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Abstract

In this paper we prove the existence of mild solutions for a first-order im-
pulsive semilinear stochastic differential inclusion with an infinite-dimensional
fractional Brownian motion. We consider the cases in which the right hand side
can be either convex or nonconvex-valued. The results are obtained by using
two different fixed point theorems for multivalued mappings, more precisely, the
technique is based on a multivalued version of Perov’s fixed point theorem and a
new version of a nonlinear alternative of Leray–Schauder’s fixed point theorem
in generalized Banach spaces.
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1 Introduction

The theory of stochastic differential and partial differential inclusions has become an
active area of investigation due to their applications in several fields from the applied
sciences such as mechanics, electrical engineering, medical biology, ecology amongst
others.

Recently, stochastic differential and partial differential inclusions have been exten-
sively studied. For instance, in [1, 6] the authors investigated the existence of solu-
tions of nonlinear stochastic differential inclusions by means of a Banach fixed point
theorem and a semigroup approach. Balasubramaniam [5] obtained existence of solu-
tions of functional stochastic differential inclusions by Kakutani’s fixed point theorem,
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Balasubramaniam et al. [6] initiated the study of existence of solutions of semilinear
stochastic delay evolution inclusions in a Hilbert space by using the nonlinear alterna-
tive of Leray-Schauder type [19], some existence results for impulsive neutral stochastic
evolution inclusions in Hilbert Space, where a class of first-order evolution inclusions
with a convex and nonconvex cases are considered, is studied in [32] by using a fixed
point theorem due to Dhage and Covitz, as well as Nadler’s theorem for contraction
multivalued maps.

It is also worth emphasizing that impulsive differential systems and evolution differ-
ential systems are used to describe numerous models of real processes and phenomena
appearing in the applied sciences, for instance, in physics, related to chemical technol-
ogy, population dynamics, biotechnology and economics. That is why in recent years
they have been the objectives of many investigations. We refer to the monographs by
Bainov and Simeonov [3], Benchohra et al. [7], amongst others, to see several studies
on the properties of their solutions. The reader can also find a detailed and extensive
bibliography in the previously mentioned books (see also Da Prato and Zabczyk [16],
Gard [20], Gikhman and Skorokhod [21], Sobzyk [41]). As a motivating example, let us
refer to a stochastic model for drug distribution in a biological system which was de-
scribed by Tsokos and Padgett [43] as a closed system with a simplified heart, one organ
or capillary bed, and re-circulation of a blood with a constant rate of flow, where the
heart is considered as a mixing chamber of constant volume. For the basic theory con-
cerning stochastic differential equations see the monographs of Mao [29], Øksendal, [34],
Tsokos and Padgett [43], Sobczyk [41] and Da Prato and Zabczyk [16], and for some
literature in the case of stochastic differential inclusions, see for instance [14,15,27].
More specifically, in this paper we are interested in proving the existence of solutions
for a system of stochastic impulsive differential inclusions of the following type:

dx(t) ∈ (Ax(t) + F 1(t, x(t), y(t)))dt+
∞∑
l=1

σ1
l (t, x(t)), y(t))dBH

l (t), t ∈ J, t 6= tk,

dy(t) ∈ (Ay(t) + F 2(t, x(t), y(t)))dt+
∞∑
l=1

σ2
l (t, x(t), y(t))dBH

l (t), t ∈ J, t 6= tk,

∆x(t) = Ik(x(tk)), t = tk k = 1, 2, . . . ,m

∆y(t) = Ik(y(tk)),

x(0) = x(b),

y(0) = y(b),
(1.1)

where J := [0, b], X is a real separable Hilbert space with inner product 〈·, ·〉 induced
by norm ‖ · ‖, A : D(A) ⊂ X −→ X is the infinitesimal generator of a strongly
continuous semigroup of bounded linear operators (S(t))t≥0 in X and F 1, F 2 : [0, b]×
X × X −→ P(X) are given set-valued functions, where P(X) denotes the family of
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nonempty subsets of X, Ik, Ik ∈ C(X,X) (k = 1, 2, . . . ,m), σ1
l , σ

2
l : J × X × X →

L0
Q(Y,X). Here, L0

Q(Y,X) denotes the space of all Q-Hilbert-Schmidt operators from
another separable Hilbert space Y into X, and Bl is a fractional Brownian motion
which will be defined in the next section. Moreover, the fixed times tk satisfy t0 = 0 <
t1 < t2 < . . . < tm < tm+1 = b, y(t−k ) and y(t+k ) denotes the left and right limits of y(t)
at t = tk. 

σ(., x) = (σ1(., x), σ2(., x), . . .),

‖σ(., x)‖2 =
∞∑
l=1

‖σl(., x)‖2
L0

Q
<∞ (1.2)

with σ(., x) ∈ `2 for all x ∈ X, where

`2 = {φ = (φl)l≥1 : X ×X → L0
Q(Y,X) : ‖φ(x)‖2 =

∞∑
l=1

‖φl(x)‖2
L0

Q
<∞}.

We remark that when F 1 and F 2 are single-valued mappings, this problem has been
analyzed in [8]. In our current analysis, in order to prove the existence of solutions
for our problem, we need to use different and more sophisticate tools from the field of
set-valued analysis. Consequently, our theory in this paper generalizes the one in [8].

In the deterministic and single valued framework, the above system was used to
analyze initial value problems and boundary value problems for nonlinear competitive
or cooperative differential systems from mathematical biology [30] and mathematical
economics [26] which can be set in the operator form (1.1).

Some existence results of solutions for differential equations with infinite Brownian
motion was obtained in [45]. Recently, Precup [38] proved the role of matrix conver-
gence and vector metric in the study of semilinear operator systems.
When the space X is finite dimensional, some existence results of mild solutions for
Problem (1.1) in the particular case Ay = λy (λ ∈ R) have been obtained in [23]. The
goal of this paper is to study the existence of mild solutions of systems of semilinear
stochastic differential inclusions with infinite fractional Brownian motions.

The paper is organized as follows. In Section 2 we recall some definitions and facts
which will be needed in our analysis. Section 3 is concerned with the case in which
we assume that 1 ∈ Λ(S(b)) (where Λ(S(b)) denotes its resolvent set) and we prove
some existence results based on a nonlinear alternative of Leray-Schauder type theorem
in generalized Banach spaces in the convex case. Finally we establish a multivalued
version of Perov’s fixed point theorem [35] and prove another result on the existence
of solution in a non-convex case.

2 Preliminaries

In this section, we introduce some notations, and recall some definitions, and pre-
liminary facts which are used throughout this paper. Actually we will borrow them
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from [8]. Although we could simply refer to this paper whenever we need it, we prefer
to include this summary in order to make our paper as much self-contained as possible.

2.1 Some results on stochastic integrals with respect to frac-
tional Brownian motions

Let (Ω,F ,P) be a complete probability space with a filtration (F = Ft)t≥0 satisfying
the usual conditions (i.e. right continuous and F0 containing all P-null sets).

For a stochastic process x(·, ·) : [0, T ]×Ω→ X we will write x(t) (or simply x when
no confusion is possible) instead of x(t, ω).

Definition 2.1. Given H ∈ (0, 1), a continuous centered Gaussian process BH is
said to be a two-sided one-dimensional fractional Brownian motion (fBm) with Hurst
parameter H, if its covariance function RH(t, s) = E[BH(t))BH(s)] satisfies

RH(t, s) =
1

2
(|t|2H + |s|2H − |t− s|2H) t, s ∈ [0, T ].

It is known that BH(t) with H > 1
2

admits the following Volterra representation

BH(t) =

∫ t

0

KH(t, s)dB(s) (2.1)

where B is a standard Brownian motion given by

B(t) = BH((K∗H)−1ξ[0,t]),

and the Volterra kernel the kernel K(t, s) is given by

KH(t, s) = cHs
1/2−H

∫ t

s

(u− s)H−
3
2

(u
s

)H− 1
2
du, t ≥ s,

where cH =
√

H(2H−1)

β(2H−2,H− 1
2

)
and β(·, ·) denotes the Beta function, K(t, s) = 0 if t ≤ s,

and it holds
∂KH

∂t
(t, s) = cH

(
t

s

)H− 1
2

(t− s)H−
3
2 ,

and the kernel K∗H is defined as follows. Denote by E the set of step functions on
[0, T ]. Let H be the Hilbert space defined as the closure of E with respect to the scalar
product

〈χ[0,t], χ[0,s]〉H = RH(t, s),

and consider the linear operator K∗H from E to L2([0, T ]) defined by,

(K∗Hφ)(t) =

∫ T

s

φ(t)
∂KH

∂t
(t, s)dt.
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Notice that,

(K∗Hχ[0,t])(s) = KH(t, s)χ[0,t](s).

The operator K∗H is an isometry between E and L2([0, T ]) which can be extended to
the Hilbert space H. In fact, for any s, t ∈ [0, T ] we have

〈K∗Hχ[0,t], K
∗
Hχ[0,t]〉L2([0,T ]) = 〈χ[0,t], χ[0,s]〉H = RH(t, s).

In addition, for any φ ∈ H,∫ T

0

φ(s)dBH(s) =

∫ T

0

(K∗Hφ)(s)dB(s),

if and only if K∗Hφ ∈ L2([0, T ]).

Remark 2.1. In the sequel, the notation cH will be used to denote the value of a
constant which depends on the Hurst parameter (not necessarily the one used above)
and that can be different from line to line or even in the same line.

Moreover, the following useful result holds

Lemma 2.1. [33] There exists a positive constant cH such that for any φ ∈ L1/H([0, T ])
it holds

H(2H − 1)

∫ T

0

∫ T

0

|φ(y)||φ(z)||y − z|2H−2dydz ≤ cH‖φ‖2
L1/H([0,T ]). (2.2)

Next we are interested in considering an fBm with values in a Hilbert space and
giving the definition of the corresponding stochastic integral.

Definition 2.2. An Ft-adapted process φ on [0, T ]×Ω→ X is an elementary or simple
process if for a partition ψ = {t̄0 = 0 < t̄1 < . . . < t̄n = T} and (Ft̄i)-measurable X-
valued random variables (φt̄i)1≤i≤n, φt satisfies

φt(ω) =
n∑
i=1

φi(ω)χ(t̄i−1,t̄i](t), for 0 ≤ t ≤ T, ω ∈ Ω.

The Itô integral of the simple process φ is defined as

IH(φ) =

∫ T

0

φl(s)dB
H
l (s) =

n∑
i=1

φl(t̄i)(B
H
l (t̄i)−BH

l (t̄i−1)), (2.3)

whenever φt̄i ∈ L2(Ω,Ft̄iP, X) for all i ≤ n.
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Let (X, 〈·, ·〉, | · |X), (Y, 〈·, ·〉, | · |Y ) be separable Hilbert spaces. Let L(Y,X) denote
the space of all linear bounded operators from Y into X. Let en, n = 1, 2, . . . be a com-
plete orthonormal basis in Y and Q ∈ L(Y,X) be an operator defined by Qen = λnen
with finite trace trQ =

∑∞
n=1 λn < ∞ where λn, n = 1, 2, . . ., are non-negative real

numbers. Let (βHn )n∈N be a sequence of two-sided one-dimensional standard fractional
Brownian motions mutually independent on (Ω,F ,P). If we define the infinite dimen-
sional fBm on Y with covariance Q as

BH(t) =
∞∑
n=1

√
λnβ

H
n (t)en, (2.4)

then it is well defined as an Y -valuedQ-cylindrical fractional Brownian motion (see [16])
and we have

E〈βHl (t), x〉〈βHk (s), y〉 = RHlk
(t, s)〈Q(x), y〉, x, y ∈ Y and s, t ∈ [0, T ]

such that

RHlk
=

1

2
{| t |2H + | s |2H + | t− s |2H}δlk t, s ∈ [0, T ],

where

δlj =

{
1 j = l,
0, j 6= l.

In order to define Wiener integrals with respect to a Q− fBm, we introduce the space
L0
Q := L0

Q(Y,X) of all Q−Hilbert-Schmidt operators ϕ : Y −→ X. We recall that
ϕ ∈ L(Y,X) is called a Q−Hilbert-Schmidt operator, if

‖ϕ‖2
L0

Q
= ‖ϕQ1/2‖2

HS = tr(ϕQϕ∗) <∞.

Definition 2.3. Let φ(s), s ∈ [0, T ], be a function with values in L0
Q(Y,X). The

Wiener integral of φ with respect to fBm given by (2.4) is defined by∫ T

0

φ(s)dBH(s) =
∞∑
n=1

∫ t

0

√
λnφ(s)endβ

H
n

=
∞∑
n=1

∫ T

0

√
λnK

∗
H(φen)(s)dβn. (2.5)

Notice that if
∞∑
n=1

‖φQ1/2en‖L1/H([0,T ];X) <∞, (2.6)

the next result ensures the convergence of the series in the previous definition.
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Lemma 2.2. [8] For any φ : [0, T ] → L0
Q(Y,X) such that (2.6) holds, and for any

α, β ∈ [0, T ] with α > β,

E

∣∣∣∣∫ β

α

φ(s)dBH(s)

∣∣∣∣2
X

≤ cHH(2H − 1)(α− β)2H−1

∞∑
n=1

∫ β

α

∣∣φ(s)Q1/2en
∣∣2
X
ds. (2.7)

If in addition

∞∑
n=1

|φQ1/2en|X is uniformly convergent for t ∈ [0, T ],

then,

E

∣∣∣∣∫ β

α

φ(s)dBH(s)

∣∣∣∣2
X

≤ cHH(2H − 1)(α− β)2H−1

∫ β

α

‖φ(s)‖2
L0

Q
ds. (2.8)

2.2 Some results on fixed point theorems and set-valued anal-
ysis

For x, y ∈ Rn, x = (x1, . . . , xn), y = (y1, . . . , yn), by x ≤ y we mean xi ≤ yi for all
i = 1, . . . , n and |x| = (|x1|, . . . , |xn|). If c ∈ R, then x ≤ c means xi ≤ c for each
i = 1, . . . , n.

Definition 2.4. Let X be a nonempty set. A vector-valued metric on X is a map
d : X ×X → Rn with the following properties:

(i) d(u, v) ≥ 0 for all u, v ∈ X; if d(u, v) = 0 then u = v;

(ii) d(u, v) = d(v, u) for all u, v ∈ X;

(iii) d(u, v) ≤ d(u,w) + d(w, v) for all u, v, w ∈ X.

The pair (X, d) a said to be a generalized metric space.

For r = (r1, . . . , rn) ∈ Rn
+, we will denote by

B(x0, r) = {x ∈ X : d(x0, x) < r}

the open ball centered in x0 with radius r and

B(x0, r) = {x ∈ X : d(x0, x) ≤ r}

the closed ball centered in x0 with radius r. We mention that for generalized met-
ric space, the notation of open subset, closed set, convergence, Cauchy sequence and
completeness are similar to those in usual metric spaces.
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Definition 2.5. A generalized metric space (X, d), where d(x, y) :=

 d1(x, y)
· · ·

dn(x, y)

 ,

is complete if (X, di) is a complete metric space for every i = 1, . . . , n.

Definition 2.6. A square matrix of real numbers M is said to be convergent to zero
if its spectral radius ρ(M) is strictly less than 1. In other words, this means that all
the eigenvalues of M are in the open unit disc (i.e. |λ| < 1, for every λ ∈ C with
det(M − λI) = 0, where I denotes the unit matrix of Mn×n(R)).

Definition 2.7. A non-singular matrix A = (aij)1≤i,j≤n ∈ Mn×n(R) is said to have
the absolute value property if

A−1|A| ≤ I,

where
|A| = (|aij|)1≤i,j≤n ∈Mn×n(R+).

Lemma 2.3. [40] Let M be a square matrix of nonnegative numbers. The following
assertions are equivalent:

(i) M is convergent towards zero;

(ii) the matrix I −M is non-singular and

(I −M)−1 = I +M +M2 + . . .+Mk + . . . ;

(iii) |λ| < 1 for every λ ∈ C with det(M − λI) = 0

(iv) (I −M) is non-singular and (I −M)−1 has nonnegative elements.

Some examples of matrices convergent to zero can be seen in [8].
We will use the following notation:

Pcl(X) = {y ∈ P(X) : y closed },

Pb(X) = {y ∈ P(X) : y bounded },

Pc(X) = {y ∈ P(X) : y convex },

Pcp(X) = {y ∈ P(X) : y compact }.

Consider Hd : P(X)× P(X) −→ Rn
+ ∪ {∞} defined by

Hd(A,B) :=

Hd1(A,B)
. . .

Hdn(A,B)

 .

Let (X, d) be a generalized metric space with
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d(x, y) :=

d1(x, y)
. . .

dn(x, y)

 .

Notice that d is a generalized metric space on X if and only if di, i = 1, . . . , n are

metrics on X, Hd(A,B) = max

{
sup
a∈A

d(a,B), sup
b∈B

d(A, b)

}
,

where d(A, b) = infa∈A d(a, b), d(a,B) = infb∈B d(a, b). Then, (Pb,cl(X), Hd) is a metric
space and (Pcl(X), Hd) is a generalized metric space.

A multivalued map F : X −→ P(X) is convex (closed) valued if F (y) is convex
(closed) for all y ∈ X, F is bounded on bounded sets if F (B) =

⋃
y∈B F (y) is bounded

in X for all B ∈ Pb(X). F is called upper semi-continuous (u.s.c. for short) on X if for
each y0 ∈ X the set F (y0) is a nonempty, subset of X, and for each open set U of X
containing F (y0), there exists an open neighborhood V of y0 such that F (V) ∈ U . F is
said to be completely continuous if F (B) is relatively compact for every B ∈ Pb(X).
F is quasicompact if, for each subset A ⊂ X, F (A) is relatively compact.

If the multivalued map F is completely continuous and possesses nonempty compact
values, then F is u.s.c. if and only if F has a closed graph, i.e., xn −→ x∗, yn −→ y∗,
yn ∈ F (xn) imply y∗ ∈ F (x∗).

A multivalued map F : J = [0, T ] −→ Pcp,c(X) is said to be measurable if for each
y ∈ X, the mean-square distance between y and F (t) is measurable.

Definition 2.8. The set-valued map F : J × X × X → P(X × X) is said to be
L2-Carathéodory if

(i) t 7→ F (t, v) is measurable for each v ∈ X ×X;

(ii) v 7→ F (t, v) is u.s.c. for almost all t ∈ J ;

(iii) for each q > 0, there exists hq ∈ L1(J,R+) such that

‖F (t, v)‖2 := sup
f∈F (t,v)

‖f‖2 ≤ hq(t), for all ‖v‖2 ≤ q and for a.e. t ∈ J.

Remark 2.2. (a) For each x ∈ C(J,X), the set SF,x is closed whenever F has closed
values. It is convex if and only if F (t, x(t)) is convex for a.e. t ∈ J .

(b) From [44], Theorem 5.10 (see also [28] when X is finite dimensional), we know
that SF,xis nonempty if and only if the mapping t 7−→ inf{‖υ‖ : υ ∈ F (t, x(t))}
belongs to L2(J).

Lemma 2.4. [28] Let I be a compact interval and X be a Hilbert space. Let F be
an L2-Carathéodory multivalued map with SF,y 6= ∅, and let Γ be a linear continuous
mapping from L2(I,X) to C(I,X). Then, the operator

Γ ◦ SF : C(I,X) −→ Pcp,c(L2([0, T ], X)), y 7−→ (Γ ◦ SF )(y) = Γ(SF , y),
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is a closed graph operator in C(I,X)×C(I,X), where SF,y is known as the selectors set
from F and given by f ∈ SF,y = {f ∈ L2([0, T ], X) : f(t) ∈ F (t, y) for a.e.t ∈ [0, T ]}.

We denote the graph of G to be the set gr(G) = {(x, y) ∈ X × Y, y ∈ G(x)}.

Lemma 2.5. [17] If G : X → Pcl(Y ) is u.s.c., then gr(G) is a closed subset of X×Y .
Conversely, if G is locally compact and has nonempty compact values and a closed
graph, then it is u.s.c.

Lemma 2.6. [18] If G : X → Pcp(Y ) is quasicompact and has a closed graph, then G
is u.s.c.

The following two results are easily deduced from the limit properties:

Lemma 2.7. (See e.g. [2, Theorem 1.4.13]) If G : X → Pcp(X) is u.s.c., then for any
x0 ∈ X,

lim sup
x→x0

G(x) = G(x0)

Lemma 2.8. (See e.g. [2, Lemma 1.1.9]) If Let (Kn)n∈N ⊂ K ⊂ X be a sequence of
subsets where K is compact in the separable Banach space X. Then

co(lim sup
n→∞

Kn) = ∩N>0co(∪n≥NKn)

where coA refers to the closure of the convex hull of A.

The second one is due to Mazur (1933):

Lemma 2.9. (Mazur’s Lemma, [25, Theorem 21.4]) Let X be a normed space and
{xk}k∈N ⊂ X be a sequence weakly converging to a limit x ∈ X. Then there exists a

sequence of convex combinations ym =
m∑
k=1

αmkxk with αmk > 0 for k = 1, 2, . . . ,m and

m∑
k=1

αmk = 1, which converges strongly to x.

Definition 2.9. A sequence (υn)n∈Nis said to be semi-compact if

(1) it is integrably bounded, i.e. there exists q ∈ L1(J,R) such that

|υn|X ≤ q(t)

for a.e. t ∈ J and every n ∈ N,

(2) the image sequence (υn)n∈N is relatively compact in X for a.e. t ∈ [0, T ].

This result is of particular importance if X is reflexive in which case (1) implies (2)
in Definition 2.9.
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Lemma 2.10. Every semi-compact sequence L1([0, b], X) is weakly compact in L1([0, b], X).

Recall that a set-valued operator G possesses a fixed point if there exists y ∈ X
such that y ∈ G(y).

Now we can establish the following nonlinear alternatives of Leray and Schauder
which will be needed in the proofs of our results (see [9, 19,36]).

Lemma 2.11. Let (X, ‖ · ‖) be a generalized Banach space and G : X −→ Pcl,cv(X) be
an upper semicontinuous and compact map. Then either,

(a) F has at least one fixed point, or

(b) the set M = {x ∈ X and λ ∈ (0, 1),with x ∈ λG(u)} is unbounded.

Let us recall now the definition of resolvent set and family for a linear operator
A : E → E.

Definition 2.10. The resolvent set Λ(A) of A consists of all complex numbers λ for
which the linear operator λI − A is invertible, i.e. (λI − A)−1 is a bounded linear
operator in E. The family R(λ,A) = (λI − A)−1, λ ∈ Λ(A) is called the resolvent of
A. All complex numbers λ not in Λ(A) form a set called the spectrum of A.

Our next result describes a basic theorem of reflexive spaces.

Theorem 2.1. [10] E is reflexive if and only if BE = {x ∈ E; ||x|| ≤ 1} is compact
in the weak topology.

3 Existence results

In this section we prove the existence of mild solution of the problem (1.1). Our
approach is based on multivalued versions of Schaefer’s fixed point theorem.

3.1 The convex case

In this section, we will show same results concerning the existence results of mild
solutions for system (1.1) in the convex case. Recall that the fixed times tk satisfy t0 =
0 < t1 < t2 < . . . < tm < tm+1 = b and we denote Jk = (tk, tk+1], k = 0, 1, 2, . . . ,m,
and J = [0, b]. In order to define a solution for Problem (1.1), consider the following
space of picewise continuous functions

PC = {x : Ω× [0, b] −→ X, x ∈ C(Jk, X)), k = 0, . . . ,m such that
x(t+k , .) and x(t−k , .) exist with x(t−k , .) = x(tk, .) almost surely and

sup
t∈[0,b]

E|x(t, .)|2X <∞}.
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Endowed with the norm

‖x‖PC =

(
sup
s∈[0,b]

E|x(s, .)|2X

) 1
2

,

it is not difficult to check that PC is a Banach space with norm ‖ · ‖PC .
ACi(J,X) is the space of functions y : J → X i times differentiable whose ith deriva-
tive, y(i), is absolutely continuous.

Lemma 3.1. Let A be the infinitesimal generator of a C0-semigroup {S(t)}t≥0 such
that 1 ∈ Λ(S(b)) and let f i : J → X, i = 1, 2, be continuous. Let Ik, Ik ∈ C(X,X)

for each k = 1, . . . ,m, assume that
∑∞

l=1

∫ b
0
‖σil(s, x, y)‖2

L0
Q
< ∞, i = 1, 2 and let

x, y ∈ PC ∩ AC1 be a classical solution of the problem

dx(t) = (f 1(t) + Ax(t))dt+
∞∑
l=1

σ1
l (t, x(t), y(t))dBH

l (t), t ∈ J, t 6= tk

dy(t) = (f 2(t) + Ay(t))dt+
∞∑
l=1

σ2
l (t, x(t), y(t))dBH

l (t), t ∈ J, t 6= tk

x(t+k )− x(tk) = Ik(x(tk)), k = 1, 2, . . . ,m

y(t+k )− y(tk) = Ik(y(tk)),

x(0) = x(b),
y(0) = y(b).

(3.1)

Then it fulfills

x(t) = S(t)(I − S(b))−1
( m∑
k=1

(S(b− tk))Ik(x(tk)) +

∫ b

0

S(b− s)f 1(s)ds

+
∞∑
l=1

∫ b

0

S(b− s)σ1
l (t, x(s), y(s))dBH

l (s)
)

+

∫ t

0

S(t− s)f 1(s)ds

+
∞∑
l=1

∫ t

0

S(t−s)σ1
l (t, x(s), y(s))dBH

l (s)+
∑

0<tk<t

S(t−tk)Ik(x(tk)), for t ∈ J, a.e. ω ∈ Ω.

and

y(t) = S(t)(I − S(b))−1
( m∑
k=1

(S(b− tk))Ik(y(tk)) +

∫ b

0

S(b− s)f 2(s)ds

+
∞∑
l=1

∫ b

0

S(b− s)σ2
l (t, x(s), y(s))dBH

l (s)
)

+

∫ t

0

S(t− s)f 2(s)ds
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+
∞∑
l=1

∫ t

0

S(t−s)σ2
l (t, x(s), y(s))dBH

l (s)+
∑

0<tk<t

S(t−tk)Ik(y(tk)), for t ∈ J, a.e. ω ∈ Ω.

Proof. Let (x, y) be a solution of Problem (3.1) and L1(s) = S(t− s)x(s) and L2(s) =
S(t− s)y(s) for fixed t ∈ J . We have

L
′

1(s) = −S ′(t− s)x(s) + S(t− s)x′(s)
= −AS(t− s)x(s) + S(t− s)x′(s)
= S(t− s)(x′(s)− Ax(s))

= S(t− s)(f 1(s)ds+
∞∑
l=1

σ1
l (t, x(s), y(s))dBH

l (s)

Let 0 < t < t1. Integrating the previous equation, we deduce for k = 1

L1(t)− L1(0) =

∫ t

0

S(t− s)f 1(s)ds+
∞∑
l=1

∫ t

0

S(t− s)σ1
l (t, x(s), y(s))dBH

l (s).

Hence

x(t) = S(t)x(0) +

∫ t

0

S(t− s)f 1(s)ds+
∞∑
l=1

∫ t

0

S(t− s)σ1
l (t, x(s), y(s))dBH

l (s).

More generally, for tk < t < tk+1∫ t1

0

L
′

1(s)+

∫ t1

t2

L
′

1(s)+....+

∫ t

tk

L
′

1(s) =

∫ t

0

S(t−s)f 1(s)ds+
∞∑
l=1

∫ t

0

S(t−s)σ1
l (t, x(s), y(s))dBH

l (s)

= L1(t−1 )− L1(0) + L1(t−2 )− L1(t+1 ) + ...+ L1(t)− L1(t+k )

=

∫ t

0

S(t− s)f 1(s)ds+
∞∑
l=1

∫ t

0

S(t− s)σ1
l (t, x(s), y(s))dBH

l (s).

Therefore

x(t) = S(t)x(0)+
∑

0<tk<t

(L1(t+k−L1(t−k ))+

∫ t

0

S(t−s)f 1(s)ds+
∞∑
l=1

∫ t

0

S(t−s)σ1
l (s, x(s), y(s))dBH

l (s).

Since x(0) = x(b) and 1 ∈ ρ(S(T )) , then (I − S(b)) is invertible. Hence we obtain
after substitution

x(t) = S(t)(I − S(b))−1
(∑m

k=1(S(b− tk))Ik(x(tk)) +

∫ b

0

S(b− s)f 1(s)ds

+
∑∞

l=1

∫ b
0
S(b− s)σ1

l (s, x(s), y(s))dBH
l (s)

)
+

∫ t

0

S(t− s)f 1(s)ds

+
∑∞

l=1

∫ t
0
S(t− s)σ1

l (s, x(s), y(s))dBH
l (s)

+
∑

0<tk<t
S(t− tk)Ik(x(tk)), for t ∈ J.
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This lemma leads to the definition of a mild solution.

Definition 3.1. An X−valued stochastic process u = (x, y) ∈ PC × PC is said to be
a mild solution of (1.1) with respect to the probability space (Ω,F ,P), if:

1) u(t) is Ft-adapted for all t ∈ Jk = (tk, tk+1] k = 1, 2, . . . ,m

2) u(t) is right continuous and has limit on the left, and there exists selections f i,
i = 1, 2, such that f i(t) ∈ F i(t, u(t)) a.e. t ∈ J .

4) u(t) satisfies, for each t ∈ J, a.e. ω ∈ Ω,

x(t) = S(t)(I − S(b))−1
( m∑
k=1

(S(b− tk))Ik(x(tk)) +

∫ b

0

S(b− s)f 1(s)ds

+
∞∑
l=1

∫ b

0

S(b− s)σ1
l (t, x(s), y(s))dBH

l (s)
)

+

∫ t

0

S(t− s)f 1(s)ds

+
∞∑
l=1

∫ t

0

S(t− s)σ1
l (t, x(s), y(s))dBH

l (s) +
∑

0<tk<t

S(t− tk)Ik(x(tk)),

y(t) = S(t)(I − S(b))−1
( m∑
k=1

(S(b− tk))Ik(y(tk)) +

∫ b

0

S(b− s)f 2(s)ds

+
∞∑
l=1

∫ b

0

S(b− s)σ2
l (t, x(s), y(s))dBH

l (s)
)

+

∫ t

0

S(t− s)f 2(s)ds

+
∞∑
l=1

∫ t

0

S(t− s)σ2
l (t, x(s), y(s))dBH

l (s) +
∑

0<tk<t

S(t− tk)Ik(y(tk)).

In this section, we assume again that 1 ∈ Λ(S(b))). We are now in a position to
state and prove our existence result for problem (1.1). First we will list the following
hypotheses which will be imposed in our main theorem.
Consider the following assumptions: In the remaining of our work, we assume that
S(t) is compact for t > 0 and that there exists M > 0 such that

‖S(t)‖ ≤M, for every t ∈ [0, b].

(H1) The functions σil : J×X×X → L0
Q(Y,X) are continuous and there exist positive

constants αi and βi and ci for each i = 1, 2, such that

‖σ1(t, x, y)‖2 ≤ α1|x|2X + β1|y|2X + c1, ‖σ2(t, x, y)‖2 ≤ α2|x|2X + β2|y|2X + c2

and
∞∑
l=1

∫ b

0

‖σil(t, x, y)‖2
L0

Q
dt <∞, i = 1, 2,

for all x, y ∈ X and t ∈ J.
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(H2) F i : [0, b]×X ×X −→ Pc,cp(X) is an integrable bounded multivalued map, i.e.,
there exists pi ∈ L2(J,X), i = 1, 2 such that

|F i(t, x, y)|2X = sup
f i∈F i(t,x,y)

|f i(t)|2X ≤ pi(t), ∀t ∈ J, ∀(x, y) ∈ X ×X.

(H3) Consider the functions Ik, Ik ∈ C(X,X) for which there exist constants dk, dk ≥ 0
and ek, ek ≥ 0 for each k = 1, . . . ,m such that

|Ik(x)|2X ≤ dk|x|2X + ek, |Ik(y)|2X ≤ dk|y|2X + ek, for all x, y ∈ X.

Consider the following operator N(x, y) = (N1(x, y), N2(x, y)), (x, y) ∈ PC × PC
defined by

N(x, y) =
{

(h, h) ∈ PC × PC
}

given by

h(t) = S(t)(I − S(b))−1
( m∑
k=1

(S(b− tk))Ik(x(tk))

+

∫ b

0

S(t− s)f 1(s)ds+
∞∑
l=1

∫ b

0

S(t− s)σ1
l (t, x(s), y(s))dBH

l (s)
)

+

∫ t

0

S(t− s)f 1(s)ds+
∞∑
l=1

∫ t

0

S(t− s)σ1
l (t, x(s), y(s))dBH

l (s)

+
∑

0<tk<t

S(t− tk)Ik(x(tk)), for t ∈ J, a.e. ω ∈ Ω,

h(t) = S(t)(I − S(b))−1
( m∑
k=1

(S(b− tk))Ik(y(tk))

+

∫ b

0

S(t− s)f 2(s)ds+
∞∑
l=1

∫ b

0

S(t− s)σ2
l (t, x(s), y(s))dBH

l (s)
)

+

∫ t

0

S(t− s)f 2(s)ds+
∞∑
l=1

∫ t

0

S(t− s)σ2
l (t, x(s), y(s))dBH

l (s)

+
∑

0<tk<t

S(t− tk)Ik(y(tk)), for t ∈ J, a.e. ω ∈ Ω,

where

f i ∈ SF i,u = {f i ∈ L2(J,X) : f i(t) ∈ F i(t, x, y) for each t ∈ J, and each x, y ∈ PC}, i = 1, 2.

Lemma 3.2. Assume that, for i = 1, 2, F i : J×X×X −→ Pc,cp(X) is a Carathèodory
map such that (H1)− (H3) also hold. Then, operator N is completely continuous and
u.s.c.
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Proof. First we show that N = (N1, N2) is completely continuous. We split the proof
into several steps.

Step 1.- N maps bounded sets into bounded sets in PC × PC.
Indeed, it is enough to show that for any q > 0 there exists a positive constant
l = (l1, l2) such that for each (x, y) ∈ Bq = {(x, y) ∈ PC × PC : E|x|2X ≤
q, E|y|2X ≤ q} one has

|h|2X ≤ l1, |h|2X ≤ l2.

Let (h, h) ∈ (N1, N2). Then, there exists f i(t) ∈ F i(t, x, y) for each t ∈ J, and
each x, y ∈ PC, such that

E|h(t)|2X = E
∣∣∣S(t)(I − S(b))−1

( m∑
k=1

(S(b− tk))Ik(x(tk)) +

∫ b

0

S(t− s)f 1(s)ds

+
∞∑
l=1

∫ b

0

S(t− s)σ1
l (t, x(s), y(s))dBH

l (s)
)

+

∫ t

0

S(t− s)f 1(s)ds

+
∞∑
l=1

∫ t

0

S(t− s)σ1
l (t, x(s), y(s))dBH

l (s) +
∑

0<tk<t

S(t− tk)Ik(x(tk))
∣∣∣2
X
,

and also

E|h(t)|2X ≤ 4E
∣∣∣S(t)(I − S(b))−1

( m∑
k=1

(S(b− tk))Ik(x(tk)) +

∫ b

0

S(t− s)f 1(s)ds

+
∞∑
l=1

∫ b

0

S(t− s)σ1
l (t, x(s), y(s))dBH

l (s)
)∣∣∣2

X
+ 4E

∣∣∣ ∫ t

0

S(t− s)f 1(s)ds
∣∣∣2
X

+4E
∣∣∣ ∞∑
l=1

∫ t

0

S(t− s)σ1
l (t, x(s), y(s))dBH

l (s)
∣∣∣2
X

+ 4E
∣∣∣ ∑

0<tk<t

S(t− tk)Ik(x(tk))
∣∣∣2
X
.
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Using (H1)− (H3) and (2.8) we have

E|h(t)|2X ≤ 12M4
∥∥∥(I − S(b))−1

∥∥∥2(
m

m∑
k=1

sup
z∈B(0,q)

E|Ik(z)|2X + ‖p1‖2
L1

+cHH(2H − 1)b2H(α1E|x(t)|2X + β1E|y(t)|2X + c1)
)

+ 4M2‖p1‖L1

+4M2(cHH(2H − 1)b2H(α1E|x(t)|2X + β1E|y(t)|2X + c1))

+4M2m

m∑
k=1

(dkq + ek)

≤ 4M4
∥∥∥(I − S(b))−1

∥∥∥2( m∑
k=1

(dkq + ek) + ‖p1‖L1

+cHH(2H − 1)b2H(α1q + β1q + c1)
)

+ 4M2‖p1‖L1

+4M2(cHH(2H − 1)b2H(α1q + β1q + c1))

+4M2m
m∑
k=1

(dkq + ek) := l1.

Similarly, we have

E|h(t)|2X ≤ 4M4
∥∥∥(I − S(b))−1

∥∥∥2( m∑
k=1

dkq + ek) + ‖p2‖L1

+cHH(2H − 1)b2H(α2q + β2q + c2)
)

+ 4M2‖p2‖L1

+4M2(cHH(2H − 1)b2H(α2q + β2q + c2))

+4M2m
m∑
k=1

(dkq + ek)) := l2.

Therefore (
E|h(t)|2X
E|h(t)|2X

)
≤
(
l1
l2

)
.

Step 2.- N maps bounded sets into equicontinuous sets of PC × PC.
Let Bq be a bounded set in PC × PC as in Step 1. Let τ1, τ2 ∈ J, τ1 < τ2 and
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(x, y) ∈ Bq, then there exists f i(t) ∈ F i(t, x, y), i = 1, 2, such that

E|h(τ2)− h(τ1)|2X ≤ 12M2
∥∥∥S(τ2)− S(τ1)

∥∥∥2∥∥∥(I − S(b))−1
∥∥∥2(

m
m∑
k=1

sup
z∈B(0,q)

E|Ik(z)|2X

+‖p1‖L1 + cHH(2H − 1)b2H(α1E|x(t)|2X
+β1E|y(t)|2X + c1)

)
+2E

∣∣∣ ∫ τ2

0

(S(τ2 − s)− S(τ1 − s))f 1(s)ds+

∫ τ2

τ1

(S(τ1 − s)f 1(s)ds

+
∞∑
l=1

∫ τ2

0

(S(τ2 − s)− S(τ1 − s))σ1
l (s, x(s), y(s))dBH

l (s)

+
∞∑
l=1

∫ τ2

τ1

(S(τ2 − s)σ1
l (s, x(s), y(s))dBH

l (s)

+
∑

0<tk<τ2

(S(τ2 − tk)− S(τ1 − tk))Ik(x(tk)) +
∑

τ1<tk<τ2

S(τ2 − tk)Ik(x(tk))
∣∣∣2
X
.

From (H1)− (H3) and (2.8), we obtain

sup
t∈J

E
∣∣∣h(τ2)− h(τ1)

∣∣∣2
X

≤ 12M2
∥∥∥(S(τ2)− S(τ1)

∥∥∥2∥∥∥(I − S(b))−1
∥∥∥2(

m sup
z∈B(0,q)

m∑
k=1

E|Ik(z)|2X

+‖p1‖L1 + cHH(2H − 1)b2H(α1E|x(t)|2X + β1E|y(t)|2X + c1)
)

+12

∫ t2

0

∥∥∥S(τ2 − s)− S(τ1 − s)
∥∥∥2

p1(s)ds+ 12

∫ τ2

τ1

∥∥∥S(τ1 − s)
∥∥∥2

p1(s)ds

+12cHH(2H − 1)t2H−1
2

∫ τ1

0

∥∥∥S(τ2 − s)− S(τ1 − s)
∥∥∥2

E
∥∥∥σ1(s, x(s), y(s))

∥∥∥2

ds

+12cHH(2H − 1)(τ2 − τ1)2H−1

∫ τ2

τ1

∥∥∥S(τ2 − s)
∥∥∥2

E
∥∥∥σ1(s, x(s), y(s))

∥∥∥2

ds

+12m
∑

0<tk<τ1

∥∥∥S(τ1 − tk)− S(τ2 − tk)
∥∥∥2

sup
z∈B(0,q)

E
∣∣∣Ik(z)

∣∣∣2
X

+12m
∑

τ1<tk<τ2

∥∥∥S(τ2 − tk)
∥∥∥2

sup
z∈B(0,q)

E|Ik(z)|2X ,
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which gives

E
∣∣∣h(τ2)− h(τ1)

∣∣∣2
X

≤ 12M2
∥∥∥(S(τ2)− S(τ1)

∥∥∥2∥∥∥(I − S(b))−1
∥∥∥2(

m sup
z∈B(0,q)

m∑
k=1

E|Ik(z)|2X + ‖p1‖L1

+cHH(2H − 1)b2H−1(α1E|x(t)|2X + β1E|y(t)|2X + c1)
)

+12

∫ τ1

0

∥∥∥S(τ2 − s)− S(τ1 − s)
∥∥∥2

p1(s)ds+ 12

∫ τ2

τ1

∥∥∥S(τ2 − s)
∥∥∥2

p1(s)ds

+12cHH(2H − 1)(τ2)2H−1

∫ τ2

0

∥∥∥S(τ2 − s)− S(τ1 − s)
∥∥∥2(

α1E|x(t)|2X

+β1E|y(t)|2X + c1)ds
)

+12cHH(2H − 1)(t2 − t1)2H−1

∫ τ2

τ1

∥∥∥S(τ1 − s)
∥∥∥2(

α1E|x(t)|2X + β1E|y(t)|2X + c1)ds
)

+12m
∑

0<tk<τ1

∥∥∥S(τ2 − tk)− S(τ1 − tk)
∥∥∥2

sup
z∈B(0,q)

E|Ik(z)|2X

+12m
∑

τ1<tk<τ2

∥∥∥S(τ2 − tk)
∥∥∥2

sup
z∈B(0,q)

E|Ik(z)|2X .

Therefore, we arrive at

E
∣∣∣h(τ2)− h(τ1)

∣∣∣2
X
≤ 18M2

∥∥∥(S(t2)− S(t1)
∥∥∥2∥∥∥(I − S(b))−1

∥∥∥2(
m

m∑
k=1

sup
z∈B(0,q)

E|Ik(z)|2X + ‖p1‖L1

+cHH(2H − 1)b2H(α1q + β1q + c1)
)

+12

∫ τ1

0

∥∥∥S(τ2 − s)− S(τ1 − s)
∥∥∥2

p1(s)ds+ 12

∫ τ2

τ1

∥∥∥S(τ1 − s)
∥∥∥2

p1(s)ds

+12cHH(2H − 1)(t2)2H−1

∫ t2

0

∥∥∥S(τ2 − s)− S(τ1 − s)
∥∥∥2(

α1q

+β1q + c1

)
ds

+12cHH(2H − 1)(τ2 − τ1)2H−1

∫ τ2

τ1

∥∥∥S(t2 − s)
∥∥∥2(

α1q

+β1q + c1

)
ds

+12m
∑

0<tk<t1

∥∥∥S(τ2 − tk)− S(τ1 − tk)
∥∥∥2

sup
z∈B(0,q)

E|Ik(z)|2X

+12m
∑

τ1<tk<τ2

∥∥∥S(τ2 − tk)
∥∥∥2

sup
z∈B(0,q)

E|Ik(z)|2X .
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Similarly, we obtain that

E
∣∣∣h(t2)− h(t1)

∣∣∣2
X
≤ 12M2

∥∥∥(S(τ2)− S(τ1)
∥∥∥2∥∥∥(I − S(b))−1

∥∥∥2(
sup

z∈B(0,q)

m∑
k=1

E|Ik(z)|2X + ‖p2‖L1

+12cHH(2H − 1)b2H(α2q + β2q + c2)
)

+12

∫ τ1

0

∥∥∥S(t2 − s)− S(t1 − s)
∥∥∥2

p2(s)ds+ 12

∫ τ2

τ1

∥∥∥S(t2 − s)
∥∥∥2

p2(s)ds

+12cHH(2H − 1)(t2)2H−1

∫ τ1

0

∥∥∥S(τ2 − s)− S(τ1 − s)
∥∥∥2(

α2q

+β2q + c2

)
ds

+12cHH(2H − 1)(τ2 − τ1)2H−1

∫ τ2

τ1

∥∥∥S(τ2 − s)
∥∥∥2(

α2q

+β2q + c2

)
ds

+12m
∑

0<tk<τ1

∥∥∥S(τ2 − tk)− S(τ1 − tk)
∥∥∥2

sup
z∈B(0,q)

E|Ik(z)|2X

+12m
∑

τ1<tk<τ2

∥∥∥S(τ2 − tk)
∥∥∥2

sup
z∈B(0,q)

E|Ik(z)|2X .

The right-hand term tends to zero as |τ2 − τ1| → 0 since S(t) is a strongly continuous
operator and the compactness of S(t) for t > 0 implies the continuity in the uniform
operator topology [37]. This proves the equicontinuity.

Step 3.- (N(Bq)(t) is precompact in X ×X.
As a consequence of Steps 1 and 2, together with the Arzelá-Ascoli theorem, it

suffices to show that N maps Bq into a precompact set in X × X. Let 0 < t < b be
fixed and let ε be a real number satisfying 0 < ε < t. For (x, y) ∈ Bq we define

hε(t) = S(ε)S(t− ε)(I − S(b))−1
( m∑
k=0

S(b− tk)Ik(x(tk)) +

∫ b

0

S(b− s)f 1(s)ds

+
∞∑
l=1

∫ b

0

S(b− s)σ1
l (s, (s), y(s))dBH

l (s)
)

+ S(ε)

∫ t−ε

0

S(t− s)f 1(s)ds

+
∞∑
l=1

S(ε)

∫ t−ε

0

S(t− s)σ1
l (s, x(s), y(s))dBH

l (s)

+S(ε)
∑

0<tk<t−ε

S(t− ε− tk)Ik(x(tk))

Since S(t) is a compact operator, the set

Hε = {h̃ε(t) = (hε(t), hε(t)) : h̃ε ∈ Nε(x, y) for each (x, y) ∈ Bq}
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is precompact. Now,

E
∣∣∣h(t)− hε(t)

∣∣∣2
X
≤ 3E

∣∣∣ ∫ t

t−ε
S(t− s)f 1(s)ds)

∣∣∣2
X

+3E
∣∣∣ ∞∑
l=1

∫ t

t−ε
S(t− s)σ1

l (s, x(s), y(s))dBH
l (s)

∣∣∣2
X

+3E
∣∣∣ ∑
t−ε<tk<t

S(t− tk)Ik(x(tk))
∣∣∣2
X

≤ 3M2

∫ t

t−ε
p1(s)ds

+3M2(cHH(2H − 1)ε2H−1

∫ t

t−ε
(α1q + β1q + c1))ds

+3M2m
∑

t−ε<tk<t

sup
z∈B(0,q)

E
∣∣∣Ik(z)

∣∣∣2
X
.

Similarly,

E
∣∣∣h(t)− hε(t)

∣∣∣2
X
≤ 3M2

∫ t

t−ε
p2(s)ds

+3M2(cHH(2H − 1)ε2H−1

∫ t

t−ε
(α2q + β2q + c2))ds

+3M2(m
∑

t−ε<tk<t

sup
z∈B(0,q)

E
∣∣∣Ik(z)

∣∣∣2
X

)

The right-hand side tends to 0, as ε → 0. Therefore, there are precompact sets arbi-
trarily close to the set H = {h̃(t) = (h(t), h(t)) : h̃ ∈ N(x, y) for each (x, y) ∈ Bq}.
This set is then precompact in X ×X.

Step 4.- N = (N1, N2) has a closed graph.
Let un = (xn, yn) −→ z∗ = (x∗, y∗),(hn, hn) ∈ N(un) and (hn, hn) −→ (h∗, h∗) as

n −→∞, we shall prove that h∗ ∈ N1(u∗). The fact that hn ∈ N1(un) and hn ∈ N2(un)
means that there exists f in ∈ SF i,un

for each i = 1, 2 such that

hn(t) = S(t)(I − S(b))−1
( ∑

0<tk<t

S(b− tk)Ik(xn(tk)) +

∫ b

0

S(b− s)f 1
n(s)ds

+
∞∑
l=1

∫ b

0

S(b− s)σ1
l (s, xn(s), yn(s))dBH

l (s)
)

+

∫ t

0

S(t− s)f 1
n(s)ds

+
∞∑
l=1

∫ t

0

S(t− s)σ1
l (s, xn(s), yn(s))dBH

l (s) +
∑

0<tk<t

S(t− tk)Ik(xn(tk))
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First, notice that

∥∥∥hn − S(t)(I − S(b))−1
( m∑
k=1

S(b− tk)Ik(xn(tk))

+
∞∑
l=1

∫ b

0

S(b− s)σ1
l (s, xn(s), yn(s))dBH

l (s)
)

−
∞∑
l=1

∫ t

0

S(t− s)σ1
l (s, xn(s), yn(s))dBH

l (s)−
∑

0<tk<k

S(t− tk)Ik(xn(tk))

− h∗ + S(t)(I − S(b))−1
( m∑
k=1

S(b− tk)Ik(x∗(tk))

−
∞∑
l=1

∫ t

0

S(t− s)σ1
l (s, x(s), y(s))dBH

l (s)

+
∞∑
l=1

∫ b

0

S(b− s)σ1
l (s, x∗(s), y∗(s))dB

H
l (s)

)
+
∑

0<tk<k

S(t− tk)Ik(x(tk))
∥∥∥
PC
−→ 0, as n −→ +∞.

Now, consider the continuous linear operator Γ : L2(J,X) −→ PC defined for each
i = 1, 2, by

Γ(υi)(t) = S(t)(I − S(b))−1

∫ b

0

S(b− s)υi(s)ds+

∫ t

0

S(t− s)υi(s)ds.

From the definition of Γ we know that

(
hn(t) − S(t)(I − S(b))−1

( m∑
k=1

S(b− tk)Ik(xn(tk)) +
∞∑
l=1

∫ b

0

S(b− s)σ1
l (s, xn(s), yn(s))dBH

l (s)
)

−
∞∑
l=1

∫ t

0

S(t− s)σ1
l (s, xn(s), yn(s))dBH

l (s)−
∑

0<tk<t

S(t− tk)Ik(xn(tk))
)
∈ Γ(SF 1,un

)

and

(hn(t) − S(t)(I − S(b))−1
( m∑
k=1

S(b− tk)Ik(yn(tk)) +
∞∑
l=1

∫ b

0

S(b− s)σ2
l (s, xn(s), yn(s))dBH

l (s)
)

−
∞∑
l=1

∫ t

0

S(t− s)σ2
l (s, xn(s), yn(s))dBH

l (s)−
∑

0<tk<t

S(t− tk)Ik(yn(tk))
)
∈ Γ(SF 2,un

)
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Since un = (xn, yn) −→ z∗ = (x∗, y∗) and Γ ◦ SF i is a closed graph operator thanks to
Lemma 2.4, then there exists f i∗ ∈ SF i,u∗ for each i = 1, 2, such that

h∗(t) = S(t)(I − S(b))−1
( m∑
k=1

S(b− tk)Ik(x∗(tk)) +

∫ b

0

S(b− s)f 1
∗ (s)ds

+
∞∑
l=1

∫ b

0

S(b− s)σ1
l (s, x∗(s), y∗(s))dB

H
l (s)

)
+

∫ t

0

S(t− s)f 1
∗ (s)ds

+
∞∑
l=1

∫ t

0

S(t− s)σ1
l (s, x∗(s), y∗(s))dB

H
l (s) +

∑
0<tk<t

S(t− tk)Ik(x∗(tk)).

Similarly,

h∗(t) = S(t)(I − S(b))−1
( m∑
k=1

S(b− tk)Ik(y∗(tk)) +

∫ b

0

S(b− s)f 2
∗ (s)ds

+
∞∑
l=1

∫ b

0

S(b− s)σ2
l (s, x∗(s), y∗(s))dB

H
l (s)

)
+

∫ t

0

S(t− s)f 2
∗ (s)ds

+
∞∑
l=1

∫ t

0

S(t− s)σ2
l (s, x∗(s), y∗(s))dB

H
l (s) +

∑
0<tk<t

S(t− tk)Ik(y∗(tk)).

Hence (h∗, h∗) ∈ (N1(u∗), N2(u∗)), proving our claim. Lemma 2.6 yields that N is
upper semicontinuous.

Now, we present our first result on the existence and compactness of solution set
of Problem (1.1).

Theorem 3.1. Assume that F i : [0, b] ×X ×X −→ Pc,cp(X) is a Carathèodory map
and (H1)− (H3) hold as well. Then, Problem (1.1) possesses at least one mild solution
on J. If further X is a reflexive space, then the solution set is compact in PC × PC.

Proof. Part 1.- Existence of solutions.
We transform Problem (1.1) into a fixed point problem. Consider the multivalued

operator N : PC × PC → P(PC × PC) defined in Lemma 3.2. It is clear that
all solutions of Problem (1.1) are fixed points of the multivalued operator N defined
previously. We shall show that N satisfies assumptions of Lemma 2.11. Since for each
(x, y) ∈ PC × PC, the nonlinearity F i takes convex values, the selection set SF i,u

is convex, and therefore N has convex values. From Lemma 3.2, N is completely
continuous and u.s.c.

Let us now obtain some a priori bounds on solutions. Let (x, y) ∈ PC × PC be a
solution of the abstract nonlinear equation x ∈ N1(x, y) and y ∈ N2(x, y). Then there
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exists f i ∈ SF i for t ∈ [0, b] for each i = {1, 2}, namely

x(t) = S(t)(I − S(b))−1
( m∑
k=1

(S(b− tk))Ik(x(tk))

+

∫ b

0

S(b− s)f 1(s)ds+
∞∑
l=1

∫ b

0

S(b− s)σ1
l (s, x(s), y(s))dBH

l (s)
)

+

∫ t

0

S(t− s)f 1(s)ds+
∞∑
l=1

∫ t

0

S(t− s)σ1
l (s, x(s), y(s))dBH

l (s)

+
∑

0<tk<t

S(t− tk)Ik(x(tk))

and

y(t) = S(t)(I − S(b))−1
(∑
k=1

(S(b− tk))Ik(y(tk))

+

∫ b

0

S(b− s)f 2(s)ds+
∞∑
l=1

∫ b

0

S(b− s)σ2
l (s, x(s), y(s))dBH

l (s)
)

+

∫ t

0

S(t− s)f 2(s)ds+
∞∑
l=1

∫ t

0

S(t− s)σ2
l (s, x(s), y(s))dBH

l (s)

+
∑

0<tk<t

S(t− tk)Ik(y(tk)).

We first obtain an estimation for the third part,

E|x(t)|2X = E
∣∣∣S(t)(I − S(b))−1

( m∑
k=1

(S(b− tk))Ik(x(tk)) +

∫ b

0

S(b− s)f 1(s)ds

+
∞∑
l=1

∫ b

0

S(b− s)σ1
l (s, x(s), y(s))dBH

l (s)
)

+

∫ t

0

S(t− s)f 1(s)ds

+
∞∑
l=1

∫ t

0

S(t− s)σ1
l (s, x(s), y(s))dBH

l (s) +
∑

0<tk<t

S(t− tk)Ik(x(tk))
∣∣∣2
X

≤ 12M4
∥∥∥(I − S(b))−1

∥∥∥2(
m

m∑
k=1

(dkE|x(tk)|2X + ek) + ‖p1‖L1

+cHH(2H − 1)b2H(α1E|x(t)|2X + β1E|y(t)|2X + c1)
)

+ 4M2‖p1‖L1

+4M2cHH(2H − 1)b2H(α1E|x(t)|2X + β1E|y(t)|2X + c1)

+4M2m
m∑
k=1

(dkE|x(tk)|2X + ek).
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Similarly,

E|y(t)|2X ≤ 12M4
∥∥∥(I − S(b))−1

∥∥∥2(
m

m∑
k=1

(dkE|y(tk)|2X + ek) + ‖p2‖L1

+cHH(2H − 1)b2H(α2E|x(t)|2X + β2E|y(t)|2X + c2)
)

+ 4M2‖p1‖L1

+4M2cHH(2H − 1)b2H(α2E|x(t)|2X + β2E|y(t)|2X + c2)

+4M2m

m∑
k=1

(dkE|y(tk)|2X + ek).

Consider the function µ, µ defined on J by

µ(t) = sup{E|x(s)|2X : 0 ≤ s ≤ t} and µ(t) = sup{E|y(s)|2X : 0 ≤ s ≤ t}.

This implies, for each t ∈ J ,

µ(t) ≤ 12M4
∥∥∥(I − S(b))−1

∥∥∥2(
m

m∑
k=1

(dkµ(t) + ek) + ‖p1‖L1

+cHH(2H − 1)b2H(α1µ(t) + β1µ(t) + c1)
)

+ 4M2‖p1‖L1

+4M2(cHH(2H − 1)b2H(α1µ(t) + β1µ(t) + c1)

+4M2m
m∑
k=1

(dkµ(t) + ek)

= 12M4
∥∥∥(I − S(b))−1

∥∥∥2(
m

m∑
k=1

ek + ‖p1‖L1 + cHH(2H − 1)b2Hc1

)
+µ(t)

(
12M4m

∥∥∥(I − S(b))−1
∥∥∥2

(
m∑
k=1

dk + cHH(2H − 1)b2Hα1)

+4M2(cHH(2H − 1)b2Hα1 + 4M2m
m∑
k=1

dk

)
+µ(t)

(
12M4

∥∥∥(I − S(b))−1
∥∥∥2

cHH(2H − 1)b2Hβ1 + 4M2cHH(2H − 1)b2Hβ1

)
= K1 +K2µ(t) +K3µ(t)

There exist constants Kj, Kj for each j=1,2,3 defined as follows

K1 = 12M4
∥∥∥(I − S(b))−1

∥∥∥2(
m

m∑
k=1

ek + ‖p1‖L1 + cHH(2H − 1)b2Hc1

)
and

K2 = 4M4
∥∥∥(I − S(b))−1

∥∥∥2

(m
m∑
k=1

dk + cHH(2H − 1)b2Hα1)
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+4M2(cHH(2H − 1)b2Hα1 + 4M2m

m∑
k=1

dk

and

K3 = 12mM4
∥∥∥(I − S(b))−1

∥∥∥2

cHH(2H − 1)b2Hβ1 + 4M2(cHH(2H − 1)b2Hβ1.

Similarly,

µ(t) ≤ 12M4
∥∥∥(I − S(b))−1

∥∥∥2(
m

m∑
k=1

ek + ‖p2‖L1 + cHH(2H − 1)b2Hc2

)
+ µ(t)

(
12M4

∥∥∥(I − S(b))−1
∥∥∥2

(m
m∑
k=1

dk + cHH(2H − 1)b2Hβ2)

+ 4M2(cHH(2H − 1)b2Hβ2 + 4M2
∑

0<tk<t

dk

)
+ µ(t)

(
4M4

∥∥∥(I − S(b))−1
∥∥∥2

cHH(2H − 1)b2Hα2 + 4M4cHH(2H − 1)b2Hα2

)
= K1 +K2µ(t) +K3µ(t)

where

K1 = 12mM4
∥∥∥(I − S(b))−1

∥∥∥2( ∑
0<tk<t

ek + ‖p2‖L1 + cHH(2H − 1)b2Hc2

)
and

K2 = 12M4
∥∥∥(I − S(b))−1

∥∥∥2

cHH(2H − 1)b2Hα2 + 4M4cHH(2H − 1)b2Hα2

and

K3 =
(

12M4
∥∥∥(I − S(b))−1

∥∥∥2

(m
m∑
k=1

dk + cHH(2H − 1)b2Hβ2)
)

+4M2
(
cHH(2H − 1)b2Hβ2 + 4M2m

m∑
k=1

dk

)
.

On the other hand,

µ(t) + µ(t) ≤ K̃1 + K̃2(µ(t) + µ(t))

Thus, we have

µ(t) + µ(t) ≤ K̃1

1− K̃2

= M∗
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the maximum being taken componentwise, and K̃2 is a suitable value lower than 1

K̃1 = K1 +K1 K̃2 = max{K2 +K2, K3 +K3} < 1.

Thus

E|x(t)|2X + E|y(t)|2X ≤ M∗,

and, consequently,

‖x‖2
PC ≤M∗ and ‖y‖2

PC ≤M∗.

Let

U = {(x, y) ∈ PC × PC : ‖x‖2
PC < M∗ + 1 and ‖y‖2

PC < M∗ + 1}

and consider the operator N : U → Pc,cp(PC × PC). From the choice of U , there is
no (x, y) ∈ ∂U such that x ∈ λN1(x, y) and y ∈ λN2(x, y) for some λ ∈ (0, 1). As a
consequence of the Leray and Schauder nonlinear alternative (Lemma 2.11), we deduce
that N has a fixed point (x, y) in U , solution of Problem (1.1).

Part 2.- Compactness of the solution set. Let

SF = {(x, y) ∈ PC × PC : (x, y) is a solution of Problem (1.1)}

From Part 1, SF 6= ∅ and there exists M∗ such that for every (x, y) ∈ SF ,‖x‖2
PC ≤

M∗ and ‖y‖2
PC ≤M∗. SinceN is completely continuous, thenN(SF ) = (N1(SF 1), N2(SF 2))

is relatively compact in PC × PC. Let (x, y) ∈ SF then (x, y) ∈ N(x, y) and
SF ⊂ N(SF ). It remains to prove that SF is a closed set in PC×PC. Let (xn, yn) ∈ SF
such that (xn, yn) converges to (x, y). For every n ∈ N , there exists υin(t) ∈ F i(t, xn, yn)
a.e. t ∈ J for each i ∈ {1, 2} such that

xn(t) = S(t)(I − S(b))−1
( m∑
k=1

(S(b− tk))Ik(xn(tk))

+

∫ b

0

S(b− s)υ1
n(s)ds+

∞∑
l=1

∫ b

0

S(b− s)σ1
l (t, xn(s), yn(s))dBH

l (s)
)

+

∫ t

0

S(t− s)υ1
n(s)ds+

∞∑
l=1

∫ t

0

S(t− s)σ1
l (s, xn(s), yn(s))dBH

l (s)

+
∑

0<tk<t

S(t− tk)Ik(xn(tk)),
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and

yn(t) = S(t)(I − S(b))−1
( m∑
k=1

(S(b− tk))Ik(yn(tk))

+

∫ b

0

S(−s)υ2
n(s)ds+

∞∑
l=1

∫ b

0

S(b− s)σ2
l (t, xn(s), yn(s))dBH

l (s)
)

+

∫ t

0

S(t− s)υ2
n(s)ds+

∞∑
l=1

∫ t

0

S(t− s)σ2
l (s, xn(s), yn(s))dBH

l (s)

+
∑

0<tk<t

S(t− tk)Ik(yn(tk)).

(H2) implies that for a.e. t ∈ J , |υin|X ≤ pi(t), i = 1, 2, hence (υin)n∈N is integrably
bounded. Note that this still remains true when SF is a bounded set. Since X is
reflexive, by Theorem 2.1, there exists a subsequence, still denoted by (υin)n∈N , which
converges weakly to some limit υi ∈ L2(J,X). Moreover, the mapping Γ : L2(J,X) −→
PC defined by

Γ(gi)(t) =

∫ t

0

S(t− s)gi(s)ds

is a continuous linear operator. Then it remains continuous if these spaces are endowed
with their weak topologies [10]. Therefore for a.e. t ∈ J , the sequence (xn(t), yn(t))
converges strongly to (x(t), y(t)) and by the continuity of (Ik, Ik) (which we assumed
in (H3)) it follows that

x(t) = S(t)(I − S(b))−1
( ∑

0<tk<t

(S(b− tk))Ik(x(tk))

+

∫ b

0

S(t− s)υ1(s)ds+
∞∑
l=1

∫ b

0

S(t− s)σ1
l (t, x(s), y(s))dBH

l (s)
)

+

∫ t

0

S(t− s)υ1(s)ds+
∞∑
l=1

∫ t

0

S(t− s)σ1
l (s, x(s), y(s))dBH

l (s)

+
∑

0<tk<t

S(t− tk)Ik(x(tk)),
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and

y(t) = S(t)(I − S(b))−1
( ∑

0<tk<t

(S(b− tk))Ik(y(tk))

+

∫ b

0

S(t− s)υ2(s)ds+
∞∑
l=1

∫ b

0

S(t− s)σ2
l (t, x(s), y(s))dBH

l (s)
)

+

∫ t

0

S(t− s)υ2(s)ds+
∞∑
l=1

∫ t

0

S(t− s)σ2
l (s, x(s), y(s))dBH

l (s)

+
∑

0<tk<t

S(t− tk)Ik(y(tk)).

Now we need to prove that υi(t) ∈ F i(t, x(t), y(t)), for a.e. t ∈ J. Lemma 2.9 yields the

existence of constants αni ≥ 0, j = 1, 2 . . . , k(n) and i = 1, 2 such that

k(n)∑
j=1

αni = 1 and

the sequence of convex combinations gin(.) =

k(n)∑
j=1

αnj υ
i
j(.) converges strongly to some

limit υi ∈ L2(J,X). Since F i takes convex values, using Lemma 2.8, we obtain that

υi(t) ∈
⋂
n≥1

{gik(t) : k ≥ n}, a.e t ∈ J

⊆
⋂
n≥1

co{υik(t), k ≥ n}

⊆
⋂
n≥1

co{
⋃
k≥n

F i(t, xk(t), yk(t))}

⊆ co{lim sup
k→∞

F i(t, xk(t), yk(t))}. (3.2)

Since F i is u.s.c. and has compact values, then by Lemma 2.7, we have

lim sup
n→∞

F i(t, xn(t), yn(t)) ⊆ F i(t, x(t), y(t)) for a.e t ∈ J.

This and (3.2) imply that υi(t) ∈ co(F i(t, x(t), y(t))). Since, for each i = 1, 2 , F i(., .)
has closed, convex values, we deduce that υi(t) ∈ F i(t, x(t), y(t)) for a.e. t ∈ J , for
each i = 1, 2 as claimed. Hence (x, y) ∈ SF i which proves that SF i , for each i = 1, 2, is
closed, hence compact in PC × PC.

For the next result we can prove the a priori estimates of solution for problem (1.1)
by similar arguments to those used to prove Theorem 3.1 in Djebali et al. [18], so we
omit the proof.
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Theorem 3.2. Assume hypotheses in Lemma 3.2 hold, but replacing (H1), (H3) by the
next ones:

(H̄1) There exist positive constants αi and βiand ci for each i = 1, 2 and γ1, γ2 ∈ [0, 1)
such that

E‖σ1(t, x, y)‖2
X ≤ α1(E|x|X)γ1 + β1(E|y|X)γ2 + c1,

E‖σ2(t, x, y)‖2 ≤ α2(E|x|X)γ̄1 + β2(E|y|X)γ̄2 + c2,

and
∞∑
l=1

∫ b

0

‖σ1
l (t, x, y)‖2

L0
Q
dt <∞

for all X−valued stochastic processes x, y ∈ X and t ∈ J.

(H̄3) There exist constants dk, dk ≥ 0 and ek, ek ≥ 0, νk, ν̄k ∈ [0, 1) for each k =
1, . . . ,m such that

E|Ik(x)|2X ≤ dkE|x|νk
X + ek, E|Ik(y)|2X ≤ dkE|y|ν̄k

X + ek,

for all X-valued stochastic process x, y ∈ X.

Then, Problem (1.1) has at least one mild solution.

3.2 The nonconvex case

Now we present a second result for the problem (1.1) with a nonconvex valued right-
hand side. Our considerations are based on a multivalued version of Perov’s fixed point
theorem proved by Petre and Petruşel [39] (see also Ouahab [35]).

Definition 3.2. Let (X, d) be a generalized metric space. An operator N : X → X is
said to be contractive if there exists a matrix M convergent to zero such that

d(N(x), N(y)) ≤Md(x, y) for all x, y ∈ X.

Theorem 3.3. Let (X, d) be a generalized complete metric space, and let F : X →
Pcl(X) be a multivalued map. Assume that there exist A,B,C ∈Mn×n(R+) such that

Hd(F (x), F (y)) ≤ Ad(x, y) +Bd(y, F (x)) + Cd(x, F (x)) (3.3)

where A+ C converge to zero. Then there exists x ∈ X such that x ∈ F (x).

Let us introduce the following hypotheses:

(H4) F i : J ×X ×X −→ Pcp(X); (t, y) −→ F i(t, x, y) is measurable for each (x, y) ∈
X ×X.
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(H5) There exist functions ai, bi ∈ L1([0, T ],R+) such that{
H2
d1

(F 1(t, x, y), F 1(t, x, y)) ≤ a1(t)|x− x|2X + b1(t)|y − y|2X
H2
d2

(F 2(t, x, y), F 2(t, x, y)) ≤ a2(t)|x− x|2X + b2(t)|y − y|2X

with
di(0, F

i(t, 0, 0) ≤ ai(t)

for all x, y, x, y ∈ X for each i = 1, 2

(H6) There exist functions αi, βi ∈ L1([0, T ],R+) for each i = 1, 2 such that{
‖σ1(t, x, y)− σ1(t, x, y)‖2 ≤ α1(t)‖x− x‖2 + β1(t)‖y − y‖2

‖σ2(t, x, y)− σ2(t, x, y)‖2 ≤ α2(t)‖x− x‖2 + β2(t)‖y − y‖2

for all x, y, x, y ∈ X and t ∈ J.

(H7) there exist constants dk ≥ 0 and dk ≥ 0, k = 1, . . . ,m such that

|Ik(x)− Ik(x)|2X ≤ dk|x− x|2X

and
|Ik(y)− Ik(y)|2 ≤ dk|y − y|2X

for all x, y, x, y ∈ X.

Theorem 3.4. Assume that hypotheses (H4)-(H7) are fulfilled, and let A1, A2, B1, B2

be defined by

A1 = 2M

√√√√√√√√√√√
3m‖(I − S(b))−1‖2

m∑
k=1

dk + 3M2‖(I − S(b))−1‖2‖a1‖L1

+3M2‖(I − S(b))−1‖2cHH(2H − 1)b2H−1‖α1‖L1

+‖a1‖L1 + cHH(2H − 1)b2H−1‖α1‖L1 +m
m∑
k=1

dk

A2 = 2M

√
‖b1‖L1 + 3M2‖(I − S(b))−1‖2cHH(2H − 1)b2H−1‖β1‖L1

+‖b1‖L1 + cHH(2H − 1)b2H−1‖β1‖L1

B1 = 2M

√√√√√√√√√√√
3m‖(I − S(b))−1‖2

m∑
k=1

d̄k + 3M2‖(I − S(b))−1‖2‖a2‖L1

+3M2‖(I − S(b))−1‖2cHH(2H − 1)b2H−1‖α2‖L1

+‖a2‖L1 + cHH(2H − 1)b2H−1‖α2‖L1 +m
m∑
k=1

d̄k
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and

B2 = 2M

√
‖b2‖L1 + 3M2‖(I − S(b))−1‖2cHH(2H − 1)b2H−1‖β2‖L1

+‖b2‖L1 + cHH(2H − 1)b2H−1‖β1‖L1
.

If the matrix

Mα,β =

(
A1 A2

B1 B1

)
converges to zero, then problem (1.1) has at least one mild solution.

Proof. In order to transform the problem (1.1) into a fixed point problem, let the
multivalued operator N : PC × PC → P(PC × PC) be defined as in Lemma 3.2. We
shall show that N satisfies the assumptions of Theorem 3.3. Note that (H4) implies
that F i, for each i = 1, 2 has at most linear growth, i.e.

E|F i(t, x, y)|2X ≤ ai(t)E|x|2X + bi(t)E|y|2X
for a.e. t ∈ J and all x, y ∈ X

(a) N(x, y) ∈ Pcl(PC × PC) for each (x, y) ∈ PC × PC . The proof is similar to
that in Theorem 3.1, Part 1, and is omitted.

(b) There exists Mα,β ∈M2×2(R+) convergent matrix to zero, such that

Hd(N(x, y), N(x, y)) ≤Mα,β

(
‖x− x‖PC
‖y − y‖PC

)
, for all x, y, x, y ∈ PC.

Let x, y, x, y ∈ PC and hi ∈ Ni(x, y), i = 1, 2. Then there exists f i(·) ∈ SF i,x,y such
that for each t ∈ J , we have

hi(t) = S(t)(I − S(b))−1
( m∑
k=1

(S(b− tk))Ĩk(zi(tk))

+

∫ b

0

S(b− s)f i(s)ds+
∞∑
l=1

∫ b

0

S(b− s)σil(t, x(s), y(s))dBH
l (s)

)
+

∫ t

0

S(t− s)f i(s)ds+
∞∑
l=1

∫ t

0

S(t− s)σil(t, x(s), y(s))dBH
l (s)

+
∑

0<tk<t

S(t− tk)Ĩk(zi(tk))

where

Ĩk(z1(tk)) = Ik(x(tk)), and Ĩk(z2(tk)) = Ik(y(tk)), k = 1, . . . ,m.

From (H5),{
EH2

d1
(F (t, x, y), F (t, x, y)) ≤ a1(t)E|x− x|2X + b1(t)E|y − y|2X , a.e. t ∈ J,

EH2
d2

(F (t, x, y), F (t, x, y)) ≤ a2(t)E|x− x|2X + b2(t)E|y − y|2X , a.e. t ∈ J.
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Hence there is (w,w) ∈ F 1(t, x(t), y(t))× F 2(t, x(t), y(t)) such that

E|f 1(t)− w|2X ≤ a1(t)E|x− x|2X + b1(t)E|y − y|2X , t ∈ J,

and

E|f 2(t)− w|2 ≤ a2(t)E|x− x|2X + b2(t)E|y − y|2X , t ∈ J.

Consider the multivalued maps Ui : J → P(X), i = 1, 2 defined by

U1(t) = {w ∈ F 1(t, x(t), y(t)) : E|f 1(t)−w|2 ≤ a1(t)E|x−x|2X+b1(t)E|y−y|2X a.e t ∈ J}

and

U2(t) = {w ∈ F 2(t, x(t), y(t)) : E|f 2(t)−w|2 ≤ a2(t)E|x−x|2X+b2(t)E|y−y|2X , a.e t ∈ [0, b]}

that is U1 = B(f 1(t), a1(t)E|x − x|2X + b1(t)E|y − y|2X) and U2 = B(f 2(t), a2(t)E|x −
x|2X+b2(t)E|y−y|2X). Since f i, ai, bi, x, y, x, y are measurable for each i = 1, 2, Theorem
III.4.1 in [12], ensures that the closed ball Ui is measurable. In addition (H4) and (H5)
imply that for each (x, y) ∈ PC × PC and F i(t, x(t), y(t)) is measurable. Finally, the
set Vi(.) = Ui(.) ∩ F i(., x(.), y(.)) is nonempty. Therefore the intersection multivalued
operator Vi is measurable with nonempty, closed values (see [25]), there exists a function

f
i
(t) which is a measurable selection for Vi(.). Thus

f
i
(t) ∈ F i(t, x(t), y(t)) for a.e. t ∈ J.

Hence

E|f 1(t)− f 1
(t)|2X ≤ a1(t)E|x− x|2X + b1(t)E|y − y|2X , for a.e. t ∈ J.

and

E|f 2(t)− f 2
(t)|2X ≤ a2(t)E|x− x|2X + b2(t)E|y − y|2X , for a.e. t ∈ J.

Therefore

hi(t) = S(t)(I − S(b))−1
( m∑
k=1

(S(b− tk))Ĩk(zi(tk)) +

∫ b

0

S(b− s)f i(s)ds

+
∞∑
l=1

∫ b

0

S(b− s)σil(t, x(s), y(s))dBH
l (s)

)
+

∫ t

0

S(t− s)f i(s)ds

+
∞∑
l=1

∫ t

0

S(t− s)σil(t, x(s), y(s))dBH
l (s) +

∑
0<tk<t

S(t− tk)Ĩk(zi(tk)).
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This implies that

E|h1(t)− h1(t)|2X

= E
∣∣∣S(t)(I − S(b))−1

( m∑
k=1

(S(b− tk))Ik(x(tk))

+

∫ b

0

S(b− s)f 1(s)ds+
∞∑
l=1

∫ b

0

S(b− s)σ1
l (t, x(s), y(s))dBH

l (s)
)

+

∫ t

0

S(t− s)f 1(s)ds+
∞∑
l=1

∫ t

0

S(t− s)σ1
l (t, x(s), y(s))dBH

l (s)

+
∑

0<tk<t

S(t− tk)Ik(x(tk))− S(t)(I − S(b))−1
( m∑
k=1

(S(b− tk))Ik(x(tk))

+

∫ b

0

S(b− s)f 1
(s)ds+

∞∑
l=1

∫ b

0

S(b− s)σ1
l (t, x(s), y(s))dBH

l (s)
)

−
∫ t

0

S(t− s)f 1
(s)ds−

∞∑
l=1

∫ t

0

S(t− s)σ1
l (t, x(s), y(s))dBH

l (s)

−
∑

0<tk<t

S(t− tk)Ik(x(tk))
∣∣∣2
X
.

Then

E|h1(t)− h1(t)|2X

≤ 4E
∣∣∣S(t)(I − S(b))−1

( m∑
k=1

(S(b− tk))(Ik(x(tk))− Ik(x(tk))

+

∫ b

0

S(b− s)(f 1(s)− f 1
(s))ds

+
∞∑
l=1

∫ b

0

S(b− s)(σ1
l (t, x(s), y(s))− σ1

l (t, x(s), y(s)))dBH
l (s)

)∣∣∣2
+4E

∣∣∣ ∫ t

0

S(t− s)(f 1(s)− f 1
(s))ds

∣∣∣2
+4E

∣∣∣ ∞∑
l=1

∫ t

0

S(t− s)(σ1
l (t, x(s), y(s))− σ1

l (t, x(s), y(s)))dBH
l (s)

∣∣∣2
+4E

∣∣∣ ∑
0<tk<t

S(t− tk)(Ik(x(tk))− Ik(x(tk))
∣∣∣2.
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From (2.8) and (H5)− (H8),

E|h1(t)− h1(t)|2X ≤ 12M4m‖(I − S(b))−1‖2

m∑
k=1

dkE|x(tk)− x(tk)|2X

+12M4‖(I − S(b))−1‖2
(∫ b

0

a1(s)E|x(s)− x(s)|2X

+b1(s)E|y(s)− y(s)|2Xds
)

+12M4‖(I − S(b))−1‖2cHH(2H − 1)b2H−1
(∫ b

0

α1(s)E|x(s)− x(s)|2X

+β1(s)E|y(s)− y(s)|2Xds
)

+4M2
(∫ t

0

a1(s)E|x(s)− x(s)|2X + b1(s)E|y(s)− y(s)|2Xds
)

+4M2cHH(2H − 1)b2H−1

∫ t

0

α1(s)E|x(s)− x(s)|2X + β1(s)E|y(s)− y(s)|2Xds

+4mM2

m∑
k=1

dkE|x(tk)− x(tk)|2X .

Taking the supremum, we have

sup
t∈J

E|h1(t)− h1(t)|2X ≤ 4M2
(

3m‖(I − S(b))−1‖2

m∑
k=1

dk + 3M2‖(I − S(b))−1‖2‖a1‖L1

+ 3M2‖(I − S(b))−1‖2cHH(2H − 1)b2H−1‖α1‖L1

+ ‖a1‖L1 + cHH(2H − 1)b2H−1‖α1‖L1 +m

m∑
k=1

dk

)
sup
t∈J

E|x(t)− x(t)|2X

+4M2
(
‖b1‖L1 + 3M2‖(I − S(b))−1‖2cHH(2H − 1)b2H−1‖β1‖L1

+‖b1‖L1 + cHH(2H − 1)b2H−1‖β1‖L1

)
sup
t∈J

E|y(t)− y(t)|2X .

Hence

‖h1 − h1‖PC ≤ A1‖x− x‖PC + A2‖y − y‖PC ,
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and similarly

sup
t∈J

E|h2(t)− h2(t)|2X ≤ 4M2
(

3m‖(I − S(b))−1‖2

m∑
k=1

d̄k + 3M2‖(I − S(b))−1‖2‖a2‖L1

+ 3M2‖(I − S(b))−1‖2cHH(2H − 1)b2H−1‖α2‖L1

+ ‖a2‖L1 + cHH(2H − 1)b2H−1‖α2‖L1 +m
m∑
k=1

d̄k

)
sup
t∈J

E|y(t)− y(t)|2X

+4M2
(
‖b2‖L1 + 3M2‖(I − S(b))−1‖2cHH(2H − 1)b2H−1‖β2‖L1

+‖b2‖L1 + cHH(2H − 1)b2H−1‖β1‖L1

)
sup
t∈J

E|x(t)− x(t)|2X .

Therefore

‖h2 − h2‖PC ≤ B1‖x− x‖PC +B2‖y − y‖PC .

By an analogous relation, obtained by exchanging the roles of x, y and x, y, we
finally arrive at

Hd(N(x, y), N(x, y)) ≤Mα,β

(
‖x− x‖PC
‖y − y‖PC

)
,

where

Mα,β =

(
A1 A2

B1 B1

)
.

Since Mα,β converges to zero, thanks to Theorem 3.3, we can ensure that N has a
fixed point (x, y), which is a mild solution to (1.1).

4 An example

In this section we use the abstract results proved in the above section to study the
existence of mild solution for an impulsive Stokes differential inclusion.

Let D ⊂ R3 be a bounded open domain with the smooth boundary ∂D and and let
n(x) be the outward normal to D at the point x ∈ ∂D. Let

X = {u ∈ (C∞c (D))3 : ∇u = 0 in Ω and n · u = 0 on ∂D},

and let E = Y
(L2(D))3

be the closure of Y in (L2(D))3. It is clear that, endowed with
the standard inner product of the space (L2(D))3, defined by

〈u, v〉 =
3∑
i=1

〈ui, vi〉L2(D),
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E is a Hilbert space. Let P : (L2(D))3 → X denote the orthogonal projection of
(L2(D))3 onto X.

Consider the following system of impulsive stochastic Stokes type partial differential
inclusions:

ut − P (∆u) ∈ F (t, u(t, x), v(t, x)) + σ1(t)
dBH

Q

dt
, a.e. t ∈ [0, b], x ∈ D,

vt − P (∆v) ∈ G(t, u(t, x), v(t, x)) + σ2(t)
dBH

Q

dt
, a.e. t ∈ [0, b], x ∈ D,

u(t+k , x)− u(t−k , x) = Ik(u(tk, x)),
v(t+k , x)− v(tk, x) = Ik(v(tk, x)), k = 1, . . . ,m
∇u = ∇v = 0, (t, x) ∈ [0, b]× ∂D

u = v = 0, (t, x) ∈ [0, b]× ∂D
u(0, x) = u(b, x), v(0, x) = v(b, x) x ∈ D,

(4.1)
where P (∆) is the Stokes operator. Let A : D(A) ⊂ X → X defined by{

D(A) = (H2(D) ∩H1
0 (D))3 ∩X

Au = −P (∆u), u ∈ D(A).

Lemma 4.1. (Fujita-Kato)(Theorem 7.3.4, [36]) The operator A, defined as above, is
the generator of a compact and analytic C0-semigroup of contractions in X.

Let us assume that

(K1) Let fi, gi : [0, b]×D × R× R→ R, i = 1, 2 are functions such that

f1(t, x, u, v) ≤ f2(t, x, u, v), g1(t, x, u, v) ≤ g2(t, x, u, v), for all (t, x, u, v) ∈ [0, b]×D×R×R.

(K2) there exist φi, ψi ∈ L1([0, b],R+) ∩ L∞([0, b],R+) such that

|fi(t, x, u, v)| ≤ φi(t) and |gi(t, x, u, v)| ≤ ψi(t), i = 1, 2

for each (t, x, u, v) ∈ [0, b]×D × R× R.

(K3) f1, g1 are l.s.c and f2, g2 are u.s.c.

(K4) The function σ, σ1 : [0, b] −→ L2
Q(K,H) is bounded, that is, there exists a positive

constant L such that ∫ b

0

‖σi(s)‖2
L2

Q
ds < Li, i = 1, 2.

Lemma 4.2. [13] Let fi, gi : [0, b]×D × R× R→ R, i = 1, 2 be functions satisfying
(K2) − (K3). Let F : G : [0, b] × L2(D) × L2(D) → P(L2(D)) be multivalued maps
defined by

F (t, u, v) = {f ∈ L2(D) : f(x) ∈ [f1(t, x, u, v), f2(t, x, u, v]}
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and

G(t, u, v) = {g ∈ L2(D) : g(x) ∈ [g1(t, x, u, v), g2(t, x, u, v)])}.

Then F and G are nonempty, u.s.c. with weakly compact and convex values. Moreover
F (., ., .), G(., ., .) ∈ Pcl,b,cv(L2(D)).

Let

x(t)(ξ) = u(t, ξ) t ∈ J, ξ ∈ D,

Ik(x(tk)) = Kk
u(t−k , ξ)

1 + |u(t−k , .)|X
, ξ ∈ D, k = 1, · · · ,m,

Ik(y(tk)) = K̄k
v(t−k , ξ)

1 + |v(t−k , )|X
, ξ ∈ Ω, k = 1, · · · ,m,

x(0)(ξ) = u(0, ξ) = u(b, ξ) = x(b)(ξ), y(0)(ξ) = v(0, ξ) = v(b, ξ) = y(b)(ξ) ξ ∈ D,

where Kk, K̄k ∈ R, k = 1, . . . ,m. Assume that (K1)− (K4) are satisfied. Thus problem
(4.1) can be written in the abstract form

x′(t)− A1x(t) ∈ F1(t, x(t), y(t)) + σ1(t)
dBH

Q

dt
, t ∈ [0, b]

y′(t)− A2y(t) ∈ F2(t, x(t), y(t)) + σ2(t)
dBH

Q

dt
, t ∈ [0, b],

x(t+k )− x(t−k ) ∈ Ik(x(tk)),
y(t+k )− y(t−k ) ∈ Ik(y(tk)), k = 1, . . . ,m

x(0) = x0, y(0) = y0.

(4.2)

where A1 = A2 = A. Since for each k = 1, . . . ,m we have

|Ik(x)| =
∣∣∣Kk

x

1 + |x|X

∣∣∣
X
≤ |Kk|, |Īk(x)| =

∣∣∣K̄k
x

1 + |x|X

∣∣∣
X
≤ |K̄k|, for all x ∈ X.

Then, Theorem 3.1 ensures that problem (4.1) possesses at least on solution.
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63723-P and the Consejeŕıa de Innovación, Ciencia y Empresa (Junta de Andalućıa)
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[39] I.R. Petre and A. Petruşel, Krasnoselskii’s theorem in generalized Banach spaces
and applications, Electron. J. Qual. Theory Differ. Equ. (2012), 8

¯
5, 20 pp.

[40] I.A. Rus, The theory of a metrical fixed point theorem: theoretical and applicative
relevances, Fixed Point Theory 9 (2008), 541–559.

[41] H. Sobczyk, Stochastic Differential Equations with Applications to Physics and
Engineering, Kluwer Academic Publishers, London, 1991.

[42] M.L. Sinacer,J.J. Nieto and A. Ouahab, Random fixed point theorem in general-
ized Banach space and applications, Ran. Ope. Sto. Eq., 24 (2016), 93–112.

[43] C. P. Tsokos, W.J. Padgett, Random Integral Equations with Applications to Life
Sciences and Engineering, Academic Press, New York, 1974.

[44] D. Wagner, Survey of measurable selection theorems, SIAM J. Control Optim. 15
(1977), 859–903.

[45] S.J. Wu, X.L. Guo, S. Q. Lin, Existence and uniqueness of solutions to random
impulsive differential systems, Acta Mathematicae Applicatae Sinica, 22 (2006),
595–600.


