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Facultad de Matemáticas, Universidad de Sevilla,

c/ Tarfia s/n, 41012-Sevilla, Spain

June 4, 2019

Abstract

The main aim of this letter is to use the strong compact strong trajectory attractor to
construct the strong trajectory statistical solutions for two-dimensional dissipative Euler
equations. Further, it is established that the constructed trajectory statistical solutions
possess an invariant property and satisfy a Liouville type equation.
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1 Introduction

In this letter, we study the so-called strong trajectory statistical solutions for the following
two-dimensional (2D) damped Euler equations

∂u

∂t
+ (u · ∇)u+Ru+∇p = f,

∇ · u = 0, u|t=0 = u0,

(1.1)

in the domain Ω = [−π, π]2 with periodic boundary conditions and with the external force
f ∈ W 1,∞(Ω). The equations in (1.1) describe a 2D fluid moving on a rough surface and are
used in geophysical models for large scale processes in atmosphere and ocean. The term Ru
parameterizes the main dissipation occurring in the planetary boundary layer. One can see [18],
and also see [5] for the alternative source of the damped Euler equations.

Equations (1.1) and related ones are studied in a significan number of references, including
analytic properties, stability analysis, vanishing viscosity limit and various attractors, see [2,
7, 12, 13, 20]. Especially, Chepyzhov, Vishik and Zelik in [7] proved the existence of a strong
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compact strong trajectory attractor for equations (1.1). The motivation of the current article
is to construct the strong trajectory statistical solutions for equations (1.1).

There are two prevalent notions of statistical solutions. One is the so-called Foias-Prodi
statistical solution introduced by Foias and Prodi in [8] and the other one is the so-called
Vishik-Furshikov statistical solution given by Vishik and Furshikov in [19]. The Foias-Prodi
statistical solutions are a family of Borel measures parametrized by the time variable and defined
on the phase space of the Navier-Stokes equations, representing the probability distribution of
the velocity field of the flow at each time. The Vishik-Furshikov statistical solutions are a
single Borel measure on the space of trajectories, representing the probability distribution of
the space-time velocity field.

The invariant measures for dissipative systems were studied in a series of references (see,
for instance, [6, 11, 14–17]). More precisely,  Lukaszewicz, Real and Robinson [17] used the
notion of Generalized Banach limit to construct the invariant measures for general continuous
dynamical systems on metric spaces. Later, Chekroun and Glatt-Holtz [6] improved the results
of [17] to construct invariant measures for a broad class of dissipative autonomous dynamical
systems. Recently,  Lukaszewicz and Robinson [15] extended the result of [6] to construct
invariant measures for dissipative non-autonomous dynamical systems. We recognize that both
of the constructions of the invariant measures in [6] and [15] require that the addressed system
is globally well-posed.

It is an interesting problem to construct invariant measures and trajectory statistical solu-
tions for evolution equations which possess global weak solutions but without a known result
of global uniqueness, say, the three-dimensional (3D) incompressible Navier-Stokes equations.
In [3], Bronzi, Mondaini and Rosa proved a general framework for the theory of trajectory
statistical solutions for evolution equations with similar properties to those of the 3D Navier-
Stokes equations. In [4], Bronzi, Mondaini and Rosa established an abstract framework for
the theory of statistical solutions for general evolution equations. We can find that the proofs
in [3, 4] concerning the existence of trajectory statistical solutions for the initial value problem
is based on the Krein-Milman approximation of the initial measure by convex combinations of
Dirac deltas, as done in [9, 10]. Very recently, Zhao and Caraballo used the weak trajectory
attractor to construct the (weak) trajectory statistical solutions for the 3D globally modified
Navier-Stokes equations in [21]. In the present letter, we will use the strong compact strong
trajectory attractor to construct strong trajectory statistical solutions for the damped Euler
equations (1.1).

2 Strong trajectory statistical solutions and Liouville type
equation

We denote by Wm,p(Ω) = Wm,p, 1 6 p 6 +∞, the Sobolev space of space-periodic
functions whose distributional derivatives up to orderm belong to Lp(Ω) = Lp, andHm = Wm,2

for short. We also set V =
{
ϕ = (ϕ1, ϕ2) ∈ (C∞0 (Ω))2|∇ ·ϕ = 0

}
and denote Hm = closure of V

in (Hm)2. Especially, H = H0. The space L∞loc(R+;H1) will be endowed with local weak-star

topology Θw,loc
+ and strong topology Θs,loc

+ . By definition, a sequence un(t) −→ u(t)(n→∞) in

the topology Θw,loc
+ (respectively Θs,loc

+ ), if , for every T > 0, un(t) ⇀ u(t)(n→∞) weakly-star
in L∞([0, T ];H1), and respectively, un(t) −→ u(t)(n→∞) strongly in L∞([0, T ];H1).

We set Fb+ := L∞(R+;H1) and let K+ ⊂ Fb+ be the set of all solutions of (1.1) (see Definition
2.2 of [7]), and T (t) : K+ 7−→ K+, t > 0 the translation semigroup T (t)u(s) := u(t + s). For
the definitions of strong compact strong trajectory attractor, we refer to [7].

Lemma 2.1. ( [7]) Let f ∈W 1,∞(Ω) and R > 0.

(1) For any given u0 ∈ H1, there exists at least one solution u of problem (1.1) .

(2) The damped Euler equations (1.1) possess a strong compact strong trajectory attractor
Atr ⊂ Fb+.
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Notice that Fb+ is a Banach space. We endow the trajectory space K+ ⊂ Fb+ with the
metric dK+

(u, v) = sup
t∈R+

‖u(t)− v(t)‖, u, v ∈ K+. For a set P ⊂ K+ and some ε > 0, we denote

O(P, ε) = {v ∈ K+

∣∣ dK+
(v,P) = inf

w∈P
dK+

(v, w) < ε}. In the sequel, we use C(K+) to denote

the set of continuous functions on K+.
We recall now two lemmas, which were proved in our recent article [21], since they play a

crucial role to prove the existence of strong trajectory statistical solutions.

Lemma 2.2. ( [21]) Let K be a compact subset of K+. Then, for every ψ ∈ C(K+), there exists
some ε > 0 such that sup

w∈O(K,ε)

|ψ(w)| < +∞.

Lemma 2.3. ( [21]) Let K be a compact subset of K+ and let ψ, φ ∈ C(K+) satisfy ψ(w) = φ(w)
for every w ∈ K. Then, for every ε > 0, there exists a δ = δ(ε) > 0 such that sup

w∈O(K,δ)

|ψ(w)−

φ(w)| < ε.

We now state the definition of strong trajectory statistical solutions for the damped Euler
equations (1.1).

Definition 2.1. A Borel probability measure ρ on the trajectory space K+ is said to be a strong
K+-trajectory statistical solution over R+ (or simply a strong trajectory statistical solution) for
the damped Euler equations (1.1) if

(1) ρ is tight for any B ∈ B(K+) (the collection of Borel sets of K+) in the sense that

ρ(B) = sup
{
ρ(E)

∣∣E ∈ B(K+) and E ⊂ B
}

;

(2) ρ is supported by a Borel subset (w.r.t. the topology Θs,loc
+ ) of K+.

To construct the strong trajectory statistical solutions, we need the definition of generalized
Banach limit (see [9,15]). Let B+ be the collection of all bounded real-valued functions on R+.
For any generalized Banach limit LIMt→+∞, the following useful property

|LIMt→+∞g(t)| 6 lim sup
t→+∞

|g(t)|, ∀ g(·) ∈ B+, (2.1)

is presented in [9, (1.38)] and in [6, (2.3)].
We now state and prove our main results. First, the existence of strong trajectory statistical

solutions for the damped Euler equations (1.1) reads as follows.

Theorem 2.1. Let f ∈ W 1,∞(Ω) and R > 0. Then the damped Euler equations (1.1) possess
at least one strong trajectory statistical solution which is supported by the strong compact strong
trajectory attractor Atr, where the existence of Atr is guaranteed by Lemma 2.1(2).

Proof. Let LIMt→+∞ be a given generalized Banach limit. Since K+ is nonempty, we can
pick some v ∈ K+. Consider some ψ ∈ C(K+). By Lemma 2.1(2), the translation semigroup
{T (t)}t>0 possesses a strong compact strong trajectory attractor Atr ⊂ K+. By the attracting
property of Atr we see that for every ε > 0, there exists a time tε > 0 such that

T (t)v ∈ O(Atr, ε), for every t > tε. (2.2)

By Lemma 2.2 we can choose ε > 0 such that

C1 = sup
w∈O(Atr,ε)

|ψ(w)| < +∞. (2.3)

Since T (t) maps Atr continuously into itself, we see that the function t 7−→ |ψ(T (t)v)| is
continuous on R+ and thus |ψ(T (t)v)| is bounded on the compact interval [0, tε]. Hence, we
can take tε as required in (2.2) for the picked ε, and see that

C2 = sup
t∈[0,tε]

|ψ(T (t)v)| < +∞. (2.4)
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It then follows from (2.3) and (2.4) that

1

t

∫ t

0

ψ(T (s)v)ds =
1

t

∫ tε

0

ψ(T (s)v)ds+
1

t

∫ t

tε

ψ(T (s)v)ds 6
C2tε
t

+
C1(t− tε)

t
< +∞,

which implies that the map defined by t 7−→ 1

t

∫ t

0

ψ(T (s)v)ds is bounded over R+. Therefore,

if ψ ∈ C(K+) is non-negative then

Lv(ψ) := LIMt→+∞
1

t

∫ t

0

ψ(T (s)v)ds (2.5)

is well defined as a positive linear functional on C(K+).
We next prove that the positive linear functional Lv(ψ) depends only on the values of ψ on

Atr. To this end, we shall prove that if ψ(w) = φ(w) for every w ∈ Atr then Lv(ψ) = Lv(φ).
Indeed, for any given ε > 0, we can choose, by Lemma 2.3 a corresponding δ > 0 such that

sup
w∈O(Atr,δ)

|ψ(w)− φ(w)| < ε. (2.6)

Let us now pick tδ > 0 such that T (t)v ∈ O(Atr, δ) for every t > tδ. Analogously to (2.4), we
see that Cδ := sup

t∈[0,tδ]
(|ψ(T (t)v)|+ |φ(T (t)v)|) < +∞. Combining (2.1), (2.4) and (2.6) yields

|Lv(ψ − φ)| =
∣∣∣LIMt→+∞

1

t

∫ t

0

(
ψ(T (s)v)− φ(T (s)v)

)
ds
∣∣∣ 6 lim sup

t→+∞

tδCδ
t

+ lim sup
t→+∞

(t− tδ)ε
t

6 ε.

Since ε > 0 is arbitrary, we obtain the desired result that the positive linear functional Lv(ψ)
depends only on the values of ψ on Atr.

Now we defineG(ψ) = Lv(ψ̃), where ψ̃ is a zero extension of ψ from C(Atr) to C(K+) given by
the Tietze theorem (see [9, Theorem A.7]). We can find that G(·) is a positive linear functional

on C(Atr). Notice that Atr ⊂ K+ is compact w.r.t. the topology Θs,loc
+ . Then, obviously

Atr is a locally compact topological space w.r.t. the topology Θs,loc
+ . By the Kakutani-Riesz

Representation Theorem (see [9, Theorem A.1]), we assert that there exists a unique positive,
finite, Borel measure ρv on Atr such that

G(ψ) =

∫
Atr

ψ(u)dρv(u). (2.7)

Taking ρv(E) = ρv(Atr ∩ E) for E ∈ B(K+), we extend ρv by zero to a Borel measure on K+.
Thus for every ψ ∈ C(K+), we have

G(ψ) = Lv(ψ) = LIMt→+∞
1

t

∫ t

0

ψ(T (s)v)ds =

∫
Atr

ψ(u)dρv(u) =

∫
K+

ψ(u)dρv(u), (2.8)

and obviously ρv(K+\Atr) = 0. Since K+ is contained in the Banach space Fb
+, K+ is obviously

a metrizable topological space, and thus every finite Borel measure in K+ is tight in the sense
of Definition 2.1(1) (see [1, Theorem 12.5]. To see that ρv is a Borel probability measure we
pick ψ ≡ 1 in (2.8). Therefore, by Definition 2.1, ρv is a strong trajectory statistical solution
for equations (1.1). The proof of Theorem 2.1 is completed.

We next establish that the trajectory statistical solution ρv is invariant under the action of
the translation semigroup {T (t)}t>0. Moreover, if we set µt = T (t)ρv defined by

T (t)ρv(E) = µt(E) = ρv(T (t)−1(E)) (2.9)

for every set E ⊆ K+ that is ρv-measurable, then we prove that µt satisfies a Liouville type
equation in Statistical Mechanics. To this end, we need the definition and property of the class
T of test functions on H (see [9, Chapter IV, Definition 1.2]). The definition of the class T of
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test functions onH are sufficient to ensure that if u(t) solves equations (1.1) in the distributional
sense, then

d

dt
Φ(u(t)) = 〈Φ′(u(t)), F (u(t))〉, ∀Φ ∈ T , (2.10)

where F (u(t)) := P (f − (u · ∇)u+Ru) and P : (L2)2 7→ H is the Leray projection operator.

Theorem 2.2. (1) Let ρv be the trajectory statistical solution proved in Theorem 2.1, then
ρv satisfies the following invariant property∫

K+

ψ(T (t)u)dρv(u) =

∫
K+

ψ(u)dρv(u) =

∫
Atr

ψ(u)dρv(u), ∀ t > 0, (2.11)

for every ψ ∈ C(K+).

(2) µt = T (t)ρv satisfies the following Liouville type equation in Statistical Mechanics

d

dt

∫
K+

Φ(u)dµt(u) =

∫
K+

〈Φ′(u), F (u)〉dµt(u), (2.12)

for all test functions Φ ∈ T .

Proof. We first prove that ρv satisfies (2.11). To this end, we fix t∗ > 0 and ψ ∈ C(K+). Since
the interval [0, t∗] is compact in R and t 7→ |ψ(T (t)u)| is continuous, we have, using the property
of generalized Banach limit (2.1),

LIMt→+∞
1

t

∫ t∗

0

ψ(T (s)u)ds = 0. (2.13)

At the same time, we use (2.3) and the property of generalized Banach limit (2.1) to deduce

LIMt→+∞
1

t

∫ t+t∗

t

ψ(T (s)u)ds = 0. (2.14)

Therefore, (2.13) and (2.14) imply∫
K+

ψ(T (t∗)u)dρv(u) = LIMt→+∞
1

t

∫ t

0

ψ(T (t∗)T (s)u)ds

=LIMt→+∞
1

t

∫ t+t∗

t

ψ(T (s)u)ds− LIMt→+∞
1

t

∫ t∗

0

ψ(T (s)u)ds+ LIMt→+∞
1

t

∫ t

0

ψ(T (s)u)ds

=LIMt→+∞
1

t

∫ t

0

ψ(T (s)u)ds =

∫
K+

ψ(u)dρv(u).

The invariant property of ρv under the action of {T (t)}t>0 is proved.

We next establish that µt = T (t)ρv, defined by (2.9), satisfies the Liouville type equation in
Statistical Mechanics. Indeed, since the mapping T (t) from K+ into itself is continuous and ρv
is a probability distribution on K+, it is not difficult to check that µt = T (t)ρv is a probability
distribution on K+. Now, for any Φ ∈ T , we have∫

K+

Φ(u)dµt(u) =

∫
K+

Φ(u)d(T (t)ρv)(u) =

∫
K+

Φ(T (t)u)dρv(u). (2.15)

Notice that the function t 7−→ Φ(T (t)u) is differentiable and (2.10) holds. We use the generalized
chain differentiation rule to differentiate (2.15) and obtain

d

dt

∫
K+

Φ(u)dµt(u) =
d

dt

∫
K+

Φ(u)d(T (t)ρv)(u) =
d

dt

∫
K+

Φ(T (t)u)dρv(u)

=

∫
K+

〈Φ′(u), F (u)〉dµt(u).

This proves (2.12). The proof of Theorem 2.2 is therefore completed.
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Remark 2.1. If statistical equilibrium has been reached by the system, then the statistical
informations do not change with time, that is Φ′(u(t)) = 0. We point out that equation (2.11)
describing the invariant property of the trajectory statistical solutions is a particular situation
of the Liouville type equation (2.12) in the case Φ′(u) = 0.

References

[1] C. D. Aliprentis, K. C. Border, Infinite Dimensional Analysis, A Hithhiker’s Guide, third
editon, Springer-Verlag, 2006.

[2] C.Bardos, E. S. Titi, Euler equations for incompressible ideal fluids, Russia Math. Sur-
veys, 62(2007), 409-451.

[3] A. Bronzi, C. F. Mondaini, R. Rosa, Trajectory statistical solutions for three-dimensional
Navier-Stokes-like systems, SIAM J. Math. Anal., 46(2014), 1893-1921.

[4] A. Bronzi, C. F. Mondaini, R. Rosa, Abstract framework for the theory of statistical
solutions, J. Differential Equations, 260(2016), 8428-8484.

[5] S. Brull, L. Pareschi, Dissipative hydrodynamic models for the diffusion of impurities in
a gas, Appl. Math. Lett., 19(2006), 516-521.

[6] M. Chekroun, N. E. Glatt-Holtz, Invariant measures for dissipative dynamical systems:
Abstract results and applications, Comm. Math. Phys., 316(2012), 723-761.

[7] V. V. Chepyzhov, M. I. Vishik, S. V. Zelik, Strong trajectory attractor for dissipative
Euler equations, J. Math. Pures Appl., 96(2011), 395-407.

[8] C. Foias, G. Prodi, Sur les solutions statistiques equations de Navier-Stokes, Ann. Math.
Pura Appl., 111(1976), 307-330.

[9] C. Foias, O. Manley, R. Rosa, R. Temam, Navier-Stokes Equations and Turbulence,
Cambridge University Press, Cambridge, 2001.

[10] C. Foias, R. Rosa, R. Temam, Properties of time-dependent statistical solutions of
the three-dimensional Navier-Stokes equations, Annales de L’Institut Fourier, 63(2013),
2515-2573.
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