NMR (400 MHz, CDCl3): δ 8.23 (s, 1H), 8.19-8.17 (m, 2H), 8.09 (d, J = 8.6 Hz, 1H), 

8.00-7.97 (m, 3H), 7.67(ddd, J = 8.1, 6.5 and 1.5 Hz, 1H), 7.55 (m, 1H), 7.51-7.47 (m, 2H), 

7.42-7.33 (m, 5H), 2.09 (s, 3H).  

                                                                 
155 Ramírez-López, P.; Ros, A.; Romero-Arenas, A.; Iglesias-Sigüenza, J.; Fernández, R.; Lassaletta, J. M., J. 

Am. Chem. Soc. 2016, 138, 12053. 
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13C-NMR (100 MHz, CDCl3): δ 201.4, 159.2, 150.6, 139.3, 137.1, 137.0, 136.8, 134.8, 

132.4, 130.4, 128.9, 128.7, 128.5, 128.0, 128.0, 127.6, 127.4, 127.3, 127.1, 127.0, 

126.8,124.8, 116.5 29.9.  

HRMS (ESI) calculated for C27H20NO (M + H+) 374.1539. Found 374.1539. 

Synthesis of 1-[1-(Isoquinolin-1-yl)naphthalen-2-yl]propan-1-one. 25i 

 

Following the general procedure B, using 3b(Br)¡Error! Marcador no definido. 

(167 mg, 0.5 mmol) and ethyl propionate (253 μL, 2 mmol) afforded 25i (37 mg, 24%) as 

a yellow amorphous solid.  

1H-NMR (400 MHz, CDCl3): δ 8.66 (d, J = 5.7 Hz, 1H), 8.06(d, J = 8.6 Hz, 1H), 7.95 (d, 

J = 7.4 Hz, 1H), 7.93 (d, J = 8.2 Hz, 1H), 7.92 (d, J = 8.6 Hz, 1H), 7.78 (d, J = 5.7 Hz, 1H), 

7.67 (m, 1H), 7.53 (ddd, J = 8.1, 6.8 and 1.2 Hz, 1H), 7.38 (d, J = 3.7, Hz, 2H), 7.31 (ddd, 

J = 10.2, 6.8 and 1.3 Hz, 1H), 2.66 (m, 1H), 2.50 (m, 1H), 0.89 (d, J = 7.2 Hz, 3H).  

13C-NMR (100 MHz, CDCl3): δ 204.1, 159.8, 142.1, 136.5, 135.9, 134.6, 132.5, 130.4, 

129.1, 128.9, 128.0, 127.5, 127.4, 127.1, 127.0, 127.0, 124.5, 120.5, 35.0, 8.2.  

HRMS (ESI) calculated for C22H18NO+ (M + H+) 312.1383. Found 312.1380. 

Synthesis of 1-[1-(isoquinolin-1-yl)naphthalen-2-yl]-3,3-dimethylbutan-1-one. 

25j 

 



193 
 

Following the general procedure B, using 3b(Br)¡Error! Marcador no definido. 

(167 mg, 0.5 mmol) and N-methoxy-N-3,3-trimethylbutanamide (318 mg, 2 mmol) 

afforded 25j (76 mg, 45%) as a yellow amorphous solid.  

1H-NMR (400 MHz, CDCl3): δ 8.66 (d, J = 5.8 Hz, 1H), 8.05 (d, J = 8.6 Hz, 1H), 7.95 (d, 

J = 8.2 Hz, 1H), 7.93 (d, J = 8.5 Hz, 1H), 7.81 (d, J = 9.1 Hz, 1H), 7.79(d, J = 7.4 Hz, 1H), 

7.70 (m, 1H), 7.52 (t, J = 7.7 Hz, 1H), 7.43-7.37 (m, 2H), 7.32 (t, J = 7.9 Hz, 1H), 7.19(d, 

J = 8.7 Hz, 1H), 2.17 (s, 2H), 0.80 (s, 9H).  

13C-NMR (100 MHz, CDCl3): δ 204.5, 159.5, 139.1, 136.0, 134.4, 132.3, 130.5, 129.1, 

128.0, 127.6, 127.4, 127.2, 127.0, 124.4, 120.6, 53.7, 31.3, 29.6.  

HRMS (ESI) calculated for C25H24NO (M + H+) 354.1852. Found 354.1854. 

Synthesis of Cyclohexyl[1-(isoquinolin-1-yl)naphthalen-2-yl]methanone. 25k 

 

Following the general procedure B, using 3b(Br) (167 mg, 0.5 mmol) and ethyl 

cyclohexanecarboxylate (312 mg, 2 mmol) afforded 25k (40 mg, 22%) as a yellow 

amorphous solid.  

1H-NMR (400 MHz, CDCl3): δ 8.68 (d, J = 5.7 Hz, 1H), 8.05 (d, J = 8.5 Hz, 1H), 7.95 (d, 

J = 8.5 Hz, 1H), 7.92 (d, J = 8.5 Hz, 1H), 7.79 (d, J = 8.6 Hz, 1H), 7.77 (d, J = 5.7 Hz, 1H), 

7.67 (ddd, J = 8.2, 6.4 and 1.6 Hz, 1H), 7.52 (ddd, J = 8.2, 6.7 and 1.2 Hz, 1H), 7.43-7.36 

(m, 2H), 7.32 (ddd, J = 8.2, 6.7 and 1.3 Hz, 1H), 7.23 (d, J = 8.5, Hz, 1H), 2.44 (m, 1H), 

1.71-1.61 (m, 2H), 1.59-1.49 (m, 2H), 1.29 (m, 1H), 1.21-1.09 (m, 2H), 1.08-0.99 (m, 2H), 

0.87 (m, 1H).  

13C-NMR (100 MHz, CDCl3): δ 208.1, 159.4, 142.1, 137.5, 135.9, 134.4, 132.3, 130.3, 

129.0, 128.9, 128.0, 127.5, 127.3, 127.3, 127.1, 127.0, 126.9, 124.5, 120.4, 49.1, 28.9, 28.5, 

25.7, 25.6, 25.6.  
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HRMS (ESI) calculated for C26H24NO (M + H+) 366.1852. Found 366.1845. 

III.4.3. General procedure for the Zn-catalyzed asymmetric hydrosilylation of 

heterobiaryl ketones. 

To a flame-dried Schlenk tube, zinc acetate (0.92 mg, 0.005 mmol, 5 mol%) and 

L33 (3.7 mg, 0.006 mmol, 6 mol%) were dissolved in freshly distilled THF (0.4 mL) and 

stirred for 1 h at room temperature under N2 atmosphere. Then (EtO)2MeSiH (32 μL, 0.2 

mmol, 2.0 eq.) was added and the reaction mixture was stirred for an additional hour. 

Finally, heterobiaryl ketone 25 (0.1 mmol, 1.0 eq.) was added and the resulting mixture 

was stirred at 70 C for 36 h. The reaction crude was allowed to reach room temperature, 

1M aq. HCl (0.5 mL) was added and the resulting mixture was stirred for ca. 1 h. CH2Cl2 

(2 mL) was added, the mixture was neutralized with saturated aqueous solution of 

NaHCO3, the phases separated, and the aqueous layer extracted 3 times with CH2Cl2. The 

combined organic layers were dried over anhydrous Na2SO4, filtered and concentrated 

under reduced pressure. The residue was purified by flash chromatography (6:1 

CH2Cl2/EtOAc) affording the resulting carbinols 26. 

Note. Racemic products were prepared as follows: To a solution of ketone 25 in 

MeOH cooled with an ice-water bath, sodium borohydride (2.0 eq.) was added in portions 

and the resulting mixture was allowed to warm to room temperature. After complete 

disappearance of the starting material by TLC, the reaction mixture was quenched by 

careful addition of saturated aqueous solution of NH4Cl and the resulting mixture was 

extracted with EtOAc. The combined organic layers were dried over anhydrous Na2SO4, 

filtered, concentrated. Diastereomers were separated from reaction crude by preparative 

TLC prior to HPLC analysis. 

Yields and characterization data for each isomer of 26 are as follows. 
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Synthesis of 1-[1-(Isoquinolin-1-yl)naphthalen-2-yl]ethan-1-ol. 26a 

Following the general procedure using heterobiaryl ketone 25a (30 mg, 0.1 mmol), 

purification by flash chromatography (6:1 CH2Cl2/EtOAc) afforded both diastereomers 

characterized separately: 

 

(Ra,R)-26a (20 mg, 67%). 

[]20
D 312.0 (c 0.48, CHCl3) for 97% ee.  

1H-NMR (400 MHz, CDCl3): δ 8.70 (dd, J = 5.8 and 1.6 Hz, 1H), 8.03 (dd, J = 8.7 and 3.2 

Hz, 1H), 7.95 (d, J = 8.3 Hz, 1H), 7.91 (d, J = 8.2 Hz, 1H), 7.85 (dd, J = 8.6 and 2.8 Hz, 

1H), 7.78 (d, J = 5.8 Hz, 1H), 7.70 (m, 1H), 7.45–7.36 (m, 3H), 7.24 (t, J = 7.1 Hz, 1H), 

6.96 (d, J = 8.4 Hz, 1H), 4.49 (m, 1H), 2.15 (br s, 1H), 1.37 (d, J = 6.5 Hz, 3H).  

13C-NMR (100 MHz, CDCl3) δ 159.5, 142.4, 141.7, 136.2, 132.9, 132.4, 130.6, 129.4, 

128.6, 128.0, 127.7, 127.0, 127.0, 126.4, 126.1, 125.7, 123.4, 120.4, 68.2, 24.7.  

HRMS (ESI) calculated for C21H18NO (M + H+) 300.1383. Found 300.1385.  

HPLC (AS-H column, n-hex/IPA 85:15, T= 30C, F= 1.0 mL/min): tR 5.98 min (major) 

and 13.19 min (minor). 

M. p. 175-177 °C. 

 

(Sa,R)-26a (3 mg, 10%). 

[]20
D +153.5 (c 0.51, CHCl3) for 90% ee.  
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1H-NMR (400 MHz, CDCl3): δ 8.65 (d, J = 5.8 Hz, 1H), 8.00 (d, J = 8.6 Hz, 1H), 7.96 (d, 

J = 8.3 Hz, 1H), 7.91 (d, J = 8.2 Hz, 1H), 7.85 (d, J = 8.6 Hz, 1H), 7.81 (d, J = 5.8 Hz, 1H), 

7.71 (ddd, J = 8.2, 6.3 and 1.8 Hz, 1H), 7.44 (ddd, J = 8.1, 6.8 and 1.2 Hz, 1H), 7.41–7.34 

(m, 2H), 7.23 (ddd, J = 8.4, 6.8 and 1.3 Hz, 1H), 6.92 (dd, J = 8.5 and 0.8 Hz, 1H), 4.47 (q, 

J = 6.5 Hz, 1H), 3.59 (br s, 1H), 1.36 (d, J = 6.5 Hz, 3H).  

13C-NMR (100 MHz, CDCl3) δ 159.5, 141.9, 141.8, 136.2, 133.5, 132.7, 132.3, 130.8, 

129.6, 128.8, 128.1, 127.7, 127.7, 127.1, 126.4, 126.1, 125.7, 123.2, 120.8, 66.3, 21.8.  

HRMS (ESI) calculated for C21H18NO (M + H+) 300.1383. Found 300.1385.  

HPLC (AS-H column, n-hex/IPA 85:15, T= 30C, F= 1.0 mL/min): tR 4.54 min (minor) 

and 5.11 min (major). 

Synthesis of 1-[3-(Methylpyridin-2-yl)naphthalen-2-yl]ethan-1-ol. 26c 

Following the general procedure using heterobiaryl ketone 25c (52 mg, 0.2 mmol), 

Purification by flash chromatography (6:1 CH2Cl2/EtOAc) afforded both diastereomers 

characterized separately: 

 

(Ra,R)-26c (41 mg, 78%). 

[]20
D +5.1 (c 0.32, CHCl3) for 96% ee.  

1H-NMR (400 MHz, CDCl3): δ 8.58 (dd, J = 4.8 and 1.6 Hz, 1H), 7.92 (d, J = 8.6 Hz, 1H), 

7.85 (d, J = 8.1 Hz, 1H), 7.72 (d, J = 8.6 Hz, 1H), 7.66 (d, J = 7.7 Hz, 1H), 7.43 (ddd, J = 

8.0, 6.8 and 1.2 Hz, 1H), 7.34–7.28 (m, 2H), 7.07 (d, J = 8.4 Hz, 1H), 4.55 (q, J = 6.5 Hz,), 

2.54 (br s, 1H), 1.97 (s, 3H), 1.34 (d, J = 6.5 Hz, 3H).  

13C-NMR (100 MHz, CDCl3) δ 157.2, 147.0, 140.4, 137.8, 134.0, 133.0, 132.9, 131.4, 

128.9, 128.0, 126.4, 125.6, 125.2, 123.4, 122.6, 68.3, 24.7, 18.9.  

HRMS (ESI) calculated for C18H18NO (M + H+) 264.1383. Found 264.1385.  
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HPLC (AS-H column, n-hex/IPA 90:10, T= 30C, F= 1.0 mL/min): tR 6.14 min (major) 

and 7.32 min (minor). 

 

(Sa,R)-26c (8 mg, 15%). 

[]20
D +44.0 (c 0.39, CHCl3) for 82% ee.  

1H-NMR (400 MHz, CDCl3): δ 8.59 (dd, J = 4.9 and 1.0 Hz, 1H), 7.95 (d, J = 8.6 Hz, 1H), 

7.89 (d, J = 8.2 Hz, 1H), 7.80 (d, J = 8.6 Hz, 1H), 7.77 (d, J = 7.8 Hz, 1H), 7.46 (ddd, J = 

8.0, 6.8 and 1.2 Hz, 1H), 7.39 (dd, J = 7.8 and 5.0 Hz, 1H), 7.36 (ddd, J = 8.2, 6.8 and 1.3 

Hz, 1H), 7.10 (d, J = 8.5 Hz, 1H), 4.54 (q, J = 6.5 Hz, 1H), 4.05 (br s, 1H), 2.00 (s, 3H), 

1.46 (d, J = 6.5 Hz, 3H). 

13C-NMR (100 MHz, CDCl3) δ 156.5, 146.1, 140.9, 139.0, 134.3, 133.9, 132.8, 131.0, 

129.4, 128.4, 126.7, 125.8, 125.0, 123.3, 123.2, 66.2, 21.6, 18.9.  

HRMS (ESI) calculated for C18H18NO (M + H+) 264.1383. Found 264.1385.  

HPLC (AS-H column, n-hex/IPA 90:10, T= 30C, F= 1.0 mL/min): tR 4.43 min (minor) 

and 4.90 min (major). 

Synthesis of 1-[1-(Isoquinolin-1-yl)-4-methylnaphthalen-2-yl]ethan-1-ol. 26e 

Following the general procedure using heterobiaryl ketone 25e (62 mg, 0.2 mmol), 

purification by flash chromatography (6:1 CH2Cl2/EtOAc) afforded both diastereomers 

characterized separately: 
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(Ra,R)-26e (40.4 mg, 64%). 

[]20
D +4.7 (c 0.50, CHCl3) for 97% ee.  

1H-NMR (400 MHz, CDCl3): δ 8.69 (d, J = 5.8 Hz, 1H), 8.06 (d, J = 8.2 Hz, 1H), 7.93 (d, 

J = 8.2 Hz, 1H), 7.76 (d, J = 5.8 Hz, 1H), 7.69 (s, 1H), 7.67 (ddd, J = 8.1, 6.6 and 1.0 Hz, 

1H), 7.49–7.44 (m, 2H), 7.36 (t, J = 7.6 Hz, 1H), 7.24 (ddd, J = 8.2, 6.8 and 1.2 Hz, 1H), 

6.99 (d, J = 8.4 Hz, 1H), 4.44 (q, J = 6.4 Hz,), 2.82 (s, 3H), 2.16 (br s, 1H), 1.35 (d, J = 6.4 

Hz, 3H).  

13C-NMR (100 MHz, CDCl3) δ 159.8, 142.4, 141.1, 136.2, 135.8, 132.6, 132.1, 131.2, 

130.4, 128.8, 127.6, 127.1, 126.9, 126.7, 126.0, 125.5, 124.1, 124.0, 120.2, 68.3, 24.6, 19.8.  

HRMS (ESI) calculated for C22H20NO (M + H+) 314.1539. Found 314.1540.  

HPLC (AS-H column, n-hex/IPA 85:15, T= 30C, F= 1.0 mL/min): tR 4.86 min (major) 

and 9.68 min (minor). 

 

(Sa,R)-26e (10 mg, 16%). 

[]20
D +44.6 (c 0.63, CHCl3) for 89% ee. 

1H-NMR (400 MHz, CDCl3): δ 8.65 (d, J = 5.8 Hz, 1H), 8.07 (d, J = 8.4 Hz, 1H), 7.95 (d, 

J = 8.2 Hz, 1H), 7.78 (d, J = 5.8 Hz, 1H), 7.71–7.68 (m, 2H), 7.48 (ddd, J = 8.2, 6.8 and 
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1.2 Hz, 1H), 7.37 (d, J = 3.4 Hz, 2H), 7.23 (ddd, J = 8.2, 6.7 and 1.2 Hz, 1H), 6.95 (d, J = 

8.4 Hz, 1H), 4.44 (q, J = 6.5 Hz, 1H), 3.68 (br s, 1H), 2.82 (s, 3H), 1.38 (d, J = 6.5 Hz, 3H).  

13C-NMR (100 MHz, CDCl3) δ 160.0, 142.1, 141.2, 136.2, 135.9, 132.5, 132.4, 132.0, 

130.6, 129.0, 127.9, 127.6, 127.0, 126.9, 126.1, 125.6, 124.3, 123.9, 120.7, 66.4, 21.6, 19.9.  

HRMS (ESI) calcd. for C22H20NO (M + H+) 314.1539. Found 314.1541.  

HPLC (IA column, n-hex/IPA 90:10, T= 30C, F= 1.0 mL/min): tR 7.70 min (minor) and 

8.63 min (major). 

Synthesis of 1-[1-(Isoquinolin-1-yl)pyren-2-yl]ethan-1-ol. 26f 

Following the general procedure using heterobiaryl ketone 25fg (56 mg, 0.15 

mmol), Purification by flash chromatography (6:1 CH2Cl2/EtOAc) afforded both 

diastereomers characterized separately:  

 

(Ra,R)-26f (39 mg, 70%). 

[]20
D 284.9 (c 0.49, CHCl3) for 97% ee.  

1H-NMR (400 MHz, CDCl3): δ 8.76 (d, J = 5.7 Hz, 1H), 8.53 (s, 1H), 8.21 (d, J = 7.6 Hz, 

1H), 8.13-8.09 (m, 3H), 7.99 (t, J = 7.6 Hz, 1H), 7.97 (d, J = 8.3 Hz, 1H), 7.84 (s, 1H), 7.82 

(d, J = 3.5 Hz, 1H), 7.67 (ddd, J = 8.2, 6.2, and 1.6 Hz, 1H), 7.34–7.27 (m, 2H), 7.23 (d, J 

= 9.2 Hz, 1H), 4.76 (q, J = 6.4 Hz, 1H), 2.66 (br s, 1H), 1.45 (d, J = 6.5 Hz, 3H).  

13C-NMR (100 MHz, CDCl3) δ 159.8, 142.4, 142.3, 136.2, 131.8, 131.2, 131.1, 130.6, 

130.5, 130.0, 128.9, 127.9, 127.9, 127.7, 127.5, 127.2, 127.0, 126.0, 125.4, 125.2, 125.1, 

124.2, 124.0, 120.5 69.0, 25.5.  

HRMS (ESI) calculated for C27H20NO (M + H+) 374.1539. Found 374.1539.  
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HPLC (AS-H column, n-hex/IPA 85:15, T= 30C, F= 1.0 mL/mi): tR 6.59 min (major) and 

13.67 min (minor). 

 

(Sa,R)-26f (10 mg, 18%). 

[]20
D +50.2 (c 0.88, CHCl3) for 86% ee.  

1H-NMR (400 MHz, CDCl3): δ 8.74 (d, J = 5.8 Hz, 1H), 8.50 (s, 1H), 8.18 (d, J = 7.6 Hz, 

1H), 8.12 (d, J = 7.6 Hz, 1H), 8.05-7.99 (m, 4H), 7.86 (d, J = 5.8 Hz, 1H), 7.82 (d, J = 9.2 

Hz, 1H), 7.72 (ddd, J = 8.2, 6.7 and 1.3 Hz, 1H), 7.33 (ddd, J = 8.5, 6.9 and 1.2 Hz, 1H), 

7.28 (d, J = 8.1 Hz, 1H), 7.18 (d, J = 9.2 Hz, 1H), 4.77 (q, J = 6.5 Hz, 1H), 1.53 (d, J = 6.5 

Hz, 3H).  

13C-NMR (100 MHz, CDCl3) δ 159.9, 142.2, 141.8, 136.3, 131.8, 131.3, 130.8, 130.6, 

129.9, 129.1, 127.9, 127.9, 127.8, 127.5, 127.1, 126.0, 125.6, 125.2, 125.2, 124.4, 123.8, 

121.8, 120.9, 66.5, 21.9.  

HRMS (ESI) calculated for C27H20NO (M + H+) 374.1539. Found 374.1542.  

HPLC (AS-H column, n-hex/IPA 95:5, T= 30C, F= 1.0 mL/min): tR 9.68 min (minor) and 

11.34 min (major). 

Synthesis of 1-[2-(Isoquinolin-1-yl)-3-methylphenyl]ethan-1-ol. 26g 

Following the general procedure using heterobiaryl ketone 25g (52 mg, 0.2 mmol), 

Purification by flash chromatography (6:1 CH2Cl2/EtOAc) afforded both diastereomers 

characterized separately: 
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(Ra,R)-26g (32 mg, 61%). 

[]20
D +11.9 (c 0.49, CHCl3) for 90% ee.  

1H-NMR (400 MHz, CDCl3): δ 8.60 (d, J = 5.8 Hz, 1H), 7.90 (d, J = 8.2 Hz, 1H), 7.71–

7.68 (m, 2H), 7.54 (d, J = 8.0 Hz, 1H), 7.52 (d, J = 7.3 Hz, 1H), 7.46 (t, J = 7.3 Hz, 1H), 

7.41 (t, J = 7.6 Hz, 1H), 7.24 (d, J = 7.5 Hz, 1H), 4.27 (q, J = 6.4 Hz,), 2.43 (br s, 1H), 1.86 

(s, 3H), 1.21 (d, J = 6.4 Hz, 3H).  

13C-NMR (100 MHz, CDCl3) δ 160.4, 144.4, 142.0, 136.4, 136.2, 135.8, 130.5, 129.1, 

128.9, 127.7, 127.7, 127.0, 126.6, 123.2, 120.1, 68.3, 24.8, 19.8.  

HRMS (ESI) calculated for C23H18NO (M + H+) 264.1383. Found 264.1385.  

HPLC (AS-H column, n-hex/IPA 85:15, T= 30C, F= 1.0 mL/min): tR 4.66 min (major) 

and 9.39 min (minor). 

 

(Sa,R)-26g (10 mg, 19%). 

[]20
D +31.8 (c 0.63, CHCl3) for 88% ee.  

1H-NMR (400 MHz, CDCl3): δ 8.59 (d, J = 5.8 Hz, 1H), 7.93 (d, J = 8.2 Hz, 1H), 7.75 (d, 

J = 5.8 Hz, 1H), 7.73 (ddd, J = 8.1, 6.0 and 1.9 Hz, 1H), 7.57–7.50 (m, 3H), 7.45 (t, J = 7.6 

Hz, 1H), 7.26 (d, J = 7.7 Hz, 1H), 4.24 (q, J = 6.5 Hz,), 3.34(br s, 1H), 1.86 (s, 3H), 1.32 

(d, J = 6.5 Hz, 3H).  

13C-NMR (100 MHz, CDCl3) δ 160.5, 144.1, 141.2, 136.7, 136.5, 136.4, 130.9, 129.3, 

129.1, 127.9, 127.8, 127.2, 127.2, 122.9, 120.7, 66.1, 21.1, 20.1  
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HRMS (ESI) calculated for C23H18NO (M + H+) 264.1383. Found 264.1385.  

HPLC (AS-H column, n-hex/IPA 99:1, T= 30C, F= 1.0 mL/min): tR 16.38 min (minor) 

and 18.32 min (major). 

Synthesis of 1-[1-(3-Phenylisoquinolin-1-yl)naphthalen-2-yl]ethan-1-ol. 26h 

Following the general procedure using heterobiaryl ketone 25h (37 mg, 0.1 mmol), 

Purification by flash chromatography (6:1 CH2Cl2/EtOAc) afforded both diastereomers 

characterized separately: 

 

(Ra,R)-26h(22mg, 59%). 

[]20
D +19.6 (c 0.49, CHCl3) for 95% ee.  

1H-NMR (400 MHz, CDCl3): δ 8.22 (d, J = 0.5 Hz, 1H), 8.20-8.17 (m, 2H), 8.07 (d, J = 

8.7 Hz, 1H), 8.00 (d, J = 8.3 Hz, 1H), 7.93 (d, J = 8.3 Hz, 1H), 7.91 (d, J = 8.6 Hz, 1H), 

7.68 (ddd, J = 8.2, 6.6 and 1.4 Hz, 1H), 7.50–7.38 (m, 5H), 7.34 (ddd, J = 8.5, 6.6 and 1.2 

Hz, 1H), 7.24 (ddd, J = 8.3, 6.8 and 1.3 Hz, 1H), 7.08 (dd, J = 8.4 and 0.8 Hz, 1H), 4.49 

(q, J = 6.4 Hz, 1H), 2.04 (br s, 1H), 1.45 d, J = 6.4 Hz, 3H).  

13C-NMR (100 MHz, CDCl3) δ 159.3, 150.5, 141.8, 139.4, 137.1, 133.3, 132.9, 132.5, 

130.6, 129.4, 128.8, 128.6, 128.0, 127.7, 127.5, 127.4, 127.1, 127.1, 126.4, 126.4, 125.8, 

123.5, 116.2, 68.4, 25.1.  

HRMS (ESI) calculated for C27H22NO (M + H+) 376.1696. Found 376.1697. 

HPLC (IA column, n-hex/IPA 85:15, T= 30C, F= 1.0 mL/min): tR 6.55 min (minor) and 

9.73 min (major). 
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(Sa,R)-26h (12 mg, 32%). 

[]20
D +46.2 (c 0.74, CHCl3) for 95% ee.  

1H-NMR (400 MHz, CDCl3): δ 8.23 (s, 1H), 8.14-8.11 (m, 2H), 8.07 (d, J = 8.7 Hz, 1H), 

8.01 (d, J = 8.3 Hz, 1H), 7.94 (d, J = 8.3 Hz, 1H), 7.89 (d, J = 8.7 Hz, 1H), 7.70 (ddd, J = 

8.2, 5.2 and 2.9 Hz, 1H), 7.48–7.43 (m, 3H), 7.41–7.35 (m, 3H), 7.24 (ddd, J = 8.3, 6.8 and 

1.4 Hz, 1H), 7.05 (dd, J = 8.5 and 0.8 Hz, 1H), 4.58 (q, J = 6.5 Hz, 1H), 3.81 (br s, 1H), 

1.46 d, J = 6.5 Hz, 3H). 

13C-NMR (100 MHz, CDCl3) δ 159.5, 150.5, 141.4, 138.9, 137.1, 132.8, 132.5, 130.8, 

129.5, 128.8, 128.7, 128.1, 127.8, 127.8, 127.5, 127.4, 127.0, 127.0, 126.5, 126.4, 125.8, 

123.0, 116.7, 66.4, 20.8.  

HRMS (ESI) calculated for C27H22NO (M + H+) 376.1696. Found 376.1698.  

HPLC (IA column, n-hex/IPA 85:15, T= 30C, F= 1.0 mL/min): tR 6.65 min (major) and 

8.73 min (minor). 

Synthesis of 1-[1-(Isoquinolin-1-yl)naphthalen-2-yl]propan-1-ol. 26i 

Following the general procedure using heterobiaryl ketone 25i (31 mg, 0.1 mmol), 

Purification by flash chromatography (6:1 CH2Cl2/EtOAc) afforded both diastereomers 

characterized separately: 

 

(Ra,R)-26i (22 mg, 70%). 
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[]20
D []20

D +8.8 (c 0.33, CHCl3) for 94% ee.  

1H-NMR (400 MHz, CDCl3): δ 8.72 (d, J = 5.8 Hz, 1H), 8.07 (d, J = 8.6 Hz, 1H), 8.03 (d, 

J = 8.3 Hz, 1H), 7.95 (d, J = 8.2 Hz, 1H), 7.90 (d, J = 6.0 Hz, 1H), 7.79 (t, J = 8.4 Hz, 2H), 

7.56 – 7.41 (m, 3H), 7.29 – 7.24 (m, 1H), 6.92 (d, J = 8.5 Hz, 1H), 4.35 (t, J = 6.9 Hz, 1H), 

1.74 - 1.58 (m, 2H), 0.80 (t, J = 7.4 Hz, 3H).  

13C-NMR (100 MHz, CDCl3): δ 159.4, 141.4, 140.1, 140.0, 136.7, 132.8, 132.6, 131.6, 

129.8, 128.7, 128.3, 128.1, 127.6, 127.2, 126.7, 125.9, 125.8, 124.5, 121.2, 74.4, 31.2, 10.5.  

HRMS (ESI) calculated for C22H20NO (M + H+) 314.1539. Found 314.1539.  

HPLC (AS-H column, n-hex/IPA 85:15, T= 30C, F= 1.0 mL/min): tR 5.44 min (major) 

and 6.97 min (minor). 

 

(Sa,R)-26i (5 mg, 16%). 

[]20
D +11.7 (c 0.10, CHCl3) for 94% ee.  

1H-NMR (400 MHz, CDCl3): δ 8.68 (d, J = 5.7 Hz, 1H), 8.06 (d, J = 8.6 Hz, 1H), 8.02 (d, 

J = 8.3 Hz, 1H), 7.93 (d, J = 8.6 Hz, 1H), 7.91 (d, J = 5.7 Hz, 1H), 7.85 (d, J = 8.7 Hz, 1H), 

7.78 (m, 1H), 7.47–7.43 (m, 3H), 7.23 (ddd, J = 8.2, 6.8 and 1.3 Hz, 1H), 6.88 (d, J = 8.4 

Hz, 1H), 4.16 (t, J = 7.0 Hz, 1H), 1.75 (m, 1H), 0.63 (d, J = 7.4 Hz, 3H).  

13C-NMR (100 MHz, CDCl3) δ 159.3, 141.2, 140.7, 140.6, 136.5, 132.7, 132.2, 131.5, 

129.9, 128.8, 128.2, 128.0, 127.1, 126.5, 126.0, 125.9, 123.8, 121.3, 72.1, 28.4, 10.5.  

HRMS (ESI) calculated for C22H20NO (M + H+) 314.1539. Found 314.1540.  

HPLC (AS-H column, n-hex/IPA 85:15, T= 30C, F= 1.0 mL/min): tR 4.23 min (minor) 

and 4.58 min (major). 
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Synthesis of (R)-1-{1-[(R)-Isoquinolin-1-yl]naphthalen-2-yl}-3,3-

dimethylbutan-1-ol. 26j 

 

Following the general procedure using heterobiaryl ketone 25j (36 mg, 0.1 mmol), 

Purification by flash chromatography (6:1 CH2Cl2/EtOAc) afforded 26j as single 

diastereomer (d.r. >20:1, 19 mg, 52%).  

[]20
D +50.1 (c 0.50, CHCl3) for 80% ee.  

1H-NMR (400 MHz, CDCl3): δ 8.69 (d, J = 5.7 Hz, 1H), 7.96 (d, J = 8.2 Hz, 1H), 7.92 (d, 

J = 8.6 Hz, 2H), 7.82 (d, J = 8.6 Hz, 1H), 7.79 (d, J = 5.8 Hz, 1H), 7.71 (dd, J = 8.2, 6.6 

Hz, 1H), 7.51 – 7.43 (m, 1H), 7.40 (t, J = 7.6 Hz, 1H), 7.34 (d, J = 8.5 Hz, 1H), 7.26 (dd, 

J = 8.2, 6.6 Hz, 1H), 6.99 (d, J = 8.5 Hz, 1H), 4.53 – 4.46 (m, 1H), 3.76 (br s, 1H), 1.76 

(dd, J = 14.4, 9.1 Hz, 1H), 1.30 (dd, J = 13.7, 2.3 Hz, 1H), 0.47 (s, 9H).  

13C-NMR (100 MHz, CDCl3) δ 159.6, 142.9, 142.1, 136.2, 132.5, 132.4, 132.2, 130.6, 

129.3, 128.8, 128.0, 127.8, 127.4, 127.0, 126.3, 126.1, 125.5, 124.0, 120.5, 67.9, 50.2, 30.1, 

29.5.  

HRMS (ESI) calculated for C25H26NO (M + H+) 356.2009. Found 356.2008.  

HPLC (IA column, n-hex/IPA 95:5, T= 30C, F= 1.0 mL/min.): tR 14.20 min (major) and 

16.30 min (minor). 

Synthesis of Cyclohexyl[1-(isoquinolin-1-yl)naphthalen-2-yl]methanol. 26k 

Following the general procedure using heterobiaryl ketone 25k (37 mg, 0.1 mmol), 

Purification by flash chromatography (6:1 CH2Cl2/EtOAc) afforded both diastereomers 

characterized separately: 
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(Ra,R)-26k (23 mg, 63%). 

[]20
D 54.9 (c 0.90, CHCl3) for 91% ee.  

1H-NMR (400 MHz, CDCl3): δ 8.66 (d, J = 5.8 Hz, 1H), 8.02 (d, J = 8.6 Hz, 1H), 7.98 (d, 

J = 8.3 Hz, 1H), 7.91 (d, J = 8.1 Hz, 1H), 7.82 (d, J = 5.8 Hz, 1H), 7.81 (d, J = 8.6 Hz, 1H), 

7.74 (ddd, J = 8.1, 6.2 and 1.8 Hz, 1H), 7.44–7.38 (m, 3H), 7.21 (t, J = 8.2 Hz, 1H), 6.88 

(d, J = 8.4 Hz, 1H), 3.87 (d, J = 9.2 Hz, 1H), 3.65 (br s, 1H), 2.08 (d, J = 12.8 Hz, 1H), 

1.85 (q, J = 8.1 Hz, 1H), 1.62 (d, J = 13.4 Hz, 1H), 1.51 (d, J = 12.8 Hz, 1H), 1.41 (d, J = 

13.1 Hz, 1H), 1.23-1.01 (m, 3H), 0.93-0.82 (m, 1H), 0.69 (qd, J = 12.8 and 3.3 Hz, 1H), 

0.29 (qd, J = 12.4 and 3.5 Hz, 1H).  

13C-NMR (100 MHz, CDCl3) δ 159.5, 141.5, 140.6, 136.3, 134.6, 132.6, 132.3, 131.0, 

129.6, 128.9, 128.2, 128.1, 127.6, 127.0, 126.4, 126.1, 125.8, 124.4, 120.9, 75.4, 41.8, 29.5, 

29.5, 26.2, 25.9, 25.7.  

HRMS (ESI) calculated for C26H26NO (M + H+) 368.2009. Found 368.2009.  

HPLC (IB column, n-hex/IPA 90:10, T= 30C, F= 1.0 mL/min): tR 5.38 min (minor) and 

5.79 min (major). 

 

(Sa,R)-26k (8.5 mg, 23%). 

[]20
D +21.8 (c 0.30, CHCl3) for 88% ee.  

1H-NMR (400 MHz, CDCl3): δ 8.71 (d, J = 5.8 Hz, 1H), 8.03 (d, J = 8.6 Hz, 1H), 7.98 (d, 

J = 8.2 Hz, 1H), 7.91 (d, J = 8.4 Hz, 1H), 7.85 (d, J = 5.8 Hz, 1H), 7.74 (t, J = 7.2 Hz, 1H), 

7.70 (d, J = 8.7 Hz, 1H), 7.47–7.40 (m, 3H), 7.24 (ddd, J = 8.3, 6.7 and 1.3 Hz, 1H), 6.95 
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(d, J = 8.6 Hz, 1H), 4.01 (d, J = 8.4 Hz, 1H), 1.90 (d, J = 12.7 Hz, 1H), 1.61 (br s, 1H), 

1.50 (m, 2H), 1.35 (m, 1H), 1.18 (d, J = 10.1 Hz, 1H), 1.00 (t, J = 9.5 Hz, 1H), 0.95-0.75 

(m, 4H).  

13C NMR (100 MHz, CDCl3) δ 159.6, 141.2, 140.2, 136.4, 132.8, 132.6, 131.0, 129.3, 

128.8, 128.0, 127.8, 127.2, 127.1, 126.5, 126.0, 125.8, 125.2, 120.7, 77.8, 44.0, 29.8, 29.2, 

26.2, 25.9, 25.8.  

HRMS (ESI) calculated for C26H26NO (M + H+) 368.2009. Found 368.2009.  

HPLC (AS-H column, n-hex/IPA 85:15, T= 30C, F= 1.0 mL/min): tR 5.00 min (major) 

and 6.13 min (minor). 

III.3.3. Acetylation of more polar carbinol 3e. 

To a flame-dried Schlenk tube, zinc acetate (1.8 mg, 0.01 mmol, 5 mol%) and L33 

(7.4 mg, 0.012 mmol, 6 mol%) were dissolved in freshly distilled THF (0.8 mL) and stirred 

for 1 h at room temperature under N2 atmosphere. Then (EtO)2MeSiH (64 μL, 0.4 mmol, 2 

eq.) was added and the reaction mixture was stirred for an additional hour. Finally, 

heterobiaryl ketone 25b (0.2 mmol, 1.0 eq.) was added and the resulting mixture was stirred 

at 70 C for 36 h. The reaction crude was allowed to reach room temperature, 1M aq. HCl 

(1 mL) was added and the resulting mixture was stirred for ca. 1 h. CH2Cl2 (10 mL) was 

added, the mixture was neutralized with saturated NaHCO3, the phases separated, and the 

aqueous layer extracted 3 times with CH2Cl2. The combined organic layers were dried over 

anhydrous Na2SO4, filtered and concentrated to a final volume of 1-2 mL. Acetic anhydride 

(28 μL, 0.3 mmol) and N,N-dimethylaminopyridine (5 mg, 0.04 mmol) were then added 

and after stirring at room temperature for 1h, the reaction mixture was diluted with water 

and extracted 3 times with CH2Cl2. The combined organic layers were dried over anhydrous 

Na2SO4 and the solvent was evaporated in vacuo. Purification by flash chromatography 

(6:1 CH2Cl2/EtOAc) afforded: 
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Synthesis of (1R)-1-{1-[(R)-Quinazolin-4-yl]naphthalen-2-yl}ethyl acetate 3’e. 

26’b 

 

(Ra,R)-26’b (28 mg, 41%). 

[]20
D 29.7 (c 0.44, CHCl3) for 98% ee.  

1H-NMR (400 MHz, CDCl3): δ 9.51 (s, 1H), 8.18 (d, J = 8.5 Hz, 1H), 8.06 (d, J = 8.7 Hz, 

1H), 7.95–7.91 (m, 2H), 7.75 (d, J = 8.7 Hz, 1H), 7.52–7.45 (m, 3H), 7.28 (ddd, J = 8.4, 

6.8 and 1.3 Hz, 1H), 6.92 (dd, J = 8.5 and 0.8 Hz, 1H), 5.37 (q, J = 6.6 Hz,), 1.89 (s, 3H), 

1.56 (d, J = 6.6 Hz, 3H).  

13C-NMR (100 MHz, CDCl3) δ 169.7, 168.2, 154.8, 150.4, 138.2, 134.5, 132.7, 131.5, 

131.3, 130.1, 128.5, 128.1, 127.8, 127.7, 127.0, 126.2, 125.6, 125.1, 122.5, 70.4, 22.2, 20.9.  

HRMS (ESI) calculated for C22H19N2O2 (M + H+) 343.1441. Found 343.1443.  

HPLC (IA column, n-hex/IPA 85:15, T= 30C, F= 1.0 mL/min): tR 5.38 min (major) and 

6.34 min (minor). 

Synthesis of 1-{(1R,3R)-3-Methyl-3H,3'H-spiro[naphtho(1,2-c)furan-1,4'-

quinazolin]-3'-yl}ethan-1-one. (R,R)-26’’b 

 

(R,R)-3’’e: (17 mg, 25%). 

[]20
D 115.5 (c 0.37, CHCl3) for 97% ee. 
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1H-NMR (400 MHz, CDCl3): δ 8.20 (s, 1H), 7.94 (d, J = 8.4 Hz, 1H), 7.88 (d, J = 8.2 Hz, 

1H), 7.47 (d, J = 7.2 Hz, 1H), 7.41 (d, J = 8.4 Hz, 1H), 7.38 (ddd, J = 8.1, 6.8 and 1.1 Hz, 

1H), 7.34–7.25 (m, 2H), 7.15 (d, J = 8.3 Hz, 1H), 7.02 (ddd, J = 8.5, 7.4 and 1.2 Hz, 1H), 

6.75 (dd, J = 7.9 and 1.4 Hz, 1H), 5.76 (q, J = 6.7 Hz,), 2.24 (s, 3H), 1.70 (d, J = 6.7 Hz, 

3H).  

13C-NMR (100 MHz, CDCl3) δ 170.5, 142.6, 141.6, 137.8, 133.9, 133.3, 130.7, 129.6, 

129.0, 128.3, 127.8, 127.4, 127.3, 126.9, 126.0, 125.5, 122.6, 117.9, 95.6, 82.6, 24.2, 21.1.  

HRMS (ESI) calcd. for C22H19N2O2 (M + H+) 343.1441. Found 343.1443.  

HPLC (IA column, n-hex/IPA 85:15, T= 30C, F= 1.0 mL/min): tR 14.51 min (major) and 

24.42 min (minor). 

Synthesis of 8-Butoxy-8-methyl-8H-benzo[6,7]isoindolo[1,2-a]isoquinolin-7-

ium chloride. 

 

Following the described procedure, a flame-dried Schlenk tube was charged with 

triflate 3b (1.26 mmol), Pd(OAc)2 (8.1 mg, 0.036 mmol) and dppp (15.7 mg, 0.038 mmol). 

After three cycles of vacuum-argon, DMF (3 mL) was added and the resulting mixture was 

stirred for 20 min at room temperature. Then Et3N (0.35 mL, 2.52 mmol) and butyl vinyl 

ether (0.39 mL, 3.78 mmol) were sequentially added and the resulting mixture was stirred 

at 80 C for 72 hours. Then, 2M aq. HCl (15 mL) were added over 10 min to the reaction 

crude at room temperature. The resulting mixture was stirred for 0.5 h and was poured into 

CH2Cl2 (20 mL). NaHCO3 was then added until neutrality, the phases separated, and the 

aqueous layer was extracted with CH2Cl2 (3 × 10 mL). The combined organic layers were 

dried over anhydrous Na2SO4, filtered, concentrated, and the residue was purified by 
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column chromatography (EtOAc/MeOH 5:1) to afford the product as a yellow solid (343 

mg, 70%).  

1H-NMR (400 MHz, CD3OD): δ 9.18 (d, J = 8.7 Hz, 1H), 8.97 (d, J = 6.5 Hz, 1H), 8.76 (d, 

J = 8.5 Hz, 1H), 8.56 (dd, J = 13.9, 7.5 Hz, 2H), 8.46 (d, J = 8.1 Hz, 1H), 8.32 (q, J = 9.1, 

8.2 Hz, 2H), 8.19 (d, J = 8.1 Hz, 1H), 8.01 (d, J = 8.2 Hz, 1H), 7.94 (t, J = 7.5 Hz, 1H), 

7.87 (d, J = 7.6 Hz, 1H), 3.07 (d, J = 9.4 Hz, 1H), 2.78 (d, J = 8.7 Hz, 2H), 2.19 (s, 3H), 

1.57 – 1.45 (m, 2H), 1.44 − 1.32 (m, 2H), 0.84 (t, J = 7.5 Hz, 3H).  

13C-NMR (100 MHz, CD3OD) δ 154.3, 145.1, 141.1, 137.2, 136.5, 136.1, 130.3, 129.9, 

129.6, 129.0, 128.5, 128.3, 127.9, 127.8, 127.0, 125.6, 124.8, 123.7, 119.3, 103.4, 65.4, 

30.9, 25.3, 18.7, 12.6.  

HRMS (ESI) calcd. for C25H24NO (M + H+) 354.1852. Found 354.1848. 

III.4.4. Representative transformations from 26a. 

Synthesis of (R)-1-{2-[(R)-1-Hydroxyethyl]naphthalen-1-yl}isoquinoline 2-

oxide. (Ra,R)-27a 

 

Over a cooled (0 °C) solution of (Ra,R)-26a (30 mg, 0.1 mmol) in THF (5 mL), m-

CPBA (77%; 45 mg, 0.2 mmol,) was added in portions. The resulting mixture was warmed 

to rt and stirred for 3 hours. Then, CH2Cl2 (5 mL) was added and the mixture was washed 

once with saturated aqueous NaHCO3. The organic layer was dried over anhydrous 

Na2SO4, filtered, concentrated, and the resulting residue was purified by flash 

chromatography (CH2Cl2→5:1 EtOAc/MeOH) to afford (Ra,R)-27a (100 mg, 94%) as a 

white foam. 

[]20
D −12.0 (c 0.25, CHCl3) for 97% ee.  
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1H-NMR (400 MHz, CDCl3) δ 8.43 (d, J = 7.1 Hz, 1H), 8.08 (d, J = 8.6 Hz, 1H), 7.96 (d, 

J = 4.2 Hz, 1H), 7.93 (d, J = 4.4 Hz, 1H), 7.89 (d, J = 7.2 Hz, 1H), 7.72 (d, J = 8.6 Hz, 1H), 

7.64 (t, J = 7.6 Hz, 1H), 7.48 (t, J = 7.2 Hz, 1H), 7.43 (t, J = 7.7 Hz, 1H), 7.35 – 7.26 (m, 

1H), 7.13 (d, J = 8.5 Hz, 1H), 6.92 (d, J = 8.5 Hz, 1H), 4.85 (q, J = 6.6 Hz, 1H), 1.32 (d, J 

= 6.6 Hz, 3H).  

13C-NMR (400 MHz, CDCl3) δ 146.4, 143.5, 137.1, 133.2, 131.6, 130.6, 130.3, 129.7, 

129.4, 130.0, 128.5, 127.3, 127.1, 126.2, 125.7, 125.0, 124.7, 124.1, 124.1, 70.0, 24.4.  

HRMS (ESI) calculated for C21H17NO2 (M + H+) 316.1338 Found 316.1330. 

Synthesis of (R)-1-{2-[(S)-1-Azidoethyl]naphthalen-1-yl}isoquinoline. (Ra,S)-

28a 

 

To a solution of (Ra,R)-26a (90 mg, 0.3 mmol) and DPPA (96 μL, 0.45 mmol) in 

toluene (1.5 mL) at 0° C was added DBU (75 μL, 0.51 mmol) via syringe. The mixture was 

stirred at 0 °C for 1 h and then at 60 °C for 48 h. After that time ethyl acetate (10 mL) was 

added and the mixture was washed with water, brine, dried over anhydrous Na2SO4, 

filtrated and concentrated in vacuo. Purification by flash chromatography (CH2Cl225:1 

CH2Cl2/EtOAc) afforded (Ra,S)-28a (79 mg, 81%) as a light yellow solid. 

[]20
D +37.8 (c 0.51, CHCl3) for 97% ee.  

1H-NMR (400 MHz, CDCl3): δ 8.79 (d, J = 5.7 Hz, 1H), 8.07 (d, J = 8.7 Hz, 1H), 7.97 (d, 

J = 8.3 Hz, 1H), 7.93 (d, J = 8.3 Hz, 1H), 7.81 (d, J = 5.7 Hz, 1H), 7.75 (d, J = 10.9 Hz, 

1H), 7.70 (t, J = 7.4 Hz, 1H), 7.46 (t, J = 7.4 Hz, 1H), 7.39 (t, J = 8.0 Hz, 1H), 7.32 (d, J = 

8.5 Hz, 1H), 7.26 (t, J = 7.0 Hz, 1H), 6.97 (d, J = 8.5 Hz, 1H), 4.39 (q, J = 6.8 Hz, 1H), 

1.27 (d, J = 6.8 Hz, 3H).  
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13C-NMR (100 MHz, CDCl3) δ 158.8, 142.8, 137.5, 136.1, 134.6, 132.8, 132.3, 130.5, 

129.6, 128.9, 127.9, 127.6, 127.1, 127.0, 126.7, 126.4, 126.1, 123.4, 120.4, 57.9, 21.7.  

HRMS (ESI) calculated for C21H17N4 (M + H+) 325.1448. Found 325.1440. 

M. p. 154-157°C. 

Synthesis of (R)-1-{1-[(S)-Isoquinolin-1-yl]naphthalen-2-yl}ethan-1-amine. 

(Ra,S)-29a 

 

Triphenylphosphine (118 mg, 0.45 mmol) was added portionwise to a stirred 

solution of (Ra,S)-28a (49 mg, 0.15 mmol) in THF (0.3 mL). After 5 min, H2O (54 μL, 3 

mmol) was added and the resultant mixture was heated at 50 °C for 48 h. The reaction 

mixture was then allowed to cool to rt and concentrated in vacuo. Purification by flash 

chromatography (9:1 EtOAc/MeOH) afforded (Ra,S)-29a (52 mg, 99%) as a light yellow 

solid. 

[]20
D 13.7 (c 0.69, CHCl3) for 97% ee.  

1H-NMR (400 MHz, CDCl3): δ 8.69 (d, J = 5.8 Hz, 1H), 7.94 (d, J = 8.3 Hz, 1H), 7.93 (d, 

J = 8.7 Hz, 1H), 7.88 (d, J = 8.2 Hz, 1H), 7.79 (d, J = 8.4 Hz, 1H), 7.77 (d, J = 5.8 Hz, 1H), 

7.68 (ddd, J = 8.2, 6.1 and 1.9 Hz, 1H), 7.42 (ddd, J = 8.1, 6.8 and 1.2 Hz, 1H), 7.38–7.32 

(m, 2H), 7.22 (ddd, J = 8.3, 6.8 and 1.3 Hz, 1H), 6.90 (d, J = 8.4 Hz, 1H), 3.74 (q, J = 6.6 

Hz, 1H), 3.46 (br s, 2H), 1.29 (d, J = 6.6 Hz, 3H).  

13C-NMR (100 MHz, CDCl3) δ 159.8, 142.5, 142.0, 136.1, 133.8, 132.5, 132.5, 130.5, 

129.5, 128.8, 127.9, 127.5, 127.3, 127.0, 126.4, 126.1, 125.6, 123.0, 120.4, 47.8, 22.8.  

HRMS (ESI) calculated for C21H19N2 (M + H+) 299.1543. Found 299.1546. 
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Synthesis of (R)-1-{2-[(S)-1-(4-Phenyl-1H-1,2,3-triazol-1-yl)ethyl]naphthalen-

1-yl}isoquinoline. (Ra,S)-30a 

 

To a mixture of (Ra,S)-28a (33 mg, 0.1 mmol) and phenylacetylene (15 mg, 16 μL, 

0.15 mmol) in t-BuOH (3 mL) and water (240 μL), a solution of CuSO4
.5H2O (0.1 M in 

water, 100 μL, 0.01 mmol) and (L)-sodium ascorbate (0.1 M in water, 200 μL, 0.02 mmol) 

were then sequentially added. The resulting mixture was stirred at 35 °C for 5 h. The 

reaction mixture was allowed to reach room temperature, washed with a saturated aqueous 

solution of NH3, and extracted with DCM (3× 5 mL). The combined organic phase was 

dried over anhydrous Na2SO4, filtered, concentrated to dryness, and the crude product was 

purified by column chromatography (CH2Cl23:1 CH2Cl2/EtOAc) affording (Ra,S)-30a 

(44 mg, 99%) as a white solid. 

[]20
D +470.5 (c 0.47, CHCl3) for 97% ee.  

1H-NMR (400 MHz, CDCl3): δ 8.79 (d, J = 5.7 Hz, 1H), 8.00 (d, J = 8.8 Hz, 1H), 7.99 (d, 

J = 8.3 Hz, 1H), 7.92 (s, 1H), 7.91 (d, J = 7.6 Hz, 1H), 7.86 (d, J = 5.7 Hz, 1H), 7.80-7.77 

(m, 2H), 7.74 (ddd, J = 8.2, 6.2 and 1.9 Hz, 1H), 7.60 (d, J = 8.8 Hz, 1H), 7.50-7.43 (m, 

3H), 7.34 (t, J = 7.2 Hz, 2H), 7.32-7.25 (m, 2H), 7.01 (d, J = 8.5 Hz, 1H), 5.30 (q, J = 7.0 

Hz, 1H), 1.93 (d, J = 7.0 Hz, 3H).  

13C-NMR (100 MHz, CDCl3) δ 158.7, 147.6, 142.5, 136.9, 136.2, 134.4, 133.0, 132.2, 

130.9, 130.7, 130.2, 128.9, 128.6, 128.1, 128.0, 127.8, 127.2, 127.0, 126.9, 126.5, 126.3, 

125.6, 123.2, 121.0, 120.6, 57.4, 20.5.  

HRMS (ESI) calculated for C29H23N4 (M + H+) 427.1917. Found 427.1917. 
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Synthesis of 1-[3,5-Bis(trifluoromethyl)phenyl]-3-{(S)-1-[1-((R)-isoquinolin-1-

yl)naphthalen-2-yl]ethyl}urea. (Ra,S)-31a 

 

Amine (Ra,S)-29a (30 mg, 0.1 mmol) was added to a solution of 3,5-

bis(trifluoromethyl)phenyl isothiocyanate (18 μL, 27 mg, 0.1 mmol) in CH2Cl2 (200 μL). 

The resulting mixture was stirred for 3 h at rt. The solvent was removed under reduced 

pressure and the product was purified by flash column chromatography (4:1 n-

hexane/EtOAc) to afford (Ra,S)-31a (29 mg, 90%) as a light yellow solid. 

[]20
D +380.5 (c 0.51, CHCl3) for 97% ee. 

1H-NMR (400 MHz, CDCl3): δ 10.53 (s, 1H), 8.45 (d, J = 5.8 Hz, 1H), 8.19 (br s, 2H), 8.08 

(d, J = 8.7 Hz, 1H), 8.01 (d, J = 8.3 Hz, 1H), 7.93 (d, J = 8.2 Hz, 1H), 7.87 (d, J = 5.8 Hz, 

1H), 7.79 (d, J = 8.7 Hz, 1H), 7.77 (ddd, J = 8.2, 6.7 and 1.4 Hz, 1H), 7.61 (br s, 1H), 7.50 

(ddd, J = 8.1, 6.8 and 1.2 Hz, 1H), 7.47–7.38 (m, 3H), 7.29 (ddd, J = 8.4, 6.9 and 1.3 Hz, 

1H), 6.95 (d, J = 8.5 Hz, 1H), 4.62 (m, 1H), 1.35 (d, J = 6.7 Hz, 3H).  

13C-NMR (100 MHz, CDCl3) δ 179.6, 159.0, 141.3 (d, JC,F = 2 Hz), 137.9, 136.6, 132.8, 

132.8, 131.8, 131.4, 131.4, 131.2 (d, JC,F = 100 Hz), 131.0, 130.9, 129.0, 128.4, 128.3, 

127.3, 127.3, 127.1, 126.5, 126.1, 125.0 (br s), 123.3, 123.2 (q, JC,F = 271 Hz), 121.8, 118.4 

(br s), 50.4, 23.6.  

19F-NMR (376 MHz, CDCl3) δ 62.9.  

HRMS (ESI) calculated for C30H22 F6N3O (M + H+) 570.1433. Found 570.1437. 
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IV. Catalytic Asymmetric synthesis of Axially Chiral Diamines by Reductive 

Amination and DKR 

IV.1. Introduction 

In Chapter I, different methods for the dynamization of stereogenic axis in already 

existing biaryl structures have been described. Most of the given examples exploit the 

formation of a (metalla)cycle in which the angles around the stereogenic axis are widened, 

thus compromising its configurational stability. These (metalla)cycles consist on five or 

six-membered rings. It has been seen that these processes can proceed with or without the 

need of a catalyst, depending on whether we have a DYKAT or DKR process, respectively. 

Throughout the previous two chapters, novel strategies for the resolution of heterobiaryls 

that have taken advantage of these two processe have been developed and, in particular, 

both of them proceed through the formation of five-membered rings which are particularly 

efficient in the labilization of the stereogenic axis (Scheme IV.1). 

 

Scheme IV.1 – Strategies for the dynamization of stereogenic axes developed in Chapters II and III. 



217 
 

However, as previously discussed, when a six-membered ring is involved, it might 

be necessary to decrease the steric congestion around the stereogenic axis in order to 

facilitate the interconversion between the two atropisomers, since the widening of the 

angles involved in the configurational stability is lower than when five-membered rings are 

formed. Indeed, the biocatalytic resolution of biaryl N-oxide aldehydes reported by 

Clayden and co-workers (an example also discussed in Chapter I) requires the use of less 

hindered systems to achieve the DKR through a six-membered ring formed from the 

interaction between N-oxide and the aldehyde functionality (Figure IV.1).60 

 

Figure IV.1 – Clayden’s heterobiaryl atropisomerization mode to perform DKR. 

Another strategy for the labilization of a stereogenic axis through a six-membered 

ring, also mentioned at Chapter I, occurs in Bringmann’s lactones ring opening.47,51 These 

system present two main differences with respect to Clayden’s example: on one hand, 

Bringmann’s lactones are based on biaryl structures compared to Clayden’s heterobiaryls; 

and on the other hand, a covalent bond is responsible for the labilization of the axis in 

Bringmann’s lactone, while a simple bonding interaction plays the same role in Clayden’s 

system (Scheme IV.2). 

 

Scheme IV.2 – Lactone strategy involving a dynamic kinetic resolution. 
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It has been previously discussed that the strategy developed by Bringmann has been 

widely applied for the synthesis of axially chiral biaryls through a nucleophilic attack to 

the carbonyl centre, and subsequent cleavage of the lactone bridge to establish the axial 

configuration in the resulting biaryl products, now configurationally stable. 

This strategy has been stablished as an efficient catalytic approach for the synthesis 

of axially chiral diols and amino-alcohols in excellent yields and enantioselectivities but, 

surprisingly, it has it has never been employed for the synthesis of related and more 

interesting axially chiral diamines. Indeed, a literature survey reveals that there is only a 

handful of catalytic asymmetric methods to prepare such compounds. 

IV.1.1. Synthesis of axially chiral diamines, homologues of BINAM. 

Remarkably, there is only one precedent for the synthesis of BINAM based on the 

direct asymmetric formation of the stereogenic axis. The method was described in 1992 

and consists of a copper mediated asymmetric coupling of two aromatic fragments. In this 

case, it was possible to isolate both isomers of the coupling product by a simple fractional 

crystallization, although, enantiomeric excesses and yields were moderate. On the other 

hand, both isomers could be crystallized to obtain enantiopure BINAM (Scheme IV.3).156 

                                                                 
156 Smrčina, M.; Lorenc, M.; Hanuš, V.; Sedmera, P.; Kočovský, P.·J. Org. Chem. 1992, 57, 1917. 
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Scheme IV.3 – Asymmetric coupling for the synthesis of BINAM. 

As mentioned, this is the only example of an asymmetric intermolecular coupling 

for the synthesis of BINAM or its derivatives. However, there is an alternative strategy to 

synthesize these structures, based on the acid-catalyzed atroposelective (3,3)-

rearrangement (aza-Cope) of 1,2-di(naphthalen-2-yl)hydrazine, also known as benzidine 

rearrangement, to yield diaminobiaryls (Scheme IV.4). 

 

Scheme IV.4 – Synthesis of BINAM derivatives through atroposelective (3,3)-rearrangement reaction. 
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The first example of this method was reported in 1985 by Sannicolò, who used (+)-

camphor-10-sulphonic acid as the catalyst to afford the BINAM product in a negligible 

15% ee.157 Although this class of rearrangement has been studied with other purposes, it 

was not until 2013 that two independent reports by the groups of Kürti158 and List159 

appeared, expanding the scope of this methodology for the synthesis of other BINAM 

derivatives with much higher enantiomeric excesses (Scheme IV.4). 

Just one year later, Chen and Zhang reported a diastereoselective (3,3)-benzidine 

rearrangement of 1,2-di(naphthalen-2-yl)hydrazine substituted at one nitrogen atom by (−)-

menthyl formate. In this way, the non-selective rearrangement leads to the two 

diastereomers of the N-substituted BINAM derivatives that, after separation and hydrolysis 

in basic conditions, provides the enantiomerically pure free BINAM derivatives (Scheme 

IV.5).160 

 

Scheme IV.5 – Diastereoselective (3,3)-rearrangement reaction for the synthesis of BINAM derivatives. 

                                                                 
157 Sannicolò, F. Tetrahedron Lett. 1985, 26, 119. 
158 Li, G.-Q.; Gao, H.; Keene, C; Devonas, M.; Ess, D. H.; Kürti, L. J. Am. Chem. Soc. 2013, 135, 

7414. 
159 De, C. K.; Pesciaioli, F.; List, B. Angew. Chem. Int. Ed. 2013, 52, 9293. 
160 Li, B.; Zhang, S.; Chen, W. Tetrahedron: Asymmetry 2014, 25, 1002 
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Alternatively, Tan and co-workers, developed an efficient strategy for the kinetic 

resolution of axially chiral BINAM derivatives. The method involves a cascade process 

catalyzed by a chiral phosphoric acid (CPA), consisting of imine formation and ensuing 

transfer hydrogenation (Scheme IV.6).161 

 

Scheme IV.6 – Kinetic resolution strategy developed by Tan et al. 

Taking into account the few existing catalytic asymmetric methods to synthesize 

axially chiral diamine derivatives, the development of more reliable and straightforward 

approaches to optically pure homologues of BINAM is expected to greatly expand the 

number of applications of this type of axially chiral derivatives in asymmetric catalysis. 

In this context, we considered that a dynamization strategy based on the formation 

of cyclic intermediates or transition states would be a suitable strategy to cover this need. 

Therefore, a suitable design requires the introduction in biaryl scaffolds of functional 

groups able to interact to each other, forming cyclic intermediates for the labilization of the 

axis and able to be transformed in a catalytic asymmetric way into the desired amine 

functionalities. 

We know, from the work developed by Akiyama,56 that biaryl N,O-acetals from an 

imine and an alcohol are able to labilize the stereogenic axis. On this basis, we questioned 

whether related biaryl aminals could behave in a similar way. If it is the case, since an 

equilibrium with the open form (imine) can be also assumed, then the desired diamine 

                                                                 
161 Cheng, D.-J.; Yan, L.; Tian, S.-K.; Wu, M.-Y.; Wang, L.-X.; Fan, Z.-L.; Zheng, S.-C.; Liu, Y.; 

Tan, B. Angew. Chem. Int. Ed. 2014, 53, 3684.  
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targets could be easily accesed by asymmetric transfer hydrogenation of the imine 

functionality via DKR (Scheme IV.7). 

 

Scheme IV.7 – Concept for the proposed strategy. 

The key step in this approach would be the ring opening-closing event between 

biaryl aminal and amino-imine structures. If the two atropisomers of the biaryl imine are 

able to rapidly interconvert into each other through the biaryl aminal, then the dynamic 

kinetic resolution would be feasible. Nevertheless, it would also be necessary to select a 

proper atroposelective reduction method in order to obtain the enantioenriched axially 

chiral diamines with high selectivity, and a good option could be to perform an asymmetric 

transfer hydrogenation of the imine functionality. 

IV.1.2. Asymmetric Transfer Hydrogenation of imines. 

The asymmetric transfer hydrogenation (ATH) methodology for the 

enantioselective reduction of imines (or ketones) represents a mild and appealing 

alternative to classical hydrogenation procedures that involve the use of hydrogen gas and 

its subsequent hazards. This methodology represents a way of transforming imines and 
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carbonyls (the actual precursor of imines) into chiral amines, and two general approaches 

have been developed: (i) organocatalytic ATH, and (ii) metal-catalyzed ATH.162 

With respect to the first approach, most of the organocatalyzed ATH of imines use 

a chiral phosphoric acid (CPA) derived from BINOL as the catalyst and the Hantzsch ester 

as the hydrogen donor.  

 

Scheme IV.8 – Catalytic cycle proposed by Rueping and co-workers for CPA catalyzed ATH. 

The group of Rueping proposed a general mechanism for the ATH of imines under 

these conditions that involves a first activation of the imine by CPA generating an iminium 

ion, followed by a hydrogen transfer from the Hantzsch ester with the regeneration of the 

catalyst (Scheme 8). The driving force of this catalytic cycle comprises the aromatization 

of Hantzsch ester into the corresponding pyridine.163 

On the other hand, the metal-catalyzed ATH approach has mainly been developed 

using ruthenium164, rhodium165 and even iron166 or iridium167 complexes, in combination 

with 1,2-aminoalcohols or 1,2-diamines as the chiral ligands. The first efficient ATH of 

                                                                 
162 Foubelo, F.; Yus, M. Chem. Rec. 2015, 15, 907. 
163 Rueping, M.; Sugiono, E.; Schoepke, F. R. Synlett 2010, 852. 
164 CITAS 
165 (a) Mao, J.; Baker, D. C.; Org. Lett., 1999, 1, 841. (b) Kang, S.; Han, J.; Lee, E. S.; Choi, E. B.; 

Lee, H.-K. Org. Lett. 2010, 12, 4184. 
166 Mikhailine, A. A.; Maishan, M. I.; Morris R. H. Org. Lett. 2012, 14, 4638. 
167 Pan, H.-J.; Zhang, y.; Shan, C.; Yu, Z.; Lan, Y.; Zhao, Y. Angew. Chem. Int. Ed. 2016, 55, 9615. 
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prochiral ketones168 and imines169 was reported by Noyori in 1995 and 1996, respectively, 

using chiral Ru(II)-TsDPEN and η6-aromatic ligand, as catalyst (Scheme IV.9). 

 

Scheme IV.9 – Noyori's first reports in ATH of ketones and imines. 

These achievements by Noyori constituted a breakthrough for the asymmetric 

transfer hydrogenation of imines, and since then, ruthenium(II) complexes with chiral 1,2-

diphenylethylenediamine and η6-arene ligands, and their structural variations, have become 

the most employed catalytic systems, with many reports being focused on its application 

as a convenient and efficient catalyst for the ATH of imines,170 even in aqueous media.171 

Given the importance of the Ru(II)/TsDPEN catalyzed ATH reaction, the role of 

each component of this catalytic system in the outcome of the reaction and its mechanism 

has been studied in detail. It was Noyori itself the first who reported a mechanistic 

                                                                 
168 (a) Hashiguchi, S.; Fujii, A.; Takehara, J.; Ikariya, T.; Noyori, R. J. Am. Chem. Soc. 1995, 117, 

7562. (b) Uematsu, N.; Fujii, A.; Hashiguchi, S.; Ikariya, T.; Noyori, R. J. Am. Chem. Soc. 1996, 

118, 2521.  
169 Uematsu, N.; Fujii, A.; Hashiguchi, S.; Ikariya, T.; Noyori, R. J. Am. Chem. Soc. 1996, 118, 

4916. 
170 For some selected examples of Ru(II)/TsDPEN catalyzed ATH of imines, see: (a) Williams, G. 

D.; Pike, R. A.; Wade, C. E.; Wills, M. Org. Lett. 2003, 5, 4227 (b) Kadyrov, R.; Riermeier, T.; 

Angew. Chem. Int. Ed. 2003, 42, 5472. (c) Ros, A.; Magriz, A.; Dietrich, H.; Ford, M.; Fernández, 

R.; Lassaletta, J. M. Adv. Synth. Catal. 2005, 347, 1917. (d) Přech, J.; Václavík, J.; Šot, P.; Pecháček, 

J.; Vilhanová, B.; Januščák, J.; Syslová, K.; Pažout, R.; Maixner, J.; Zápal, J.; Kuzma, M.; Kačer, 

P. Catalysis Communications, 2013, 36, 67. (e) Wu, Z.; Perez, M.; Scalone, M.; Ayad, T.; 

Ratovelomanana-Vidal, V. Angew. Chem. Int. Ed. 2013, 52, 4925.  
171 Wu, J.; Wang, F.; Ma, Y.; Cui, X.; Cun, L.; Zhu, J.; Deng, J.; Yu, B. Chem. Commun., 2006, 

1766.  
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perspective for the asymmetric transfer hydrogenation of carbonyl compounds.172 Studies 

on the corresponding reaction involving imines are more limited, and for a time it was 

assumed that both functionalities follow the same mechanistic profile. Noyori showed that 

for the reduction of ketones, the hydridic Ru−H and protic N−H were simultaneously 

delivered to the C=O bond involving a six-membered cyclic transition state in the outer 

coordination sphere of ruthenium (Scheme IV.10).  

 

Scheme IV.10 – Six-membered cyclic TS proposed by Noyori for the ATH of ketones. 

However, it has been shown that for imines the same reaction pathway is not 

applicable. In fact, the reaction with imines does not proceed without the presence of a 

slightly acidic media. It has been proposed that this acid media facilitates the pre-activation 

of the imine by protonation and formation of iminium ion, which would later enter into the 

catalytic cycle and a hydride from Ru−H species would be transferred to the azomethine 

carbon of the protonated imine;173 thus, suggesting an ionic mechanism for this reaction 

(Scheme IV.12). 

There are some research groups that have shed some light on the mechanism 

involved in the ATH of imines, although it is still not completely understood.174 A relevant 

                                                                 
172 Noyori, R.; Yamakawa, M.; Hashiguchi, S. J. Org. Chem. 2001, 66, 7931. 
173 Shende, V. S.; Deshpande, S. H.; Shingote, S. K.; Joseph, A.; Kelkar, A. A. Org. Lett. 2015, 17, 

2878. 
174 For selected studies on the ionic mechanism for imines ATH, see: (a) Åberg, J. B.; Samec J. S. 

M.; Bäckvall, J.-E. Chem. Commun., 2006, 2771. (b) Martins, J. E. D.; Clarkson, G. J.; Wills, M. 

Org. Lett. 2009, 11, 847. (c) Soni, R.; Cheung, F. K.; Clarkson, G. C.; Martins, J. E. D.; Graham, 
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work developed by Kačer and co-workers focused on a DFT computational study to 

investigate the ionic mechanism pathway.175 This study revealed that the structures of six-

membered cyclic transition states (see Scheme IV.10) and subsequent concerted 

proton/hydride transfer were not involved for the reduction of imines due to the following 

reasons: (i) the opposite enantiomer to that observed experimentally are predicted; (ii) the 

imine could not be protonated, which is necessary for the reaction to proceed, and (iii) the 

single point energy between the favoured and disfavoured transition states is so high (43.2 

kJ/mol) that the reaction would proceed with absolute enantiocontrol, which is not the case. 

Furthermore, Noyori pointed out that, although the Ru(II)/TsDPEN system 

catalyses the reduction of ketones in formic acid-triethylamine mixture, the same reaction 

for imines is much faster. Even competitive experiments were performed, revealing that a 

ketimine can be >1000 times more reactive than the analogous ketone. Moreover, the same 

ketimine could be reduced even in acetone, providing the desired amine in 99% yield and 

95% ee, while just a 3% of 2-propanol from acetone reduction was observed (Scheme 

IV.11).169,176 These experiments show the exquisite functional group selectivity displayed 

by the ATH of imines under Noyori’s conditions. 

 

Scheme IV.11 – Competitive experiments to show chemoselectivity of ATH under these conditions. 

                                                                 
M. A.; Wills, M. Org. Biomol. Chem. 2011, 9, 3290. (d) Šot, P.; Vilhanová, B.; Pecháček, J.; 

Václavík, J.; Zápal, J.; Kuzma, M.; Kačer, P. Tetrahedron: Asymmetry 2014, 25, 1346. 
175 Václavík, J.; Kuzma, M.; Přech, J.; Kačer, P. Organometallics, 2011, 30, 4822. 
176 Noyori, R.; Hashiguchi, S. Acc. Chem. Res. 1997, 30, 97. 
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Considering the aspects so far described for the asymmetric transfer hydrogenation 

of imines, it could be proposed a mechanism similar to that depicted below (Scheme IV.12). 

 

Scheme IV.12 – Mechanism for the ATH of imines. DPEN substituents are omitted for the sake of clarity. 

In this mechanism, as mentioned above, the imine is pre-activated by protonation 

by the formic acid and ready to enter into the catalytic cycle. Additionally, triethylamine, 

in the form of triethylammonium because of the acid media, would abstract the chloride 

from the initial RuCl(6-arene)[Ts-DPEN] complex (in the proposed mechanism, 6-arene 

= p-cymene) generating a vacant coordination site. This vacant would be occupied by a 

hydride from the formate anion in the media, releasing carbon dioxide. Finally, to close the 

catalytic cycle, Ru-hydride would be transferred to the azomethine carbon of the activated 

iminium substrate, generating the enantioenriched amine. 

In this context, the combination of the “lactone concept” and an asymmetric 

transfer hydrogenation of imines represents a promising strategy for the synthesis of axially 

chiral diamines, homologues to BINAM, still an unsolved challenge. 
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IV.2. Results and discussion 

IV.2.1. Substrates design and synthesis. 

Based on the previous studies developed by Bringmann,177 in which 

tetrasubstituted systems resulted in a slower labilization process at the closed form and the 

subsequent lower enantioselectivities of the final products, a trisubstituted biaryl system 

was initially considered. In this situation, we envisaged that a faster racemization event 

would occur, leading to the desired product in higher enantioselectivity. 

Additionally, a very important aspect for the application of the lactone concept to 

this system is related to the capability of the substrate to racemize in order to make possible 

the DKR, and therefore, the choice of the proper structure is key to the development of the 

stated hypothesis. There are two possible types of interaction that would facilitate the 

interconversion between both atropisomers of the substrate:  

- The first one would consist on the formation of a cyclic aminal, analogous to 

the Akiyama’s biaryl N,O-acetals. In this situation, it would be necessary an 

acidic proton at the nitrogen atom, to make possible the formation of the six-

membered cyclic aminal. (Scheme IV.13A) 

- The second approach consists on a related proposal to that previously described 

in Chapter III; a Lewis acid-base interaction between a nitrogen atom and, in 

this case, the azomethine carbon from the imine functionality. The later would 

provide the labilization either through a zwitterionic intermediate or a quasi-

zwitterionic transition state (Scheme IV.13B)  

                                                                 
177 (a) Bringmann, G.; Breuning, M.; Endress, H.; Vitt, D. Tetrahedron, 1998, 54, 10677. (b) 

Bringmann, G.; Breuning, M. Synlett, 1998, 6, 634. 
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Scheme IV.13 – Alternative labilization modes for imine substrates. 

Therefore, two different biaryl imino-amine systems were synthesized in order to 

determine the optimal labilization pathway. In the first case, an EWG was introduced on 

the nitrogen atom to increase its acidity in order to promote the formation of a cyclic N,O-

acetal or an aminal. On the other hand, the introduction of a dialkylamino group , where 

electron donor substituents (i.e. R’ and R’’ = alkyl…) are employed to increase the Lewis 

base character of the nitrogen atom, was also accomplished to test the second approach.. 

The synthesis of both imines from the corresponding aldehydes (or ketones) was 

considered as the most straightforward method. In turn, these carbonyl compounds could 

be synthesized by a Suzuki-Miyaura cross-coupling reaction between the two 

corresponding aromatic counterparts. From preliminary experiments, the optimal approach 
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is the cross-coupling between (2-formylnaphthalen-1-yl)boronic acid 41a and N-tosyl-2-

bromoaniline 37a (Scheme IV.14). 

 

Scheme IV.14 – Retrosynthetic analysis of the desired substrates. 

Both coupling fragments were synthesized following described procedures, 

allowing their synthesis in gram scale. The synthesis of bromide 37a, was easily carried 

out by treatment of the inexpensive and commercially available 2-bromoaniline with tosyl 

chloride and pyridine in dichloromethane.178 On the other hand, the preparation of boronic 

acid 41a needed few more reaction steps, although they proceeded in an efficient manner 

(Scheme IV.15).179 

                                                                 
178 Liwosz, T. W.; Chemler, S. R. Chem. Eur. J. 2013, 19, 12771. 
179 Referencias para la síntesis de los borónicos 
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Scheme IV.15 – Synthetic route for the preparation of bromide 37a and boronic acid 41a. 

The next stage consisted on the optimization of the reaction parameters for the 

cross-coupling between 37a and 41a. Initially, different catalysts were explored under 

standard Suzuki-Miyaura coupling conditions in order to identify the most efficient one 

(Table IV.1). 

The reaction catalyzed by Pd(PPh3)4 (entry 1, Table IV.1) was not complete after 

12h, affording the coupling product 32A in 80% conversion. Surprisingly, when the 

catalyst PEPPSITM-iPr containing a palladium N-heterocyclic carbene was employed, the 

reaction did not take place (entry 2, Table IV.1). Fortunately, the use of electron rich 

phosphine ligands SPhos or Xphos in combination with Pd2(dba)3 allowed us to obtain the 

desired product in 90% yield and full conversion, respectively (entries 3 and 4, Table IV.1). 

Furthermore, the reaction catalyzed by Xphos as ligand was carried out in a large scale of 

2.0 mmol with a decrease in the catalyst loading to 8 mol%, and the coupling product was 
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isolated quantitatively (entry 5, Table IV.1). It was also observed that longer reaction times 

only resulted in a decomposition of the catalyst and the remaining boronic acid. 

Table IV.1 – Catalyst optimization for the cross-coupling reaction between 37a and 41a. 

 

Entrya Catalyst Conv. (%)b 

1 Pd(PPh3)4 80 

2 PEPPSI™-iPr n.r. 

3 [Pd2(dba)3 + SPhos] 90 

4 [Pd2(dba)3 + XPhos] >99 

5c [Pd2(dba)3 + XPhos] >99 (98% yield) 
aReaction conditions: 0.1 mmol of bromide, 0.15 mmol of boronic acid, 0.2 mmol of Na2CO3 2M aq. in 0.5 mL 

of anhydrous solvent. b Determined by 1H-NMR spectroscopy. c Reaction set at 2.0 mmol scale, with 8 mol% 

of catalyst loading. 

To our delight, NMR analysis of 32A showed that the expected equilibrium 

between open and closed forms, was completely displaced to the cyclic hemiaminal since 

no aldehyde peak was observed, and a representative signal appears at 6.66 ppm as a 

singlet, corresponding to the proton at the sp3 carbon of the cyclic hemiaminal. Moreover, 

when a bidimensional 1H-13C HSQC experiment was performed, it could be observed the 
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correlation between this singlet and a carbon atom at 80.9 ppm, both displaced to low field 

because of the influence of the contiguous N and O atoms (Figure IV.2). 

 

Figure IV.2 – Zoomed-in 1H-13C HSQC spectra for 32A. 

Furthermore, it was possible to obtain crystals of 32A suitable for X-ray diffraction 

analysis that provided the molecular structure in the solid state, wich confirmed our initial 

hypothesis (Figure IV.3).  



234 
 

 

Figure IV.3 – X-ray diffraction structure of 32A. Hydrogen atoms at sp2 carbons, and at methyl from tosyl 

group are omitted for the sake of clarity. 

At the top-view image, it can be observed an apparent -stacking between 

naphthalene moiety and phenyl from tosyl group that could stabilize the closed hemiaminal 

structure versus the open form, thus, displacing the equilibrium towards the former. In 

contrast to what could be expected for the structure of 32A, the two aromatic rings from 

biaryl moiety are not in a coplanar disposition, with the six-membered cyclic hemiaminal 

being slightly distorted. 

Considering these observations, the formation of a cyclic hemiaminal that could 

promote the labilization of the substrate was evinced and, therefore, the initial requisite for 

a dynamic kinetic resolution was fulfilled. However, our main concern was to confirm if 

the imine resulting from the condensation of an amine with this aldehyde/hemiaminal, is 

also labile through a cyclic aminal.  

Additionally, we needed to determine whether the hemiaminal is in equilibrium 

with the reactive aldehyde species, or the equilibrium is completely displaced towards the 

cyclic form. To find this out, two experiments were performed using hemiaminal 32A: (i) 

reduction with sodium borohydride, and (ii) condensation with n-propylamine. To our 

delight, the desired alcohol 42A and imine 33Aa were obtained in full conversion and short 

reaction times, confirming that the hemiaminal 32A is in equilibrium with its open form or 

that the bridge can therefore be cleaved (Scheme IV.16). 
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Scheme IV.16 – Proof of reactivity for hemiaminal 32A. 

The 1H-NMR spectra of 33Aa showed a singlet at 5.95 ppm, similar to that for the 

proton at the hemiaminal sp3 carbon for 32A, although at a slightly lower chemical shift, 

indicating a preference for the cyclic aminal form rather than imine structure. This 

confirmed our initial hypothesis for the labilization through a bridged aminal structure, thus 

enabling the envisaged dynamic kinetic resolution. 

A series of hemiaminals analogous to 32A were also synthesized in order to explore 

some structural variations in the reaction scope (Figure IV.4). 

 

Figure IV.4 – Library of hemiaminal substrates synthesized. 

All the substrates synthesized through this methodology present trisubstitution 

around the stereogenic axis, albeit the synthesis of tetrasubstituted systems (i.e. binaphthyl 

analogue) were also unsuccessfully attempted. 

Concerning the other proposed labilization mode, based on a Lewis acid-base 

interaction between a nucleophilic nitrogen and an electrophilic imine, the synthesis of the 
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corresponding substrate was carried out in order to confirm or discard the proposed 

interaction. In this case, the synthetic route was similar to that followed for the synthesis 

of 32A, although the polarity of the coupling partners for the Suzuki-Miyaura reaction were 

switched. Thus, (2-(dimethylamino)phenyl)boronic acid 44 was prepared from 

commercially available 2-bromo-N,N-dimethylaniline following a described procedure,180 

and 1-bromo-2-naphthaldehyde 39 was readily available as a synthetic intermediate for 

32A, permitting the isolation of 32E in good yields after the cross-coupling reaction 

(Scheme IV.17). 

 

Scheme IV.17 – Followed procedure for the synthesis of 32E. 

IV.2.2. Optimization of the reaction conditions. 

Once we had all the substrates in hands, we decided to perform the synthesis of the 

desired axially chiral diamines directly from the hemiaminals by a one-pot reductive 

amination via asymmetric transfer hydrogenation in order to reduce the purification steps.  

The model system chosen for the optimization of the reaction conditions consists 

on the asymmetric reductive amination of hemiaminal 32A with n-propylamine 43a. The 

first step, condensation of 43a to 32A for the formation of imine 33Aa, did not need to be 

optimized since it proceeds efficiently under a wide variety of conditions, and those 

                                                                 
180 Xu, Z.; Zhang, N.; Wang, T.; Sun, Q.; Wang, Y. US2018/208604, 2018, A1. 
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selected were using 4Å molecular sieves in toluene at room temperature for 12h (Scheme 

IV.18). 

 

Scheme IV.18 – Aldehyde-amine condensation reaction for the synthesis of aminal 33Aa. 

On the other hand, for the asymmetric transfer hydrogenation step, two alternatives 

were initially considered. The first one consisted on the application of Akiyama’s imine 

ATH conditions using the chiral phosphoric acid derived from (R)-BINOL, in combination 

with Hantzsch ester (diethyl 1,4-dihydro-2,6-dimethyl-3,5-pyridinedicarboxylate), 

anticipating an activation mode similar to that observed by these authors (Scheme IV.19). 

 

Scheme IV.19 – Asymmetric reductive amination using a CPA in combination with Hantzsch ester. 

Unfortunately, the imine 33Aa remained unreacted and no traces of reduction 

product 34Aa was observed under these conditions. This lack of reactivity could be 

attributed to the very crowded environment around the chiral phosphate/iminium ion pair.  

Therefore, we moved to the second alternative for the ATH, that is, the use of a 

more reactive metal-hydride complex, that should grant the reduction of the imine 33Aa. 

Considering the extended use of ruthenium catalysts in combination with chiral diamine 
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and 6-arene ligands, the inexpensive and commercially available RuCl(p-cymene)[(S,S)-

Ts-DPEN] catalyst together with formic acid/triethylamine 5:2 (molar ratio) azeotropic 

mixture was chosen to explore this alternative. Initially, we applied the same reaction 

conditions previously described in our research group for the ATH of -branched ketimines 

(Scheme IV.20).170c  

 

Scheme IV.20 – ATH catalyzed by RuCl(p-cymene)[(S,S)-Ts-DPEN] and HCO2H/Et3N. 

Under these conditions the desired amine 34Aa was formed, although in a 

negligible conversion (<10%) and 40% of enantiomeric excess. The main products 

observed were those resulting from imine hydrolysis leading to the starting material 32A 

(full conversion from hemiaminal to imine is observed on TLC for the previous step), and 

its reduction product 42A, with around 30% conversion and 30% ee. This result can be 

attributed to an excess of the formic acid/triethylamine mixture (from now on, FA/TEA) 

leading to a more acidic media that results in slower reactions.173 Therefore, the amount of 

FA/TEA was decreased, obtaining a very interesting result when just 40 L of FA/TEA 

(6.0 eq.) were added to the imine formed in situ in the presence of the catalyst, providing 

the desired axially chiral diamine 34Aa with 93% conversion and 94% ee (entry 1, Table 

IV.2). At this point, we next moved to explore the influence of the solvent in the reaction 

outcome (Table IV.2). 
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Table IV.2 – Solvent screening for the asymmetric reductive amination of 32A. 

 

Entry Solvent Conv. (%)a ee (%)b 

1 DCM 93 94 

2 Toluene 85 94 

3 DCE 64 94 

4 DMSO n.d. 40 

5 THF n.d. 85 

6 MeCN n.d. 73 

7 DMF n.d. 50 

8 1,4-Dioxane 91 97 
a Determined by 1H-NMR spectroscopy. b Determined by chiral HPLC analysis. 

Changing from dichloromethane to toluene provided similar results in terms of 

enantioselectivities, although a slight decrease in the reactivity was observed (85% 

conversion) (entry 2, Table IV.2). A similar but more pronounced effect occurred when 

dichloromethane was used (entry 3, Table IV.2). The use of more polar solvents as DMSO, 

THF, acetonitrile or DMF, resulted in a decrease of the enantioselectivities and, therefore, 

the conversions were not even measured (entries 4-7, Table IV.2). Finally, the use of 1,4-

dioxane provided a very high conversion of 91% and an excellent 97% of enantiomeric 

excess (entry 8, Table IV.2). The solvent employed for the reaction appeared to be an 

important parameter, with 1,4-dioxane displaying the best results in general terms.  
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Table IV.3 – Evaluation of the concentration effect. 

 

Entry 1,4-Dioxane (mL) ee (%) 

1 0.5 80 

2 1.0 92 

3 1.5 97 

4 2.0 97 
a Determined by chiral HPLC analysis. 

Interestingly, the enantioselectivity of the reaction was highly dependent of the 

concentration of the reaction media (Table IV.3). Increasing the concentration led to a 

decrease of the enantiomeric excess of the diamine 34Aa to 92% or 80% when the amount 

of 1,4-dioxane employed was 1.0 or 0.5 mL, respectively (entries 2 and 1, Table IV.3). 

Nonetheless, when the reaction was more diluted, using 2.0 mL (entry 4, Table IV.3) the 

enantiomeric excess was not affected compared to the values for 1.5 mL (entry 3, Table 

IV.3). 

Therefore, the optimal conditions for the asymmetric reductive amination of 32A 

were fixed as follows: n-propylamine 43a (1.1 eq.) in 1,4-dioxane (1.5 mL), and further 

addition of FA/TEA 5:2 (6.0 eq.) and the commercially available RuCl(p-cymene)[(S,S)-

Ts-DPEN] (5 mol%). 

IV.2.3. Reaction scope. 

With the optimized conditions in hands, we next moved to explore the scope of 

amines. Initially, several aliphatic primary amines 43a-i were employed in combination 

with 32A. 
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From the Scheme IV.21, it can be concluded that the methodology tolerates a wide 

variety of aliphatic primary amines, leading in all cases to products with excellent 

enantioeselectivities. For instance, the product 34Ab was obtained with similar results than 

for the model compound 34Aa, while exocyclic amines 43c and 43d provided excellent 

selectivity values affording products 34Ac and 34Ad in 99% ee, in both cases. 

Additionally, the use of 43e and 43f containing a methylene between the amine and the 

cycloalkyl moiety, led to the desired products in high yield (74% and 84%, respectively) 

and excellent enantioselectivities (92% and 98%, respectively). This methodology also 

tolerates the synthesis of the highly functionalised system 34Ag, containing a protected 

aldehyde as 1,3-dioxolane, that could be further deprotected, with excellent results (74% 

yield and 96% ee). With the aim of a using a removable group to obtain the free axially 

chiral primary diamine compounds, the reaction was performed with allylamine 43h and 

benzylamine 43i, allowing for the synthesis of the corresponding products 34Ah and 34Ai 

in excellent enantioselectivities, although a lower conversion was observed for the latter, 

even after a long reaction time. 
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Scheme IV.21 – Reaction scope for the reductive amination of 32A with aliphatic primary amines 43a-i. 

Reaction conditions: 0.1 mmol of 32A, 0.11 mmol of amine 43a-i, 1.5mL of 1,4-dioxane, 5mol% of Ru(II)Cat*, 

and 40L of FA/TEA (5:2, molar). a ATH step took 5 days. 

Additionally, it was possible to determine the absolute configuration of the product 

34Aa by X-ray diffraction analysis, showing an axial R configuration for the major 

enantiomer (Figure IV.5). Hence, the absolute configuration for the rest of reaction 

products was assigned by analogy. 



243 
 

 

Figure IV.5 – Absolute configuration assignment for (R)-34Aa. C−H bonds and aromatic fragment from tosyl 

group are omitted for the sake of clarity. Thermal ellipsoids drawn for 50% probability. 

Remarkably, the condensation reaction of 32A with benzhydrylamine 43j was 

incomplete after 5 days, and after further addition of FA/TEA and catalyst and additional 

6 days of reaction, only traces of the product 32Aj were observed. Furthermore, these traces 

were analysed by chiral HPLC showing a racemic mixture of the two enantiomers of 32Aj, 

thus, indicating that not only this bulkier amine decreases the reactivity, but may also 

hamper the formation of the cyclic aminal responsible for the labilization process (Scheme 

IV.22). 

 

Scheme IV.22 –Asymmetric reductive amination between 32A and 43j. 

Additionally, this asymmetric reductive amination methodology was extended to 

cyclic secondary amines 43k-m (Scheme IV.23). It is important to highlight that, although 

the bulkiness of the amine negatively affects these reactions, when these amines are used, 

an iminium specie is formed with much higher electrophilicity than the former carbonyl. 

We then anticipated that these amines might provide electronic effect that may overcome 

the steric issues. 
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Scheme IV.23 – Reaction scope for the reductive amination of 32A with endocyclic aliphatic amines 43k-m. 

Reaction conditions: 0.1 mmol of 32A, 0.11 mmol of amine 43k-m, 1.5mL of 1,4-dioxane, 5mol% of Ru(II)Cat*, 

and 40L of FA/TEA (5:2, molar). a 5mol% of p-TsOH was added at condensation step. 

To our delight, the methodology is suited for the use of pyrrolidine 43k, affording 

the desired axially chiral diamine 34Ak in 84% yield and 92% of enantiomeric excess, after 

36 h. It must be mentioned however that it was necessary to heat at 60 °C to facilitate the 

condensation reaction. Considering this result, we found surprising that when piperidine 

was used instead, the desired diamine was not detected. In fact, the corresponding imine 

was completely formed when the condensation reaction was heated to 60 °C (TLC 

monitoring), but after addition of Ru(II)Cat* and FA/TEA, imine hydrolysis followed by 

aldehyde reduction product 42A was the only observed product after 6 days at room 

temperature. The difference in reactivity observed between pyrrolidine and piperidine was 

attributed to the formation of a more strained system for the former. Furthermore, the 

reaction of 32A with morpholine 43m was also explored. In this case, longer reaction time 

for both amination and reduction step (3 and 4 days, respectively) was required, and the 

addition of a 5 mol% of p-TsOH (to achieve almost complete condensation) was necessary. 
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We next explored the scope of the reaction with respect to other biaryl frames 32B-

D (Scheme IV.24). 

 

Scheme IV.24 – Reaction scope for the reductive amination of hemiaminals 32B-D with aliphatic primary 

amines 43a-c,e-h. Reaction conditions: 0.1 mmol of 32B-D, 0.11 mmol of amine, 1.5mL of 1,4-dioxane, 5mol% 

of Ru(II)Cat*, and 40L of FA/TEA (5:2, molar). 

This methodology could also be applied when some structural modifications were 

performed on the biaryl frame. If a naphthyl ring was placed at the upper fragment of the 

biaryl moiety (32B) very similar results were observed for the asymmetric reductive 
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amination of the aminal. For instance, when the reaction was performed with n-

propylamine 43a, n-butylamine 43b, cyclohexylamine 43c, or methylcyclohexylamine 43f, 

very high yields and excellent enantioselectivities were achieved in all cases. However, a 

decrease in reactivity was observed for this system in the reactions with the 1,3-dioxolane 

derivative 43g or allylamine 43h, though the enantiomeric excesses were slightly higher 

than those shown for 34Ag or 34Ah. The use of systems such as 32C or 32D resulted in 

the isolation of the desired products in high enantioselectivity although moderate yields. 

The case of 34Ce represents the only example of the series displaying an enantiomeric 

excess below 90%.  

So far, it was confirmed that the labilization event can proceed via a cyclic aminal, 

in an analogous manner than for Akiyam’s system. We next focused on the second 

approach consisting on a labilization through a Lewis acid-base interaction between the 

nucleophilic nitrogen and the azomethine carbon from the imine group. To address this 

point, we carried out the reaction between the previously synthetized substrate 32E and n-

propylamine 43a under the already optimized conditions (Scheme IV.25).  

 

Scheme IV.25 – Analysis of the labilization process through Lewis acid-base interaction in imine 33Ea. 

Surprisingly, the product resulting from this reaction (34Ea) was obtained as a 

racemic mixture. A possible explanation is that the Lewis acid-base interaction involving 

a six-membered intermediate/transition state was not effective enough to reach the 
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racemization barrier, at least through 33Ea. It was suggested that using the more 

electrophilic aldehyde 32E this labilization process would be more feasible. For that 

purpose, the direct reduction of the aldehyde substrate 32E was performed under the 

optimized conditions for the asymmetric transfer hydrogenation (Scheme IV.26)  

 

Scheme IV.26 – Analysis of the labilization process via Lewis acid-base interaction at substrate 32E. 

Unexpectedly, the alcohol 42E resulting from the aldehyde reduction was also 

isolated again as a racemic mixture. There are a priori two possible explanations: 

- The presumed interaction between nucleophilic nitrogen and carbonyl is not 

taking place, possibly due to steric hindrance at the nitrogen. 

- The interaction exists, but is not strong enough to force the coplanar 

conformation that allows the fast interconversion between the two 

atropisomers. 

This result also suggested a plausible mechanism for the labilization event through 

the formation of the cyclic hemiaminal species in the substrates. This is based on the acidity 

of the proton at the nitrogen and the protophilicity of the oxygen atom from the aldehyde, 

promoting an intramolecular proton transfer (prototropy) that provides tha activation to 

form the cyclic hemiaminal (Scheme IV.27). In our particular case, the presence of an 

electron withdrawing group at the N atom, such as tosyl, proved to be essential to increase 
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the acidity of the proton involved in the hemiaminal formation, and prevent a possible 

further conversion to the iminium ion by elimination reaction. 

 

Scheme IV.27 – Proposed mechanism for the formation of cyclic hemiaminal 32A. 

In summary, the asymmetric transfer hydrogenation of configurationally unstable 

aminals has emerged as an efficient method for the catalytic enantioselective synthesis of 

axially chiral diamines of the HOMOBINAM family. 

It is worth to mention that, while this work was being developed, Wang and co-

workers,181 reported a similar Ru-catalyzed atropo-enantioselective synthesis of biaryl 

amine-alcohol (Scheme IV.28). However, Wang’s system employs the previously 

described biaryl N,O-acetals,56 although it also includes substrates presenting 

tetrasubstitution around the stereogenic axis and a variety of secondary alkyl amines. 

Furthermore, our system presents the novelty of allowing the synthesis of axially chiral 

diamines homologues to BINAM, an unresolved challenge in organic synthesis. 

 

Scheme IV.28 – Wang’s Ru-catalyzed asymmetric reductive amination via DKR. 

The importance of (hetero)biaryl derivatives containing both axial and central 

chirality elements was discussed and reviewed along Chapter I, and Chapters II and III 

show two methodologies that have been developed for the synthesis of novel 

                                                                 
181 Guo, D.; Zhang, J.; Zhang, B.; Wang, J. Org. Lett. 2018, 20, 6284. 
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representatives of such compounds., In this context, therefore, we wanted to go one step 

further with this methodology, and determine whether it could be also extended to the 

synthesis of diamines with the simultaneous generation of central and axial chirality 

elements.  

For that purpose, a structural modification at the substrate was necessary. In 

particular, the analogue ketone 32F was synthetized, so that the asymmetric reduction of 

the iminium intermediate would result in the generation of an stereogenic centre (Scheme 

IV.29). The first needed was to determine whether the labilization event was still possible 

in a more crowded environment and with a less electrophilic ketone carbonyl. 

 

Scheme IV.29 – Proposal for method extension to the synthesis of central and axially chiral diamines. 

The synthesis of the substrate 32F was carried out through a similar synthetic 

procedure than that followed for 32A-E, with slight modifications of the coupling 

conditions. Initially, both coupling partners were synthetized according to described 

procedures, starting from commercially available 2-bromoaniline182 and 1′-hydroxy-2′-

acetonaphthone183 (Scheme IV.30A). Then, the cross-coupling reaction between pinacol 

                                                                 
182 Jang, Y. H.; Youn, S. W. Org. Lett. 2014, 16, 3720. 
183 Penhoat, M.; Levacher, V.; Dupas, G. J. Org. Chem. 2003, 68, 9517.  
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borane 47 and triflate 48 was performed under the reaction conditions displayed at Scheme 

IV.30B, to afford the desired product quantitatively. 

 

Scheme IV.30 – Synthetic route for accessing biaryl ketone 32F. 

In contrast to substrates 32A-D, 1H and 13C-NMR analysis of the coupling product 

32F did not show any traces of the bridged hemiaminal structure. This was attributed to the 

lower electrophilicity of ketone carbonyl with respect to aldehyde, together with the 

increase on the steric environment. Thus, a lower labilization rate at the ketone substrate 

could be expected. However, it could also be argued that, after amine condensation, the 

generation of an iminium ion provides an increase of electrophilicity enough to allow the 

dynamic kinetic resolution to proceed. 

In order to determine its viability, the reaction between two representative amines 

(43a and 43k) was performed under the optimal conditions for the asymmetric reductive 

amination (Scheme IV.31). 
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Scheme IV.31 – Asymmetric reductive amination protocol performed on biaryl ketone 32F. 

Surprisingly, the main reaction product obtained with both amines was the 

corresponding alcohol from ketone reduction 42F, and no traces of the desired diamine was 

observer in any case. It should be noted that, for the reaction with amine 43k, a catalytic 

amount of p-TsOH was added in order to increase the rate of the condensation reaction. 

Nonetheless, this is a preliminary result, and this approach has to be further explored as a 

future prospect. In this regard, it is worth to mention that the methodology described during 

this Chapter IV is still being studied with the aim of expanding its potential and 

applicability. 
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IV.3. Conclusions. 

To summarize, in Chapter IV an efficient methodology for the synthesis of axially 

chiral diamines with high excellent enantioselectivities has been described. This strategy 

consists on the dynamic kinetic resolution of biaryl cyclic hemiaminal structures by and 

asymmetric reductive amination via Ru-catalyzed transfer hydrogenation. In this case, a 

fast interconversion between the two atropisomers of the substrate through the formation 

of cyclic aminal structures is responsible for the high levels of enantioselectivities observed 

for this reaction.  

From this strategy, in cat be concluded that an efficient alternative for the unsolved 

synthesis BINAM homologues has been described. Moreover, as mentioned above, this 

methodology is currently under investigation in our research group with the aim of expand 

its high potential. 
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IV.4. Experimental Section. 

IV.4.1. General procedure for the synthesis of N-tosyl amines. 

The corresponding primary amine (2.0 mmol, 1.0 eq.) was added to a flame-dried 

Schlenk and dissolved in dry dichloromethane (4.5 mL). Then pyridine (3.0 eq.) and p-

toluenesulfonyl chloride (1.1 eq.) were subsequently added at room temperature, and 

reaction mixture was stirred for 24h. Later, reaction was diluted with water and extracted 

with dichloromethane (x3), and washed with brine. The collected organic phases were dried 

over anhydrous Na2SO4, filtered, concentrated, and the residue was purified by column 

chromatography on silica gel using different n-hex/EtOAc mixtures. 

Synthesis of N-(1-Bromonaphthalen-2-yl)-4-methylbenzenesulfonamide. 37b. 

 

Following the general procedure, starting from 1-bromonaphthalen-2-amine (445.8 

mg, 2 mmol), afforded 37b as a white amorphous solid (630 mg, 84%).  

1H-NMR (400 MHz, CDCl3) δ 8.03 (d, J = 8.5 Hz, 1H), 7.90 (d, J = 8.9 Hz, 1H), 7.78 (d, 

J = 6.7 Hz, 2H), 7.67 (d, J = 7.8 Hz, 2H), 7.54 (t, J = 7.8 Hz, 1H), 7.46 (t, J = 7.8 Hz, 1H), 

7.16 (d, J = 8.0 Hz, 2H), 2.32 (s, 3H).  

13C-NMR (100 MHz, CDCl3) δ 144.3, 135.9, 133.1, 132.0, 131.9, 129.7, 128.8, 128.2, 

128.0, 127.3, 126.9, 126.0, 120.8, 114.2, 21.6.  

HRMS (ESI) calcd. for C17H14O2NBrNaS (M + Na+) 397.9821. Found 397.9814. 

IV.4.2. Procedures for the cross-coupling reaction for the synthesis of 

substrates 32A-F. 

METHOD A: A flame-dried Schlenk tube was charged with Pd2(dba)3 (8 mol%), 

XPhos (10 mol%), bromide (1.0 eq.), boronic acid (1.2 eq.) and anhydrous 1,4-dioxane at 

room temperature. Finally, 2M aqueous solution of Na2CO3 (2.0 eq.) was added, and 
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reaction mixture was heated to 90 °C for 12-24 h. Then, reaction mixture was cooled to 

room temperature, brine was added, and the resulting mixture was extracted with EtOAc. 

The collected organic phases were dried over anhydrous Na2SO4, filtered, concentrated, 

and the residue was purified by column chromatography on silica gel using different n-

hex/EtOAc mixtures. 

METHOD B: A flame-dried Schlenk tube was charged with Pd(PPh3)4 (6 mol%), 

bromide (1.33 eq.), boronic acid (1.0 eq.), DME (10 mM) and EtOH (0.45 mM) at room 

temperature. Finally, 2M aqueous solution of Na2CO3 (2.0 eq.) was added, and reaction 

mixture was heated to 90 °C for 12-24 h. Then, reaction mixture was cooled to room 

temperature, brine was added, and the resulting mixture was extracted with EtOAc. The 

collected organic phases were dried over anhydrous Na2SO4, filtered, concentrated, and the 

residue was purified by column chromatography on silica gel using n-hex/EtOAc mixtures. 

METHOD C: A flame-dried Schlenk tube was charged with pinacol borane (1.2 

eq.), triflate (1.0 eq.), Pd(PPh3)4 (10 mol%), Na2CO3 2.0 M aq. (3.0 eq.), and DME (4.5 

mM) were heated at reflux for 12 h. After cooling to room temperature, the reaction was 

quenched by addition of H2O. The crude mixture was extracted with EtOAc (x3) and the 

combined organic phases were washed with brine, dried over anhydrous Na2SO4, and 

concentrated in vacuo. The residue was purified by column chromatography using n-

hex/EtOAc mixtures. 

Synthesis of 5-Tosyl-5,6-dihydrobenzo[k]phenanthridin-6-ol. 32A 

 

Following the general procedure described for Method A, starting from N-(2-

bromophenyl)-4-methylbenzenesulfonamide 37a and (2-formylnaphthalen-1-yl)boronic 

acid 41a, purification by column chromatography afforded 32A as a white solid (800 mg, 

99%).  



255 
 

1H-NMR (400 MHz, CDCl3) δ 8.08 (d, J = 8.0 Hz, 1H), 7.96 (d, J = 7.9 Hz, 1H), 7.88 (d, 

J = 7.6 Hz, 1H), 7.80 (d, J = 7.6 Hz, 1H), 7.72 (d, J = 8.3 Hz, 1H), 7.44 (dt, J = 13.4, 8.4 

Hz, 5H), 6.84 (d, J = 7.9 Hz, 2H), 6.63 (s, 1H), 6.38 (d, J = 7.9 Hz, 2H), 3.01 (br s, 1H), 

1.64 (s, 3H).  

13C-NMR (100 MHz, CDCl3) δ 143.2, 134.6, 133.2, 132.8, 132.4, 129.7, 129.0, 128.7, 

128.6, 128.6, 128.4, 128.3, 127.1, 126.8, 126.4, 126.3, 126.0, 125.5, 124.5, 80.9, 20.7.  

HRMS (ESI) calcd. for C24H20NO3S (M + H+) 402.1158. Found 402.1156. 

Synthesis of 6-Tosyl-5,6-dihydrobenzo[a]phenanthridin-5-ol. 32B 

 

Following the general procedure described for Method A, starting from N-(1-

bromonaphthalen-2-yl)-4-methylbenzenesulfonamide 37b and (2-formylphenyl)boronic 

acid 41b, purification by column chromatography afforded 32B as a white solid (220 mg, 

99%). 

1H-NMR (400 MHz, CDCl3) δ 8.45 (t, J = 4.8 Hz, 1H), 8.13 (d, J = 8.9 Hz, 1H), 7.93 (t, J 

= 7.4 Hz, 2H), 7.65 – 7.32 (m, 6H), 6.98 (d, J = 8.2 Hz, 2H), 6.78 – 6.67 (m, 3H), 2.66 (s, 

1H), 2.16 (s, 3H). 

13C-NMR (100 MHz, CDCl3) δ 143.2, 134.8, 133.9, 133.2, 130.6, 129.5, 129.2, 128.9, 

128.8, 128.7, 128.4, 128.2, 127.6, 127.3, 126.8, 126.4, 125.9, 125.9, 125.6, 80.3, 21.3.  

HRMS (ESI) calcd. for C24H20NO3S (M + H+) 402.1158. Found 402.1158. 
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Synthesis of 1-Methyl-5-tosyl-5,6-dihydrophenanthridin-6-ol. 32C 

 

Following the general procedure described for Method A, starting from N-(2-

bromo-3-methylphenyl)-4-methylbenzenesulfonamide 37c184 and (2-

formylphenyl)boronic acid 41b, purification by column chromatography afforded 32C as 

a white solid (220 mg, 42%).  

1H-NMR (400 MHz, CDCl3) δ 7.76 (d, J = 7.9 Hz, 1H), 7.35 – 7.28 (m, 6H), 7.24 – 7.16 

(m, 3H), 6.96 (d, J = 7.9 Hz, 2H), 6.74 (d, J = 7.9 Hz, 2H), 6.58 (d, J = 4.6 Hz, 1H), 2.68 

(d, J = 4.6 Hz, 1H), 2.56 (s, 3H), 2.18 (s, 3H).  

13C-NMR (100 MHz, CDCl3) δ 143.0, 135.0, 134.4, 134.2, 132.9, 130.7, 129.7, 128.6, 

128.3, 128.0, 127.9, 127.6, 127.2, 127.1, 126.6, 126.5, 126.2, 80.3, 23.0, 21.3.  

HRMS (ESI) calcd. for C24H20NO3S (M + H+) 366.1158. Found 366.1158. 

Synthesis of 10-Methyl-5-tosyl-5,6-dihydrophenanthridin-6-ol. 32D 

 

Following the general procedure described for Method A, starting from N-(2-

bromo-3-methylphenyl)-4-methylbenzenesulfonamide 37a and (2-formylphenyl)boronic 

acid 41c, purification by column chromatography afforded 32D as a white solid (220 mg, 

66%).  

                                                                 
184 Krolski, M. E.; Renaldo, A. F., Rudisill, D. E.; Stille, J. K. J. Org. Chem. 1988, 53, 1170. 
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1H-NMR (400 MHz, CDCl3) δ 7.87 (d, J = 7.9 Hz, 1H), 7.62 (d, J = 7.9 Hz, 1H), 7.41 (t, J 

= 7.7 Hz, 1H), 7.33 (t, J = 7.6 Hz, 1H), 7.18 (d, J = 7.4 Hz, 1H), 7.13 (t, J = 7.5 Hz, 1H), 

7.05 (d, J = 7.4 Hz, 1H), 6.91 (d, J = 7.9 Hz, 2H), 6.72 (d, J = 7.9 Hz, 2H), 6.51 (d, J = 4.5 

Hz, 1H), 2.68 (d, J = 5.3 Hz, 1H), 2.24 (s, 3H), 2.18 (s, 3H). 

13C-NMR (100 MHz, CDCl3) δ 143.0, 134.8, 134.5 133.3, 132.2, 132.5, 129.5, 129.2, 

128.9, 128.3, 128.2, 128.0, 127.5, 126.5, 125.4, 80.9, 22.3, 21.3. 

HRMS (ESI) calcd. for C24H20NO3S (M + H+) 366.1158. Found 366.1158. 

Synthesis of 1-(2-(Dimethylamino)phenyl)-2-naphthaldehyde. 32E 

 

Following the general procedure described for Method B, starting from 2-bromo-

N,N-dimethylaniline and 39, purification by column chromatography afforded 32E as a 

yellowish oil (144 mg, 69%).  

1H-NMR (400 MHz, CDCl3) δ 9.73 (br s, 1H), 8.09 (d, J = 8.7 Hz, 1H), 7.95 (d, J = 8.4 

Hz, 1H), 7.91 (d, J = 8.8 Hz, 1H), 7.64 (t, J = 7.5 Hz, 1H), 7.55 – 7.42 (m, 2H), 7.27 (d, J 

= 8.3 Hz, 1H), 7.16 (t, J = 8.5 Hz, 1H), 2.40 (s, 3H).  

13C-NMR (100 MHz, CDCl3) δ 136.8, 133.2, 132.1, 130.1, 129.7, 128.4, 128.4, 128.1, 

127.1, 127.1, 126.8, 122.5, 121.4, 117.9, 42.8.  

HRMS (ESI) calcd. for C19H18NO3S (M + H+) 276.1383. Found 276.1385. 
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Synthesis of N-(2-(2-Acetylnaphthalen-1-yl)phenyl)-4-

methylbenzenesulfonamide. 32F 

 

Following the general procedure described for Method C, starting from pinacol 

borane 47 and triflate 48, purification by column chromatography afforded 32F as a 

yellowish amorphous solid (136 mg, 99%).  

1H-NMR (400 MHz, CDCl3) δ 7.97 (d, J = 8.6 Hz, 1H), 7.89 (d, J = 8.3 Hz, 1H), 7.76 (t, J 

= 9.2 Hz, 2H), 7.57 – 7.50 (m, 1H), 7.49 – 7.36 (m, 3H), 7.25 – 7.10 (m, 2H), 7.04 (d, J = 

7.8 Hz, 2H), 6.97 (t, J = 9.5 Hz, 1H), 6.50 (s, 1H), 2.35 (s, 3H), 2.09 (s, 3H).  

13C-NMR (100 MHz, CDCl3) δ 202.8, 143.7, 138.0, 136.6, 135.6, 134.5, 132.9, 132.0, 

131.2, 129.6, 129.5, 129.4, 128.9, 128.2, 127.6, 127.5, 127.2, 126.7, 124.4, 124.3, 119.9, 

30.1, 21.6.  

HRMS (ESI) calcd. for C25H22NO3S (M + H+) 416.1315. Found 416.1318. 

IV.4.3. Synthesis of axially chiral diamines via Asymmetric Transfer 

Hydrogenation 

To a flame-dried Schlenk tube with 4Å molecular sieves, aldehyde 32A-E (0.1 

mmol), anhydrous 1,4-dioxane (1.0 mL), and amine 43a-i (1.1 eq.) were sequentially added 

at room temperature and reaction mixture was stirred for 12-36h. Then, [RuCl(p-

cymene)(S,S)-Ts-DPEN] (5 mol%) followed by 1,4-dioxane (0.5 mL) and 5:2 

HCO2H/Et3N (40 L) azeotropic mixture were added. Reaction mixture was stirred for 18-

48h at room temperature. Then reaction was filtered through a short pad of celite, and 

solvent was removed under reduced pressure. The residue was purified by column 

chromatography on silica gel with n-hex/EtOAc or CH2Cl2/EtOAc mixtures affording the 

resulting diamines. 
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Note. Racemic diamines were obtained by condensation of amine 43a-i (1.0 eq.) 

with aldehyde 32A-E (1.0 eq.) in toluene with 4Å MS and 5 mol% of p-toluenesulfonic acid 

for 2h. Then reaction mixture was extracted with EtOAc, dried over Na2SO4, filtered and 

solvent removed in vacuo. Reaction crude was dissolved in MeOH, and NaBH4 (2.0 eq.) 

was added. Quenching with water, and EtOAc extraction afforded the racemic mixture of 

amines that were separated from reaction crude by preparative TLC prior to HPLC 

analysis. 

Synthesis of (R)-4-Methyl-N-(2-(2-((propylamino)methyl)naphthalen-1-

yl)phenyl)benzenesulfonamide. 34Aa 

 

Following the general procedure from 32A and n-propylamine 43a, after 72 h and 

further purification by flash chromatography (3:1 n-hexane/EtOAc) afforded 34Aa (40.0 

mg, 90%) as a light-yellow solid. The pure product was crystallized by slow diffusion of 

n-pentane into a solution of the product in DCM to give 32Aa as pale yellow prisms suitable 

for X-Ray analysis.  

 []D
20 +221.6 (c 0.46, CHCl3) for 98% ee.  

1H-NMR (400 MHz, CDCl3) δ 7.88 (d, J = 8.1 Hz, 1H), 7.82 (d, J = 8.4 Hz, 1H), 7.75 (d, 

J = 8.2 Hz, 1H), 7.45 (d, J = 7.8 Hz, 1H), 7.41 (d, J = 8.5 Hz, 1H), 7.34 (t, J = 7.5 Hz, 1H), 

7.22 (t, J = 7.5 Hz, 1H), 7.00 (d, J = 8.2 Hz, 1H), 6.96 (d, J = 7.4 Hz, 1H), 6.93 (d, J = 7.9 

Hz, 2H), 6.65 (d, J = 8.6 Hz, 1H), 6.44 (d, J = 7.9 Hz, 2H), 3.76 (d, J = 11.4 Hz, 1H), 3.46 

(d, J = 11.4 Hz, 1H), 2.74 (td, J = 10.1, 9.0, 6.1 Hz, 1H), 2.63 (td, J = 11.1, 10.2, 6.1 Hz, 

1H), 2.06 (s, 3H), 1.68 (dtt, J = 21.4, 13.9, 7.0 Hz, 2H), 0.97 (t, J = 7.4 Hz, 3H).  

13C-NMR (100 MHz, CDCl3) δ 141.6, 137.8, 136.5, 135.3, 134.0, 133.9, 133.3, 132.9, 

132.2, 128.8, 128.5, 127.6, 127.4, 126.8, 126.7, 126.1, 126.0, 125.2, 125.1, 52.7, 51.6, 22.4, 

21.4, 11.8.  
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HRMS (ESI) calcd. for C27H29O2N2S (M + H+) 445.1944. Found 445.1937.  

HPLC (IA column, 85:15 n-Hex/i-PrOH, 30 C, 1.0 mL/min): tR 7.74 min (minor) and 

14.47 min (major).  

M. p. 125-128 °C. 

Synthesis of (R)-N-(2-(2-((Butylamino)methyl)naphthalen-1-yl)phenyl)-4-

methylbenzenesulfonamide. 34Ab 

 

Following the general procedure from 32A and n-butylamine 43b, after 72 h and 

further purification by flash chromatography (3:1 n-hexane/EtOAc) afforded 34Ab (41.7 

mg, 91%) as a light-yellow amorphous solid.  

[]D
20 +164.5 (c 0.38, CHCl3) for 95% ee.  

1H-NMR (400 MHz, CDCl3) δ 7.87 (d, J = 8.2 Hz, 1H), 7.83 (d, J = 8.3 Hz, 1H), 7.75 (d, 

J = 8.2 Hz, 1H), 7.45 (d, J = 7.7 Hz, 1H), 7.41 (d, J = 8.4 Hz, 1H), 7.34 (t, J = 7.5 Hz, 1H), 

7.22 (t, J = 7.5 Hz, 1H), 7.00 (d, J = 8.2 Hz, 2H), 6.96 (d, J = 7.9 Hz, 2H), 6.93 (d, J = 7.9 

Hz, 3H), 6.65 (d, J = 8.6 Hz, 1H), 6.44 (d, J = 7.9 Hz, 2H), 3.76 (d, J = 11.4 Hz, 1H), 3.46 

(d, J = 11.4 Hz, 1H), 2.77 (m, 1H), 2.66 (m, 1H), 2.07 (s, 3H), 1.64 (m, 2H), 1.39 (, 2H), 

0.95 (t, J = 7.3 Hz, 3H).  

13C-NMR (100 MHz, CDCl3) δ 141.7, 137.8, 136.4, 135.3, 134.1, 133.8, 133.3, 132.9, 

132.2, 128.8, 128.5, 127.6, 127.4, 126.8, 126.1, 126.0, 125.2, 125.1, 52.8, 49.4, 31.2, 21.4, 

20.5, 14.0.  

HRMS (ESI) calcd. for C28H31O2N2S (M + H+) 459.2101. Found 459.2093.  

HPLC (IA column, 85:15 n-Hex/i-PrOH, 30 C, 1.0 mL/min): tR 7.87 min (minor) and 

12.97 min (major). 
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Synthesis of (R)-N-(2-(2-((Cyclohexylamino)methyl)naphthalen-1-yl)phenyl)-

4-methylbenzenesulfonamide. 34Ac 

 

Following the general procedure from 32A and cyclohexylamine 43c, after 72 h 

and further purification by flash chromatography (3:1 n-hexane/EtOAc) afforded 34Ac 

(39.3 mg, 81%) as a light-yellow amorphous solid. 

[]D
20 +166.4 (c 0.37, CHCl3) for 99% ee. 

1H-NMR (400 MHz, CDCl3) δ 7.92 (dd, J = 8.1, 1.3 Hz, 1H), 7.86 (d, J = 8.3 Hz, 1H), 7.77 

(d, J = 8.1 Hz, 1H), 7.47 (ddd, J = 8.2, 7.4, 1.6 Hz, 1H), 7.43 (d, J = 8.4 Hz, 1H), 7.37 (ddd, 

J = 8.1, 6.8, 1.2 Hz, 1H), 7.25 (td, J = 7.5, 1.3 Hz, 1H), 7.04 (dd, J = 7.6, 1.6 Hz, 1H), 6.99 

(ddd, J = 8.3, 6.8, 1.3 Hz, 1H), 6.94 (d, J = 8.3 Hz, 2H), 6.69 (dd, J = 8.5, 1.0 Hz, 1H), 6.45 

(d, J = 8.0 Hz, 2H), 3.81 (d, J = 11.0 Hz, 1H), 3.50 (d, J = 11.0 Hz, 1H), 2.58 (dt, J = 9.1, 

5.6 Hz, 1H), 2.09 (s, 3H), 2.06 – 1.93 (m, 1H), 1.87 – 1.74 (m, 2H), 1.70 – 1.61 (m, 1H), 

1.44 – 1.15 (m, 6H).  

13C-NMR (100 MHz, CDCl3) δ 141.6, 137.9, 136.4, 135.4, 134.3, 134.0, 133.3, 132.8, 

132.2, 129.1, 128.8, 128.7, 128.5, 128.3, 127.9, 127.4, 126.8, 126.7, 126.1, 126.0, 125.3, 

125.1, 57.1, 49.7, 33.2, 31.9, 25.9, 25.1, 25.1, 21.4.  

HRMS (ESI) calcd. for C30H33O2N2S (M + H+) 485.2257. Found 485.2248.  

HPLC (IA column, 85:15 n-Hex/i-PrOH, 30 C, 1.0 mL/min): tR 8.13 min (minor) and 

16.02 min (major). 
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Synthesis of (R)-N-(2-(2-((Cyclopentylamino)methyl)naphthalen-1-

yl)phenyl)-4-methylbenzenesulfonamide. 34Ae 

 

Following the general procedure from 32A and cyclopentylamine 43d, after 72 h 

and further purification by flash chromatography (3:1 n-hexane/EtOAc) afforded 34Ad 

(36.2 mg, 77%) as a light-yellow amorphous solid.  

[]D
20 +179.4 (c 0.61, CHCl3) for 99% ee.  

1H-NMR (400 MHz, CDCl3) δ 7.86 (dd, J = 8.2, 1.2 Hz, 1H), 7.83 (d, J = 8.3 Hz, 1H), 7.75 

(d, J = 8.1 Hz, 1H), 7.45 (d, J = 8.4 Hz, 1H), 7.43 (ddd, J = 8.2, 7.4, 1.6 Hz, 1H), 7.35 (ddd, 

J = 8.0, 6.8, 1.2 Hz, 1H), 7.22 (td, J = 7.5, 1.3 Hz, 1H), 7.03 (dd, J = 7.6, 1.6 Hz, 1H), 7.01 

– 6.96 (m, 1H), 6.95 (d, J = 8.2 Hz, 2H), 6.68 (d, J = 8.5 Hz, 1H), 6.47 (d, J = 7.9 Hz, 2H), 

3.72 (d, J = 11.4 Hz, 1H), 3.47 (d, J = 11.3 Hz, 1H), 3.16 (p, J = 6.7 Hz, 1H), 2.08 (s, 3H), 

1.96 – 1.73 (m, 4H), 1.61 – 1.47 (m, 3H), 1.50 – 1.38 (m, 1H).  

13C-NMR (100 MHz, CDCl3) δ 141.7, 137.9, 136.5, 135.5, 133.7, 133.6, 133.2, 132.9, 

132.1, 128.9, 128.7, 128.6, 127.4, 126.9, 126.7, 126.2, 126.0, 125.2, 125.2, 60.0, 51.5, 32.9, 

31.4, 24.1, 24.0, 21.4.  

HRMS (ESI) calcd. for C29H31O2N2S (M + H+) 471.2101. Found 471.2095.  

HPLC (IA column, 85:15 n-Hex/i-PrOH, 30 C, 1.0 mL/min): tR 7.82 min (minor) and 

12.55 min (major).  
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Synthesis of (R)-N-(2-(2-(((Cyclopropylmethyl)amino)methyl)naphthalen-1-

yl)phenyl)-4-methylbenzenesulfonamide. 34Ae 

 

Following the general procedure from 32A and cyclopropanemethylamine 43e, 

after 72 h and further purification by flash chromatography (3:1 n-hexane/EtOAc) afforded 

34Ae (33.8 mg, 74%) as a light-yellow amorphous solid. 

[]D
20 +197.6 (c 0.38, CHCl3) for 92% ee.  

1H-NMR (400 MHz, CDCl3) δ 7.87 (d, J = 8.1 Hz, 1H), 7.83 (d, J = 8.3 Hz, 1H), 7.76 (d, 

J = 8.1 Hz, 1H), 7.44 (d, J = 8.8 Hz, 1H), 7.41 (t, J = 8.8 Hz, 1H), 7.35 (t, J = 7.5 Hz, 1H), 

7.21 (t, J = 7.4 Hz, 1H), 7.00 (t, J = 7.5 Hz, 2H), 6.96 (d, J = 7.9 Hz, 2H), 6.66 (d, J = 8.6 

Hz, 1H), 6.47 (d, J = 7.9 Hz, 2H), 3.78 (d, J = 11.5 Hz, 1H), 3.51 (d, J = 11.5 Hz, 1H), 2.62 

(dd, J = 12.2, 6.7 Hz, 1H), 2.54 (dd, J = 12.2, 7.3 Hz, 1H), 2.08 (s, 3H), 1.22 – 1.11 (m, 

1H), 0.53 (m, 2H), 0.23 – 0.12 (m, 2H). 1 

3C-NMR (100 MHz, CDCl3) δ 141.7, 137.8, 136.5, 135.4, 133.8, 133.6, 133.3, 132.9, 

132.2, 128.8, 128.6, 127.4, 127.3, 126.9, 126.6, 126.2, 126.0, 125.2, 125.2, 54.5, 52.3, 21.4, 

10.2, 3.9, 3.5.  

HRMS (ESI) calcd. for C28H29O2N2S (M + H+) 457.1944. Found 457.1941.  

HPLC (IA column, 85:15 n-Hex/i-PrOH, 30 C, 1.0 mL/min): tR 8.26 min (minor) and 

13.18 min (major). 
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Synthesis of (R)-N-(2-(2-(((Cyclohexylmethyl)amino)methyl)naphthalen-1-

yl)phenyl)-4-methylbenzenesulfonamide. 34Af 

 

Following the general procedure from 32A and cyclohexanemethylamine 43f, after 

72 h and further purification by flash chromatography (3:1 n-hexane/EtOAc) afforded 34Af 

(41.9 mg, 84%) as a light-yellow amorphous solid.  

[]D
20 +177.7 (c 0.35, CHCl3) for 98% ee.  

1H-NMR (400 MHz, CDCl3) δ 7.87 (d, J = 8.2 Hz, 1H), 7.83 (d, J = 8.4 Hz, 1H), 7.75 (d, 

J = 8.2 Hz, 1H), 7.44 (t, J = 7.6 Hz, 1H), 7.41 (d, J = 8.0 Hz, 1H), 7.35 (t, J = 7.5 Hz, 1H), 

7.22 (t, J = 7.5 Hz, 1H), 7.01 (d, J = 8.0 Hz, 1H), 9.98 (t, J =  Hz, 1H), 6.95 (t, J = 7.8 Hz, 

2H), 6.67 (d, J = 8.6 Hz, 1H), 6.47 (d, J = 7.8 Hz, 2H), 3.72 (d, J = 11.5 Hz, 1H), 3.41 (d, 

J = 11.5 Hz, 1H), 2.63 – 2.48 (m, 2H), 2.08 (s, 3H), 1.90 – 1.60 (m, 6H), 1.27 (m, 3H), 0.96 

(m, 2H).  

13C-NMR (100 MHz, CDCl3) δ 141.7, 137.8, 136.3, 135.6, 134.3, 133.8, 133.3, 132.9, 

132.2, 128.8, 128.6, 127.4, 127.4, 126.8, 126.7, 126.2, 126.0, 125.3, 125.1, 56.4, 52.9, 36.8, 

31.4, 31.3, 26.6, 25.9, 21.4.  

HRMS (ESI) calcd. for C31H35O2N2S (M + H+) 499.2414. Found 499.2407.  

HPLC (IA column, 85:15 n-Hex/i-PrOH, 30 C, 1.0 mL/min): tR 7.17 min (minor) and 8.96 

min (major). 
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Synthesis of (R)-N-(2-(2-(((2-(1,3-Dioxolan-2-

yl)ethyl)amino)methyl)naphthalen-1-yl)phenyl)-4-methylbenzenesulfonamide. 34Ag 

 

Following the general procedure from 32A and 2-(1,3-dioxolan-2-yl)ethan-1-

amine 43g, after 72 h and further purification by flash chromatography (3:1 n-

hexane/EtOAc) afforded 34Ag (37.2 mg, 74%) as a light-yellow amorphous solid. 

[]D
20 +182.1 (c 0.39, CHCl3) for 96% ee.  

1H-NMR (400 MHz, Chloroform-d) δ 7.85 (d, J = 9.1 Hz, 1H), 7.83 (d, J = 8.7 Hz, 1H), 

7.74 (d, J = 8.1 Hz, 1H), 7.48 – 7.39 (m, 1H), 7.35 (ddd, J = 8.1, 6.8, 1.2 Hz, 1H), 7.21 (td, 

J = 7.5, 1.3 Hz, 1H), 7.02 – 6.97 (m, 2H), 6.95 (d, J = 8.1 Hz, 2H), 6.67 (d, J = 8.6 Hz, 1H), 

6.46 (d, J = 8.1 Hz, 1H), 5.02 (t, J = 4.4 Hz, 1H), 4.07 – 3.97 (m, 2H), 3.96 – 3.83 (m, 2H), 

3.77 (d, J = 11.5 Hz, 1H), 3.45 (d, J = 11.5 Hz, 1H), 2.92 (dt, J = 12.8, 6.5 Hz, 1H), 2.83 

(dt, J = 12.3, 6.4 Hz, 1H), 2.07 (s, 3H), 2.06 (td, J = 6.7, 4.4 Hz, 2H).  

13C-NMR (100 MHz, CDCl3) δ 141.7, 137.8, 136.4, 135.3, 133.8, 133.6, 133.3, 132.9, 

132.2, 128.8, 128.6, 128.6, 127.4, 127.4, 126.8, 126.8, 126.1, 126.0, 125.2, 125.2, 103.8, 

103.8, 64.9, 64.8, 52.5, 44.3, 32.2, 21.4.  

HRMS (ESI) calcd. for C29H31O4N2S (M + H+) 503.1999. Found 503.1995.  

HPLC (IA column, 85:15 n-Hex/i-PrOH, 30 C, 1.0 mL/min): tR 13.25 min (minor) and 

16.68 min (major). 
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Synthesis of (R)-N-(2-(2-((Allylamino)methyl)naphthalen-1-yl)phenyl)-4-

methylbenzenesulfonamide. 34Ah 

 

Following the general procedure from 32A and freshly distilled allylamine 43h, 

after 72 h and further purification by flash chromatography (3:1 n-hexane/EtOAc) afforded 

34Ah (38.1 mg, 86%) as a light-yellow amorphous solid.  

[]D
20 +206.7 (c 0.33, CHCl3) for 97% ee. 

1H-NMR (400 MHz, CDCl3): δ 7.90 (d, J = 8.1 Hz, 1H), 7.87 (d, J = 7.3 Hz, 1H), 7.78 (d, 

J = 7.7 Hz, 1H), 7.47 (t, J = 8.1 Hz, 1H), 7.45 (d, J = 7.3 Hz, 1H), 7.38 (t, J = 7.7 Hz, 1H), 

7.26 (t, J = 7.9 Hz, 1H), 7.04 (d, J = 7.9 Hz, 1H), 7.01 (d, J = 8.5 Hz, 1H), 6.99 (d, J = 8.1 

Hz, 2H), 6.68 (d, J = 8.5 Hz, 1H), 6.51 (d, J = 7.7 Hz, 1H), 6.07 (tdd, J = 17.0, 7.5, 4.0 Hz, 

0H), 5.28 (d, J = 17.1 Hz, 1H), 5.20 (d, J = 10.2 Hz, 1H), 3.80 (d, J = 11.4 Hz, 1H), 3.48 

(d, J = 11.6 Hz, 1H), 3.44 – 3.32 (m, 1H), 2.12 (s, 1H).  

13C-NMR (100 MHz, CDCl3) δ 141.9, 137.6, 136.1, 135.3, 135.2, 134.1, 133.5, 133.3, 

132.9, 132.2, 128.8, 128.6, 127.4, 127.2, 126.8, 126.7, 126.2, 126.0, 125.3, 125.2, 117.6, 

52.1, 52.0, 21.4.  

HRMS (ESI) calcd. for C27H27O2N2S (M + H+) 443.1788. Found 443.1780.  

HPLC (IA column, 85:15 n-Hex/i-PrOH, 30 C, 1.0 mL/min): tR 8.10 min (minor) and 

11.90 min (major). 



267 
 

Synthesis of (R)-4-Methyl-N-(1-(2-((propylamino)methyl)phenyl)naphthalen-

2-yl)benzenesulfonamide. 34Ba 

 

Following the general procedure from 32B and n-propylamine 43a, after 72 h and 

further purification by flash chromatography (3:1 n-hexane/EtOAc) afforded 34Ba (35.1 

mg, 79%) as a light-yellow amorphous solid.  

[]D
20 −86.9 (c 0.39, CHCl3) for 98% ee.  

1H-NMR (400 MHz, CDCl3) δ 7.95 (d, J = 8.8 Hz, 1H), 7.87 (d, J = 8.9 Hz, 1H), 7.84 (d, 

J = 8.1 Hz, 1H), 7.39 (t, J = 7.5 Hz, 1H), 7.35 – 7.29 (m, 2H), 7.25 – 7.19 (m, 3H), 7.03 – 

6.91 (m, 4H), 6.23 (d, J = 7.6 Hz, 1H), 3.57 (d, J = 11.6 Hz, 1H), 3.22 (d, J = 11.6 Hz, 1H), 

2.63 (ddd, J = 11.5, 8.4, 6.3 Hz, 1H), 2.49 (ddd, J = 11.5, 8.7, 6.5 Hz, 1H), 2.34 (s, 3H), 

1.61 (dp, J = 14.1, 6.9 Hz, 2H), 0.93 (t, J = 7.4 Hz, 3H).  

13C-NMR (100 MHz, CDCl3) δ 142.1, 138.2, 137.7, 136.0, 133.5, 133.1, 132.5, 131.9, 

131.8, 129.4, 129.2, 128.7, 127.9, 127.8, 127.1, 126.7, 126.3, 126.1, 125.9, 125.3, 52.3, 

51.2, 22.3, 21.5, 11.8.  

HRMS (ESI) calcd. for C27H29O2N2S (M + H+) 445.1944. Found 445.1938.  

HPLC (IA column, 85:15 n-Hex/i-PrOH, 30 C, 1.0 mL/min): tR 8.62 min (minor) and 

12.76 min (major). 

Synthesis of (R)-N-(1-(2-((Butylamino)methyl)phenyl)naphthalen-2-yl)-4-

methylbenzenesulfonamide. 34Bb 
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Following the general procedure from 32B and n-butylamine 43b, after 72 h and 

further purification by flash chromatography (3:1 n-hexane/EtOAc) afforded 34Bb (37.9 

mg, 98%) as a light-yellow amorphous solid. 

[]D
20 −62.5 (c 0.38, CHCl3) for 98% ee.  

1H-NMR (400 MHz, CDCl3) δ 7.92 (d, J = 8.8 Hz, 1H), 7.86 (d, J = 9.3 Hz, 1H), 7.84 (d, 

J = 7.4 Hz, 1H), 7.43 (d, J = 7.2 Hz, 1H), 7.39 (ddd, J = 8.3, 6.9, 1.3 Hz, 1H), 7.35 (td, J = 

7.5, 1.4 Hz, 1H), 7.29 – 7.21 (m, 3H), 7.03 – 6.96 (m, 4H), 6.30 (dd, J = 7.7, 1.3 Hz, 1H), 

3.58 (d, J = 11.8 Hz, 1H), 3.24 (d, J = 11.8 Hz, 1H), 2.65 (ddd, J = 11.6, 8.5, 6.6 Hz, 1H), 

2.50 (ddd, J = 11.7, 8.6, 6.5 Hz, 1H), 2.35 (s, 3H), 1.63 – 1.47 (m, 2H), 1.31 (dt, J = 14.9, 

7.5 Hz, 3H), 0.90 (t, J = 7.3 Hz, 3H).  

13C-NMR (100 MHz, CDCl3) δ 142.3, 138.2, 136.9, 136.1, 133.4, 133.3, 131.8, 131.8, 

129.6, 129.3, 128.8, 128.1, 127.9, 127.4, 126.7, 126.2, 126.2, 125.3, 51.8, 48.8, 30.7, 21.5, 

20.4, 13.9.  

HRMS (ESI) calcd. for C27H31O2N2S (M + H+) 459.2101. Found 459.2093.  

HPLC (IA column, 85:15 n-Hex/i-PrOH, 30 C, 1.0 mL/min): tR 8.52 min (minor) and 

12.51 min (major). 

Synthesis of (R)-N-(1-(2-((Cyclohexylamino)methyl)phenyl)naphthalen-2-yl)-

4-methylbenzenesulfonamide. 34Bc 

 

Following the general procedure from 32B and cyclohexylamine 43c, after 72 h 

and further purification by flash chromatography (3:1 n-hexane/EtOAc) afforded 34Bc 

(44.1 mg, 91%) as a light-yellow amorphous solid.  

[]D
20 −59.0 (c 0.69, CHCl3) for 99% ee.  
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1H-NMR (400 MHz, CDCl3) δ 7.95 (d, J = 8.8 Hz, 1H), 7.87 (d, J = 9.0 Hz, 1H), 7.84 (d, 

J = 8.1 Hz, 1H), 7.45 – 7.28 (m, 3H), 7.25 (d, J = 6.8Hz, 1H), 7.22 (d, J = 7.9 Hz, 2H), 

7.01 (d, J = 8.5 Hz, 1H), 6.98 (d, J = 7.9 Hz, 2H), 6.94 (d, J = 7.3 Hz, 1H), 6.24 (d, J = 7.6 

Hz, 1H), 3.60 (d, J = 11.2 Hz, 1H), 3.22 (d, J = 11.2 Hz, 1H), 2.40 (t, J = 10.5 Hz, 1H), 

2.34 (s, 3H), 1.92 – 1.80 (m, 2H), 1.78 – 1.64 (m, 2H), 1.59 (s, 1H), 1.25 – 1.05 (m, 5H).  

13C-NMR (100 MHz, CDCl3) δ 142.1, 138.3, 137.7, 136.1, 133.4, 133.2, 132.3, 131.9, 

131.7, 129.4, 129.2, 128.7, 128.0, 127.9, 127.2, 126.7, 126.3, 126.1, 125.9, 125.3, 56.9, 

49.1, 32.9, 31.6, 25.8, 25.0, 25.0, 21.5. 

HRMS (ESI) calcd. for C30H33O2N2S (M + H+) 485.2257. Found 485.2251.  

HPLC (IA column, 85:15 n-Hex/i-PrOH, 30 C, 1.0 mL/min): tR 7.85 min (minor) and 

15.43 min (major). 

Synthesis of (R)-N-(1-(2-(((Cyclohexylmethyl)amino)methyl)phenyl)naphthalen-2-

yl)-4-methylbenzenesulfonamide. 34Bf 

 

Following the general procedure from 32B and cyclohexanemethylamine 43f, after 

72 h and further purification by flash chromatography (3:1 n-hexane/EtOAc) afforded 34Bf 

(39.9 mg, 90%) as a light-yellow amorphous solid.  

[]D
20 −54.1 (c 0.38, CHCl3) for 98% ee.  

1H-NMR (400 MHz, CDCl3) δ 7.96 (d, J = 8.9 Hz, 1H), 7.90 (d, J = 9.0 Hz, 1H), 7.87 (d, 

J = 8.0 Hz, 1H), 7.45 – 7.34 (m, 3H), 7.32 – 7.27 (m, 2H), 7.01 (ddd, J = 14.8, 9.0, 5.9 Hz, 

4H), 6.29 (d, J = 7.6 Hz, 1H), 3.56 (d, J = 11.6 Hz, 1H), 3.20 (d, J = 11.6 Hz, 1H), 2.48 

(dd, J = 11.9, 6.7 Hz, 1H), 2.39 (dd, J = 11.9, 6.7 Hz, 1H), 2.38 (s, 3H), 1.82 – 1.56 (m, 

6H), 1.39 – 1.20 (m, 3H), 1.02 – 0.84 (m, 2H).  
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13C-NMR (100 MHz, CDCl3) δ 142.2, 138.1, 137.7, 135.9, 133.4, 133.0, 132.3, 131.9, 

131.7, 129.5, 129.3, 128.7, 128.0, 127.9, 127.2, 126.8, 126.3, 126.2, 125.6, 125.4, 56.0, 

52.3, 36.7, 31.4, 31.2, 26.6, 25.9, 21.5.  

HRMS (ESI) calcd. for C31H35O2N2S (M + H+) 499.2414. Found 499.2408.  

HPLC (IA column, 85:15 n-Hex/i-PrOH, 30 C, 1.0 mL/min): tR 7.91 min (minor) and 8.75 

min (major). 

Synthesis of (R)-N-(1-(2-(((2-(1,3-Dioxolan-2-

yl)ethyl)amino)methyl)phenyl)naphthalen-2-yl)-4-methylbenzenesulfonamide. 34Bg 

 

Following the general procedure from 32B and 2-(1,3-dioxolan-2-yl)ethan-1-

amine 43g, after 72 h and further purification by flash chromatography (3:1 n-

hexane/EtOAc) afforded 34Bg (28.6 mg, 57%) as a light-yellow amorphous solid.  

[]D
20 −44.5 (c 0.49, CHCl3) for 98% ee.  

1H-NMR (400 MHz, CDCl3) δ 7.93 (d, J = 8.8 Hz, 1H), 7.86 (d, J = 9.3 Hz, 1H), 7.83 (d, 

J = 7.8 Hz, 1H), 7.43 – 7.34 (m, 2H), 7.33 (t, J = 7.3 Hz, 1H), 7.23 (d, J = 7.6 Hz, 3H), 

6.98 (d, J = 8.3 Hz, 3H), 6.94 (d, J = 7.4 Hz, 1H), 6.25 (d, J = 7.6 Hz, 1H), 4.97 (t, J = 4.5 

Hz, 1H), 4.05 – 3.92 (m, 2H), 3.91 – 3.80 (m, 2H), 3.59 (d, J = 11.7 Hz, 1H), 3.22 (d, J = 

11.6 Hz, 1H), 2.81 (dt, J = 12.5, 6.5 Hz, 1H), 2.68 (dt, J = 12.3, 6.5 Hz, 1H), 2.34 (s, 3H), 

2.04 – 1.95 (m, 2H).  

13C-NMR (100 MHz, CDCl3) δ 142.3, 138.3, 137.4, 136.0, 133.5, 133.1, 132.2, 132.0, 

131.9, 129.6, 129.3, 128.9, 128.0, 127.9, 127.3, 126.8, 126.4, 126.2, 125.8, 125.4, 103.8, 

65.0, 64.9, 52.1, 44.1, 32.3, 21.6. 

HRMS (ESI) calcd. for C29H31O4N2S (M + H+) 503.1999. Found 503.1991.  
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HPLC (IA column, 85:15 n-Hex/i-PrOH, 30 C, 1.0 mL/min): tR 14.32 min (minor) and 

16.18 min (major). 

Synthesis of (R)-N-(1-(2-((Allylamino)methyl)phenyl)naphthalen-2-yl)-4-

methylbenzenesulfonamide. 34Bh 

 

Following the general procedure from 32B and freshly distilled allylamine 43h, 

after 72 h and further purification by flash chromatography (3:1 n-hexane/EtOAc) afforded 

34Bh (10.2 mg, 29%) as a light-yellow amorphous solid.  

[]D
20 −48.2 (c 0.3, CHCl3) for 99% ee. 

HRMS (ESI) calcd. for C27H27O2N2S (M + H+) 443.1788. Found 443.1781.  

HPLC (IA column, 85:15 n-Hex/i-PrOH, 30 C, 1.0 mL/min): tR 8.26 min (minor) and 

10.06 min (major). 

Synthesis of (R)-4-Methyl-N-(6-methyl-2'-((propylamino)methyl)-[1,1'-

biphenyl]-2-yl)benzenesulfonamide. 34Ca 

 

Following the general procedure from 32C and propylamine 43a, after 72 h and 

further purification by flash chromatography (3:1 n-hexane/EtOAc) afforded 34Ca (24.9 

mg, 61%) as a light-yellow amorphous solid.  

[]20
D −7.2 (c 0.14, CHCl3) for 96% ee.  
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1H-NMR (400 MHz, CDCl3) δ 7.60 – 7.53 (m, 1H), 7.38 – 7.22 (m, 5H), 7.08 (t, J = 7.5 

Hz, 3H), 6.98 (td, J = 7.5, 1.4 Hz, 1H), 6.27 (dd, J = 7.6, 1.3 Hz, 1H), 3.59 (d, J = 11.7 Hz, 

1H), 3.27 (d, J = 11.7 Hz, 1H), 2.67 (ddd, J = 11.5, 8.5, 6.4 Hz, 1H), 2.52 (ddd, J = 11.5, 

8.6, 6.4 Hz, 1H), 2.41 (s, 3H), 1.83 (s, 3H), 1.69 – 1.57 (m, 2H), 0.95 (t, J = 7.4 Hz, 3H).  

13C-NMR (100 MHz, CDCl3) δ 142.2, 138.3, 137.3, 136.4, 136.0, 135.3, 130.6, 129.3, 

129.2, 128.1, 127.7, 127.6, 127.5, 126.8, 124.0, 51.7, 51.1, 22.2, 21.5, 20.9, 11.7.  

HRMS (ESI) calcd. for C24H29O2N2S (M + H+) 409.1944. Found 409.1938.  

HPLC (IA column, 85:15 n-Hex/i-PrOH, 30 C, 1.0 mL/min): tR 8.69 min (minor) and 

10.73 min (major). 

Synthesis of (R)-N-(2'-(((Cyclohexylmethyl)amino)methyl)-6'-methyl-[1,1'-

biphenyl]-2-yl)-4-methylbenzenesulfonamide. 34Df 

 

Following the general procedure from 32D and cyclohexylmethanamine 43f, after 

72 h and further purification by flash chromatography (3:1 n-hexane/EtOAc) afforded 34Df 

(26.8 mg, 58%) as a light-yellow amorphous solid. 

[]D
20 +61.4 (c 0.17, CHCl3) for 95% ee.  

1H-NMR (400 MHz, CDCl3) δ 7.71 (d, J = 8.1 Hz, 1H), 7.33 (dd, J = 8.1, 1.6 Hz, 3H), 7.23 

(t, J = 7.3 Hz, 1H), 7.14 (d, J = 7.5 Hz, 2H), 7.02 (t, J = 7.5 Hz, 3H), 6.96 – 6.91 (m, 1H), 

3.50 (d, J = 1.6 Hz, 1H), 3.22 (d, J = 1.6 Hz, 1H), 2.47 (dd, J = 12.0, 6.8 Hz, 1H), 2.40 (dd, 

J = 12.3, 6.5 Hz, 1H), 2.35 (s, 3H), 1.81 – 1.65 (m, 5H), 1.65 – 1.55 (m, 1H), 1.37 (s, 3H), 

1.32 – 1.15 (m, 3H), 0.98 – 0.82 (m, 2H).  

13C-NMR (100 MHz, CDCl3) δ 142.3, 138.9, 138.1, 138.0, 137.2, 135.4, 135.2, 130.9, 

129.7, 129.2, 128.4, 127.9, 126.9, 126.7, 126.5, 125.4, 56.2, 52.7, 36.8, 31.9, 31.3, 26.6, 

25.9, 21.4, 20.7.  

HRMS (ESI) calcd. for C28H35O2N2S (M + H+) 463.2414. Found 463.2407. 
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HPLC (IA column, 85:15 n-Hex/i-PrOH, 30 C, 1.0 mL/min): tR 7.28 min (minor) and 8.75 

min (major). 

Synthesis of (R)-4-Methyl-N-(2-(2-(pyrrolidin-1-ylmethyl)naphthalen-1-

yl)phenyl)benzenesulfonamide. 34Ak 

 

Following the general procedure from 32A and pyrrolidine 43k, after 72 h and 

further purification by flash chromatography (3:1 n-hexane/EtOAc) afforded 34Ak (38.4 

mg, 84%) as a light-yellow amorphous solid. 

[]D
20 +192.6 (c 0.38, CHCl3) for 92% ee.  

1H-NMR (400 MHz, CDCl3) δ 7.92 (dd, J = 8.2, 1.3 Hz, 1H), 7.83 (d, J = 8.4 Hz, 1H), 7.77 

(d, J = 8.2 Hz, 1H), 7.54 – 7.41 (m, 2H), 7.37 (t, J = 7.3 Hz, 1H), 7.24 (td, J = 7.5, 1.3 Hz, 

1H), 7.00 (dd, J = 7.6, 1.7 Hz, 2H), 6.93 (d, J = 7.8 Hz, 2H), 6.65 (d, J = 8.6 Hz, 1H), 6.42 

(d, J = 7.7 Hz, 2H), 3.90 (d, J = 11.9 Hz, 1H), 3.32 (d, J = 11.9 Hz, 1H), 2.86 – 2.75 (m, 

2H), 2.75 – 2.64 (m, 2H), 2.06 (s, 3H), 2.06 – 1.97 (m, 4H).  

13C-NMR (100 MHz, CDCl3) δ 141.4, 138.3, 136.9, 136.5, 134.5, 133.6, 133.0, 132.5, 

132.3, 128.9, 128.4, 128.1, 127.8, 127.6, 127.2, 127.0, 126.1, 125.8, 125.1, 59.0, 53.5, 23.2, 

21.3.  

HRMS (ESI) calcd. for C28H29O2N2S (M + H+) 457.1944. Found 457.1944. 

HPLC (IA column, 85:15 n-Hex/i-PrOH, 30 C, 1.0 mL/min): tR 7.22 min (minor) and 8.12 

min (major). 
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Synthesis of N,N-Dimethyl-2-(2-((propylamino)methyl)naphthalen-1-

yl)aniline. 34Ea 

 

Following the general procedure from 32E and n-propylamine 43a, after 72 h and 

further purification by flash chromatography (3:1 n-hexane/EtOAc) afforded 34Ea (29.0 

mg, 91%) as a light-yellow amorphous solid. 

1H-NMR (400 MHz, CDCl3) δ 7.86 (d, J = 8.2 Hz, 2H), 7.68 (d, J = 8.4 Hz, 1H), 7.57 (d, 

J = 8.5 Hz, 1H), 7.49 – 7.33 (m, 3H), 7.14 (d, J = 8.2 Hz, 1H), 7.09 – 7.04 (m, 2H), 3.71 

(d, J = 12.8 Hz, 1H), 3.63 (d, J = 12.9 Hz, 1H), 3.24 (br s, 1H), 2.49 (q, J = 7.1 Hz, 2H), 

2.42 (s, 6H), 1.46 (h, J = 7.3 Hz, 2H), 0.85 (t, J = 7.3 Hz, 3H). 

13C-NMR (100 MHz, CDCl3) δ 152.0, 137.5, 134.8, 133.3, 133.0, 132.9, 131.0, 128.7, 

128.0, 127.9, 127.6, 126.6, 126.0, 125.4, 121.4, 117.8, 52.2, 51., 43.3, 22.9, 11.8. 

HRMS (ESI) calcd. for C22H26N2 (M + H+) 318.2096. Found 318.2099. 

IV.4.4. General procedure for the reduction of carbonyls via asymmetric 

transfer hydrogenation. 

To a flame-dried Schlenk tube with aldehyde 32A,E or ketone 32F (0.1 mmol) 

anhydrous 1,4-dioxane (1.0 mL), was added at room temperature. Then, [RuCl(p-

cymene)(S,S)-Ts-DPEN] (5 mol%) followed by 1,4-dioxane (0.5 mL) and 5:2 

HCO2H/Et3N (40 L) azeotropic mixture were added, and reaction mixture was stirred for 

36h. After that time, reaction brine was added and extracted with EtOAc, collected organic 

phases were dried over Na2SO4 and solvent was removed under reduced pressure. The 

residue was purified by column chromatography on silica gel with n-hex/EtOAc or 

CH2Cl2/EtOAc mixtures affording the resulting alcohols. 

Note. Racemic alcohols were obtained by reduction of the aldehyde 32A,E (1.0 

eq.) in MeOH with NaBH4 for 20 min. Quenching with water, and EtOAc extraction 
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afforded the racemic mixture of alcohols that were separated from reaction crude by 

preparative TLC prior to HPLC analysis. 

Synthesis of (R)-N-(2-(2-(Hydroxymethyl)naphthalen-1-yl)phenyl)-4-

methylbenzenesulfonamide. 42A 

 

Following the general procedure from 32A, purification by flash chromatography 

(3:1 n-hexane/EtOAc) afforded 42A (39.7 mg, 98%) as a light-yellow amorphous solid.  

[]D
20 −23.4 (c 0.40, CHCl3) for 40% ee.  

1H-NMR (400 MHz, CDCl3) δ 7.95 (d, J = 8.4 Hz, 1H), 7.88 (d, J = 8.0 Hz, 1H), 7.82 (d, 

J = 8.2 Hz, 1H), 7.69 (d, J = 8.5 Hz, 1H), 7.47 (q, J = 8.2 Hz, 2H), 7.36 (d, J = 7.8 Hz, 2H), 

7.24 (t, J = 6.8 Hz, 1H), 7.17 (t, J = 7.2 Hz, 1H), 7.09 (d, J = 7.3 Hz, 1H), 7.01 (d, J = 7.8 

Hz, 2H), 6.88 (d, J = 8.4 Hz, 1H), 6.81 (s, 1H), 4.39 (d, J = 12.4 Hz, 1H), 4.27 (d, J = 12.3 

Hz, 1H), 2.36 (s, 3H), 2.07 (br s, 1H). 

13C-NMR (100 MHz, CDCl3) δ 143.6, 136.8, 136.4, 135.1, 133.1, 132.2, 131.5, 129.5, 

129.4, 129.4, 129.2, 128.1, 127.0, 126.7, 126.4, 126.0, 125.5, 124.9, 121.4, 63.2, 21.6.  

HRMS (ESI) calcd. for C24H22O3NS (M + H+) 404.1315. Found 404.1313. 

HPLC (IA column, 85:15 n-Hex/i-PrOH, 30 C, 1.0 mL/min): tR 12.20 min (major) and 

16.48 min (minor). 

Synthesis of (1-(2-(Dimethylamino)phenyl)naphthalen-2-yl)methanol. 42E 
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Following the general procedure from 32E, purification by flash chromatography 

(3:1 n-hexane/EtOAc) afforded 42E (21.9 mg, 79%) as a light-yellow amorphous solid.  

1H-NMR (400 MHz, CDCl3) δ 7.91 (t, J = 7.5 Hz, 2H), 7.66 (dd, J = 8.4, 1.9 Hz, 1H), 7.58 

(d, J = 8.4 Hz, 1H), 7.54 – 7.36 (m, 3H), 7.27 – 7.22 (m, 1H), 7.17 (ddd, J = 7.2, 6.0, 1.3 

Hz, 1H), 7.11 (dt, J = 7.5, 2.0 Hz, 1H), 5.32 (br s, 1H), 4.39 (dd, J = 11.1, 1.9 Hz, 1H), 4.33 

(dd, J = 11.0, 1.9 Hz, 1H), 2.42 (s, 6H).  

13C-NMR (100 MHz, CDCl3) δ 151.6, 136.6, 133.7, 133.2, 133.0, 132.1, 128.8, 128.4, 

128.4, 128.2, 126.5, 126.3, 125.7, 122.7, 118.2, 65.3, 43.5.  

HRMS (ESI) calcd. for C19H20ON (M + H+) 278.1539. Found 278.1540. 

Synthesis of (+)-N-(2-(2-(1-Hydroxyethyl)naphthalen-1-yl)phenyl)-4-

methylbenzenesulfonamide. 42F 

 

Following the general procedure from 32E, purification by flash chromatography 

(3:1 n-hexane/EtOAc) afforded 42E (21.9 mg, 79%) as a light-yellow amorphous solid.  

[]D
20 +64.8 (c 0.36, CHCl3) for 83% ee.  

1H-NMR (400 MHz, CDCl3) δ 8.03 (d, J = 8.7 Hz, 1H), 7.92 (d, J = 8.2 Hz, 1H), 7.83 (t, J 

= 8.1 Hz, 2H), 7.55 – 7.46 (m, 3H), 7.44 (t, J = 7.7 Hz, 1H), 7.24 – 7.10 (m, 5H), 6.80 (d, 

J = 8.4 Hz, 1H), 6.08 (s, 1H), 4.72 (d, J = 6.5 Hz, 1H), 2.44 (s, 3H), 1.71 (s, 1H), 1.44 (d, 

J = 6.3 Hz, 3H). 

13C-NMR (100 MHz, CDCl3) δ 144.0, 142.1, 136.1, 135.8, 133.1, 131.8, 131.0, 130.2, 

130.0, 129.6, 129.3, 128.2, 127.4, 127.0, 126.9, 126.1, 125.4, 123.9, 123.7, 117.4, 67.1, 

24.2, 21.6. 

HRMS (ESI) calcd. for C25H24O3NS (M + H+) 418.1471. Found 418.1473. 
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APPENDIX I: Abbreviations  

AcO Acetate 

AcOEt Ethyl Acetate 

Alk Alkyl 

Aq Aqueous 

Ar Aryl 

Bn Benzyl 

Boc tert-Butoxycarbonyl 

B2pin2 Bis(pinacolato)diboron 

Bu Butyl 

tBu tert-Butyl 

nBuLi n-Butyl lithium 

Cat Catalyst 

Cat* Chiral catalyst 

cod 1,5-Cyclooctadiene  

CPA Chiral Phosphoric Acid 

m-CPBA meta-Chloroperbenzoic acid 

dba Dibenzylidenacetone 

DBU 1,8-Diazabicyclo[5.4.0]undec-7-ene 

DCE 1,2-Dichloroethane 

DCM Dichloromethane 

DIPEA N,N-Diisopropylethylamine 

DKR Dynamic Kinetic Resolution 
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DMAP 4-Dimethylaminopyridine 

DME 1,2-Dimethoxyethane 

DMF N,N-Dimethylformamide 

DMSO Dimethylsulphoxide 

DPPA Diphenyl phosphoryl azide 

dppp 1,3-Bis(diphenylphosphino)propane 

dppf 1,1'-Bis(diphenylphosphino)ferrocene 

DFT Density Functional Theory 

DYKAT Dynamic Kinetic Asymmetric Transformation 

ent Enantiomer 

eq. Equivalents 

Et Ethyl 

FG Functional Group 

HBpin Pinacolborane 

n-Hex n-Hexane 

HPLC High Performance Liquid Chromatography 

HRMS High Resolution Mass Spectrometry 

iPr iso-Propyl 

IRC Intrinsic Reaction Coordinate 

L Ligand 

L* Chiral ligand 

LA Lewis Acid 

LB Lewis Base 
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M Metal 

Me Methyl 

MeCN Acetonitrile 

MMPP Magnesium monoperoxyphthalate 

M.p. Melting point 

MS Molecular sieve 

Ms Mesyl 

n.d. Not determined 

n.r. No reaction 

Nf Nonaflate 

NHC N-Heterocyclic carbene 

NMP N-Methylpyrrolidone 

NMR Nuclear Magnetic Resonance 

Np Naphthyl 

Nu Nucleophile 

OtBu tert-Butoxide 

Ph Phenyl 

PMHS Polymethylhydrosiloxane  

ppm Parts per million 

r.t. Room temperature 

R General substituent 

Tf Triflate 

TFA Trifluoroacetic acid 
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TLC Thin Layer Chromatography 

THF Tetrahydrofuran 

Ts Tosyl 

X Halogen 

Xyl Xylyl 

 Chemical shift 
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APPENDIX II: General Methods 

NMR Spectroscopy 

1H-NMR were recorded using a Bruker Advance DRX-500, and Bruker Advance 

DRX-400 spectrometers at 500 and 400 MHz respectively. 13C-NMR spectra were 

recorded using Bruker Advance DRX-400 spectrometer at 100 MHz. Solutions in 

commercial deuterated solvents were used to prepare samples, CDCl3, CD2Cl2 or 

CD3OD. Residual solvent peaks were used as an internal reference for 1H-NMR spectra 

(CDCl3 δ 7.26 ppm, CD2Cl2 δ 5.32 ppm, or CD3OD δ 3.31 ppm) and 13C-NMR spectra 

(CDCl3 δ 77.2 ppm, CD2Cl2 δ 53.8 ppm, or CD3OD, 9.0 ppm). Coupling constants (J) are 

quoted to the nearest 0.1 Hz. The following abbreviations (or combinations thereof) were 

used to describe 1H-NMR multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, 

hept = heptet, m = multiplet, br = broad. 

Mass Spectrometry 

High Resolution Mass Spectrometry (HRMS) measurements were performed 

either by Kratos MS-80 RFA or Micromass AutoSpecQ (ESI) by General Services from 

University of Seville (CITIUS). In HRMS characterization, m/z found value for molecular 

peak was compared with that calculated from more abundant isotopes.  

Chromatography 

Analytical thin layer chromatography (TLC) was employed to monitor reactions 

progress. This technique was performed with commercial aluminium plates coated with 

0.25 mm silica gel (Merck, silica gel 60 F254). Compounds were detected under UV-light 

at 254 nm and by dipping the plates in different home-made stains like mostain (20 g of 

ammonium molybdate tetrahydrate, 0.4 g of Ce(SO4)2 and 400 mL of 10% aqueous 

H2SO4), phosphomolybdic (5% solution of phosphomolybdic in EtOH), permanganate (10 

g KMnO4, 66 g K2CO3, 17 mL AcOH, 1 L H2O), or ninhydrin (0.1% solution of ninhydrin 

in EtOH).  
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Flash chromatography purifications were performed with Merck silica gel 60 

(0.040-0.063 μm grade), and eluting by gravity or using compressed air pressure. As 

eluents, solvent mixtures are indicated for each case.  

Melting Points 

Melting points were measured on a Gallenkamp MFB-595 apparatus, and are 

uncorrected. 

Optical Rotations 

Optical rotations were measured on a Perkin-Elmer 341 MC using a 1.0 cm cell 

with a Na (λ= 589 nm) yellow light. 

X-ray Analysis 

X-ray diffraction analyses were performed by Dr Javier Iglesias Sigüenza at the X-

ray services from Centro de Investigación, Tecnología e Innovación de la Universidad de 

Sevilla (CITIUS), equipped with a BRUKER APEX II diffractometer. This equipment has 

the possibility of employ three different irradiation lamps: copper, tungsten, or silver. 

Furthermore, it includes a four circles goniometer with Kappa geometry, and a high 

sensitivity CCD detector. It is also possible to cool the samples thanks to a liquid nitrogen 

cooling system Cryostream 700 Plus from Oxford, which allows the execution of 

experiments from 80 to 500 K, with a 0.1 K stability. 

Experimental procedures, reagents and glassware 

Commercially available chemicals were used as purchased, or where specified, 

purified by standard techniques. Solvent compositions are given in (v/v). All reactions were 

carried out under an atmosphere of nitrogen in flame-dried glassware with magnetic 

stirring, unless otherwise indicated. MeCN, THF, DCM, and DMF were purified by an 

Innovative Technology Solvent Delivery System. All other solvents were used as 

purchased. 
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Anhydrous solvents 

Anhydrous toluene and DCM were directly used after collection from PureSolv 

MD3 Solvent Purification System. THF was dried over Na with benzophenone as indicator, 

and distilled just before every single use. 1,4-Dioxane was dried over CaH and distilled. 

 


