
ABSTRACT
This paper presents a detailed study of the clock jitter error in
multibit continuous-time Σ∆ modulators with non-return-to-zero
feedback waveform. Closed-form expressions are derived for the
in-band error power and the signal-to-noise ratio showing that the
jitter-induced noise can be separated into two main components:
one depending on the modulator loop filter and the other one due
to the input signal. The latter, not considered in previous ap-
proaches, allows us to accurately predict the signal-to-noise ratio
degradation and to optimize the modulator performance in terms
of jitter insensitivity. Moreover, the use of state-space formulation
makes the analysis quite general and applicable to either cascaded
or single-loop architectures. Time-domain simulations of several
modulators are shown to validate the presented approach.†1

1. INTRODUCTION
Nowadays, the increasing demand for ever faster Analog-to-Digi-
tal Converters (ADCs) in broadband communication systems has
boosted the interest in Continuous-Time (CT) Sigma-Delta Modu-
lators (Σ∆Μs). These modulators offer an intrinsic antialiasing fil-
tering and provide potentially higher sampling rates with lower
power consumption than their Discrete-Time (DT) counterparts
[1][2]. However, CT Σ∆Μs are more sensitive than DT Σ∆Μs to
several circuit non idealities. One of their major degrading factors,
especially in high-speed applications, is due to uncertainties in the
clock signal edges, commonly referred to as clock jitter [1].
Clock jitter in CT Σ∆Μs has been object of several studies report-
ed in open literature [1][3]-[7]. Most of them were carried out
considering Σ∆M architectures with an internal single-bit quantiz-
er and a Return-to-Zero (RZ) Digital-to-Analog Converter (DAC).
However, multibit quantization has been used in most silicon pro-
totypes achieving medium-high resolutions ( ) within
high signal bandwidths ( ) [8]-[10]. The combined use
of high-order ( ) single-loop architectures with
multibit ( ) quantization allows to reduce the oversampling
ratio (normally ) while guaranteeing stability and robustness
with respect to circuit parameter tolerances − the latter being a
very critical error in CT Σ∆Ms [1][2]. In addition to improve reso-
lution, multibit quantization can reduce the sensitivity of CT
Σ∆Ms to clock jitter if a Non-Return-to-Zero (NRZ) feedback
waveform is used in the DAC [9]. Therefore, their study is needed
in order to optimize the modulator performance in terms of sensi-
tivity to jitter error.
The analysis of clock jitter in CT Σ∆Ms considering a NRZ feed-
back waveform is mathematically more complex than using a RZ

pulse shaping. In most cases, designers resort to semi-empirical
estimations based on simulation results and consider a white-noise
model for the jitter error [1][5][9]. To the best of the authors’
knowledge, only the work in [7] takes into account the effect of
the modulator loop filter transfer function on the in-band jitter
noise power of CT Σ∆Μs with NRZ DAC. However, the analysis
in [7] does not consider the effect of input signal for the sake of
simplicity. 
This paper analyzes the effect of signal-dependent clock jitter in
multibit CT Σ∆Ms with NRZ DAC. State-space formulation [11]
is used to derive closed-form relations among jitter error, modula-
tor specifications, loop filter transfer function and input signal pa-
rameters. The results of this study − applicable to any modulator
topology − show effects not considered in previous approaches
which become critical in high frequency applications. As an illus-
tration several modulators using either single-loop or cascaded to-
pologies are simulated to demonstrate the theoretical predictions.

2. CLOCK JITTER IN CT Σ∆MS WITH NRZ DACs
Fig.1 shows the conceptual block diagram of a single-loop CT
Σ∆M. The loop filter is CT and the sampling operation is realized
before quantization instead of at the modulator input as done in
the case of DT Σ∆Ms. Thus, the output signal, †2, is DT, the
input signal, , is CT and a DT-to-CT transformation is imple-
mented by the DAC to create the CT feedback signal, .
Therefore, there are two clocked building blocks subject to jitter
error: the sampler and the DAC. The error introduced through the
sampling process is reduced by the loop gain and shaped in the
same way as the quantization noise and hence, its effect can be ne-
glected. On the contrary, the jitter error associated to the DAC di-
rectly adds with the input signal, thus increasing the in-band noise
power and degrading the modulator performance.
In the case of a NRZ DAC, the error sequence can be related to the
output signal using the following relationship [1]:

(1)

where  is the sampling period and  is the time uncertain-
ty. 
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Figure 1. Conceptual block diagram of a single-loop CT Σ∆M.
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Assuming that the input signal and the quantization error are un-
correlated and that  is a Gaussian random process with zero
mean and standard deviation , the power of the jitter error
signal can be written as:

(2)

where  stands for the mathematical expectation [12] and
 is the shaped quantization noise, given by:

(3)

where  represents the quantization Noise Transfer Func-
tion and  is the quantization error − assumed to be a white
noise source. 
Considering a sinewave input signal of amplitude  and angular
frequency ,  can be simplified
as:

(4)

and hence,

(5)

The expectation value of  can be derived
from (3) giving:

(6)

where  and  are the full-scale and the internal number of
bits of the quantizer, respectively.
From (2), (5) and (6), we obtain:

(7)
where  is the sampling frequency.
In some modulator topologies, the integration in (7) may become
mathematically too complex, thus requiring the use of numerical
solving methods. This can be simplified if the state-space formu-
lation is used to derive  as shown in next section.

3. STATE-SPACE FORMULATION
Fig.2 shows the state-space representation of , which can
be described by the following finite difference equations [12]:

(8)

where  is the state matrix,  is the  state vector, 
and  are  vectors and  is the order of .

Equation system (8) can be solved recursively to find the relation
between the initial state ( ), previous input ( ), present
input ( ) and output ( ) of the system [12]. This gives:

(9)

Assuming that the initial state, , is zero and considering
that  for , it can be shown from (9) that: 

(10)

Diagonalizing  and considering that the system in Fig.2 is sta-
ble, the expression in (10) can be re-written as:

(11)

where  are the eigenvalues of  and  and  are respective-
ly the elements of  and , with 
being the matrix of the eigenvectors of .
Using a similar procedure, it can be demonstrated that:

(12)

Taking into account that , and
, the value of  can be

derived from (11) and (12) as:

(13)

where

(14)

Replacing (6) with (13) in (7) and assuming that the jitter noise is
an additive noise source at the input of the modulator, the Sig-
nal-to-Noise Ratio (SNR) dominated by jitter can be written as:

(15)
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Figure 2. State-space representation of NTF(z).
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where  is the signal bandwidth.
Note that in the denominator of (15),  is multiplied by a
factor that is the sum of two terms: one depending on the input
signal parameters (  and ) and the other one which is a func-
tion of the modulator topology parameters ( , ,

). The first term decreases with  while the second
term increases with . This is illustrated in Fig.3 where the two
terms in brackets in the denominator of (15) are plotted versus 
for a 5-bit 3rd-order single-loop CT Σ∆M with

. Note that there is an optimum value of ,
, that minimizes the in-band jitter noise power

and hence, maximizes †3. Thus, using (15) as a figure of
merit in multibit CT Σ∆Ms with NRZ DAC in which jitter is the
main limiting factor, the modulator performance can be optimized
for given specifications in terms of loop filter parameters, sam-
pling frequency and the number of bits of the internal quantizer. 
It is important to mention that the effect of  on the in-band jit-
ter noise of multibit NRZ CT Σ∆Ms was previously studied in [7].
However, it did not take into account the impact of signal-depen-
dent jitter term, which can be very critical in broadband applica-
tions as illustrated in next section.

4. SIMULATION RESULTS
The presented study has been validated through time-domain be-
havioural simulation using SIMSIDES, a SIMULINK-based sim-
ulator for Σ∆Ms [13]. Fig.4 shows the multibit NRZ CT Σ∆Ms un-
der study. Fig.4(a) is a 3rd-order single-loop and Fig.4(b) is a cas-
caded 2-1 topology. In both architectures, feed-forward
stabilization is used and a feedback coefficient  is used to move
one of the poles to an optimum position [14]. The modulators
were synthesized to handle signals within  for
VDSL application.
Three different cases are considered:
• CT Σ∆M1: Fig.4(a) with  and 
• CT Σ∆M2: Fig.4(a) with  and 
• CT Σ∆M3: Fig.4(b) with  and 
where  and  are respectively the number of bits of the quan-
tizer in the first- and second- stage in Fig.4(b). Table 1 shows the
values of the loop-filter coefficients ( ) as well as the position of
the poles and Table 2 shows the values of  for the
three cases mentioned above.

Fig.5 shows several simulated output spectra of cases CT Σ∆M1
(Fig.5(a)) and CT Σ∆M2 (Fig.5(b)) corresponding to different val-
ues of  and . Note that in Fig.5(a), the in-band
noise power does not depend on  as predicted by [7]. However,
as  increases from  to , the modulator-dependent
term in (15) decreases and hence, the in-band noise is dominated
by the signal-dependent term as illustrated in Fig.5(b). This effect
is better shown in Fig.6, where the  of the modulators
in Fig.4 is plotted vs.  for several values of , showing simu-
lation results and theoretical predictions†4. For comparison pur-

†3.  The values of  for  are shown in Fig.3.
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 Table 1:  Loop-filter coefficients of CT Σ∆Ms in Fig.4

CT Σ∆M1 CT Σ∆M2 CT Σ∆M3

1.5 2 1.6

-1.5 -2 -1.6

1 1 1.6

-0.1 -0.37 -0.24

0.6 1 _

0.5 1.2 _

1 1 1

0.5 1 _

_ _ 1

_ _ -1
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 Table 2:  Values of  for the CT Σ∆Ms in Fig.4
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[-0.56 0.853 0.853] [0.81 0.81 0.959] [0.766 0.766]
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poses, predictions given by [7] are also included. Note that, simu-
lated and theoretical data matched very well when the combined
effect of signal- and modulator-dependent jitter noise is taken into
account as shown in this work.

CONCLUSIONS
The effect of clock jitter error on multibit CT Σ∆Ms with NRZ
DAC has been analyzed. Based on the use of state-space formula-
tion, easy-to-compute closed-form expressions have been derived
for the noise power and signal-to-noise ratio. It has been demon-
strated that the jitter-induced noise has two components: one de-
pending on signal parameters and the other one depending on the
modulator loop filter. Their combined effect, not predicted by pre-
vious approaches, has been confirmed by time-domain simula-
tions of several CT Σ∆Ms intended for VDSL application.
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