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Abstract: The growth in the wind energy sector is demanding projects in which profitability must
be ensured. To fulfil such aim, the levelized cost of energy should be reduced, and this can be
done by enhancing the Operational Expenditure through excellence in Operations & Maintenance.
There is a considerable amount of work in the literature that deals with several aspects regarding the
maintenance of wind farms. Among the related works, several focus on describing the reliability of
wind turbines and many set the spotlight on defining the optimal maintenance strategy. It is in this
context where the presented work intends to contribute. In the paper a technical framework is proposed
that considers the data and information requisites, integrated in a novel approach a clustering-based
reliability model with a dynamic opportunistic maintenance policy. The technical framework is
validated through a case study in which simulation mechanisms allow the implementation of
a multi-objective optimization of the maintenance strategy for the lifecycle of a wind farm. The proposed
approach is presented under a comprehensive perspective which enables the discovery an optimal
trade-off among competing objectives in the Operations & Maintenance of wind energy projects.

Keywords: maintenance management; wind turbines; clustering; reliability; dynamic opportunistic
maintenance; simulation

1. Background and Introduction

The attention drawn by renewable energy has increased considerably over recent years.
This increasing importance has nurtured an important growth, which is especially prominent in
the wind energy sector [1]. Wind energy is one of the main sources of power generation in Europe with
a vast majority of installed capacity in the form of onshore Wind Farms (WFs) [2]. For the profitability
of wind energy projects to be ensured, it is essential to reduce the levelized cost of energy (LCoE) to its
minimum [2,3]. Aiming at increasing the energy yield of WFs, the LCoE should be reduced, and this
can be done by directly addressing the Capital Expenditure (CAPEX) and the Operational Expenditure
(OPEX) of the projects [2].

The scope of the research here presented abides in OPEX reduction; more specifically, this paper
is intended to reduce the Operations and Maintenance (O&M) costs. How to reduce the O&M costs
has become an ongoing challenge for WFs; the figures associated with these costs are notorious [4,5]
and may rise by up to 32% and 12–30% for offshore and onshore WFs, respectively [6,7]. However,
aiming at lowering the LCoE by reducing O&M costs is a two-fold challenge since it also entails
minimizing the lost energy production [8] for the entire lifecycle, which oscillates around 20 years
perspective [9]. According to the International Renewable Agency, the costs associated with O&M
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account for up to one quarter of the proportion of the LCoE, with 80% of this expenses directly
attributed to maintenance [10–12].

In view of the maintenance role in the LCoE and thus in the profitability of WFs, it is important
to consider models for optimization of O&M plans and decisions [2]. The evolution of maintenance
models and methodologies have kept pace with the constant technological evolution of Wind Turbines
(WTs) [3]. According to [3], the goal of all the approaches and methodologies is determining the most
adequate maintenance plan, the management of the resources, and the aspects related to Reliability,
Availability, and Maintainability (RAM) of the WTs.

Within such context, the WF operators are bound to develop new techniques and decision-support
tools for optimal maintenance strategies, if they strive to maximize the profitability of the investment [8].
Accordingly, maintenance management discipline acquires a highly significant position since it provides
a comprehensive perspective for the management of WTs, allowing for optimal maintenance strategies
which reduce maintenance costs while maximizing availability [3,5].

The decision-making process in the asset management field has been divided into strategic (long-term),
tactic (medium-term), and operational (short-term) to achieve excellence in maintenance [13–15]. It is the
purpose of the research in this paper to address the different aspects of the maintenance decision-making
process. This is done by answering the research question of whether it is possible to achieve maintenance
excellence for the lifecycle of WFs by a maintenance strategy which considers the different behaviors of the
WTs and integrated business-related objectives.

Aiming at providing an answer for the aforementioned research question, a technical framework
for managing maintenance is proposed in the paper. The framework is a comprehensive proposal
that considers different aspects regarding the maintenance of a WF. Within the possibilities offered
by the current trend for big data, certain key aspects to create a failure database are integrated in
the framework, which enables a clustering approach based on the failure behaviors of the different
failure modes of each WT. This approach supports an opportunistic maintenance policy with dynamic
thresholds that regard not only to the reliability of the assets but also business considerations. Besides,
the framework also incorporates the strategic view through a Life-Cycle Cost (LCC) perspective
integrated by means of a multi-objective optimization and supported by simulation techniques that
provide valuable information to find an attractive trade-off between cost and performance.

1.1. Related Works

In the context of maintenance, several studies have proven the utility of reliability approaches to
optimize it [5,16,17]. If seeking to take forward a reliability study, the information needed as an input
to the decision should be at hand, in the right format, and on time [18]. The idea of a common database
in the wind energy sector is not novel. In [19] the objectives of a RAM database can be seen and in [10]
different sources of WT data are analyzed. The challenges faced when building such database with
quality data have been addressed by the integration of data coming from different sources [4,10,19,20].
Nonetheless, to translate the data into information and exploit its inherent value, it is essential a correct
assessment of the failure process and therefore the selection of the proper time-to-failure model, which
will enable optimization of the maintenance plan [21].

The reliability study of a WF and the creation of the failure database involves combining data
from similar assets, in this case WTs. This combination of data is known as data-pooling, and in [21],
as well as in [22], several conditions to be met by the equipment subject to data-pooling are stated.
Nonetheless, this may lead to combining data from assets with unlike behaviors. The heterogeneity in
the failure behavior among WTs may be caused by the presence of different models of WTs, which
entail different technical solutions [23]. Moreover, this multiplicity in the failure frequencies may also
be the result of the different operational conditions of the assets [16,17,24,25].

To deal with the diversity in failure behaviors when managing a considerable number of assets,
similarity-based approaches have been proposed in recent research works [26–28]. The work in [27]
where a spectral clustering approach is proposed to later address the maintenance optimization
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problem to all the assets belonging to the same cluster is especially interesting. Another interesting
work is the research in [29], which provides a very similar approach using a different clustering
algorithm. In the wind energy sector, and with the purpose of enhancing maintenance management,
approaches based on clustering concepts and algorithms can also be found in the recent literature.
A fuzzy clustering approach based on Mahalanobis distance is proposed in [30] for warnings and failure
detection and it is applied to a real WF. Another interesting proposal is the cluster analysis combined
with Frequent Pattern Mining presented in [31] for WT fault detection. In addition, it has also been
proposed along with Artificial Neural Networks in [32] for developing optimal maintenance strategies.

The selected approach highly conditions the adequacy of the maintenance strategy [33]. In the
case of WTs, it is important to select one that takes into account the multi-component nature of the
turbines [34,35]. The WTs are composed of several subsystems with dependencies among them that
can be classified as (i) economic, where the simultaneous performance of maintenance activities
implies different economic consequences that implement them individually [36]; (ii) structural,
where maintenance actions on one system may imply maintenance activities on others [37]; and (iii)
stochastic, where the failure hazard of two different systems are not independent [38]. In this context,
opportunistic maintenance policies are the most suitable, and therefore they have been widely
researched [33].

Opportunistic maintenance policy makes the most of short-term situations to perform the
maintenance of non-failed systems when a failure has already happened in another one, grounding
its decision on a threshold regarding a system’s age, reliability or health condition [5]. Opportunistic
maintenance has proven its utility in the sector through several works in the recent literature [39],
and it has been highly related to multi-criteria approaches [40]. The consideration of opportunistic
maintenance under a multi-criteria perspective allows the handling of some main conflicting objectives
such as maintenance cost, availability, or manager preferences [41]. This advantage is especially
beneficial in the wind energy sector where it is important to bear in mind the maximization of revenue,
power, and reliability, and the minimization of Operations and Maintenance costs [42]. Some of the
latest research in the wind energy sector is in this area. The application of opportunistic maintenance
in [43] takes advantage of low wind-speed periods to perform corrective actions. The research in [44]
provides an opportunistic maintenance policy based on remaining useful life estimation according to
condition-monitoring data. The opportunistic maintenance is also proposed with different types of
maintenance actions, e.g., the works in [34,45–47]. In addition, the authors of [48,49] integrate the
opportunistic maintenance policy with multi-objective optimization.

1.2. Overview

Given the importance of the reviewed works in the literature of the Wind Energy sector, it is the
scope of this paper to provide a managing framework that supports the maintenance management of
WF operators. The proposed framework is a cross-functional value proposition that starts by considering
the requisites of the failure database to later define a maintenance policy. The opportunistic maintenance
policy will be supported by a clustering approach that allows the addressing of different behaviors of the
WTs within the same WF. Besides, the framework is considered under a lifecycle perspective integrated
through simulation techniques and multi-objective optimization algorithms.

The proposed framework is presented in the following Section 2. An initial and brief introduction
is first provided along with a representation according to IDEF0 methodology, then every function is
explained in detail in each corresponding subsection. The principles of the creation of a failure data
base for the study is explained in Section 2.1, the reliability considerations of WTs are presented in
Section 2.2, and finally, the opportunistic maintenance policy is explained in Section 2.3. In Section 3
the case study is presented, Section 3.1 describes the development of the case study and the initial
assumptions and then Section 3.2 consists of the results obtained in the implementation of the
framework. Finally, Section 4 summarizes the main conclusions obtained through the research
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process, its output represented as the framework, and the application to a real case study in the
wind energy sector.

2. Framework and Methods

The proposed technical framework, Figure 1, is a comprehensive integration of different technical
solutions and methods to ease maintenance management. The framework proposes an initial data
treatment, considering different information sources, to create a RAM database that will enable
modeling of the reliability of WTs. To undertake the reliability modeling, a clustering algorithm
is proposed along with the Kullback–Leibler Divergence measure, which approach addresses the
difficulty derived from the heterogeneity in the failure behaviors of the WTs. The reliability models,
which describe the failure behaviors within the WF, as well as data from the RAM database and
information regarding the cost structure, will serve as input for the methods proposed for defining
an optimal maintenance strategy. These methods regard multi-objective optimization algorithms
and simulation software under both a lifecycle perspective and governed by the principles of
opportunistic maintenance.

Figure 1. Technical framework.

The technical framework is represented in Figure 1 following the IDEF0 methodology [50],
it consists of three functions: RAM database creation, Reliability modeling, and Maintenance strategy
definition. The functions are associated with interfaces represented by arrows, which have been
referred to as INCOMs [51]: Inputs (I) of the function box enter from the left, they are transformed into
Outputs (O) leaving the box by means of the Mechanisms (M), which enter though the bottom and
refer to tools, algorithms, or resources that enable the function; and the Controls (C) enter the box from
the top and constrain the function.

In particular, Inputs and Outputs of the herein-depicted framework pertain to data and decisions,
whereas Mechanisms correspond to specific algorithms, models, and means that allow creation of
the RAM database, to model the reliability of WTs and to select the optimal maintenance strategy.
The function application is constrained by the Controls, which in this research represents business
aspects, data requisites, or maintenance process specificities. By defining the INCOMs in such manner,
the technical framework flow can be conceived as a flow in which the output of a function constitutes
the input of another until an optimal maintenance strategy is reached. In the successive subsections,
each one of the functions with their corresponding INCOMs is thoroughly explained, besides Table 1
gathers all the mathematical symbols utilized in the subsections.
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Table 1. Nomenclature.

Reliability Modeling

β
Shape parameter of Weibull
distribution di Diagonal entries of Degree matrix

α
Scale parameter of Weibull
distribution I Identity matrix

γ Euler–Mascheroni constant Lsym Graph Laplacian matrix
Γ Gamma function λ1, ..., λC Graph Laplacian matrix eigenvalues
W Similarity matrix ū1, ..., ūC Graph Laplacian matrix eigenvectors
wij Entries of the similarity matrix U Matrix of eigenvectors

dKL(µi‖µj)
Kullback–Leibler Divergence among
two distributions uic Entries of U matrix

d sym
KL

Symmetric Kullback–Leibler
Divergence T Transformed U matrix

D Degree matrix tic Entries of T matrix

Maintenance Strategy Definition

ka Time value for money constant GPt Generated power in t
qc Restoration factor of CM NT Number of MTs
qpr Restoration factor of PM cdisp Cost of dispatching a team

cc Corrective cost θt
Binary variable for corrective dispatch
of MT

cpr Preventive cost γt
Binary variable for preventive
dispatch of MT

cna Opportunity cost for not-produced
energy cteam Cost of MT

cp Penalty cost DRT Dynamic reliability threshold
zhikt Binary variable for CM SRT Static reliability threshold
yhikjt Binary variable for PM Twt Available working time of MTs
mc Maintainability of corrective actions t Time period (days)
mpr Maintainability of preventive actions

2.1. RAM Database Creation

Information is an essential pillar in every decision-making process and it is highly conditioned
by the characteristics of the data it comes from. In the decision-making process, to select the optimal
maintenance strategy herein presented, the information utility will be highly conditioned by the
quantity and quality of the available data (Constraints C1 and C2). As stated by [21], many data are
recorded for maintenance management purposes rather than reliability; hence, the information content
may be misleading without the proper scrutiny and cleaning. In the proposed technical framework,
building up the RAM database from the data coming from the SCADA (Supervisory Control And
Data Acquisition) and the CMMS (Computerized Maintenance Management Software) systems
is considered.

• SCADA Data (Input I1): this data is intended to provide feedback of a high-level overview of the
performance of the WTs. The data coming from the SCADA system can be categorized into three
types of information recorded in time intervals: operational data, availability data, and alarms
data. The operational data usually pertains to different variables which characterize the operation
of the WTs, e.g., power output, wind speed, temperature of components, or environmental
conditions. Availability is a measure of the total time the WT is operational and ready to produce
power, independently of external factors such as the weather, the grid state, or maintenance
activities. In addition, the data coming from the alarms is sensor information which indicates the
state of the WTs and have an associated severity level and usually are responsible for triggering
corrective maintenance actions.
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• CMMS Data (Input I2): generally the operators of WFs keep track of the maintenance actions
performed in the WTs in a variety of forms. This record of maintenance activities is usually known
as Work Orders or Maintenance Logs. The work orders may be handwritten in predefined forms,
but presently it is more common to find the data as digital work order inputs which have detailed
information regarding the materials and resources consumed.

To construct a proper RAM database from this data, it is essential to invest a considerable
amount of effort in filtering the data, bearing in mind the objective of the data. Therefore, a proper
determination of failure modes underpins the data-quality enhancement (Mechanism M1). As the
data comes from two different sources, it is essential to match the information contained in both.
With that aim, the identification of the patterns that link SCADA information with the maintenance
work orders of the CMMS (Mechanism M2) is proposed. Once the data is properly filtered according to
the failure mode definition and the coherence among the two sources of data is ensure, it is possible to
calculate the Time Between Failures (TBF) for the failure modes of the WTs (Mechanism M3).

2.2. Reliability Modeling

Considering that the database contains the failure information (output from previous functional
box O1) with certain quality (Constraint C3), it is possible to address the modeling of the reliability
following a spectral cluster approach, which is proposed to address the differences in the failure
behaviors of the same failure mode in each WT (Constraints C4 and C5). The methodological process
followed in this functional unit is represented in Figure 2.

Figure 2. Methodological process of the Reliability Modeling functional box.

For every failure mode, the process considers fitting a Weibull distribution to the TBF data for
each WT (Mechanism M4). With the Weibull distributions of each WT and failure mode, it is the
purpose of the algorithms herein presented to cluster them following a similarity-based approach
inspired by the work in [26,27].

It is possible to measure how similar two probability distributions are according to the
Kullback–Leibler Divergence (Mechanism M5), which can be calculated by Equation (1) in the case of two
Weibull distributions being γ ≈ 0.5772 the Euler–Mascheroni constant and Γ =

∫ +∞
−∞ tz−1e−tdt z ≥ 0 the
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gamma function. Nonetheless the Kullback–Leibler Divergence is a non-symmetric measure which can
be converted to symmetric by Equation (2) and therefore the similarity among two Weibull distributions
can be described in a generic and symmetric form by Equation (3). Expressing similarities in such way
allows the definition of a similarity matrix W in which each element is wij.

dKL(µi‖µj) = log

(
βiα

β j
j

β jα
βi
i

)
− (βi − β j)

(
log(αi)−

γ

βi

)
+

(
αi
αj

)β j

Γ

(
β j

βi
+ 1

)
− 1 (1)

d sym
KL =

1
2
(dKL(µi‖µj) + dKL(µj‖µi)) (2)

wij =
1

1 + d sym
KL

(3)

From the similarity matrix W of size [N, N] it is possible to construct the graph G = (V, E) where
each of the nodes vi represents the baseline Weibull distribution of certain failure mode of each turbine,
and each edge eij is the similarity between two distributions based on the Kullback–Leibler Divergence.
Having defined such a graph, the problem is finding the partition of the graph such that the weights
of the edges are small and large for intercluster and intracluster connections, respectively. To fulfil
such an aim, the spectral clustering approach is proposed, therefore it is necessary to compute the
normalized Graph Laplacian matrix. From W the degree matrix D is calculated, which is a diagonal
matrix whose diagonal entries are defined according to Equation (4), and then the normalized Graph
Laplacian matrix is calculated as described in Equation (5), where L = D−W and I is the identity
matrix of size [N, N].

di =
N

∑
j=1

wij, i = 1, ..., N (4)

Lsym = D
−1/2

L D
−1/2

= I − D
−1/2

W D
−1/2

(5)

To extract the information of the graph, the C smallest eigenvalues λ1, ..., λC are selected
along with their corresponding eigenvectors ū1, ..., ūC, with C the desired number of clusters.
The relevant information is considered by transforming matrix W into a reduced matrix U of size
[N, C]. The columns of U are the C eigenvectors ū1, ..., ūC which contain the information regarding the
similarities among the i-th baseline distribution and others. It has been proven that it is possible to
enhance cluster properties of the data by normalizing the rows of the matrix U and forming matrix
T [52], where every element is computed following Equation (6).

tic =
uic(

C
∑

c=1
u2

ic

)0.5 , i = 1, ..., N , c = 1, ..., C (6)

Once the matrix T is obtained, a k-medoids algorithm (Mechanism M6) is proposed as
an unsupervised clustering to partition the dataset into C clusters, which has proven to perform
better for large datasets and to be more stable against possible outliers [53].

By repeating these calculations for every failure mode, it is possible to address the definition of
the maintenance strategy of a WF. The effectiveness of the maintenance strategy is expected to increase
since the WF is now characterized by different clusters (Output O4) of every failure mode, with their
corresponding reliability model (Output O5) which directly tackles the issue of heterogeneity in the
failure frequencies.
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2.3. Maintenance Strategy Definition

The clustering and their corresponding reliability models will support the definition and
optimization of the maintenance strategy. In line with the insights provided in the literature review,
opportunistic maintenance management is especially suitable for the wind energy sector, since it
takes advantage of short-term information and dependencies among the WTs to make optimal
maintenance decisions. Accordingly, the framework proposes to implement a reliability-based dynamic
opportunistic maintenance policy (C8) summarized in Figure 3, which as well as considering the
economic dependencies of WTs, enables taking advantage of more favorable weather conditions
to enhance WF production outcome. To fulfil this aim, based on the concept of dynamic reliability
thresholds—acting as decision variables of the maintenance model—maintenance activities are fostered
at low wind-speed periods, and hindered at high wind-speed periods, thus limiting the production
losses caused by maintenance downtimes.

While the interested reader may address the dynamic opportunistic maintenance policy in [5],
the building blocks of the multi-level maintenance optimization model developed for this research are
summarized as follows (the definition of the intermediate variables of the model is in Table 2):

• Problem definition. The wind farm (WF) to be considered in the case study involves the
maintenance of H wind turbines (WTs) and their systems (i = 1,2,...,N), connected in series. Each of
the systems might fail in k different failure modes (FMs), which are classified according to their
consequences and require different corrective maintenance (CM) activities (k = 1,2,...,K). Likewise,
WF managers may decide to maintain the WTs’ system before failure occurrence, where per-FM
different preventive maintenance (PM) levels can be performed (j = 1,2,...,J). This classification
depends on the restoration factor (q). If the PM activity restores the system to a state in which its
operating and reliability behavior is as good as new, i.e., replacement activities, it is considered to
be perfect maintenance ( j = J). On the contrary, when PM activity partially restores the condition
of the system to an operational condition worse than the new one but better than just before the
performance of maintenance, it is considered to be imperfect maintenance (see [54] for further
information), with j = 1 the most imperfect repair.

• Objective functions. The main objectives pursued by the maintenance strategy are defined.
They should be aligned with the objectives of the business (C9) and should consider the
whole lifecycle of the assets. In the case of WFs, special emphasis is placed on optimizing
the OPEX (considering time value of money by means of ka) and production losses entailed by
the maintenance strategy (See Equations (12) and (13)). The core parts of these indicators are:

– Corrective and preventive cost (I3), subjected to the restoration effect (q) of the maintenance
activity carried out, as in [34,49]. They consider the materials and tools needed to perform
them (cc

ik, cpr
ik ), as well as the opportunity cost that they entail, represented by the amount of

power that could not be produced because of performing such maintenance activities (cna).
Likewise, in the case of CM, failures usually avoid distribution of the committed energy,
entailing a penalty cost (cp).

zhikt·
[
cc

ik · (q
c
ik)

2 + mc
ik · GPt · (cna + cp)

]
(7)

yhikjt·
[

cpr
ikj·
(

qpr
ikj

)2
+ mpr

ikj · GPt · cna
]

(8)

– Maintenance resources cost (I3). They consider the number of maintenance teams hired (NT)
and the cost entailed by dispatching them to the WFs

(
cdisp

)
either preventively (γt) or

correctively (θt).
(γt + θt) · cdisp (9)

NT · cteam (10)
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– Production losses. They consider the maintainability (O3) of PM and CM activities (mc
ik, mpr

ik )
as well as the power that would have been generated (GPt).

GPt·
(

mc
ik · zhikt + mpr

ikj · yhikjt

)
(11)

• Maintenance strategy. An imperfect maintenance strategy where decisions are triggered by
dynamic reliability thresholds is defined (see Equation (14)):

1. DRTikt, if the reliability of any of the FMs (O5) is below this threshold, a maintenance team
is compulsorily dispatched to the WFs to perform PM.

2. SRTikjt, once a maintenance team is dispatched to the WF, either preventively or correctively,
and according to the reliability of the specific FM (O5), it determines whether PM level j
should be performed during period t for preventing FM k of system i.

• Capacity constrains (C8). Maintenance teams’ availability and their working time
(
Twt) is defined

(see Equation (15)).
• Maintenance process constraints (C7). Only one maintenance task per WT and time period is

allowed (see Equation (16)).

Once the building block of the model has been defined, the mathematical formulation of the
model is expressed in the following equations regarding the objective functions (OF), the constraints
of the model, and the intermediate binary variables (in Table 2).

OFOpex = min

[
∑

t
(γt + θt) · cdisp + ∑

h
∑

i
∑
k

∑
t

zhikt

[
cc

ik (q
c
ik)

2 + mc
ik · GPt (cna + cp)

]
+

∑
h

∑
i

∑
k

∑
j

∑
t

yhikjt

[
cpr

ikj

(
qpr

ikj

)2
+ mpr

ikj · GPt · cna
]
+ ∑

t
NT · cteam

]
·(1 + ka)

−t

(12)

OFLP = min ∑
t

GPt·

(
∑
h

∑
i

∑
k

mc
ik · zhikt + ∑

h
∑

i
∑
k

∑
j

mpr
ikj · yhikjt

)
(13)

S.T.
0 ≤ DRTikt ≤ SRTik1t ≤ ... ≤ SRTikjt ≤
≤ ... ≤ SRTikJt ≤ 1 iεI, kεK, jεJ; tεT

(14)

∑
i

∑
k

∑
j

mpr
ikj · yikjt + ∑

i
∑
k

mc
ik · zikt ≤ NT · Twt ∀tεT (15)

∑
j

yhikjt + zhikt ≤ 1 hεH, iεI, kεK, tεT (16)

zhikt, yhikjtε {0, 1} hεH, iεI, kεK, tεT, ∀j = 1, 2

Table 2. Intermediate binary variables used in the model.

zhikt =


1 i f CM k is per f ormed in system i

o f WT h in period t
0 otherwise

θt =


1 i f a MT is correctively dispatched to WF

in period t
0 otherwise

yhikjt =


1 i f PM j is per f ormed in FM

k o f system i o f WT h in period t
0 otherwise

γt =


1 i f a MT is preventively dispatched

to WF in period t
0 otherwise
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Due to the numerous stochastic processes that must be considered within maintenance
management models, such as repair processes or climate conditions, it is difficult to solve them
analytically. Therefore, in line with previous research [46,49,55], the analytically derived model
has been implemented in a simulation model (M7) that enables both the maintenance processes
characterization and its optimization. The specific simulation and decision processes, as well as the
restrictions considered, may be addressed by the reader in the flowchart of Figure 3.

As may be noticed, maintenance decisions are triggered according to the dynamic reliability thresholds
(conditioned by weather conditions), which define the maintenance strategy (C6). Whenever a maintenance
activity is performed, their reliability is updated, as are the values of the OF considered (C9). Likewise,
specific maintenance processes (C7) and available resources (C8) are considered to analyze whether
maintenance activities may be triggered. Such decision processes are repeated for each time period,
until the end of the WT lifecycle, where the final OF are achieved.

Since more than one objective is pursued by the modeled maintenance problem, i.e., minimizing
OPEXs and production losses, multi-objective optimization algorithms (M8) must be implemented to
solve them. To this respect, the multi-objective meta-heuristic NSGA II [56] has been implemented,
which offers high-quality non-dominated solutions and diversity on the Pareto Front [57].

Figure 3. Dynamic Opportunistic Maintenance simulation flowchart.

In this context, the optimal maintenance strategies will be found by a joint use of the simulation
model developed and the NSGA II optimization algorithm. While the former allows evaluation of
the outcome of the selected maintenance strategy according to the OF, the latter will guide what
maintenance strategies should be selected following the logic underlying behind the algorithm.
Once the optimization process is finished, the aforementioned Pareto Front will be obtained with
its corresponding Key Performance Indicators (KPI). From the Pareto Front and according to the
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lifecycle KPIs (M9), decision-makers will be able to represent their decision preferences through the
maintenance strategy they choose (O6).

3. Case Study

To test the suitability of the proposed research presented in the paper, a case study based on
real data is presented. The case study is especially focused on the reliability modeling and the
maintenance strategy definition so the readers can see how to apply the proposed algorithms to
manage the maintenance of the fleet. The proposed approach is compared in the case study against
a static opportunistic maintenance policy which is in itself an advanced maintenance policy. By the
application of the clustering approach and the dynamic opportunistic maintenance, it can be seen that
the good results rendered by the static opportunistic maintenance can be further improved.

3.1. Description

The application of the technical framework is considered within a case study of an onshore WF
consisting of 100 WTs (H = 100) whose behavior has been simulated for 20 years based on real field data.
The real data correspond to over 300 WTs of 1.67 megawatt (MW) operating in the north of Spain for
a time span of 12 years. According to the importance of wind speed for the energy-based availability
and the dynamic opportunistic maintenance model, the simulation has been fed with wind data from
the location assumed.

RAM data has been provided by a wind energy OEM and pertains to eight FMs. The FMs
correspond to minor and major failures (K = 2) of four components (N = 4) which are critical from the
maintenance perspective, either in terms of availability or cost: the gearbox, the blades, the yaw system,
and the pitch system. Likewise, for each failure mode, both perfect and imperfect maintenance levels
are considered (J = 2), where perfect maintenance has a restoration factor of qpr

ik2 = 1 and imperfect
maintenance of qpr

ik1 = 0.75, according to the maintenance routine adopted.
In terms of the cost structure required to analyze the maintenance management from a lifecycle

perspective, the main costs considered are as follows. The maintenance team costs, consisting of
2 workers each, are assumed to be 800 e/day, the opportunity cost 105 e/MWh, and the penalization
cost 35 e/MWh. Likewise, the reader may address the specific material costs considered in [58].
Cost of PM is assumed to be lower than CM to avoid obvious results (30 % lower). Finally, an interest
rate of 5% has been determined for the LCC analysis.

3.2. Results

From the simulated database, the behavior of each one of the FMs of every WT has been
characterized by fitting a two-parameter Weibull distribution. Following the proposed methodology,
the differences among each of the WTs for every failure mode have been assessed by means of the
Kullback–Leibler Divergence. This enables the expression of the similarities among the turbines for
each failure mode by the weight matrix, which can be represented as an undirected graph. Then,
for each failure mode graph, the partition that maximizes the similarities among elements in the same
cluster and minimizes the similarities outside the cluster has been found by the k-medoids algorithm.
The partition provides the number of clusters for every failure mode, hence each cluster is formed of
WTs with like behaviors for each failure mode. For every cluster, a joint reliability Weibull model can
be fitted for the failure data that correspond to the WTs in the cluster; the model with which they will
be managed will be developed later.

The partitions of the FMs have also been found by the k-means algorithm to compare the performance
of both clustering algorithms. The results yielded by the k-means algorithm are very similar to the
results yielded by the k-medoids. In fact, 11 out of 31 clusters remain the same. In the differing clusters,
the practical deviations are very slight; the usage of one algorithm over the other entails differences of 0.49%
and 2.77% on average in the obtained scale and shape parameters, respectively. Therefore, the remainder
of the case study, consisting of the simulation-based optimization, has been carried out with the results
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yielded by the k-medoids algorithm, since it is more stable against outliers and performs better for large
datasets according to previously cited literature.

In Figure 4, as an example, the undirected graph of the minor gearbox failure of every WT is
represented. In it can also be seen the reliability functions corresponding to every cluster. In the
depicted example, six clusters can be appreciated and the nodes in each cluster correspond to the
WTs identified by a number. It can be seen that the edges connecting the nodes have different color
intensity, which corresponds to the weight that quantifies the similarity among the behaviors of the
same failure mode in different turbines, i.e., the higher the intensity, the more alike they are. By this
representation, it can also be seen from a general perspective the similarities among the clusters.
The reliability functions corresponding to each one of the clusters can also be seen in Figure 4, and it
can be seen how the closer two are, the higher the intensity of the connections of the nodes from the
clusters in the graph.

Figure 4. Clusterization example. Minor failure mode of the gearbox.

The results obtained for the clusterization of each one of the FMs have been summarized in
Table 3. In the table, the components and the FMs of the number of clusters can be seen, as well as
the number of WTs belonging to every cluster. The definition of minor and major FMs has been made
according to the repairing details:

- Minor repairing. It is provoked by a system failure that implies a maintenance team is dispatched
for repairing. Costs of materials and tools are not very high, as minor components are going to be
repaired. Thus, there is a reparation impact on system lifecycle but it is neither too high in terms
of time, nor too costly. Repair time varies between 4 and 24 h.

- Major repairing. Replacement of important components or complete systems is done. Therefore,
repairs have a great impact on system lifetime, being able to return the system state to
an as-good-as-new state. Costs of materials and tools are high, and repair time is above 24 h.

From Table 3, and also the graph of Figure 4, it is possible to conclude that the proposed approach
is stable when identifying clusters with a low number of nodes in it. This is an important implication,
since it is possible to identify small numbers of turbines behaving differently, and sometimes this may
imply a cause which can be addressed or benchmarked.

Once the behaviors of the FMs in the WF have been assessed, it is possible to define the
maintenance strategy according to the reliability of each one of the clusters of every failure mode. In the
framework, the proposed maintenance strategy is an opportunistic maintenance policy defined by
a simulation-based optimization. The optimization is multi-objective so the two-fold aforementioned
problem of reducing maintenance costs is addressed. The simulation-based optimization provides
several non-dominated solutions, which entails a trade-off among costs and production loss. With the
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solutions rendered by the optimization, it is possible to construct a Pareto Front in which the
maintenance strategy can be selected according to the trade-off desired by the customers.

Table 3. Clusterization results.

Component Failure Mode Number of Clusters Number of WTs in Each Cluster

Gearbox Minor 6 23-12-27-8-24-6
Major 3 52-27-21

Blades Minor 4 45-33-18-4
Major 2 39-61

Yaw Minor 4 34-33-17-16
Major 3 30-47-23

Pitch Minor 5 24-27-28-7-14
Major 3 29-20-51

In Figure 5, a comparison of two Pareto optimals is presented. One is obtained by addressing the
failures through the clusterization and then defining maintenance strategy through dynamic opportunistic
policy; the other one is obtained through a static opportunistic policy with a generic reliability Weibull
model for each failure mode of the turbines. In Figure 5a, it can be seen that the proposed approach
provides solutions which are unreachable for the static opportunistic policy. Furthermore, all the solutions
provided by the clusterization with the dynamic opportunistic maintenance strategy are better in terms of
costs and production loss. As an example to provide further insights, arbitrary customer requisites have
been defined, which correspond to 122,000,000eas a maximum OPEX and 120,000 MW/h lost for the
20 years of the lifecycle of the WF. In Figure 5b it can be seen that these requisites defined a feasible area of
options and their intersection sets where is the Minimum Viable Offer (MVO).

Figure 5. Pareto Front and Pareto Front with customer requisites.

According to the strategies represented in Figure 5, two of them have been selected (one from
each policy) to compare their lifecycle performance. The selected strategies are the ones that fulfil the
production loss requisite at a lower cost, and their performance in terms of OPEX and production loss is
compared in Figure 6. It can be seen that the cost savings among the two strategies are over 3 million e ,
despite not being very significant. These savings come from the opportunity cost of producing energy
at profitable wind-speed periods and from more accurate reliability estimates, which avoid some
corrective actions. This result is reasonable and was expected since the dynamic opportunistic policy
compared with the static does not reduce the amount of maintenance needed, but it performs it in
more suitable moments.
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Figure 6. Performance comparison of costs (a) and production loss (b) of strategies A and B.

Accordingly, the production loss difference is more significant, reaching an improvement of 14.5%
by the end of the lifecycle. This improvement in the production loss is due to the performance of
maintenance activities in the most favorable wind conditions. Besides, the better reliability estimates
enhance the calculation of the failure probability, enabling the avoidance of unexpected CM, which
takes more time to perform. Therefore, it can be seen that the proposed approach improves the
performance of the static opportunistic maintenance with a general reliability model, not only in terms
of cost, but in terms of production loss as well.

4. Concluding Remarks

In the present paper, a technical framework for managing the maintenance of WFs is proposed,
which integrates three modules that depart from data considerations, providing reliability analysis
tools to define the maintenance strategy. The framework considers the creation of a RAM database
to provide a solid basis of information which is transformed into knowledge by reliability modeling.
The second module aims at modeling the reliability of the WF; to do so, a clustering approach
is proposed. By means of the clustering approach, the different behaviors of the WTs, which are
caused by either different technical solutions or different working conditions, are properly addressed.
This accurate description of the WF failures enables the definition of a more effective maintenance
strategy, which is defined by a dynamic opportunistic policy optimization finding a trade-off among
costs and production loss.

The suitability of the comprehensive framework has been validated through a case study based
on real field data. The proposed approach has been tested against a static opportunistic maintenance
which estimates the reliability of the WTs with a generic reliability model. It has been shown that
by answering the research question, the integration of state-of-the-art techniques in the proposed
framework provides a step forward in the achievement of maintenance excellence. The proposed
approach outperforms the alternative in terms of cost and production loss. The improvements are
due to two reasons: (i) the reliability estimates are more accurate because the behavior of the WTs is
better characterized; and (ii) the maintenance activities are performed at the most convenient moments,
fostering the maximization of energy production.

The research here presented is a step forward in the maintenance management of WFs due to its
practical nature. However, to enhance its applicability and implementation in the wind energy industry,
further efforts should focus on the integration of the strategy here presented with condition-based
maintenance. Moreover, it would be interesting to also explore models that directly address the
influence of changing operational conditions on the reliability of WTs. This holistic perspective
entails potential benefits in the field of O&M of WFs, and it is worth researchers’ and industry
practitioners’ attention.
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The following abbreviations are used in this manuscript:

WF Wind Farm
LCoE Levelized Cost of Energy
CAPEX Capital Expenditure
OPEX Operational Expenditure
O&M Operations & Maintenance
WT Wind Turbine
RAM Reliability, Availability, and Maintainability
LCC Life-cycle Cost
INCOM Inputs, Mechanisms, Controls and Outputs
SCADA Supervisory Control And Data Acquisition
CMMS Computerized Maintenance Management System
TBF Time Between Failures
FM Failure Mode
CM Corrective Maintenance
PM Preventive Maintenance
MT Maintenance Team
NSGA Non-dominated Sorted Genetic Algorithm
KPI Key Performance Indicator
MW Megawatt
MVO Minimum Viable Offer
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