
Modelling the Requirements
of Rich Internet Applications in WebRe

Esteban Robles Luna1, M.J. Escalona2, and G. Rossi1

1 LIFIA, Universidad Nacional de La Plata, La Plata, Argentina
2 IWT2, Universidad de Sevilla, Sevilla, Spain

{esteban.robles,gustavo}@lifia.info.unlp.edu.ar,
mjescalona@us.es

Abstract. In the last years, several Web methodological approaches were
defined in order to support the systematic building of Web software. Together
with the constant technological advances, these methods must be constantly
improved to deal with a myriad of new feasible application features, such as
those involving rich interaction features. Rich Internet Applications (RIA) are
Web applications exhibiting interaction and interface features that are typical in
desktop software. Some specific methodological resources are required to deal
with these characteristics. This paper presents a solution for the treatment of
Web Requirements in RIA development. For this aim we present WebRE+, a
requirement metamodel that incorporates RIA features into the modelling
repertoire. We illustrate our ideas with a meaningful example of a business
intelligence application.

Keywords: Rich internet applications, Web engineering, Web requirements.

1 Introduction

It is widely known that the Web is constantly evolving. In this evolution, Rich
Internet Applications (RIA) [1] represents a major breakthrough, as they allow
combining the typical navigation flavour of the Web with the interface features of
desktop applications. These applications allow reducing the communication
between clients and servers since pages (differently from the “navigational” Web)
do not need to be fully reloaded with each user interaction. The emergence of a
well-known set of RIA patterns [2] has additionally defined a small, though
complete, vocabulary for expressing desired interaction functionalities in a software
system. It is now common saying: “this should be an auto-complete field” or, “we
can use hover details for showing this information”. Not surprisingly applications
stakeholders also use this vocabulary as part of their requirements for a new
application.

However, though most Web design methods have been already extended to cover
the scope of RIA [3][4][5], there is still an important gap in requirement specification of
RIA functionality, since requirement specification and modelling languages do not
include suitable primitives for expressing this kind of requirements. In this way,

checking whether a requirement has been fully implemented becomes a subjective
matter, and it is not possible to automate this process (e.g. by automatically generating
tests from requirement specifications).

In this paper we analyze the new kind of requirements that occur in RIA, and how
we can extend an existing approach to specify the behaviour of this kind of
applications in a MDWE (Model-Driven Web Engineering style) [6]. Specifically, we
use an enhanced version of the WebRE metamodel [7] to specify RIA requirements.

The paper has two aims. Firstly, we show how our modelling approach for
specifying Rich web requirements is integrated in the NDT approach. In addition we
show the integration between mockups and our metamodel to improve requirements
elicitation with customer. Finally, we show how to derive a set of interaction tests
from WebRE+ models to validate the RIA functionality.

The paper is structured as follows: Section 2 presents the background for this
work; we present the NDT approach and the WebRe metamodel. In Section 3, we
show the extension of WebRE for RIA, its UML profile and how our metamodel is
used with Mockups. Section 4 presents how tests are derived from WebRE+ models
and section 5 shows a case of study with an example in the Business Intelligence area.
In section 6 we present the implementation of our metamodel and in section 7 the
related works in Web requirements, Model-Driven Web Engineering and RIA. Finally
we present the conclusions and future research work in this project.

2 Background

In this section we introduce the NDT approach that gives a good context for our
metamodel and the original version of our metamodel called WeRe which does not
support rich requirements.

2.1 NDT

NDT [14] is the acronym for Navigational Development Techniques, is a member of
the growing family of MDWE approaches. Initially, NDT dealt with the definition of
a set of formal metamodels for requirements, based on the WebRE metamodel. In
addition, NDT defined a set of derivation rules, expressed with the standard QVT,
which generate analysis models from requirements models.

Nowadays, NDT defines a set of metamodels for every phase of the life cycle of
software development: the feasibility study phase, the requirements phase, the
analysis phase, the design phase, the implementation phase, the testing phase, and
finally, the maintenance phase. Besides, it includes new transformation rules to
systematically generate models. Fig. 1 shows the first part of the NDT lifecycle1.

The main goal of the Requirements phase is to build the catalogue of requirements
which contains the needs of the system to be developed. It is divided into a series of
activities: capture, definition and validation of requirements.

NDT classifies system requirements according to their nature: information storage
requirements, functional requirements, actor requirements, interaction requirements,

1 You can get more information about the NDT full lifecycle in www.iwt2.org

and non-functional require
patterns and UML complia
specification.

Fig. 1. Transformations from

Once the requirements
of system requirements has
to generate the system test
these transformations throu

NDT conceives the Te
and proposes to carry it ou
models in this phase: i
acceptance tests model. T
generated systematically.
model of system tests from
phase. The team of analy
complete this basic model
stereotype «NDTSupport».

The Analysis phase inc
and organization of require
four models: the conceptual
the process model, which
navigation model, which sh
abstract interface model, a s

The transition between
and automated, and it is ba
of requirements metamodel
are known in NDT as basi
model of analysis is obta
requirements phase.

ements. In order to define them, NDT provides spe
ant artefacts, such as use cases for functional requireme

m Requirements to Analysis and from Requirements to Testin

specification phase has been completed and the catalo
s been drafted and validated, NDT defines derivation ru
t model and the analysis phase models. Fig. 1 shows
gh the stereotype «QVTTransformation».

esting phase, as an early phase of the software life cy
ut together with the remaining phases. NDT defines th
mplementation tests model, system tests model
The system tests model is the only one that can
NDT comprises derivation rules to generate the ba

m the functional requirements defined in the requireme
ysts can perform transformations in order to enrich
l. Transformations are represented in Fig. 1 through

cludes the resulting products from the analysis, definit
ements in the previous phase. At this phase, NDT invol
l model, which represents the static structure of the syste

h represents the functional structure of the system;
hows how users can navigate through the system and
set of prototypes of the system.
the requirements and the analysis model is standardi

ased on QVT transformations, which translate the conce
ls to the first versions of the analysis models. These mod
ic models of analysis. For example, the basic concept

ained from the storage requirements defined during

ecial
ents

ng

gue
ules
s all

ycle
hree
and

be
asic
ents
and
the

tion
lves
em;
the
the

ized
epts
dels
tual
the

Thereafter, the team of analysts can transform these basic models to enrich and
complete the final model of analysis. Since this process is not completely automatic,
the expertise of an analyst is required. To ensure consistency between requirements
and analysis models, NDT controls these transformations by means of a set of defined
rules and heuristics.

To sum up, NDT offers an environment suitable to the development of Web
systems, completely covering life cycle of software development. This environment is
named NDT-Suite.

The application of MDE and, particularly, the application of transformations
among models may become monotonous and very expensive if there are no software
tools that automate the process. To meet this need, NDT has defined a set of
supporting tools called NDT-Suite. Currently, the suite of NDT comprises the
following free tools:

 NDT-Profile is a specific profile for NDT, developed using Enterprise Architect [8].
NDT-Profile offers the chance of having all the artefacts that define NDT easily and
quickly as they are integrated within the tool Enterprise Architect.

 NDT-Quality is a tool that automates most of the methodological review of a project
developed with NDT-Profile. It checks both, the quality of using NDT methodology
in each phase of software life cycle and the quality of traceability of MDE rules of
NDT.

 NDT-Driver implements a set of automated procedures that enables to perform all
transformations MDE among the different models of NDT that were described in the
previous section.

 NDT-Prototype is a tool designed to automatically generate a set of XHTML
prototypes from the navigation models, described in the analysis phase, of a project
developed with NDT-Profile.

 NDT-Glossary implements an automated procedure that generates the first instance
of the glossary of terms of a project developed by means of NDT-Profile tool.

 NDT-Checker is the only tool in NDT-Suite that it is not based on the MDE
paradigm. This tool includes a set of sheets, different for each product of NDT. These
sheets give a set of check lists that should be reviewed manually with users in
requirements reviews.

To conclude, one of the most important characteristics of NDT is that has been
applied in many practical environments; it has succeeded mainly due to the
application of transformations among models, which has significantly reduced
development time.

2.2 WebRE

WebRE is a metamodel that includes modelling artefacts to deal with requirements
in Web applications; it uses the power of metamodelling to fuse different approaches.
WebRE was born from the exhaustive analysis of different Web engineering
proposals that deal with requirements. It unifies the criteria of these proposals and
defines a unified metamodel for the CIM (Computer Independent Model) level. It

provides a base to decide which concepts or elements must be captured and defined in
the requirements phase of Web applications. The metamodel defines each of these
concepts and the relationships between them.

With this unification, WebRE overcomes an important gap: with the use of a
common metamodel, it abstracts from the multiple notations used in each approach.
Each artefact defined in WebRE can be mapped to an artefact in each of the different
requirement engineering approaches. Besides, WebRE also comprises an UML
Profile with a concrete syntax to represent each concept. Thus, a development team
can specify an application’s requirements using the WebRE profile, and later (when
necessary) map them to concrete model elements to continue with the selected
methodology (NDT, UWE, W2000 or OOHDM). Additionally, it would be possible
to systematically derive the corresponding navigation models from requirements
expressed in WebRE using suitable transformations.

However, WebRE was originally conceived for Web 1.0 applications and
therefore it does not support specification of RIA behaviours. The extension proposed
in this paper allows the systematic generation of models for Web 2.0 applications and
the generation of tests to validate the RIA functionality (Section 4). In the following
sections we show how we enriched the WebRE metamodel with new metaclasses and
metaassociations in order to provide an approach that covers both: Web 1.0 and Web
2.0 requirements.

3 Metamodelling Rich Requirements with WeRe+ in NDT

Expressing RIA behaviour and specifically supporting the use of RIA patterns in
requirements using a metamodel have many benefits such as:

• Making possible to develop the application easier by automatically deriving
concrete software artefacts,

• Allowing the generation of tests to automatically validate the requirements

• Supporting requirements evolution and

• Improving traceability between requirements and the implementation.

In the following subsections we show its RIA extension and the corresponding UML
profile. Also, we present in which activities of the NDT approach the WeRe+
modelling is used with mockups.

3.1 WebRE+

RIA have particular features like sophisticated interactive behaviour, client-side feedback
of “slow” operations and different kinds of client-side behaviour depending on the
occurrence of events, among others. An example of the last feature is shown in Figure 2.
The line graph shows information about the progress of a business across time. As a
consequence of how progress is measured (it requires certain calculations) we only show
the final computed value in the graph. The details of how those values were computed
are shown only when the user shows interested in it (e.g. when the user puts its mouse
over an item). This solution is well known as a hover detail pattern in the Yahoo Patterns

catalogue. This kind of RIA
the user interface with lots o
provide a precisely specific
concepts such as events, U
extended the WebRE metam

Fig.

In WebRE+ the original
the mapping between the co

The structure package in
Web requirements. Since R
add the UIElement metacl
images, checkboxes, etc. T
metaclasses: RIASpecificati
a RIA behaviour must sat
RIASpecification in a conc
RIASpecification instanc
(RIAScenarioSpecification
puts the mouse over an ite
UIElement must contain
disappears: When the user
the details of the item must

The behaviour package
navigation. We extended th
specify different situations;
when the user types somethi
different subclasses: those
KeyboardEvent) and those w
Also, we include a new met
perform over an element in t
UIElement). Instances of UI
actions may produce many
three events are fired, namel

A behaviour improves applications usability without pollut
of information, which could be unnecessary at first sight.
cation of this kind of requirement we need to deal w

UI elements like buttons, textfields, etc. For this reason
model with these concepts as shown in figure 3.

. 2. Hover detail pattern on a line graph

l packages, structure and behaviour, were kept to prese
oncepts present in WebRE+ and its ancestors.
ncludes each concept to deal with the conceptual aspec

RIA applications mainly deal with client side behaviour,
lass. Instances of this metaclass are: buttons, textfie
o support RIA we extended the metamodel with two n
ion, which represents a definition of a set of scenarios t
tisfy and RIAScenarioSpecification, which describes
crete scenario. For example, in the hover detail feature
e), we must specify two different scenar
instances), namely Hover detail appears: When the u
em then a UIElement must appear after 2 seconds. T
a name and a description of the item; Hover de
moves the mouse out of the item, then the UIElement w
not be shown.

e includes metaclasses to represent user’s interaction
he package with the Event metaclass which is importan

for example, when the user puts the mouse over an it
ing on a field, etc. In this case, we differentiate between
events which are originated with the keyboard (subc

which are originated with the mouse (subclass MouseEve
taclass UIAction which captures the actions that the user
the UI of the application (relationship between UIAction
IAction are “click”, “type keys”, and execution of one of
events, e.g. when typing a key on a user interface elem

ly onpressdown, onpresskey and onpressup.

ting
. To
with

we

erve

ct of
 we

elds,
new
that
any
e (a
rios
user
This
etail
with

and
nt to
tem,
two
lass

ent).
can
and

f the
ment

Fig. 3. WebRE+ metamodel

In the following subsection we describe our implementation of the UML profile.

3.2 A UML Profile for WebRE+

In order to provide editing support for our approach, we developed an UML profile
for WebRE+, and implemented it using the Enterprise Architect tool. The use of UML
profiles to provide tool supports is being used as a solution in some Web design
approaches like UWE with MagicUWE [23] and specifically in NDT with NDT-
Profile [24].

In Figure 4 we present the profile for WebRE+. As WebRE has its own profile, we
only show our extension; that is, the metaclasses we have added to create WebRE+.

Each metaclass of WebRE extends an UML metaclass. Thus, we map our artefacts
onto UML ones and define for them a set of characteristic that we could, even,
improve with specific tag values or constraints.

class WebRE+

WebRE Behav iour

WebRE Structure

WebUser

Nav igation

WebProcess

Action UIAction

SearchUserTransaction

Browser

Ev ent

MouseEv ent

KeyboardEv ent

Node

Content

WebUI

UIElement

RIASpecification

RIAScenarioSpecification

0..*

+parameter

1..*+transaction 1..*

0..*

+subject

+scenario

1..*

+source

1..*

1..*

+target

+event

1..*

1..*

1..* 1..*

1..*

+page

1..*

+location 0..*

1..*

+action

Fig. 4. WebRE+ profile

3.3 WebRE+ and Mockups in the Context of NDT

Specifying rich requirements using the presented metamodel might be easy for
developers but when used in a work session with a customer it may not be suitable, since
customers do not understand the concepts behind a metamodel. To overcome this
problem and in syntony with existing approaches in agile web application development
[31] we can use WebRE+ with mockups to simplify the requirements elicitation phase.

A mockup is a sketch of a User Interface (UI) which shows an example state of
the system to be. It is useful when interacting with customers, as it is clear of what
would be the software’s UI. An example of our business case example is shown in
Fig. 5 where we show the 2 possible states of the UI according to the mouse events.

Using mockups and WebRE+ we can specify a variety of rich requirements and
allow customers to be involved in the process. However, it is important to define the
activities involved in this process. In Fig. 6 we show those activities when using
mockups with WebRE+ models. We start creating mockups (Step 1) as it defines a
good basis to start discussing with customers. Also, they can be created really fast
(within few minutes) and the feedback obtained from customers is good. Afterwards,
we can create/update our WebRe+ models (Step 2); during this activity the analyst
may notice incomplete and even contradictory requirements while formally specifying
the requirement, and therefore it is necessary to create extra mockups to discuss with
customers. After a few iterations, we can conclude this process (Step 3).

class WebRE profile

«metaclass»
Actor

WebUser

«metaclass»
Class

+ isActive: Boolean

Nav igation

«metaclass»
Activ ity

+ isReadOnly: Boolean = false
+ isSingleExecution: Boolean
+ parameterName: string
+ postcondition: string
+ precondition: string

WebProcess

«metaclass»
UseCase

Browse

Search

UserTransaction

Node

Content

WebUI

Action UIAction

«metaclass»
Event

MouseEvent

KeyboardEvent

RIASpecification

RIAScenarioSpecification

UIElement

«extends»

«extends»

«extends»

«extends»

«extends»

«extends»

«extends»

«extends»

«extends»

«extends»«extends»

«extends»

«extends»

«extends»

«extends»

«extends»

Fig. 5.

Fig. 6. Synthetic pro

4 Test Derivation

Requirements validation i
performed by a quality ass
Generally, it is done manu
documents such as Use Cas
the requirements. The test
deployed to production.

Using the formal defini
specification to derive thes
process and bridging the ga
a WebRE+-based model i
platform. The transformatio

For each RIASpecifica
Create a test suite

For each RIAScenar
Create a test.

Add the action

Add an asserti

The test model is then tran
have use Selenium [25] for

Mockups for the hover detail requirement

ocess for the creation of mockups and WebRE+ models

is usually a hard and time consuming task which
surance team after the application has been implement
ually (because requirements are captured using inform
ses or User Stories), by creating a set of tests that valid
ts are run and if they pass, then the application can

ition that WebRE+ provides, we can use the requirem
se tests automatically thus reducing the time spent on
ap between requirements and tests. The process transfor
into a test model (Figure 5) that is independent of
on process follows these steps:

ation:
e.

ioSpecification:

ns of the scenario in the test.

ion for the post condition of the scenario

nsformed into a concrete test implementation. So far,
this purpose, although we could use a different framew

h is
ted.
mal
date
n be

ment
the

rms
the

o.

we
work

such us Watir [26]. We have chosen Selenium because it is one of the most popular
testing frameworks that simulate user input and it is widely used in industrial settings.
Also, a Selenium test could be re-written in almost any programming language and
run on a Selenium server whereas Watir depends on Ruby [30].

Fig. 7. Test model

In the following section we illustrate the use of the metamodel with a specific RIA
requirement in the context of a Business Intelligence application showing how we
specify it using WebRE+ and how tests are derived to Selenium.

5 A Case of Study

The business intelligence area is an example of how to use RIA to improve the user
experience. For example, Pentaho BI suite [27] uses the Web environment to show
data and allows users to execute queries to the data warehouse. A line graph that
shows the progress of the business (Figure 2) could provide details about each value
shown using the hover detail pattern.

Let’s suppose that we are developing a Business Intelligence Web application
for a company whose core business is organizing campaigns for different customers
and providing summary reports to them. To improve the usability of the summary
report which contains the line graph of Figure 2, we would like to add hover details
to the items to show how those values are computed. For example, on a particular
day there have been 3245 clicks and 15687 impressions so the CPC (Cost per click)
is 0.34.

As in every RIA pattern, there are some features that can be configured and should
be specified during the requirement elicitation phase. A simplified instance model of
the WebRE+ specification for this requirement is shown in figure 6. The model shows
that when the item receives an onmouseover event, a detail of the item must be shown
in the page in less than 2 seconds. This widget must contain a label with the money
used in the campaign and the number of clicks.

 class Test model

TestModel

TestModel::WebTest

+ add(WebTestItem) : void
+ run() : void

TestModel::WebTestSuite

+ add(WebTest) : void
+ run() : void

TestModel::WebTestItem

+ applyOver(WebContext) : void

TestModel::Interaction

- interactionName: int

+ applyOver(WebContext) : void

TestModel::Assertion

+ applyOver(WebContext) : void

TestModel::
Expression

TestModel::
WebContext

«use»

+items

0..*

+expression 1

+arguments

0..*

+tests 0..*

The WebRE+ instantiation describes the possible scenarios that the RIA behaviour
must satisfy. Using the transformation explained in Section 4 we transform this model
into an instantiation of the test metamodel and then we derive the test suite to the
Selenium framework. The derived tests are shown next:

Test 1
(01) s.open(reportURL);
(02) s.mouseOver("id=item1");
(03) Thread.sleep(1000);
(04) assertTrue(s.isElePresent("id=d1"));

Test 2
(01) s.open(reportURL);
(02) s.mouseOver("id=item1");
(03) Thread.sleep(1000);
(04) s.mouseOut("id=item1");
(05) Thread.sleep(1000);
(06) assertFalse(s.isElePresent("id=d1"));

The test suite contains 2 tests, one for each scenario described in the WebRE+ model
of figure 6. The first test opens the report (line 1), passes the mouse over the item (2)
and waits till the item detail is shown (3), then the assertion verifies that the detail is
present (4). The second test opens the report (1), passes the mouse over the item (2)
and waits till the item detail is shown (3). Then the mouse is put out off the item and
waits (4 and 5) and the assertion verifies that the detail is not present (6).

Fig. 8. Hover detail’s specification in WebRE+

6 Implementation

The idea of using metamodels and UML profiles, allowed the incorporation of our
approach in NDT and its tools easily. The metamodel for requirements of NDT is
based on WebRE and WebRE+ is an extension of WebRE. The incorporation of the
new classes presented in Figure 3 is easy and, proposing a way to represented them
using a UML profile, as described in Figure 4, let us introduce it in the NDT-Profile.
According to Figure 2, this extension enriches the possibilities of the Requirements
Definition tasks. Thus, using WebRE+, a development team could include in the
requirements a catalogue of RIA requirements.

 object Hov er Detail

hov erDetail :
RIASpecification

mouseOv er :
RIAScenarioSpecification

mouseOut :
RIAScenarioSpecification

mouseOv erPostCondition :
BooleanExpression

onMouseOv er :
MouseEv ent

item : UIElement
itemDetail :
UIElement

onMouseOut :
MouseEv ent

mouseOutPostCondition :
BooleanExpression

But, WebRE+ could be also added in the NDT-Profile. According to section 2.1,
NDT offers a suite, NDT-Suite, which is based on a tool, NDT-Profile, which
supports its UML profiles and let the definition of NDT artifacts and elements using
the UML notation. With the definition of a UML profile for WebRE+, we can enrich
the NDT-Profile and Enterprise Architect to support it.

The next step to let the inclusion of our approach in NDT is the definition of a set
of transformations to be included in NDT-Driver. This paper covers a first set of
transformations, the set of transformations from requirements to tests. The rest of
transformations are part of our future work.

In Figure 7, we show an example work screen of WebRE+ in Enterprise Architect.
On the left, we can see a special toolbox for creating instances of the metaclasses. The
user can select each WebRE+ artefact to deal with it in his diagrams. In Figure 7, a
WebUser instance (WebUserExample) and a RIASpecification instance
(RIASpecification) example is presented. In our profile (Figure 4), the
RIASpecification is defined as an extension of the UseCase metaclass, thus, it could
be related with a User, like WebUserExample.

Fig. 9. The WebRE+ profile in Enterprise Architect

7 Related Works

The research of this paper is related with research in two different areas: the
specification of Web Requirements in the context of Model Driven Engineering
(MDE) and RIA. We analyze both areas in separate sub-sections.

7.1 Web Requirements Engineering and MDE

Web engineering is nowadays an important field in software engineering [9].
However there is an important gap in the treatment of requirements. In the first design
approaches, OOHDM (Object-Oriented Hypermedia Design Model) [10], WebML

(Web Modeling Language) [11] or UWE (UML Web Engineering) [12] the main
focus was put on modelling and design issues, while the requirements phase was
almost neglected as reported in [13].

The importance of a full-fledge requirements phase is nowadays common in Web
methodologies like NDT (Navigational Development Techniques) [14] or OOWS
[15]. Additionally, some of the previous approaches started to include their own
formalisms for requirement specification. For instance, OOHDM was enriched with
UIDs (User Interface Diagrams) [16] or WebML with business models [17].

Other relevant problem in the requirements specification stage is the lack of
standards and therefore the proliferation of proprietary notations; each approach tends
to offer its own notation. To make matters worse similar formalisms are used in
different approaches with slightly different semantics, or several names are used for
the same concept.

In order to solve this problem, some authors have used the concepts in MDE [18].
In this development approach, building models is the main activity, and software is
built by a series of model transformations ending, eventually, in a running application.
Models are built using instances of concepts and relationships which are formally
described by metamodels.

In summary, MDE offers a suitable solution for Web requirements for several
reasons:

It mainly focuses on concepts; the way to represent them is a secondary aspect. It
offers a systematic way to translate requirements knowledge into the next phases in
the development life cycle.

Additionally, as some relations are defined between requirements and analysis
concepts, it can control the traceability and the coverage of requirements.

Finally, if an UML profile is defined for the requirements metamodel (as it is in
WebRE), software support tools for modelling activities can be built in a cheap way.

7.2 Rich Internet Applications

The Web as it was originally conceived has dramatically changed since 2003 when
the concept of Rich Internet Applications (RIA) appeared. This new kind of Web
applications mixes the old navigation style of Web Applications with the behaviour of
traditional desktop applications: client side feedback, drag and drop features, etc.
Since then, almost any desktop application has a Web counterpart, allowing users to
take advantage of automatic updates since no instalment is necessary at the client
side. Some examples of Web applications with RIA behaviour are Google Maps [20],
GMail and Google calendar [21], Meebo [22], etc.

As developers faced the same problems repeatedly and found good solutions using
the concepts in RIA, some patterns arose. As in the design patterns field, different
catalogues showing RIA solutions to abstract problems have been described; one of the
most popular catalogues is the so called Yahoo Patterns catalogue [2]. In contrast with
software design patterns, RIA patterns are near to the stakeholder’s perspective thus
they use patterns’ names when they describe specific RIA requirements. ADV-charts [5]
were proposed as a modelling approach to design the structural and behavioural of user
interface (UI) elements of RIA applications. However their level of abstraction (close to
implementation) is inadequate to be used during requirements specification.

8 Conclusions and Future Works

In this paper we presented a metamodel for capturing RIA requirements. The
metamodel allows us to express different well known RIA patterns such as those in
the Yahoo patterns catalogue. The metamodel has been implemented as a UML
profile and used within the EA environment to capture different RIA requirements in
the context of a business intelligence application. Also, we have shown how to use the
metamodel with mockups to improve the requirements gathering phase as it is hard
for customers to understand the models and mockups give an intuitive way for
expressing rich requirements.

Some aspects of our research still need some further work. In this matter we are
working on deriving part of the RIA functionality using well known Javascript
libraries such us YUI [28] or ExtJS [29]. Finally, since this kind of requirements not
only affect the UI but also the software backend, we are trying to indicate which part
of the functionality could not be implemented automatically and thus needs manual
intervention from developers.

Besides, this approach opens new research lines for NDT. In the paper, we
discussed how it enriches the requirements definition and presented a set of
transformations (from RIA requirements to test); some others, such as for instance
transformations from RIA requirements to analysis models, should be proposed. We
are also working in these issues to complete our set of development tools.

Acknowledgements. This research has been supported by the project QSimTest
(TIN2007-67843-C06_03) and by the Tempros project (TIN2010-20057-C03-02) of
the Ministry of Education and Science, Spain.

References

1. Duhl, J.: Rich Internet Applications. A white paper sponsored by Macromedia and Intel,
IDC Report (2003)

2. Yahoo Patterns, http://developer.yahoo.com/ypatterns/ (last visit: 04/11)
3. Meliá, S., Gómez, J., Pérez, S., Díaz, O.: A Model-Driven Development for GWT-Based

Rich Internet Applications with OOH4RIA. In: Proceedings of the 2008 Eighth
International Conference on Web Engineering, July 14 - 18, pp. 13–23. IEEE Computer
Society, Washington, DC (2008)

4. Preciado, J.C., Linaje, M., Comai, S., Sanchez-Figueroa, F.: Designing Rich Internet
Applications with Web Engineering Methodologies. In: Proceedings of the 2007 9th IEEE
International Workshop on Web Site Evolution, WSE, October 05 - 06, pp. 23–30. IEEE
Computer Society, Washington, DC (2007)

5. Urbieta, M., Rossi, G., Ginzburg, J., Schwabe, D.: Designing the Interface of Rich Internet
Applications. In: LA-WEB 2007, pp. 144–153 (2007)

6. Moreno, M., Romero, J.R., Vallecillo, A.: An overview of Model-Driven web Engineering
and the MDA. In: Web Engineering and web Applications Design Methods. Human-
Computer Interaction Series, vol. 12, ch.12, pp. 353–382. Springer, Heidelberg (2007)

7. Escalona, M.J., Koch, N.: Metamodelling the requirements of Web Systems. In: Int.
Conferences on Web Information Systems and Technologies, WEBIST 2005 and WEBIST
2006. LNBIP, vol. 1, pp. 267–280. Springer, Heidelberg (2007)

8. Enterprise Architect, http://www.sparxsystems.com.au (last visit: 04/11)
9. Deshpande, Y., Marugesa, S., Ginige, A., Hanse, S., Schawabe, D., Gaedke, M., White, B.:

Web Engineering. Journal of Web Engineering 1(1), 3–17 (2002)
10. Rossi, G., Schwabe, D.: Modeling and implementing Web Applications with OOHDM. In:

Web Engineering: Modelling and Implementing Web Applications. Springer, Heidelberg
(2008)

11. Ceri, S., Fraternali, P., Bongio, A.: Web Modelling Language (WebML): A Modelling
Language for Designing web Sites. In: Conference WWW9/Computer Networks,
vol. 33(1-6), pp. 137–157 (2000)

12. Koch, N., Knapp, A., Zhang, G.: UML-Based Web Engineering. In: Web Engineering:
Modelling and Implementing Web Applications, pp. 157–191. Springer, Heidelberg (2008)

13. Escalona, M.J., Torres, J., Mejías, M., Gutierrez, J.J., Villadiego, D.: The treatment of
navigation in web Engineering. Advances in Engineering Software 38, 267–282 (2007)

14. Escalona, M.J., Aragon, G.: NDT. A Model-Driven approach for web requirements. A
Model-Driven approach for web requirements. IEEE Transaction on Software
Engineering 34(3), 370–390 (2008)

15. Fons, J., Pelechano, V., Albert, M., Pastor, ó.: Development of Web Applications from
Web Enhanced Conceptual Schemas. In: Song, I.-Y., Liddle, S.W., Ling, T.-W.,
Scheuermann, P. (eds.) ER 2003. LNCS, vol. 2813, pp. 232–245. Springer, Heidelberg
(2003)

16. Vilain, P., Schwabe, D., Sieckenius de Souza, C.: A Diagrammatic Tool for Representing
User Interaction in UML. In: Evans, A., Caskurlu, B., Selic, B. (eds.) UML 2000. LNCS,
vol. 1939, pp. 133–147. Springer, Heidelberg (2000)

17. Brambilla, M., Fraternali, P., Tisi, M.: A Transformation Framework to Bridge Domain
Specific Languages to MDA. In: Chaudron, M.R.V. (ed.) MODELS 2008. LNCS,
vol. 5421, pp. 167–180. Springer, Heidelberg (2009)

18. Atkinson, C., Kühne, T.: Model-Driven Development: A Metamodeling Foundation. IEEE
Software 20(5), 36–41 (2003)

19. Koch, N., Zhang, G., Escalona, M.J.: Model Transformations from Requirements to Web
System Design. In: ACM (ed.) ACM International Conference Proceeding Series.
Proceedings of the 6th International Conference on Web Engineering (ICWE 2006), Palo
Alto, California, USA, pp. 281–288 (2006) ISBN: 1-59593-352-2

20. Google Maps, http://maps.google.com (last visit: 04/11)
21. Gmail, http://www.gmail.com (last visit: 04/11)
22. Meebo, http://www.meebo.com (last visit: 04/11)
23. MagicUWE, http://uwe.pst.ifi.lmu.de/toolMagicUWE.html (last visit:

04/11)
24. NDT-Profile, http://www.iwt2.org/ndt (last visit: 04/11)
25. Selenium, http://seleniumhq.org (last visit: 04/11)
26. Watir, http://watir.com/ (last visit: 04/11)
27. Pentaho, http://www.pentaho.com (last visit: 04/11)
28. YUI, http://developer.yahoo.com/yui/ (last visit: 04/11)
29. ExtJS, http://www.sencha.com/products/extjs/ (last visit: 04/11)
30. Ruby, http://www.ruby-lang.org (last visit: 04/11)
31. Martin, R.C.: Agile Software Development: Principles, Patterns, and Practices. Prentice

Hall PTR, Upper Saddle River (2003)

	Modelling the Requirements of Rich Internet Applications in WebRe

	Introduction
	Background
	NDT
	WebRE

	Metamodelling Rich Requirements with WeRe+ in NDT
	WebRE+
	A UML Profile for WebRE+
	WebRE+ and Mockups in the Context of NDT

	Test Derivation
	A Case of Study
	Implementation
	Related Works
	Web Requirements Engineering and MDE
	Rich Internet Applications

	Conclusions and Future Works
	References

