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Abstract: The adulteration of virgin olive oil with hazelnut oil is a common fraud in the food industry,
which makes mandatory the development of accurate methods to guarantee the authenticity and
traceability of virgin olive oil. In this work, we demonstrate the potential of a rapid luminescent
method to characterize edible oils and to detect adulterations among them. A regression model
based on five luminescent frequencies related to minor oil components was designed and validated,
providing excellent performance for the detection of virgin olive oil adulteration.
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1. Introduction

Industrial processing of vegetable oils usually includes a refining step that removes almost all
of the undesirable minor components, such as colored compounds, free fatty acids, or metals, but
retaining the major neutral lipids and most of the natural antioxidants [1]. However, virgin olive oil
is consumed crude, thus conserving the flavor compounds, vitamins, and other important natural
components. Virgin olive oil adulteration is an important issue since the sensory and nutritional
properties of this gourmet oil are responsible for its expensive price [2]. The most common adulteration
process is the mixing of virgin olive oil with other cheaper oils, such as refined olive oil, seed oils (e.g.,
sunflower, soybean, corn, canola), as well as walnut, peanut, and hazelnut oils. This fraud is not easily
detectable since refined oils lack of many of the minor compounds usually employed to authenticate
olive oil, and the sensory characteristics of virgin oils cannot be significantly altered by this blending [3].
Particularly, hazelnut oil is commonly used for olive oil adulteration since its detection in mixtures
is very challenging due to the very similar chemical profiles of these two oils [4]. This adulteration
has been estimated to cause a loss of four million Euros per year for countries in the European Union.
Therefore, there is a great interest in the development of accurate analytical methods, in combination
with powerful chemometric tools [5], to guarantee the authenticity and traceability of virgin olive
oil, and to detected olive oil adulteration. Frauds are usually detected by applying chromatographic
techniques based on the determination of trans-fatty acids, sterols, triglycerides, hydrocarbons, and
other components [6–8]. Other authors have also described the application of thermal analysis [9], and
electroanalytical techniques [10–13], as potential approaches for investigating olive oil authenticity.
Alternatively, spectroscopic techniques have also been proposed as suitable alternatives to traditional
methodologies given their inherent advantages, including rapidity, environment-friendly nature, and
low sample size requirement [14–16]. Several authors have described the application of vibrational
spectroscopy (near-infrared spectroscopy, NIR; Fourier transform mid-infrared spectroscopy, FT-MIR;
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Fourier transform Raman spectroscopy, FT-Raman), NMR and visible absorption spectroscopy to
investigate oil adulteration [17–19]. Among them, fluorescence spectroscopy enables rapid spectral
acquisition with lower signal-to-noise ratio, so the combination of this technique with advanced
chemometric tools has been successfully applied for the detection of olive oil adulteration in previous
studies [20,21]. In this vein, the aim of this work was to evaluate the possibilities of a rapid luminescent
method to detect fraudulent mixtures of virgin olive oils with refined hazelnut oils.

2. Materials and Methods

2.1. Oil Samples

Forty samples of four types of edible vegetable oils were directly acquired from oil mill stores
from various locations: Eighteen virgin olive oil samples (VOO) of different European varieties (cvs.
Cornicabra, Picual, Hojiblanca, Arbequina and Verdial were obtained from different producers in
Spain; Cima di Bitonto and Tzunnati were of Italian and Greek origin, respectively; and a commercial
sample (Borges brand, a blend of several olive oil varieties Tàrrega, Spain) were acquired in a market
from Huelva in 2015), eight refined olive oils (ROO), seven virgin hazelnut oils (VHZO), and seven
refined hazelnut oils (RHZO) (hazelnut oils were obtained from Turkish producers). Picual and Cima
di Bitonto mixtures with refined hazelnut oils were prepared in the concentration range 5–30% (5,
10, 15, 20, 25 and 30% w/w) to evaluate the response of the luminescent spectra to the addition of
adulterants. A test set was also prepared in the same concentration range using Cornicabra olive oil
and refined hazelnut oil. Binary mixtures were prepared in triplicate. Oil samples were kept at 4 ◦C
and analyzed without any pre-treatment to avoid potential interferences.

2.2. Instrumentation

All measurements were performed using a RF-1501 Shimadzu spectrofluorophotometer (Shimadzu
Corporation, Kyoto, Japan) equipped with a continuous 150 W xenon lamp, and excitation and emission
monochromators. Fluorescence emission spectra (300–800 nm, 1 nm interval) were collected at 650 nm
excitation wavelength, while excitation and emission slits were set at 10 nm. Samples were scanned
using a 3 mL non-fluorescent cell (10 mm path-length). After each series of measurements, the cuvette
was cleaned using detergent, followed by a rinse with deionized hot water and acetone in order to dry
and eliminate any remaining fat. Each sample was analyzed in triplicate. The spectrofluorophotometer
was interfaced to a computer for spectral acquisition and data processing.

2.3. Data Analysis

Univariate and multivariate statistical analyses were conducted in Statistica 8.0 (Stat Soft, Tulsa,
Oklahoma) and SIMCA-P™ software (version 11.5, UMetrics AB, Umeå, Sweden). Pattern recognition
analysis was carried out by using unsupervised (principal component analysis, PCA; multidimensional
scaling, MDS) and supervised (linear discriminant analysis, LDA; soft independent modeling of
class analogy, SIMCA) chemometric techniques. One-way ANOVA was applied for the selection of
wavelengths able to differentiate oil samples, and the response to the addition of adulterants was
evaluated by stepwise linear regression analysis (SLRA). Before performing statistical analysis, data
was submitted to different pretreatments and combination of pretreatments. Standard normal variate
(SNV) transformation and first derivative were selected as the most suitable scaling procedures to
remove undesirable factors in the spectral raw data and to correct for possible baseline shifts in the
spectral data. First derivative was performed according to the Savitzky and Golay method with
second-order smoothing polynomials through five points.
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3. Results and Discussion

3.1. Spectral Characterization of Oil Samples

Figure 1 shows the characteristic luminescent spectra of extra virgin olive, refined olive, crude
hazelnut, and refined hazelnut oil samples, which can be divided in four regions. Region A (300–400 nm)
is mainly related to tocopherols and pigments and, as can be seen in Figure 1, allowed distinguishing
virgin olive oils from the other edible oils studied in this work. Region B (400–500 nm) showed good
correlation with conjugated dienes (K232), conjugated trienes (K270), and hydrolysis products [22],
which are associated with oil quality. This might explain the clear discrimination between refined and
non-refined oils in this luminescent region. Vitamin E is correlated with region C (500–600 nm) [22],
thus making it possible to distinguish virgin olive oil from virgin hazelnut oil and refined oils. Finally,
region D (600–800 nm) is mainly attributed to chlorophylls and pheophytines, pigments usually
contained in virgin olive oil [23].
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Figure 1. Characteristic luminescent spectra of virgin olive oil, virgin hazelnut oil, refined olive oil and
refined hazelnut oil.

The method precision was estimated by computing the standard deviations (SD) and relative
standard deviations (RSD) for each spectrum wavelength. However, results shown in Table 1 are
presented as mean values for each of the regions from the spectrum. Repeatability was assessed by
analyzing five replicates of a Cornicabra oil sample within the same day, while internal reproducibility
was estimated by acquiring three replicate spectra of two different virgin olive oil samples in five
different days by two different analysts. As shown in Table 1, repeatability and internal reproducibility
were excellent for all the regions studied, with RSD values lower than 2% and 15%, respectively.

Table 1. Method repeatability (r) and internal reproducibility (R).

Spectral Regions

300–400 nm 400–500 nm 500–600 nm 600–800 nm

r SD 3.72 1.84 2.86 2.77
RSD (%) 1.3 0.43 1.81 1.21

R
SD 14.96 22.27 17.33 6.07

RSD (%) 10.69 6.01 7.63 3.34

3.2. Classification of Oils

As a first exploratory step, principal component analysis (PCA) and multidimensional scaling
(MDS) were applied for a preliminary evaluation of data quality. PCA is an unsupervised method for
reducing the dimensionality of the original data matrix retaining the maximum amount of variability,
thus enabling us to get an overview of the data to identify possible outliers and trends towards
the grouping of samples. On the other hand, the goal of MDS is to detect meaningful underlying
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dimensions that allow explaining observed similarities or dissimilarities between the investigated
objects [24]. First, the acquired spectra were processed by using several spectral pretreatments,
including first derivative, standard normal variate (SNV), and both first derivative and SNV. PCA was
then performed on processed and normalized data, considering only factors with eigenvalues higher
than 1 (Kaiser criterion). The best goodness of fit and validity was obtained by using spectral data
in the region 650–800 nm (R2

X = 0.999 and Q2
cumulative = 0.998). This PCA model explained 98% of

the total variance with four principal components (PC1 59.9%, PC2 28.3%, PC3 8.1%, and PC4 1.9),
with PC1 being mainly associated with wavelengths in the ranges 656–720 and 752–800 nm. Figure 2A
shows the distribution of samples in the plane defined by the first two principal components, which
explained 88.2% of the original variance. Thus, it can be observed that samples were clustered in
two groups, the first one comprising virgin olive oil samples, located in the right side of the plot,
while the second cluster showed a high degree of overlapping between the other three groups of
samples. The application of MDS also provided a clear separation of virgin olive oils from the rest
of the sample set (Figure 2B). Dimension one discriminated between virgin olive oil samples and all
refined samples as well as virgin hazelnut ones. Refined hazelnut and refined olive oils were clustered
together, while virgin hazelnut samples were distributed in two groups, the first one near to the refined
group, comprising three roasted samples, and the second one closer to the virgin olive oil cluster,
constituted by three non-roasted crude hazelnut oil samples.
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Figure 2. Principal component analysis (PCA) score plot (A) and multidimensional scaling plot (B)
showing the distribution of samples from the four study groups in the plane defined by the two first
principal components.

To achieve a more reliable differentiation among oil classes, various supervised pattern recognition
procedures were also applied to the data matrix, including linear discriminant analysis (LDA)
and soft independent modeling of class analogy (SIMCA). These classification methods have been
successfully employed in previous studies to discriminate extra virgin olive oils according to variety
and geographical origin [25,26], thus presenting a great potential in assessing food adulteration. LDA
is a supervised classification tool based on the generation of orthogonal linear discriminant functions
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equal to the number of categories minus one. In this work, stepwise LDA was applied to classify oils
according to the four categories, and the most significant variables involved in sample differentiation
were selected using a Wilks’ λ and F value as criterion for inclusion or removal of variables in the model.
The best results were obtained when LDA was carried out on normalized data in the range 752–800 nm,
with a mean prediction ability of 93%. The model retained seven variables (F to enter = 3.00 and
F to remove = 1.00), showing a clear distinction among virgin oil samples and refined oil samples
(Figure 3A). On the other hand, SIMCA is a class modeling technique that builds class models based on
significant principal components of category, and classifies samples on the basis of their distance from
the model representing each category. Models with five PCs were obtained by using SNV-pretreated
data mean (99.7% of predictive ability), which explained 99.5, 99.9, 99.7, and 100% of the variance for
virgin hazelnut, refined hazelnut, virgin olive, and refined olive categories, respectively. As shown in
the corresponding Coomans plots, all vegetable oil samples could be correctly assigned (Figure 3B).
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3.3. Detection of Virgin Olive Oil Adulteration by Regression Analysis

The mixture of virgin olive oil with refined hazelnut oil is a common fraud since this adulteration
is not easily detectable by tasting or smelling. For this reason, we conducted an ANOVA test to look
for variables enabling the differentiation between these two oils. Only wavelengths attributable to
pigments (i.e., chlorophyll, pheophytin) and tocopherols presented significant p-values, in line with
previous results [20].

Subsequently, regression models were built to assess the potential of luminescence to detect olive
oil adulteration, for which several binary mixtures were prepared and analyzed. To this end, stepwise
multiple regression analysis (SLRA) was applied to mixtures prepared by adding refined hazelnut
oil in the concentration range 5–30%. This studied concentration range was selected on the basis
of previous reports demonstrating the difficulty of detecting this adulteration at low concentration
levels [4]. Two sets of blends were prepared by using Picual and Cima di Bitonto virgin olive oils,
which were selected on the basis of ANOVA results to cover maximum (Picual) and minimum (Cima
di Bitonto) values for pigments and tocopherols. SLRA was applied to these sets of mixtures under the
strictest conditions (F to enter = 8.00 and tolerance = 0.01) to select the variables to be included in the
model. Thus, five wavelengths were selected (319, 446, 476, 685, and 704 nm) to get an adjusted-R2 of
0.972 (R2 = 0.98; p = 0.000001; Durbin-Watson d statistic = 2.02). The linearity of the model (Figure 4)
was excellent in the studied concentration range (5–30% w/w), with slope and intercept values close to
1 and 0, respectively. The statistical validity of this model was assessed by ANOVA through the lack of
fit F tests. The ratio between the mean square due to the lack of fit and the mean square due to the
pure experimental error was calculated (F = 2.45) and compared with the tabulated F value (F = 2.93),
thus evidencing good adjustment between the observed and predicted values. Thus, the root mean
square error of calibration (RMSEC) computed for this SLRA model was 0.77.
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Figure 4. Prediction of adulteration percentage applying stepwise multiple linear regression to virgin
olive oil and refined hazelnut oil mixtures.

Finally, a test sample was also prepared by mixing Cornicabra virgin olive oil with refined hazelnut
oil in the same concentration range in order to evaluate the predictive ability of the model. The
validation of the regression equation (Figure 4) in these test samples yielded adjusted-R2 = 0.99 (R2 =

0.99; p = 0.00079). Then, the root mean square error of prediction (RMSEP) was calculated as a measure
of the accuracy of the model to predict the response. In the present work, the SLRA model yielded
the RMSEP = 1.15, thus demonstrating the excellent accuracy of the luminescent method to detect
adulterations. The limit of detection (LOD), calculated as three times the standard deviation of the
intercept divided by the validation curve slope, was equal to 2.3%.

3.4. Method Performance: Comparison with Traditional Approaches

To evaluate the suitability and advantages of the luminescent method here presented to detect
virgin olive oil adulteration with hazelnut oil, Table 2 shows the performance of previously published
methods in this field. Due to the chemical similarities between olive and hazelnut oils chromatographic
and mass spectrometric methods focused on the determination of specific oil components, such as
filbertone [27], Maillard products [28], phytosterols [29], tocopherols [30], fatty acids [31], proteins [32],
and phospholipids [33], usually provide low sensitivity to detect this adulteration. Furthermore, these
methods are usually time consuming and require the application of complex extraction procedures,
thus hindering their implementation in the food industry practice. Alternatively, several authors have
also proposed the use of spectroscopic approaches, including nuclear magnetic resonance, infrared,
and Raman spectroscopy [34–37], with increased potential for detecting relatively low adulteration
levels (5–10%, w/w). Similar performance has been described for some genetic methods based
on the application of polymerase chain reaction and subsequent capillary electrophoresis analysis
(PCR-CE) [31], or high resolution melting (PCR-HRM) [38].

The luminescent method developed in this work yielded limits of detection around 2%, clearly
surpassing the performance of most of the previously described methodologies. Furthermore, it should
be also noted the greater simplicity, low analytical cost, and rapidity of analysis of this luminescent
method compared with other conventional approaches, thus facilitating its implementation in routine
laboratory analysis. Therefore, the present study demonstrates the possibilities of luminescent methods
for the genuineness assessment of virgin olive oil.
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Table 2. Performance of previously published methods to detect virgin olive oil adulteration with
hazelnut oil.

Method Lowest Level of Adulteration
Detected (w/w) Reference

Chromatographic methods
LC/GC (filbertone) 20–25% [27]

LC (Maillard products) 5% [28]
GC (phytosterols) >30% [29]
LC (tocopherols) 3% [30]
GC (fatty acids) Non detectable [31]

Mass spectrometric methods
MALDI-TOF-MS (proteins) 20% [32]

MALDI-TOF-MS (phospholipids) 1% [33]
Spectroscopic methods

1H/31P NMR 5% [34]
2D NMR 6.27% [35]

FTIR 25% [36]
FT-Raman, FT-MIR 8% [37]

Genetic methods
PCR-CE 5% [31]

PCR-HRM 10% [38]

4. Conclusions

In this work, we have developed a rapid and simple luminescent method, in combination with
advanced chemometric tools, to characterize and classify edible vegetable oils with good prediction
ability. Furthermore, a regression model based on five luminescent frequencies related was validated
for sensitive detection of virgin olive oil adulteration with hazelnut oil, a common fraud in food
industry. The main strengths of this methodology rely on the simplicity, fast and low cost analysis
compared with conventional approaches for adulteration detection. As a limitation, it should be
mentioned the non-automatable nature of this technique, which could be improved in the future by the
use of flow-through fluorescence cuvettes. Therefore, this work clearly demonstrates the possibilities
of luminescent methods for the genuineness assessment of virgin olive oil, potentially implementable
in food industry and regulatory agencies as a routine tool for adulteration detection.
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