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Abstract: This paper reports a general overview of current research on analysis and control of the
power grid with grid scale PV-based power generations as well as of various consequences of grid
scale integration of PV generation units into the power systems. Moreover, the history of PV renewable
growth, deregulation of power system and issues related to grid-connected PV systems considering
its contribution to various responsibilities like frequency control, virtual inertia capabilities and
voltage regulation are discussed. Moreover, various outcomes of the high-penetrated grid with PV
power plants such as power quality, active and reactive power control, protection, balancing and
reliability under various loading conditions are reviewed and discussed.

Keywords: integration of PV plant to grid; large-scale PV power plant; modern power systems

1. Introduction

Energy and the matter of renewable resources are critical issues in future power grids. During
previous years, energy demand has increased drastically [1] and due to global warming, renewable
energy development is crucial in order to reduce conventional fossil power plant harmful emissions [2,3].
Currently, renewable energies being harvested are solar, wind power and hydraulic energy. Facing
problems such as climate change and environmental awareness in parallel with huge deregulations
in conventional power systems have forced governments to think more deeply about the alternative
sources of energy to substitute the traditional sources of energy. These matters have changed the face
of the conventional grids and it is expected a rapid deregulation and revolution due to the massive
integration of the renewable based generations with stochastic behavior like photovoltaic (PV) systems
and wind power. Solar power is becoming more attractive. Solar energy has a huge harvesting potential
and based on European Photovoltaic Industry Association (EPIA) reports, the European cumulative
PV power was around 29,777 MW in 2010, while as shown in Figure 1, just in 2014, this value for the
entire European Union was more than 88,636 MW [4]. It predicts that in 2019 the capacities can be
between 121,087 MW to 158,156 MW, which suggests a strong year for the PV industry and the rate of
installations will continue to increase through the next 5 years [5].
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PV is a popular source of energy both on the utility’s side and for residential home use. PV uses
semi-conductor technologies for converting the energy from the sunlight into the electricity. PV, thus,
only operates when there is enough energy from the Sun during a day, and it must be mixed with
other type of power generation systems to guarantee a continuous supply of the electricity. The PV
market is very promising and photovoltaic energy plays a key role on the energy map of various
countries. For example, more than about 4% of the electricity demand in Spain was provided by PV
during the last summer. Currently, the largest PV plant is located in the Tengger Desert Solar Park in
China, with a total capacity of 1500 MW, followed by the Datong Solar Power Top Runner Base, also in
China, and Kurnool Ultra Mega Solar Park in India, both with a capacity of 1000 MW [6].

These ranges of generation will be continuing to increase at least in the next following years
and simultaneously make the power grid more complex. One of the most important aspects to take
into account in renewable energy is its stochastic nature and its consequences and impact on power
grids. Managing this new scenario of power grid full of high-penetrated renewable generations will be
complicated and it will be necessary to perform deep research in several aspects.

The impact of large-scale PV based generation units are the focus of many strategic researches on
the integration of renewable energy [7,8]. A PV-based power generation unit usually works in the grid
connected mode. Nevertheless, unlike conventional generation units, high-capacity PV units, like in
the range of multi MW, will have a huge effect on the dynamic performance of the interconnected power
system and also will have an important impact on the reliable and stable operation of interconnected
systems [9,10]. Thus, in the view of the assessment of the grid-connected operation characteristics of
the grid scale PV systems, researchers have carried out a vast number of modeling and control studies
on dynamic impact and PV system and their contribution on grid support and ancillary services [11,12].

This review paper presents a discussion of large-scale PV power plants and their massive potential
to become an important player of the modern future power system. Therefore, benefits, issues, various
effects of high penetration of PV and other requirements to support the correct functioning of PV plants
are discussed and reviewed. In Section 2, grid scale PV-based generation unit structures, modelling
and control strategies are presented. Modern power systems with the grid scale PV-based generation
reviewed and discussed in Section 3. In Section 4, contributions of large scale PV power plants to
the grid services such as frequency, reactive, voltage control, balancing and reliability under various
loading condition are reviewed. Finally, in Section 5, the paper ends with some concluding remarks.

2. Large Scale PV Power Plant

In recent years, the most auspicious usage of PV-based generations has been their integration into
the interconnected power grid [13–21]. In [13], a review of existing grid integrated PV-based topologies
was presented. Readers should refer to [8,9] for more comprehensive explanations for various PV
structures and their technologies. In the category of distributed systems, PV may be broadly classified
into four types: (1) very large scale; (2) large-scale; (3) medium Scale, and (4) small scale PV systems.
In the small scale PV system, the range of capacities is up to 250 kW. For medium scale, it is around
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250 to 1000 kW. Large scale, it is considered around 1 to 100 MW, and for very large scale, the power
capacity is higher than 100 MW [14].

2.1. Structures

The typical layout of a Utility-Scale PV based system requires several transformers, PV inverters
and PV arrays (Figure 2). The connection among these elements depends on the topology used by the
PV inverter. Generally, two topologies are used for connection of the PV systems to internal grid of the
power plant: central and multistring inverter (Figure 3). In the first structure, only one inverter is used
to connect a PV array with the transformer. Commonly, this has a single stage of conversion (DC-AC).
Meanwhile, the multistring inverter, has two conversion stages (DC-DC and DC-AC). Commonly, the
last topology interconnects one string of PV panels to the internal grid AC grid of the power plant [14].

According to an in depth comparison developed by Cabrera et al. [14], the central inverter is
the most used topology in large scale power plants. The main advantages of this topology over the
second one are: (i) competitive cost, (ii) robustness, (iii) low maintenance, and (iv) a reduced number of
inverters in the field. However, the multistring inverter is used commonly to enhance the control of the
maximum power point. This could be necessary when the power plant is located in irregular surfaces.

Moreover, this topology is used for each PV string, so the number of inverters used increases in
comparison with a power plant that uses only central inverter. For instance, the Long Island PVPP with
a rate of 37 MW uses 50 central inverters. Meanwhile, the Veprek PVPP with a similar capacity uses
3069 multistring inverters According to Massi Pavan et al. [15], and a central inverter configuration
has 1.5% less efficiency than a multistring one. However, the cost for the installation and maintenance
of the second one increases by 60%.
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2.2. Characteristics of Grid-Connected PV Systems

Based on various works [21–28], the most important characteristics of PV systems and related
grid codes are:

• The PV-based generators together with inverters will be connected in a parallel structure to the
power grid, and loads will be supplied properly when the power grid is accessible. As reported
in [2,6,29], the produced power by the PV generation will decrease the apparent load, and then
the excess energy flows into the power grid.

• Most of the current PV-based inverters don’t have any capabilities for providing any type of
reactive power/voltage support. PV systems, usually must work at unity power factor and the
utility is responsible for VAR requirements.

• Based on regular standards like IEEE 1547, upon the deviations of frequency/voltage grid from
their standard ranges, the inverter has to be automatically isolated from the power grid until
normal conditions return.

• Geographical factors, location of PVs and factors related to the environment are important
characteristics to be taken into account for PV systems. All of these factors can be divided into
two periods: (1) day-time and (2) night-time. During the day-time period, PV systems will have
to deal with weather disturbances such as clouds and effects of the temperature on the efficiency
of the system. Cloudy weather may considerably decrease the net radiation and may cause a fast
variation in the output of a PV system. During night-time, the PV system is not collecting energy,
which means the output power from the PV systems will be zero. However, the PV system may
have a battery energy storage system (BESS), which can provide, for a while, energy to the grid.
The Transmission System Operator (TSO) will be informed beforehand if the PV system has or not
BESS as well as the possible night-time energy the PV system can deliver or not to the grid.

• It is quite hard to have a good capability to dispatch ancillary services of PV systems without
considering additional energy storage devices.

• There is a lack of coordination between PV resources and other conventional plants. Management
of reactive power for related feeders is not properly designed for very high PV production.
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2.3. Modeling and Control of Large-Scale PV Plant

Dynamic behavior of PV generators, especially with high grid penetration, is different from
the conventional generation unit responses. Therefore, it is crucial to find an appropriate model for
analyzing the effects of grid scale PV-based power generation on the dynamic stability and oscillations
of a large power grid. Generally, grid-connected PV systems are based on core device modeling, which
will reflect the characteristics of the PV modules and inverter control [30]. One of the most used core-
based models applied for power system analysis is presented in [31]. The schematic design of this
model is shown in Figure 4., where IPV is the control variable and is calculated at each time step as the
sum of IPV at the previous step, ∆IMPPT

PV reflects the actions of the MPPT, ∆IIr
PV represents the impacts of

variations in irradiance and ∆IVac
PV represents the influence of any sudden variations in AC grid voltage.
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In some of the works, solar PV power plants are modeled as static generators [32–34], neglecting
the variations of the power output from the PV system. The analysis of possible impacts of output
power fluctuation of PV systems with a detailed model is addressed in [32]. For simulation of a grid
scale interconnected system, usually, a simplified model or models based on transfer functions are
applied [10,33]. Moreover, it should be noted that when a large-scale PV system acts as a renewable
power plant, it is very important to find a criterion for selecting the usual patterns for PV output power
during each specific season for using the analysis related to system power flow to show carefully the
influences of variations on the power grid [35]. The simulation of large system dynamics using a single
converter equivalent is adequate for most studies.

Regarding the control of the PV system, several MPPT approaches have been reported in the
literature. Numerous MPPT algorithms are explained and discussed in [16–19] focusing on duty
cycle control in DC/DC inverters. The main methodologies used for MPPT are: the open circuit
voltage approach, constant voltage (CV), incremental conductance (IC) method, ripple-based method
and the perturb and observe (called P&O) technique [20–23] and [25,26]. These MPPT techniques
differ from each other in several aspects such as simplicity, required measurements, convergence
speed, effectiveness, cost and parameterization. P&O and IC techniques are the most widely used.
The P&O algorithm works by perturbing the array terminal voltage. It is based on the observation of
the sign of the equation dP/dVPV. The perturbation is done periodically and the output power of the
PV system is compared with the obtained values form the previous cycles [23,25,26,31]. If the power
increases dP/dVPV > 0, the control system changes the operating point of the system in that direction.
If dP/dVPV < 0, the operating point has changed in the opposite direction. This algorithm continues
until it reaches the MPP. When the system is close to its MPP, then the output power oscillates around
the maximum value. This issue might bring some power losses in the PV system. The model schematic
shown in Figure 4 uses P&O, but in this case IPv is adjusted for the MPPT.

The incremental conductance (IC) method is another approach which due to its high tracking
accuracy at the steady state is widely used for different applications. In this approach there is a good
flexibility to deal with rapidly changing atmospheric conditions [23]. This algorithm works according
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to the observation of the equation dIPV/dVPV + IPV
VPV
< 0 which has to be held at the MPP value, while

IPV and VPV will be the current and voltages of the PV array. Therefore, the MPP can be easily tracked
with comparing the instantaneous value of the conductance IPV/VPV to the incremental conductance
dIPV/dVPV. Thus, as soon as the MPP has been reached, the operation of the PV system will be
maintained at this point and the perturbation procedure will be stopped except if another change
happens in dIPV.

Inside the DC/AC converter, a PWM-based control technique is used for regulating the amount of
exchange of the active power and the reactive power between the PV-based generation and the rest of
the grid [20]. The DC generated power coming from a PV array can be reflected as real power injected
into the power grid. MPPT control will be managed by DC/DC part and it will depend on irradiation
and environment conditions. By means of PWM control in the DC/AC part power quality issues and
grid synchronization will be done. Active and reactive powers will be calculated as shown in Figure 5.
In order to utilize overall control, two main procedures such as voltage control and the active power
control considering DC voltage values in DC bus will be used [34].
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3. Modern Power System with PV Systems

Advances in power processing and control systems, widespread deregulation of power markets
with strategic importance dispensed to power supply securities, especially in the last decades, is
leading to a new restructuring of electrical power systems. This scenario is moving from a centralized
approach to different flexible distributed generation patterns, which has resulted in what are broadly
known as modern distributed power systems (DPS) [36].

3.1. Conventional Power System

In conventional power system, the utilities were mostly owned by the government. In the other
words, the traditional power system was a kind of vertically integrated utility (VIU) structure which
holds and operates the main part of the physical assets, including most of the generating units and
transmission lines. The utility has control over all generators and by using optimal power flow can
re-dispatch to respond to any changes. This monopolistic situation is not fair and with a huge increment
in the number of distributed generators (DG), a new restructure and deregulation was necessary for
power systems [37,38].

3.2. Power System Deregulation

In a competitive electrical grid environment, the VIU does not exist anymore and therefore,
the new competitive scheme will be full of generation companies (GENCOs), distribution companies
(DISCOs) transmission companies and independent system operators (ISOs) [37] and [39–41]. In this new
competitive environment, offering the highest quality electricity and ancillary services is very important.

Services such as operating reserves, reactive or voltage regulation and active power/frequency
regulation will be extremely essential for supporting renewable-based power integration. This is
especially critical with the integration of intermittent resources of energies [42–46].
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3.3. Distributed Power System

Distributed power systems (DPS) are devoted to customer load supply, which are geographically
distributed in an inherent manner, by using distributed generators and energy storage systems spread
among distribution networks. Power processing capabilities offered by power electronics have opened
new possibilities in the control of DG, which allows implementing ancillary services oriented to
compensate the drawbacks of conventional generation units and to improve the dynamic performance
of the electrical grid. Among the benefits endorsing DPS [47], it can be highlighted in their capability to:

• Decrease the weaknesses of the electrical power grid.
• Support sufficient standby generation for improving the system reliability.
• Enhance the regulation mechanism and also for stability of the conventional power grid.
• Decrease the environmental impact of power generation.
• Offset the costs of properties of new transmission system schemes.

It is also worth mentioning here that DPS reduce transmission power losses, as well as the length
and total number of transmission lines which have to be built. From the point of view of controllability,
DPS allow drawing more flexible and adaptable power systems.

3.4. Operation and Regulation of DPS

Despite of their unquestionable potential, distributed power systems (DPS) still face important
challenges in several areas before becoming a widespread reality. The growing use of distributed
power units based on renewable sources of energy will gradually move toward a highly stochastic
scenario that eventually might have a huge effect on the online balance in power exchanges, paving
the way for the extensive usage of distributed energy storage systems [48–51].

Today, applying energy storage systems with photovoltaic systems is promising and a lot of
attention and various studies are being performed in this field. Therefore, an encouraging research
concept which opened new windows in the field of hybrid RE/ESS generation system is the concept
of virtual inertia (VI) and virtual synchronous generator (VSG) [52–58]. In the VSG concept, a short
term energy storage system should be added next to converters of renewable-based power generation
systems. A suitable coordination mechanism and a proper control system between the converter and
storage device is essential [53]. As shown in Figure 6, VSG presents a solution in which the inverter
can be controlled in a way that it will behave as a normal synchronous generator.
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In modern power system, application of advanced power electronics, FACTS equipment and
HVDC systems are becoming more important [59–62]. Moreover, the regular use of different DC line
applications may be estimated in the future to fulfil the needs of a deregulated modern power grid [61].

In addition to the exigencies of large-scale integration of DGs, power systems are required to
operate under the intensive and competitive conditions set by the deregulated electricity market. This
results in a more and more complex operation scheme that forces DPSs to work very close to their
limit stability. Thus, it is necessary to make an intensive research effort in this field to apply advanced
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control methods and new concepts, like active management of distribution networks and smart grids,
to enable an efficient and reliable operation of DPS [63–68].

4. Contribution of Large PV Power Plants to Ancillary Services

Large PV power plants have vast potential to become an important player in the future power
system and studies in this field are quite meritorious. In this part of the paper, the typical effects of
contributed grid scale PV plants in the grid will be investigated and reviewed.

4.1. Active Power and Frequency

PV-based power generation systems have essentially a different nature compared to conventional
synchronous generators. PV-based units have stochastic behaviors under various conditions without
inertia and dynamic behavior of this kind of generators is subjected by the features and control
methodologies used for their power converter parts [69]. Under normal conditions, PV generation has
a positive effect on power system behavior. However, in some conditions like cloudy environments and
fault contingencies, if the total size of a PV system is large enough, frequency problems may arise at
the interconnected power systems [70]. Until now, FACTS controller or PSS, static VAR Compensators
and STATCOMs are proposed to improve the power system behavior which may not be always
economic [71,72]. It is worth mentioning that the location, degree of penetration and the manner of
dispatching the existing conventional generators have a considerable effect and based on these factors
the PV plants may have beneficial or detrimental effects on the system. In some cases with adverse
effect of PVs, it is recommendable to keep the critical synchronous generators in service, as well as
the SVCs for adequate damping of low frequency oscillations [69]. Alternative power generation
sources like P, have a great potential for damping the oscillations in a large power system. Even a
single PV-based generating system located at the weakest bus of the grid can still enhance the system
loading margins [73].

The damping can be introduced through the high power converters that used as interfaces to the
network [73–75]. Essentially, the AC generation units which are coupled with gas turbines must operate
the electric power at a synchronous frequency. Moreover, in the distributed generators, the power
electronic interfaces must act as a frequency changer as well, that change the DC power (for example,
in PV) to the utility standard of 60 or 50 Hz. Bidirectional control and unidirectional control are known
as two general methods for the PV contribution on active power/frequency services (Figure 7).
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In the bidirectional method, plant installations and various energy storage technologies will be
required to act as a reserve most of the time. However, in unidirectional method, the DG will be
acting only in under or over frequency conditions. For example, in the unidirectional method with
DGs that just works in its maximum power output, they can contribute in over-frequency conditions
by reducing their output power [75]. Applying a coordinated advanced control for PV system in
automatic generation control (AGC) will lead to an interesting research field in load-frequency control
services [76,77]. AGC or load frequency control (LFC) is essential in power system stability and



Energies 2019, 12, 1425 9 of 19

control analysis. The main goal of the AGC is to eliminate any mismatches between generators and
load demand and its concepts are well-known [38–42]. With the increasing trend in displacing the
conventional power plants with renewable plants, effects in frequency control will come into sight.
Applying various intelligent control methods like fuzzy, neural network and observer methods will be
useful for more flexibility [78,79].

Generally, when a photovoltaic plant stops producing, a conventional power plant will try to
replace its place in the electricity grid. This situation will occur in case of a sudden change in irradiation,
if the rate of irradiation drops is within certain limits such that there is enough time for governors
to respond to it and otherwise in a worst case scenario where a UFLS relay may discard some loads.
The frequency relay will activate when the frequency reaches a critical value around 59.7 Hz [80].
During a fault condition, the response of the PV-based generation units will not show oscillations. This
is due to the fact that they do have any mechanical parts and therefore they settle down much faster
than conventional generators [80].

4.2. Rotor Angle Stability

It should be noted that the oscillatory stability is related to the categories which is called rotor
angle stability. Generally, oscillatory instability in low frequency ranges will be caused due to the lack
of enough damping torque. This damping in conventional generation is primarily given by the damper
winding of machines [81]. Generally, there are two types of oscillatory instability, local and global.
Local instabilities will involve a minor area, and typically are due to rotor angle oscillations of each
generator against the other part of the system. This oscillations are usually called local plant mode
oscillations [27,38]. Global oscillations are usually caused by interactions between major groups of
generators that are usually expanded in a very large interconnected area. Global oscillations will have
widespread effects and it may lead to some partial or full black out in the system. In such scenario,
a group of generation units in one area will swing against another set of generation units in the neighbor
area. These issues are known as inter area oscillations. Application of HVDC links in parallel with AC
links can improve these oscillations [62].

Based on eigenvalue analysis, a system with PV generators will improve dynamic responses
by shifting the critical modes to the left half plan and can enhance the dynamic stability of the
interconnected power grid by adding more damping over critical modes [27]. In several reports the
local and global oscillations can be improved using different technique for PV plant control. As reported
in in [82], the POD at PV is designed by using wide-area signal. The damping ratios of the local modes
are slightly increased by the integration of POD at PV, while on [83,84] the global modes are improved
for systems with high penetration of PV power plants.

In case of small signal stability analysis for PV effects, there is a limit on the operation of the PV
based power generation, as far as the system oscillation stability is of concern [85]. The influence of
the PV-based penetration on the grid oscillations and its dynamic stability will vary according to the
changes in the system operating’s condition, which is due to the effects of damping torque impact
from the PV system which can be positive or negative. The most serious operating condition for the
PV-based power generation unit will arise when the sign of the damping torque’s contribution of the
PV system is changing [83–85].

4.3. Reactive Power and Voltage

The existing interconnected grid is not completely designed for large scale support of
interconnected PV and any kind of change in voltage limits during the high solar irradiation is
possible. A possible solution for reducing the voltage rise in the feeder, is to operate PV-based
generation units with the ability of providing reactive power [86]. In addition, in the case of voltage
collapse the inverter has to be able to support sufficient reactive current and stabilize the grid within
some time frames defined by grid codes. It should be noted that, the total power generated by the PV
generation units follows carefully the pattern of irradiance (due to the MPPT control). Considering the



Energies 2019, 12, 1425 10 of 19

fact that, replacements of conventional generation units with PV-based generations will result in a
decrease of the total inertia of the interconnected power grid. In the case of voltage stability, for the PV
generation units which are not equipped with proper voltage controllers, the connected bus voltage
will oscillate more during the periods of severe changes in irradiance, keeping in mind that fluctuations
may become much more significant with higher penetration of the PV-based generation [87].

There are relationships between the profile of the system voltage and the maximum penetration
rate of a PV network. In fact, the voltage may increase beyond the standard level and the larger amount
of power flow produced by DGs at various points of a network may disturb the voltage regulation
of the system, especially when a PV-based generator unit is located near the end of a feeder [88,89].
The voltage analysis case studies clearly illustrate the voltage sensitivity of a PV neighborhood to PV
penetration rate, load variations, and the connection point of the PV cluster on a feeder [88]. That is
why the location of RE generators, sizing and configuration of the power system are very important in
the case of power quality assessment. Operation of the PV systems at leading power factor with the
possibility of absorbing the reactive power is one of the known solutions for compensating this kind of
effects [89]. It is worth mentioning that the problem of voltage in rural lines is more than in a meshed
network in large cities. This is due to the fact that the distribution line impedance is the key parameter
which has more effect on voltage rise [90]. In fact, in a large power grid, if the size of penetration and
distribution of PV is well designed according to the grid topology condition, the PV usage as a DG has
a positive effect on voltage profile, reliability and loss reduction in a very long distribution line [91].

4.4. Quality and Protection

Grid-connected PV systems will have several effects on voltage quality and its control. Since PV-
based power generation systems are connected through electronic power converters, they will produce
harmonics in the grid but due to current advances in inverter technologies, the harmonic distortions
will have an acceptable range. Mainly, the PV effects on power quality and losses reduction are linked
to the installation location and the size of the PV system that must be adjusted carefully [27]. In fact,
if the PV system is coordinated in a correct manner, various positive effects could be achieved for a
distribution system in terms of reliability and quality. For example, a DG can be used as a generation
backup during contingencies. In an online system with a high level of PV penetration, it is possible to
supply customers during the interrupted situation by transferring the power to other feeders with
DGs via switch operation [91,92].

The proper location of the large PV system and loading conditions have considerable effects on
the security of the network. It is very important to check the time when the heavy load conditions
match with the maximum output generated by PV power plants since it may increase the load level
of some lines which are already heavily loaded [93]. Application of intelligent methods like genetic
algorithms to obtain the most optimum location and the most suitable size of PV and the application of
capacitor banks in the system for minimizing the losses of the system are also interesting topics [94].
The solar penetration can enhance the damping perfectly when operated at 0.9 lag. This might lead
to the conclusion that reactive power support coming from the PV systems could be helpful for the
damping of oscillations [95].

In the case of power system protection, it should be noted that with a huge increment of generation
on the feeder, over-current flows in various parts of the feeder will occur. Thus, problems such as
sympathetic tripping and other type of over-current disruption arise. In general, over-current protective
devices are coordinated by setting the pickup currents to sense the expected fault currents related
to the highest impedance fault. By adding a DG unit between the protection component and the
fault, the sensitivities in the feeder protection can be reduced. The DG units maintain the voltage
profile through the up line part of the feeder and therefore the current which is seen by the protective
components and also the level of the sensitivity of relays can be reduced and for complete detect-ability,
it needs to sense the faults in a closer place [96,97]. As reported in [98], if there are faulty nodes in the
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system, a novel algorithm to deal with such issues is presented. Their proposed multi-scale filtering
algorithm, which is using local information, can withstand both faulty and Byzantine nodes.

In the case of security, the conventional power system is a passive network, it means that the power
exchanges in most the radial distribution system will have single directions. In the case of modern
power grids with various PV distributed generators, the power flow has bi-directional characteristics.
Therefore, it is necessary to redesign power systems in order to coordinate PV systems with the original
relay system [29,70]. Injection of inverse power from downstream points will not be detected by
traditional fuses because of their design and capabilities. In case that the islanding detection by relay
fails, then the inverter might remain in the service (on-line) and cause severe threats to the components,
especially demand side equipment.

The electrical distribution utilities have to fulfill some important restrictions about the power
quality of the electricity delivered to its customers. One of these restrictions is related to the voltage
quality, like if the voltage gets a too high value in PCC, especially during the noon of summer days,
PV systems could be stopped and should automatically be disconnected from the grid. Generally,
PV systems are equipped with under-over voltage relays and when the value of voltage in the PCC
reaches a setting above the over-voltage relay, the photovoltaic unit will be disconnected, a condition
commonly named “output restriction” [90].

4.5. Power Balancing

Thermal power plants when running in frequency control mode, will incur some additional costs.
This is due to the fact that the related generation should be matched with load variations. However,
when a high level of renewable-based generation is integrated into the existing power system, usually
an additional source of variation will be added to the system which is already concerned with the
changes of its demands. It should be noted that the whole power grid must be balanced instead of
balancing each individual load or resource [6]. The main question in high penetration of renewable-
based power generation is to which extent the balancing uncertainties can be increased? Obviously
it became clear that most of the variations at the output of PV system or in wind units are mainly
unrelated to the loads. Thus, this might indicate that an additional source of uncertainty can be
introduced by PV power. The total thermal power plant output is approximately a “sum of squares”
of two separate parts [98]: total variability of electricity demand and total variability in renewable
energies outputs. Demand prediction techniques [99–102] and time-series data analysis [35,103,104]
for better prediction of DG outputs will be useful it these fields, so it is preferable to maintain some
reserve to recover from probable trips of conventional power plants.

4.6. PV Power Plants and Reliability of Power System

When renewable energies displace a significant amount of conventional power plants, commonly
an additional conventional power capacity is required to keep the system supply secure [6]. This
added plant margin will be required, especially when the output of renewable generation are at its
maximum level.

The annual ratio of continual output energy produced by a power plant is known as a capacity
Factor. This factor will be a very useful guide for knowing the probability that the generation units will
be available for contributing against load demand. However, in the case of renewable-based power
plants, especially during peak load demands, renewable energies sources are not capable of providing
the same level of reliable power as conventional generators but they are still capable of providing their
contribution of part of the loads. This ability of renewable energies resources is known as the capacity
credit and is the amount of load produced by renewable energies plants, see [98,105]. During the peak
loads, in addition to the operating reserve, some system margin is required and this will be affected
by the level of renewable energies penetration [6]. In addition, in some periods that the available
output from the renewable resources exceeds demand or in a situation that it cannot be accommodated
by the transmission system, it is necessary to discard energy from renewable energies plants. This
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output control can be done by pitch angle control in wind turbines or inverter control in PV power
plants. However, it will take some economic penalties for renewable energies plants which become
increasingly important at high penetrations [106–111].

Combination of different renewable-based sources such as PV and wind is very helpful for the
reliability of the system [95]. Furthermore, it should be noted that applying a PV-based generation
unit according to the MPPT for a fixed amount of the maximum power might reduce the flexibility of
the unit for proper power regulation [106]. As a solution to increase the reliability, the PV system can
operate with a pseudo-maximum power point instead of MPPT. This idea is shown in Figure 8, where
P1 represents the maximum possible power from the MPPT algorithm and P2 represents the false or
pseudo-maximum power point that has to be tracked by the system. The provided reserve power will
be the difference between those points.Energies 2019, 12, x FOR PEER REVIEW 12 of 19 
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4.7. Contribution to the System Inertia

Research activities in this area started 10 years ago. There were always discussions about the
meaning and proper definition of virtual inertia. In [112] a comprehensive study about definitions of
fast frequency response and virtual inertia was presented. In this reference, synthetic inertia from the
perspective of a transmission system operator was discussed and then compared to a fast frequency
response based on frequency deviation of the system. According to this definition, better understanding
of these terms for different applications can be obtained. Discussions on virtual inertia concept, control
and prototype were the main accomplishments. Figure 9 shows the key landmarks on the virtual
inertia concept:
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The first publication that initiated the idea of synchronous generation emulation control was a
manuscript by Beck et al. [113], where the concept and experimental results were shown. A patent
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registered after the mentioned article, by the same authors named this system a virtual synchronous
machine (VISMA) [114].

The first article was coauthored by Iravani [115]. A detailed control scheme indicating how
this concept can be implemented was presented in this paper. Active power control loop was in
charge of the inertial characteristics. PLLs with inertia emulation capabilities were first reported by
Wesenbeeck et al. [116]. They named their concept a “virtual synchronous generator”.

Emulation of synthetic inertia by means of an extra loop was started in [117] by Vrana et al.
The main concern of this method is its practical implementation, as it is based on a time derivative
operator. The main advantage of this method is its straightforwardness.

Later, an inertia emulation and virtual admittance combination developed named synchronous
power controller (SPC) was described [118]. The insertion of the virtual admittance in the controller
conveys several advantages, such as accurate power sharing, grid current control, and ease
of implementation.

To avoid direct modulation in the inner- loop an alternative method was proposed. The first
journal paper was authored by D’Arco et al. [119]. Figure 9 shows the first publications of each
type, although a number of studies were published around the same time. For example Weiss et al.’s
“synchronverters” [120], and Ise et al.’s “Ise lab” [121].

5. Conclusions

This paper has presented a comprehensive review of the recently published works in the area
modern power system control and analysis with integration of large-scale PV renewable resources.
It was indicated that large-scale PV power plants have a massive potential to become an important
player in modern power systems. Benefits, problems, various effects of high penetration of large-scale
PV power plants and other requirements to help PV plants work properly instead of conventional
power sources in the grid and contribute to ancillary services such as frequency or voltage control
was discussed.

Considering the location and penetration level of PV power plants, the manner of dispatching the
existing conventional power plant and its configuration, PV plants may have beneficial or detrimental
effects on the system behavior. Current power systems are not designed to support high penetration of
interconnected PV and to meet the grid codes. Applying smart and online control methods for more
coordination between all parts of modern power systems will be necessary.

With more and more penetration of renewable energy resources such as PV plants, the available
inertia level of the grid is decreasing significantly. This matter is becoming a critical challenge for this
emerging modern power systems control paradigm that should be properly addressed. As discussed
earlier, the development of virtual inertia control strategies is a step towards overcoming the issues
faced issue. On the other hand, inclusion of battery energy storage systems with PV plants will play an
important role. In recent years, the capital cost of battery energy storages has decreased drastically,
while their technology, reliability, and the life cycle have all increased significantly. The authors of
the current paper believe that hybrid PV/battery plants are another promising solution on the way of
addressing the issue of synthetic inertia control and several more faced issues.
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Nomenclature

AGC Automatic Generation Control
BESS Battery Energy Storage System
DG Distributed Generator
DC Direct Current
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DISCO Distributed Company
DPS Distributed Power Systems
EPIA European Photovoltaic Industry Association
ESS Energy Storage System
FACTS Flexible AC Transmission Systems
GENCO Generation Company
HVDC High Voltage Direct Current
ISO Independent System Operator
MPPT Maximum Power Point Tracking
P&O Perturb and Observe
PWM Pulse Width Modulation
PCC Point of Common Coupling
PLL Phase Locked Loop
PV Photovoltaic
PVPP Photovoltaic Power Plant
TSO Transmission system operator
UFLS Under Frequency Load Shedding
VIU Vertically Integrated Utilities
VSG Virtual Synchronous Generator
VSC Voltage Source Converter
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