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Abstract. In this paper, we consider the environmental defensive expenditures model with delay
proposed by Russu in [15] and obtain different results about stability of equilibria in the case of
absence of delay. Moreover we provide a more detailed analysis of the stability for equilibria and
Hopf bifurcation in the case with delay. Finally, we discuss possible modifications of the model
in order to make it more accurate and realistic.

1. Introduction. We consider a model introduced in [15] that deals with management of tourism
in protected areas (PAs). The model is based on the interactions among visitors V , quality of
ecosystem goods E, and capital K, intended as accommodation and entertainment facilities in
PAs, which is described by the system:















·

V = m1E +m2K − aV 2,
·

E = r
(

P̄ − E
)

− (b − cη)Vd,
·

K = (1− η)Vd − δK,

(1)

where Vd = V (t − τ), τ ≥ 0 is the time delay and P̄ is the maximum tolerable pollution stock P ;
m1,m2, a, b, c, η, δ, P̄ are strictly positive constants, 0 ≤ η < 1 and 0 < r < 1. A detailed discussion
of the model can be found in [15] but it is worth mentioning that a part, η, of total revenues is
invested to defend the environmental resources while the other part,(1− η), is used to increase the
capital stock K. Also, we point out that the quality of ecosystem goods is measured as E = P̄ −P .
The idea is to study the stability of the model, that is the sustainability of the tourism in PAs,
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project MTM2015-63723-P and the Consejeŕıa de Innovación, Ciencia y Empresa (Junta de Andalućıa) under grant
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2 SOME REMARKS ON AN ENVIRONMENTAL DEFENSIVE EXPENDITURES MODEL

depending on the parameters involved (see also [1], [2], [6]-[10], for more general discussions on this
the topic). For this reason the existence and stability of positive equilibria play a crucial role in
this context. Our analysis of the equilibria is different from that in [15], in particular we find a
necessary and sufficient condition for the existence of a positive equilibrium (V∞, E∞,K∞) inside
R

+ × (0, P̄ )× R
+ that is (see next section for details):

b− cη > 0, P̄ aδr −m2(1− η)(b − cη) > 0,

which is in contrast with (a) of Proposition 1 in [15]. We also consider interesting to revise (in
section 3 below) the bifurcation analysis for τ > 0 providing more detailed results with respect to
those in [15]. Moreover we prove the existence of stability switches for the fixed point in the model
with delay. We did not prove that the hypotheses are compatible with the positiveness of E∞, but
still we consider the result interesting enough. In fact, in an attempt of using the model in real
cases, the existence of stability switches makes the strategy of the managers of PAs more complicate
in order to stabilize the system (see section 3 below). In section 5 of this work we discuss some
critical issues about the model and propose some changes in order to improve it.

2. Fixed point and stability analysis with τ = 0. The steady states of system (1) in absence
of delay are obtained as non-negative solutions of the algebraic system

m1E +m2K − aV 2 = 0, r
(

P̄ − E
)

− (b − cη)V = 0, (1− η)V − δK = 0. (2)

As 0 ≤ P ≤ P and E = P − P , one has that P −E ≥ 0. Hence, when b− cη ≤ 0, it is immediately
seen that system (2) has no solution (we look for interior steady states, so we exclude the solution
E = P obtained for b− cη = 0). Let b− cη > 0. Then, the existence of fixed points for (1) is related
to existence of solutions for the following second order equation in V

aδrV 2 − [(1− η) rm2 − (b− cη) δm1]V −m1δrP = 0. (3)

A direct calculation shows that Eq. (3) possesses only one positive solution, independently of the
sign of the coefficient of V.

Lemma 1. Let b− cη > 0. System (1) has a unique fixed point (V∞, E∞,K∞), where

V∞ =
(1− η) rm2 − (b− cη) δm1 +

√

[(1− η) rm2 − (b− cη) δm1]
2
+ 4aδ2r2m1P

2aδr
,

E∞ = P − (b− cη)

r
V∞ and K∞ =

(1− η)

δ
V∞.

If we want E∞ > 0 and b− cη > 0 we obtain the following necessary condition:

P̄ aδr −m2(1− η)(b − cη) > 0.

The study of local stability of equilibrium solution is based on the localization on the complex plane
of the eigenvalues of the Jacobian matrix of (1) evaluated at (V∞, E∞,K∞). The characteristic
equation is

det





−2aV∞ − λ m1 m2

−b+ cη −r − λ 0
1− η 0 −δ − λ



 = 0,

namely
λ3 +Aλ2 +Bλ + C = 0, (4)

where

A = 2aV∞ + δ + r > 0, B = 2a (δ + r) V∞ + δr − (1− η)m2 + (b− cη)m1,
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and

C = 2aδrV∞ − (1− η) rm2 + (b− cη) δm1

=

√

[(1− η) rm2 − (b− cη) δm1]
2 + 4aδ2r2m1P > 0. (5)

Proposition 2. Let b−cη > 0. The fixed point (V∞, E∞,K∞) of system (1) is locally asymptotically
stable in absence of delay if and only if the following condition holds

[2a (δ + r) V∞ − (1− η)m2 + (b− cη)m1] 2aV∞ + (δ + r) δr + (δ + r)
2
2aV∞

− (1− η) δm2 + (b− cη) rm1 > 0. (S)

Proof. By Routh–Hurwitz’s condition, all roots of Eq. (4) have negative real parts if and only if
A > 0, B > 0, C > 0 and AB > C. Since A > 0 and C > 0, it is clear that AB > C implies B > 0.
Expliciting the terms A,B and C in AB > C gives

4a2 (δ + r) V 2
∞ + 2a (δ + r)2 V∞ + (δ + r) δr + [− (1− η)m2 + (b− cη)m1] 2aV∞

− (1− η) δm2 + (b − cη) rm1 > 0.

The statement follows by rewriting the previous inequality.

Remark 3. From (5) we have (b − cη)m1 > [(1− η) rm2] /δ − 2arV∞. Therefore,

4a2 (δ + r) V 2
∞ + [− (1− η)m2 + (b− cη)m1] 2aV∞

= [2a (δ + r) V∞ − (1− η)m2 + (b− cη)m1] 2aV∞

>

[

2aδV∞ +

(

r − δ

δ

)

(1− η)m2

]

2aV∞

and

2a (δ + r)
2
V∞ − (1− η) δm2 + (b− cη) rm1 > 2aδ2V∞ + 4aδrV∞ +

(

r2 − δ2

δ

)

(1− η)m2.

Consequently, if r ≥ δ, then condition (S) holds true and the fixed point is always stable.

In [15] the claim (without proof) is that AB > C and as a consequence the fixed point is always
stable. However, we only were able to prove the case r ≥ δ leaving the case r < δ unsolved.

3. Stability analysis and Hopf bifurcation with τ > 0. The appearance of constant time
delay does not affect equilibria. Hence, under the above conditions (V∞, E∞,K∞) is still the
unique positive equilibrium of system (1). In this case the associated characteristic equation of the
linearization of system (1) at the equilibrium is given by

det





−2aV∞ − λ m1 m2

(cη − b) e−λτ −r − λ 0
(1− η) e−λτ 0 −δ − λ



 = 0,

i.e.

λ3 + a2λ
2 + a1λ+ a0 + (b1λ+ b0) e

−λτ = 0, (6)

where

a2 = 2aV∞ + r + δ > 0, a1 = 2a (δ + r) V∞ + δr > 0, a0 = 2aδrV∞ > 0
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and

b1 = − (1− η)m2 + (b− cη)m1, b0 = − (1− η) rm2 + (b− cη) δm1.

The stability of the equilibrium point (V∞, E∞,K∞) will change when the system under consider-
ation has zero or a pair of purely imaginary eigenvalues. The former occurs when λ = 0 in (6), i.e.
if a0 + b0 = 2aδrV∞ − (1− η) rm2 + (b− cη) δm1 = 0, but we know this value to be positive from
(5). Thus, λ = 0 is not a root of the characteristic equation (6). The latter deals with assuming
that (6) has a purely imaginary root λ = iω, with ω > 0. Then, it follows from (6) that

−ω3i− a2ω
2 + a1ωi+ a0 + (b1ωi+ b0) (cosωτ − i sinωτ) = 0. (7)

By separating real and imaginary parts in (7), we obtain

ω3 − a1ω = b1ω cosωτ − b0 sinωτ, a2ω
2 − a0 = b1ω sinωτ + b0 cosωτ (8)

Adding up the squares of Eqs. (8), we obtain

ω6 +
(

a22 − 2a1
)

ω4 +
(

a21 − 2a0a2 − b21
)

ω2 + a20 − b20 = 0. (9)

Setting z = ω2, Eq. (9) becomes

h(z) = z3 + pz2 + qz + s = 0, (10)

where

p = a22 − 2a1 = 4a2V 2
∞ + (r + δ)2 + δr > 0,

q = a21 − 2a0a2 − b21 = 4a2
(

δ2 + r2
)

V 2
∞ + δ2r2 − [− (1− η)m2 + (b− cη)m1]

2 , (11)

s = a20 − b20 = 4a2δ2r2V 2
∞ − [− (1− η) rm2 + (b− cη) δm1]

2. (12)

Lemma 4.

1) Let q ≥ 0 and s ≥ 0. Then Eq. (10) has no positive roots.
2) Let q ≥ 0 and s < 0 or q < 0 and s ≤ 0. Then Eq. (10) has one positive root, say z0.
3) Let q < 0 and s > 0. Set

z∗ =
−p+

√

p2 − 3q

3
. (13)

Then Eq. (10) has no positive roots if h(z∗) > 0, Eq. (10) has one positive root z∗ if h(z∗) = 0,
and it has two positive roots, say z− and z+, with z− < z+, if h(z∗) < 0. Furthermore,
h′(z∗) = 0, h′(z−) < 0 and h′(z+) > 0.

Proof. 1) is straightforward. For 2) and 3), we apply Descartes’ rule of signs that states that the
possible number of positive roots (10) is equal to the number of sign changes in the sequence formed
by the polynomial’s coefficients, or less than the sign changes by a multiple of 2. Finally, notice
that h(0) = s, h(+∞) = +∞, h′(z) = 3z2+2pz+ q, h′′(z) = 6z+2p > 0; h(z) is a convex function,

and it has a unique minimum z∗ = (−p+
√

p2 − 3q)/3 if q < 0 in the positive semiaxes.

By using (8), we obtain

sinωτ =
(b1a2 − b0)ω

3 + (a1b0 − a0b1)ω

b21ω
2 + b20

, cosωτ =
b1ω

4 + (a2b0 − a1b1)ω
2 − a0b0

b21ω
2 + b20

.
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If Eq. (9) has the unique positive root ω0 =
√
z0, then we can determine the sequence (j = 0, 1, 2, ...)

τ0j =



















1

ω0
cos−1

{

b1ω
4
0 + (a2b0 − a1b1)ω

2
0 − a0b0

b21ω
2
0 + b20

}

+
2jπ

ω0
, if M0 ≥ 0,

2(j + π)

ω0
− 1

ω0
cos−1

{

b1ω
4
0 + (a2b0 − a1b1)ω

2
0 − a0b0

b21ω
2
0 + b20

}

, if M0 < 0,

(14)

with M0 = (b1a2 − b0)ω
2
0 + a1b0 − a0b1, at which the characteristic equation (6) has a pair of

purely imaginary roots λ = ±iω0. Similarly, if Eq. (9) has the two positive roots ω± =
√
z±, with

ω− < ω+, then Eq. (6) has purely imaginary roots λ = ±iω± when τ takes the critical values
(j = 0, 1, 2, ...)

τ±j =























1

ω±

cos−1

{

b1ω
4
± + (a2b0 − a1b1)ω

2
± − a0b0

b21ω
2
± + b20

}

+
2jπ

ω±

, if M± ≥ 0,

2(j + π)

ω±

− 1

ω±

cos−1

{

b1ω
4
± + (a2b0 − a1b1)ω

2
± − a0b0

b21ω
2
± + b20

}

, if M± < 0,

(15)

with M± = (b1a2 − b0)ω
2
± + a1b0 − a0b1.

Proposition 5. Let λ (τ) be the root of (6) satisfying ℜ(τ0j ) = 0 (resp. Re(τ±j ) = 0) and ℑ(τ0j ) = ω0

(resp. ℑ(τ±j ) = ω±). Then λ = ±iω0 (resp. λ = ±iω±) are simple roots of (6) when τ = τ0j (resp.

τ = τ±j ) and the following transversality conditions hold

[

dℜ(λ)
dτ

]

τ=τ0
j
,ω=ω0

> 0,

(

resp.

[

dℜ(λ)
dτ

]

τ=τ
+

j
,ω=ω+

> 0 and

[

dℜ(λ)
dτ

]

τ=τ
−

j
,ω=ω

−

< 0

)

.

(16)

Proof. From (6), taking the derivative with respect to τ, we have

{

3λ2 + 2a2λ+ a1 + [b1 − τ (b1λ+ b0)] e
−λτ

} dλ

dτ
= (b1λ+ b0)λe

−λτ . (17)

Let λ = iω, with ω ∈ {ω0, ω+, ω−}, be a root of (6) that is not simple. Then this leads us to

conclude from (17) that (b1iωk + b0) e
−iωkτ

k
j = 0. By separating real and imaginary parts,

b1ωk cosωkτ
k
j − b0 sinωkτ

k
j = 0, b1ωk sinωkτ

k
j + b0 cosωkτ

k
j = 0. (18)

From (8) and as ωk > 0, we see that (18) reduces to ω2
k − a1 = 0, a2ω

2
k − a0 = 0. Thus, a1a2 = a0

and so the contradiction 0 < [2a (δ + r) V∞ + δr] (δ + r) + 4a2 (δ + r) V 2
∞ = 0. This proves the first

part of the statement. Next, from (17)

(

dλ

dτ

)−1

=
3λ2 + 2a2λ+ a1
(b1λ+ b0) λe−λτ

+
b1

(b1λ+ b0)λ
− τ

λ
.
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Using (6), a direct calculation yields

sign

{

d (ℜλ)
dτ

∣

∣

∣

∣

τ=τk
j
,ω=ωk

}

= sign

{

ℜ
(

dλ

dτ

)−1

τ=τk
j
,ω=ωk

}

= sign

{

ℜ
[

3λ2 + 2a2λ+ a1
(b1λ+ b0)λe−λτ

+
b1

(b1λ+ b0)λ
− τ

λ

]

τ=τk
j ,ω=ωk

}

= sign

{

3ω6
k + 2

(

a22 − 2a1
)

ω4
k +

(

a21 − 2a0a2 − b21
)

ω2
k

b21ω
4
k + b20ω

2
k

}

= sign
{

3ω4
k + 2pω2

k + q
}

= sign {h′(zk)} .
Finally, notice that sign {h′(zk)} = +1 if ω = ω0 or ω = ω+, while sign {h′(zk)} = −1 if ω = ω−.
This completes the proof.

Remark 6. If Eq. (9) has the unique positive root ω∗ =
√
z∗, then sign {h′(z∗)} = 0 and the

transversality condition does not hold.

In case Eq. (6) has two positive roots ω−, ω+, with ω− < ω+, then crossing from left to right
with increasing τ occurs whenever τ assumes a value corresponding to ω+, and crossing from right
to left occurs for values of τ corresponding to ω−. This implies that there exists a finite number of
delayed intervals in which the equilibrium point is locally asymptotically stable, while unstable for
the outside of the delayed ranges. Hence, the system dynamics switches from stable to unstable,
and then back to stable when delay increases and crosses the critical delayed values.

Based on the transversality conditions (16) and the Hopf bifurcation theorem (see [12]), we have
the following results on the stability of the equilibrium of system (1).

Theorem 7. Let b−cη > 0 and assume condition (S) holds. Let h(z), p, q, z∗, τ
0
0 and τ±0 be defined

as in (10), (11), (12), (13), (14) and (15), respectively.

1) If q ≥ 0 and s ≥ 0 or if q < 0, s > 0 and h(z∗) > 0, then the fixed point (V∞, E∞,K∞) of
system (1) is locally asymptotically stable for all τ ≥ 0.

2) If q ≥ 0 and s < 0 or if q < 0 and s ≤ 0, then the fixed point (V∞, E∞,K∞) of system (1)
is locally asymptotically stable for τ < τ00 and unstable for τ > τ00 . Furthermore, system (1)
undergoes a Hopf bifurcation at (V∞, E∞,K∞) when τ = τ00 .

3) If q < 0, s > 0 and h(z∗) < 0, then there exist stability switches for τ > 0. Furthermore,
system (1) undergoes a Hopf bifurcation at (V∞, E∞,K∞) for a certain values of τ = τ±j
(j = 0, 1, 2, ...) where a stability switch occurs.

Proof. The proof of the theorem follows from Lemma 4 and Proposition 5. The expressions of the
bifurcating values for the delays is given by (14) and (15).

Remark 8. We note that the bifurcation analysis (together with the study of roots of eq. (10)) we
propose here is more detailed and different with respect to that contained in [15].

4. Numerical Simulations. In this section we will provide some numerical experiments to illus-
trate the results of the previous sections.
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4.1. A case of instability. We start with an example in which the fixed point is unstable. The
parameters are fixed as follows:

a = 0.1; b = 0.85; c = 1; δ = 1; η = 0.75; m1 = 0.5;

m2 = 2; P̄ = 25; r = 0.001,

while the initial point is V (0) = E(0) = K(0) = 1. This choice satisfies the condition:

b− cη = 0.1 > 0,

while does not satisfy the condition of positiveness of E∞:

P̄ aδr −m2(1− η)(b − cη) = −0.0475 < 0.

The fixed point is:

V∞ = 0.2524, E∞ = −0.2397, K∞ = 0.0631.

In order to check the stability we need to compute the following quantities:

A = 1.0515, B = −0.3985, C = 0.0496.

Then, the stability condition is not fulfilled because

AB − C = −0.4685 < 0.

The solution is represented in Fig. 1 below: the fixed point is not stable, the solution diverges to
−∞.

0 2 4 6 8 10 12 14 16 18
-20

-15

-10

-5

0

5

Figure 1. Figure of experiment 1: the fixed point is not stable, the solution diverges

4.2. A limit cycle. We now consider an example in which there exists a limit cycle. In this
experiment the parameters are set as follows:

a = 0.1; b = 0.85; c = 1; δ = 0.2; η = 0.75; m1 = 5;

m2 = 0.001; P̄ = 25; r = 0.000001,

while the initial point is V (0) = E(0) = K(0) = 0.1. This choice satisfies the condition

b− cη = 0.1 > 0,
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while does not satisfy the positiveness of E∞:

P̄ aδr −m2(1− η)(b − cη) = −2.45 · 10−5 < 0.

The fixed point is:

V∞ = 2.5 · 10−4, E∞ = −4.0978 · 10−6, K∞ = 3.125 · 10−4

In order to check the stability we need to compute the following quantities:

A = 0.2001, B = 0.4998, C = 0.1.

Then, the stability condition is not fulfilled either because

AB − C = −2.2472 · 10−5.

The solution is represented in figures 2 below: the fixed point is not stable, there exists an attractive
limit cycle.

1

0.5

0

-0.5

-1-0.1

-0.05

0

0.05

0.1

0.4

0.3

0.2

0.1

0

-0.1

-0.2

-0.3
0.15

0 100 200 300 400 500 600 700 800 900 1000
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Figure 2. Figures for Experiment 2: stable limit cycle.

4.3. A case of stability with r < δ. We consider an example in which the interior fixed point is
stable. The parameters are fixed as follows:

a = 1; b = 0.73; c = 0.8; δ = 0.2; η = 0.9; m1 = 5;

m2 = 0.001; P̄ = 1; r = 0.1,

and the initial point is V (0) = E(0) = K(0) = 1. This choice satisfies the conditions of existence
of a positive fixed point:

b− cη = 0.01 > 0, P̄ aδr −m2(1− η)(b − cη) = 0.02 > 0,

and the stability condition (S). This simulation suggests that stability is possible also for r < δ.
In this case the fixed point is stable (see figure 3 below):

V∞ = 2.2361, E∞ = 0.7764, K∞ = 1.1180.

and the solutions converges to it very fast.
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0 5 10 15 20 25 30 35 40 45 50
0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

Figure 3. Stability of the fixed point for r < δ.

4.4. Delay model: stability change. In this example we illustrate the case in which the delay
affects the stability of the fixed point. We consider the following values of the parameters:

a = 0.5; b = 1; c = 0.8; δ = 0.2; η = 0.9; m1 = 1;

m2 = 0.2; P̄ = 4; r = 0.1;

thus, the fixed point is

V∞ = 1.2102, E∞ = 0.6113, K∞ = 0.6051.

The initial data has been chosen as E, V,K = (1, 1, 1) for t ∈ [−τ, 0], while the critical value of
the delay parameter for stability is τ00 = 9.7592. The hypotheses of 2) in theorem 7 are fulfilled,
then we expect that the fixed point (V∞, E∞,K∞) is stable for τ < τ00 and unstable otherwise. In
Fig. 4 below we represent the solutions for τ = 8.6 and τ = 9.8 respectively: the fixed point looses
stability and the solution diverges to −∞.

time t
0 200 400 600 800 1000 1200

so
lu

tio
ns

-0.5

0

0.5

1

1.5

2

time t
0 10 20 30 40 50 60 70

so
lu

tio
ns

-4

-3

-2

-1

0

1

2

3

Figure 4. The solution of the system with delay and for τ = 8.6 and τ = 9.8 respectively.



10 SOME REMARKS ON AN ENVIRONMENTAL DEFENSIVE EXPENDITURES MODEL

4.5. Stability switches. We consider an example in which the hypotheses of 3) of theorem 7 are
fulfilled. The parameters are chosen as follows:

a = 0.1; b = 1; c = 1; δ = 0.1; η = 0.001;

m1 = 0.05; m2 = 0.1; P̄ = 5; r = 0.05;

and the fixed point is

V∞ = 1.5811; E∞ = −26.5912; K∞ = 15.7956.

The other relevant quantities are

z∗ = 0.0028, z+ = 0.0073, z− = 0.0029, ω− = 0.0529, ω+ = 0.0854

Since the sign of M± are M− > 0 and M+ < 0 respectively, then we deduce, for j = 0, the following
bifurcation values:

τ−0 = 2.1263, τ+0 = 68.3574, τ−1 = 120.8674, τ+1 = 141.8965.

In FIG. 5 we represent the solution for the following values of the delay parameter: τ = 2.1, 2.3, 117, 121.......
We observe changes of stability of the fixed point.
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Figure 5. The solution of the system with delay and for τ = 2.1, 2.3, 117, 121.
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5. Comments on the model. In this section we would like to point out some features of the
model that could be improved. In particular, the quantities V,E,K are positive and the system
should preserve their sign. The system is well posed if for any positive initial conditions the solution
remains positive, moreover by the modelisation strategy it is required that E ∈ [0, P̄ ].
Suppose that we start with a positive initial condition V0,K0, E0 > 0. Then if V or K become zero
then V̇ > 0 (resp K̇ > 0). A contradiction of the requirement that E ∈ [0, P̄ ] may occur when E
reaches the value 0 or P̄ .
In fact if there exists t1 such that E(t1) = P̄ , then Ė(t1) > 0 if b− cη < 0 and E takes values bigger
than P̄ . Then we need:

b− cη > 0.

Conversely, if there exists t2 such that E(t2) = 0 then

Ė(t2) = rP̄ − (b − cη)Vd(t2),

and if

Vd(t2) >
rP̄

(b − cη)
,

we have that Ė(t2) < 0 and E takes values less than 0. A sufficient condition (not necessary but
that can be considered in the modelisation process) to avoid this should be

b− cη < 0.

Of course these two conditions are not compatible.
In order to preserve the positiveness of the system (and of its solutions) we consider a modified
version of the second equation:















·

V = m1E +m2K − aV 2,
·

E = r
(

P̄ − E
)

− (b − cη)VdE,
·

K = (1− η)Vd − δK,

(19)

It is worth highlighting that, for the original model, even if the condition of existence of the stable
positive fixed point is fulfilled, the solutions can become negative. We provide a simulation of this
problem in figure 6 below for which the parameters of the original model are set as follows:

a = 1.5; b = 1; c = 0.95; δ = 0.027; η = 0.95;

m1 = 0.1; m2 = 0.2; P̄ = 0.99; r = 0.025,

and the initial point is V (0) = E(0) = K(0) = 0.8. The fixed point in this case is

V∞ = 0.2504, E∞ = 0.0133, K∞ = 0.4638

and satisfies the stability condition (S) : AB−C = 0.0312 > 0. A similar problem has been observed
in the case with delay.
This example suggests that a modification of the model should be necessary, in particular our
suggested modification solves this problem.
Further research concerning the analysis of system (19) and a comparison with the results about
the original system will be carried out somewhere else.
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Figure 6. There exists a positive stable fixed point and the second component of
the solution takes negative values.

6. Further development: non autonomous dynamics and some open directions. We
have seen that the introduction of a delay may affect the stability of the interior fixed point.
Moreover, Theorem 7 provides a very complex and varied picture. We have already observed that
the stability switches introduce a serious difficulty for the managers of PAs: if they act on the delay
and let it change, then it can bring both stabilizing and destabilizing effects. We consider that is
very important to deal with this problem. However, in many situations it seems more realistic to
consider a non-constant delay, in other words, instead of a constant delay τ > 0, we can consider
a time dependent delay τ(t). More precisely, one could consider the following variation of (1), and
study its asymptotic dynamics:















·

V (t) = m1E(t) +m2K(t)− aV 2(t),
·

E(t) = r
(

P̄ − E(t)
)

− (b− cη)V (t− τ(t)),
·

K(t) = (1− η)V (t− τ(t)) − δK(t),

(20)

where τ(·) is a continuous function (although in many real applications it uses to be continuously
differentiable) from R to [0, h] where h > 0 is the maximum admissible delay.

The variable delay case in (20) possesses the same equilibria as the constant delay case, however
the problem becomes automatically non-autonomous and in order to analyze the non-autonomous
dynamical system generated by (20), it first needs to be stated as an ordinary differential system
of equations in an infinite-dimensional space. Indeed, let us denote by C the space Banach space
C0([−h, 0];R3), and for any continuous function g : R → R

3 and t ∈ R we denote by gt the function
in C defined by

gt(s) = g(t+ s), for all s ∈ [−h, 0].
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Then, problem (20) can be rewritten as follows. For a given initial time t0 ∈ R and an initial
function φ ∈ C, we consider











d

dt
y(t) = f(t, yt), t > t0,

y(t) = φ(t− t0), t ∈ [t0 − h, t0],

(21)

where y(t) = (E(t),K(t), V (t)) and f(·, ·) is the function defined from R× C by

f(t, φ) =





m1φ1(0) +m2φ2(0)− aφ2
3(0),

r
(

P̄ − φ1(0)
)

− (b− cη)φ3(−τ(t)),
(1− η)φ3(−τ(t)) − δφ2(0),



 .

Then, when we particularize f(t, φ) for φ = yt, we obtain

f(t, yt) =





m1Et(0) +m2Kt(0)− aV 2
t (0),

r
(

P̄ − Et(0)
)

− (b− cη)Vt(−τ(t)),
(1− η) Vt(−τ(t)) − δKt(0),





=





m1E(t) +m2K(t)− aV 2(t),
r
(

P̄ − E(t)
)

− (b− cη)V (t− τ(t)),
(1− η)V (t− τ(t)) − δK(t),





which is our delay system.
The asymptotic behavior of this delay system can be carried out in a local or in a global way. For

the local analysis, there exists several well-known methods based, for instance, in the construction
of certain Lyapunov functionals (see, Kolmanovskii and Shaikhet [16], Caraballo et al. [3], Kuang
[14] amongst many others) as well as the use of the Razumikhin-Lyapunov theory which allows for
more generality on the variable delay functions (see Hale and Lunel [11], Caraballo et al. [4], etc).
We plan to investigate this in a future paper. However, concerning the global asymptotic behavior,
as our problem will generate a non-autonomous dynamical system, then we need to choose an
appropriate framework for our problem. To this respect we have several options, either the skew-
product flow formalism (see e.g. Sell [17]), or the theory of uniform attractor (see Carvalho et al.
[5], Kloeden and Rasmussen [13] and the references therein), or the theory of pullback attractor
which usually allows for more generality on the delay terms. This problem will be analyzed in a
subsequent paper.

We think that this should be the right context to study the consequence of modifying the delay
and should be of a real interest for management of PAs to completely clarify this problem. However,
we will leave this topic for a future work.

Finally, we would like to mention that there are some other interesting questions which we have
not analyzed in this paper as, for instance, the global stability of the positive fixed point and the
case sign {h′(z∗)} = 0 for which the transversality condition does not hold. Another question is to
investigate the possible presence of a double Hopf bifurcations that may occur when two critical
delays τ−j and τ+j are identical. We plan to investigate these issues in future.
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