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Intrinsic localized modes, also called discrete breathers, can exist under certain conditions in one-dimensional

nonlinear electrical lattices driven by external harmonic excitations. In this work, we have studied experimen-

tally the efectiveness of generic periodic excitations of variable waveform at generating discrete breathers in such

lattices. We have found that this generation phenomenon is optimally controlled by the impulse transmitted by

the external excitation (time integral over two consecutive zeros), irrespectively of its particular waveform.

PACS numbers: 05.45.Xt, 05.45.Pq, 87.18.Bb, 74.81.Fa

I. INTRODUCTION

Intrinsic localized modes, or discrete breathers (DBs), can exist in a wide variety of coupled nonlinear oscillator networks

under very general conditions [1, 2]. Specifically, they have been experimentally observed in periodically driven dissipative

systems, such as Josephson junction arrays [3], coupled pendula chains [4], micro- and macro-mechanical cantilever arrays [5],

granular crystals [6], and nonlinear electrical lattices [7, 8].

In all these cases, the external periodic excitations (PEs) have systematically been taken as harmonic excitations. However,

there exists a vast diversity of nonlinear PEs depending upon the particular physical context under consideration. The relevance

of the excitation waveform, which reflects the spectral content of the excitation’s Fourier expansion, has previously been pointed

out in many different backgrounds, such as ratchet transport [9], adiabatically ac driven periodic (Hamiltonian) systems [10],

driven two-level systems and periodically curved waveguide arrays [11], chaotic dynamics of a pump-modulation Nd:YVO4

laser [12], topological amplification effects in scale-free networks of signaling devices [13], and controlling chaos in starlike

networks of dissipative nonlinear oscillators [14]. In all these previous works, the external T -PE F (t) is chosen as a generic

periodic function of zero-mean having equidistant zeros, for which it has been shown both theoretically and numerically that the

impulse transmitted over a half period, I =
∫ T/2

0
F (t)dt, is the relevant quantity characterizing its clear-cut dynamical effect. It

is worth noting that the relevance of the excitation impulse comes ultimately from the fact that it takes into account the conjoint

effects of its amplitude, period, and waveform, on the one hand, and from the existence of a correlation between variations of

impulse and subsequent variations of the energy transmitted by the PE, on the other hand.

Regarding DBs, it has recently been shown that the generation of stationary and moving DBs appearing in prototypical

nonlinear oscillator networks subjected to non-harmonic PEs are optimally controlled by solely varying the impulse transmitted

by the PEs, while keeping constant their amplitude and period [15]. Motivated by these results, we will focus in the present

work on the experimental generation of stationary DBs in a nonlinear electrical lattice driven by non-harmonic PEs. We will

demonstrate experimentally that this generation phenomenon is optimally controlled by the impulse transmitted by the PEs,

irrespective of its particular waveform.

II. EXPERIMENTAL AND THEORETICAL SETUP

Our system, shown in Fig. 1, is a simple electrical line previously considered in Ref. [7]. Its connected nodes (circuits

cells made of inductors L2 and load resistances R) become nonlinear when including a varactor diode (NTE 618) in each of

them, being the last circuit cell connected to the first one (periodic boundary conditions). The periodic driving is chosen to be

spatially homogeneous; to this aim, we excite the electrical line with any previously chosen T -periodic function Vs(t) by means

of a programmable waveform generator. The voltage Vn at each lattice node n at point A can be readily monitorized by using

oscilloscopes. In our lattice L1 = 0.68 mH, L2 = 0.33 mH, both with a tolerance of 10%, R = 10 kΩ with a tolerance of 5%

and the number of nodes N = 10; although it may look a small number of nodes, it is large enough to get isolated one-peak DBs

[7].
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FIG. 1: Schematic circuit diagrams of the electrical transmission line (a), where the black points represent circuit cells (b). Each cell is

connected to a periodic voltage source Vs(t) via a resistor R, and grounded. Each point A of an elemental circuit is connected via inductors

L1 to the corresponding points A of neighboring cell. Voltages are monitorized at point A.

As explicitly shown below, we will focus on the case corresponding to an external voltage source in the form Vs(t) = Asg(t),
where g(t) is a dimensionless and conveniently normalized T -periodic function and As is a voltage.

In the absence of dissipation and external PEs, an isolated circuit cell becomes a nonlinear capacitance C(V ) associated in

parallel to an inductor L2, a Hamiltonian system where

H(p, q) =
p2

L2C(q)2
+

∫ q

0

xC(x)dx, (1)

p = L2C
2V̇ and q = V . In the presence of the resistance R and the external PE, the variation of the energy is written as

dE

dt
= L2C(V )

dV

dt

[

1

R

dVs(t)

dt
−

(

dId(V )

dV
+

1

R

)

dV

dt

]

. (2)

Integrating over half period T (once the system has reached a steady state) and applying the first mean value theorem for

integrals [13, 14], one straightforwardly obtains

∆E = −

[

1

C

(

1

R
+

dId
dV

)]

t=t∗

∫

T/2

pdq +

[ p

RC

]

t=t∗∗
I, (3)

where t∗, t∗∗ ∈ [0, T/2]. According to [15], the role of the external periodic excitation F (t) is played by the explicit time–

dependent function dVs(t)/dt , and hence I =
∫ T/2

0
F (t)dt = Vs(T/2) − Vs(0) is the impulse. Note that in a more accurate

model with additional dissipation sources, the impulse contribution will be unchanged.

In some cases, the basic dynamics of the electrical network composed by the aforementioned circuit cells coupled by inductors

L1 can be qualitatively described by a simple model as proposed in [7, 8], where the introduction of a phenomenological

resistor in the model is enough to reproduce some experimental results. Nevertheless, in general, a more sophisticated model

is necesssary to match experiments. In this paper we will focus only on experimental data and the formulation of an accurate

model will be object of further work.

In order to study the impulse-induced generation of stationary DBs, we conveniently chose the periodic function dVs/dt
as given in terms of Jacobian elliptic functions. Indeed, after normalizing their (natural) arguments to keep their period as a

fixed independent parameter, their waveforms can be suitably changed by solely varying a single parameter: the (elliptic) shape

parameter m, and hence the corresponding impulse will only depend on m once the amplitude and the period are fixed. To

demonstrate that our results are independent of the particular selection of the PE, we considered two different choices:

dV
(1)
s (t)

dt
=

As

T
sn

[

4K(m)

T
t;m

]

, (4)

dV
(2)
s (t)

dt
=

As

T
N(m) sn

[

4K(m)

T
t;m

]

×

dn

[

4K(m)

T
t;m

]

, (5)

where N(m) is a normalization factor [15], K(m) is the complete elliptic integral of the first kind, and sn (·;m) , dn (·;m) are

Jacobian elliptic functions of parameter m. Thus, one can change the PEs’ waveform by solely varying their shape parameter
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FIG. 2: (Color online) Normalized periodic excitations [given by (4) in panel (a) and by (5) in panel (b)] vs time over a period T for three

values of the shape parameter: m = 0 (red solid line), m = 0.6 (blue dashed line), and m = 0.99 (black dotted line)

.

m between 0 and 1 while keeping constant their amplitude and period. If parameter m is small enough (m ∈ [0, 0.8]), a good

approximation of these functions is given by the first two terms of its Fourier series which reads

dV
(1,2)
s (t)

dt
=

As

T

[

G
(1,2)
1 (m) sin

(

2π

T
t

)

+

G
(1,2)
3 (m) sin

(

6π

T
t

)]

, (6)

being

G
(1)
1 =

2π
√
mK(m)

q1/2

1− q
, (7)

G
(1)
3 =

q(1 − q)

1− q3
G

(1)
1 , (8)

G
(2)
1 = N(m)

π2

√
mK2(m)

q1/2

1 + q
, (9)

G
(2)
3 =

3q(1 + q)

1 + q3
G

(2)
1 , (10)

(11)

and q = exp (−πK(1−m)/K(m)). In Fig. 3 we depict the normalized second harmonic, G3(m)/G1(m) as functions of the

shape parameter m, for the PEs (4) and (5).

The corresponding driving functions V
(1,2)
s (t) are written as

V (1)
s (t) =

As

4
√
mK(m)

{

ln

[

dn

(

4K(m)

T
t;m

)

−

√
m cn

(

4K(m)

T
t;m

)]

−

ln
(√

1−m
)

}

, (12)

V (2)
s (t) = −

AsN(m)

4K(m)
cn

(

4K(m)

T
t;m

)

, (13)

where cn(·;m) is the Jacobian elliptic function of parameter m, and hence they are shift-symmetric functions: V
(1,2)
s (t) =

−V
(1,2)
s (t+ T/2). The corresponding impulse functions read
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FIG. 3: (Color online) Normalized Fourier coefficients of the PEs (12) and (13) vs shape parameter m: G1

3(m)/G1
1(m) of the PE (12) (black

solid line) and G2
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FIG. 4: (Color online) Normalized impulse functions I(1,2)(m)/I(1,2)(m = 0) and first Fourier coefficient G
(1,2)
1 (m)/G

(1,2)
1 (m = 0) as

functions of the shape parameter m. Solid (black) and dashed (blue) lines correspond to the functions (14) and (15) while dotted (black) and

dash-dot (blue) lines correspond to the first Fourier coefficient of (4) and (5), respectively.

I(1)(m) =
As

4
√
mK(m)

ln

(

1 +
√
m

1−
√
m

)

, (14)

I(2)(m) =
AsN(m)

2K(m)
, (15)

respectively. Figure 4 shows plots of the (normalized) functions I(1,2)(m) over the entire range m ∈ [0, 1]. It is worth notic-

ing that these functions present different properties: While the impulse function I(1) (m) presents a monotonically increasing

behavior for every value of m, the impulse function I(2) (m) presents a single maximum at m = mmax ≃ 0.717. Although

the aforementioned values t∗, t∗∗ will generally depend upon the shape parameter (see Eq.(3)), they become independent of the

PE’s waveform as T → 0 [13, 14]. Note, however, that this is an unreachable limit owing to the DBs frequencies are necessarily

below a certain threshold value. The first Fourier coefficient, G
(1,2)
1 , of the PEs (4) and (5) is also represented in Fig. 4, featuring

a qualitatively similar behaviour to that of the impulse.

III. IMPULSE-INDUCED DBS SCENARIO

Before investigating the generation of DBs in the electrical lattice, we have firstly examined in detail the response of an

isolated circuit cell. Figure 5 shows the typical response of such a circuit cell, namely a nonlinear resonance curve over a certain

range of values of the amplitude As wherein two different periodic attractors coexist, one of them exhibiting small-amplitude
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oscillations whereas the other one features large-amplitude oscillations. Note that the coexistence of these two periodic attractors

with clearly different amplitudes is a key ingredient for the existence of DBs [1].
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FIG. 5: (Color online) Response of an isolated circuit cell Vpp (peak-to-peak value of V (t)) as a function of the amplitude As for m = 0.5,
f = 250 kHz, and two different driving functions Vs(t), namely Eq. (12) for panel (a) and Eq. (13) for panel (b).

Figure 6 shows the critical values of the amplitude As giving rise to stable small-amplitude and large-amplitude periodic

attractors as a function of the shape parameter m (maximum and minimum values of As, respectively). For the driving function

(12), we have found that the threshold amplitude exhibits a monotonically decreasing behavior as a function of the shape

parameter, as expected from the monotonically increasing behavior of its impulse. For the driving function (13), we found that

the threshold amplitude follows the inverse behavior of its impulse such that there exists a minimum threshold at a critical value

of the shape parameter: m = mc ≈ 0.64. Note that this critical value is relatively close to the value m = mmax ≈ 0.717 at

which the impulse presents a single maximum. Specifically, the critical value mc ≈ 0.64 corresponds to the value of m where

the first harmonic of the Fourier expansion of the PE (5) presents a single maximum. In general, we have found that the threshold

follows the inverse normalized first Fourier coefficients, which is in agreement with recently obtained numerical results [15] and

is explicitly confirmed by our experiments (asterisks in Figs. 6 and 8).

Next, we discuss the impulse-induced generation of DBs in the full electrical line. After fixing the frequency to 250 kHz, we

have found that, as expected, there exists a minimum threshold value of the amplitude As for which a stable one-peak localized

excitation emerges, with a typical profile as in the example shown in Fig. 7. In general, as the amplitude As is increased, stable

multi-peak breathers emerge and the DBs scenario becomes ever more complex. The ranges of amplitudes As wherein there

exist breathers having a different number of peaks overlap with those ranges wherein there exist different families of breathers

having the same number of peaks —a feature which seems to depend sensitively on the existence of small lattice impurities in

our (trading) experimental components [7].

Figure 8 shows an illustrative instance of the effect of the transmitted impulse in the generation of stable DBs. We can see

once again that, for the driving function (12), the threshold amplitude exhibits a monotonically decreasing behavior as a function

of the shape parameter, whereas for the driving function (13) we found that the threshold amplitude follows the inverse behavior

of its impulse, such that there exists a minimum threshold at a critical value of the shape parameter: m = mc ≈ 0.64, which is

relatively close to the value m = mmax ≈ 0.717 at which the impulse presents a single maximum in the aforementioned sense.

Note that the first Fourier coefficient of the driving function (7) presents a single minimum at m = mc ≈ 0.64. The proximity of

the values mc ≈ 0.64 and mmax ≈ 0.717 can be understood from the fact that the first Fourier coefficient of the driving function

(7), G1(m), already contains almost all the information of (7) regarding the effect of its impulse, which is in turn a consequence

of the extremely rapid convergence of its Fourier expansion even for m values very close to 1, this being ultimately due to the

dependence of K(m) on m [17].

IV. CONCLUSIONS

We have experimentally investigated the effectiveness of generic periodic excitations of variable waveform at generating

discrete breathers in one-dimensional nonlinear electrical lattices. Specifically, we have experimentally demonstrated for the

first time that the impulse transmitted by generic periodic excitations is a fundamental quantity providing a complete control of
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FIG. 6: (Color online) Critical values of the amplitude As giving rise to stable periodic attractors as a function of the shape parameter m for

f = 250 kHz. (a, b) Maximum values of As for which stable small-amplitude oscillations exist. (c, d) Minimum values of As for which stable

large-amplitude oscillations exist. Dots represent experimental data, dashed (red) lines represent the inverse of the (normalized) impulses

I(1,2)(m = 0)/I(1,2)(m), dash-dot (green) lines represent the inverse of the (normalized) first Fourier coefficient G
(1,2)
1 (m = 0)/G

(1,2)
1 (m),

vertical (green) dotted lines indicate the value m ≃ 0.64 and vertical (blue) dotted lines indicate the value m ≃ 0.717. Panels (a, c)

correspond to the driving function (12), while panels (b, d) correspond to the driving function (13). Note that, in (b) and (d) case, close to

minimum we have taken more experimental measures in order to improve the visualization of the sought phenomena. Open circles represent

the experimental normalized amplitude As/[I
(1,2)(m = 0)/I(1,2)(m)] and asterisks the corresponding experimental normalized amplitude

As/[G
(1,2)
1 (m = 0)/G

(1,2)
1 (m)].

their effectiveness at generating discrete breathers in real-world electrical lines capable of presenting these intrinsic localized

modes. We have analytically shown that this effectiveness is due to a correlation between increases in the transmitted impulse

and increases in energy. Future work may extend the present impulse-induced breather-generation scenario to optimize the

generation and control of diverse nonlinear localized excitations, such as kinks, solitons and vortices.
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FIG. 7: Experimental (solid circles) breather profiles for f = 250 kHz (peak-to-peak value) and m = 0.95. (a) corresponds to the case (12),

where As = 12.4 Volts , while (b) corresponds to the case (13), where As = 16.7 Volts. Values of As correspond to a threshold situation,

because of smaller values of As implies that breather disappears.

0 0.5 1
m

0.8

0.85

0.9

0.95

1

1.05

1.1

A
s(m

)/
A

s(0
)

(a)

0 0.5 1
m

0.8

1

1.2

1.4
A

s(m
)/

A
s(0

)
(b)

FIG. 8: (Color online) Minimum value of the amplitude As giving rise to the existence of a stable discrete breathers as a function of the shape

parameter m for f = 250 kHz. Dots represent experimental values, dashed (red) lines represent the inverse of the (normalized) impulses

I(1,2)(m = 0)/I(1,2)(m), dash-dot (green) lines represent the inverse of the (normalized) first Fourier coefficient G
(1,2)
1 (m = 0)/G

(1,2)
1 (m),

vertical (green) dotted lines indicate the value m ≃ 0.64 and vertical (blue) dotted lines indicate the value m ≃ 0.717. Panels (a) and (b)

correspond to the driving functions (12) and (13), respectively. Open circles represent the experimental normalized amplitude As/[I
(1,2)(m =

0)/I(1,2)(m)] and asterisks the corresponding experimental normalized amplitude As/[G
(1,2)
1 (m = 0)/G

(1,2)
1 (m)].Note that, in panel (b),

we have taken more experimental measures close to minimum for the sake of a better visualization the phenomenon.

[3] E. Trı́as, J. J. Mazo and T. P. Orlando. Phys. Rev. Lett. 84, 741 (2000). P. Binder, D. Abraimov, A. V. Ustinov, S. Flach and Y. Zolotaryuk,

Phys. Rev. Lett. 84, 745 (2000).

[4] J. Cuevas, L. Q. English, P. G. Kevrekidis, M. Anderson, Phys. Rev. Lett. 102, 224101 (2009); V. J. Sánchez-Morcillo, N. Jiménez, J.
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2014), pp. 251–262; J. Chaline, N. Jiménez, A. Mehrem, A. Bouakaz, S. Dos Santos and V. J. Sánchez-Morcillo. J. Ac. Soc. Am. 138,

3600 (2015); F. Palmero, J. Han, L.Q. English, T.J. Alexander, and P.G. Kevrekidis, Phys. Lett. A 380, 401 (2016).

[5] M. Sato, B. E. Hubbard and A. J. Sievers. Rev. Mod. Phys. 78, 137 (2006); M. Kimura, T. Hikihara, Chaos 19, 013138 (2009).

[6] N. Boechler, G. Theocharis, S. Job, P. G. Kevrekidis, M. Porter and C. Daraio. Phys. Rev. Lett. 104, 244302 (2010); G. James, P. G.

Kevrekidis, and J. Cuevas-Maraver. Physica D 251, 39 (2013).

[7] L. Q. English, F. Palmero, A. J. Sievers, P. G. Kevrekidis, and D. H. Barnak. Phys. Rev. E 81, 046605 (2010); F. Palmero, L. Q. English,
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