
 Improving NDT with Automatic Test Case
Generation

 J. Gutiérrez , M. J. Escalona , M. Mejías , F. Domínguez , and
C. R. Cutilla

 Abstract

 The model-driven development defi nes the software development process as a set of
iterations to create models and a set of transformations to obtain new models. From
this point of view, this paper presents the enhancement of a model- driven approach,
called navigational development techniques (NDT), by means of new models and
transformations in order to generate test cases. It also states some conclusions from
the research work and practical cases in which this approach was used.

1 Introduction

 Model-driven development (MDD hereinafter) is a software engineering paradigm
focused on creating and exploiting domain models [1]. Navigational development
techniques (NDT) [2] is a development framework which follows MDD.
Therefore, NDT describes the full software development cycle indicating which
models generate in each phase and how to derive the models of a phase from those
of a previous phase. Projects developed with NDT start with a goal-oriented phase
of require-ments and apply use cases for defi ning requirements and
transformations so as to generate the following models.

 NDT was initially defi ned to deal with Web development requirements, but it has
evolved in the last years and nowadays it offers a complete support for the complete
life cycle. NDT covers viability study, requirements treatment, analysis, design,
construction, or implementation as well as maintenance and test processes.
Additionally, it supports a set of processes to bear out project management and
quality assurance.

 Figure 1 depicts the development process as defi ned in NDT. This development
process is independent from the development life cycle, so any life cycles (e.g.,
cascade or iterative) may be applied. Testing is always a mandatory task (Fig. 1)
regardless of the type of project. Thus, there is a need of incorporating techniques
in order to defi ne test cases. Moreover, due to the MDD nature of NDT, these tech-
niques should be described in terms of the proper elements of MDD, mainly models
and transformations from models to models.

 This paper describes how NDT has been extended to incorporate functional system
test cases [3]. These test cases verify that the system under test commits the behavior
defi ned in its functional requirement. NDT models the functional requirements as
use cases; thus, both terms will be used as synonyms in this paper.

 Fig. 1 NDT development process overview

 This paper is organized as follows. After this introduction, Sect. 2 offers an overview
of the existing techniques dealing with generating functional test cases from func-
tional system requirements defi ned as use cases. Section 3 describes the techniques
used to generate test cases. Section 4 summarizes the extension of NDT to incorpo-
rate those techniques from a MDD perspective. Section 5 presents practical applications
for NDT enrichment with test case generation. Finally, Sect. 6 states the conclusions
and ongoing work.

2 Related Work

 There are several approaches generating functional test cases specifi cally from a
functional requirements model defi ned as use cases by means of MDD. A survey
about this issue, which updates the original survey published in [4], has been pub-
lished in [5] at the end of 2011. Some specifi c approaches studied in Escalona’s
survey are described in next paragraphs.

 Frölich et al. [6] introduce an approach describing how to translate a functional
requirement from natural language into a state-chart diagram in a systematic way as
well as how to generate a set of functional test cases from that diagram. Naresh [7]
presents an approach dealing with translating a functional requirement from natural
language into a fl ow diagram and performing a path coverage technique to generate
test cases. Mogyorodi [8] introduces an approach describing functional require-
ments as cause-effect graphs which generates test cases from diagrams. Boddu et al.
[9] present an approach divided into two blocks: the fi rst one describes a natural
language analyzer generating a state machine from functional requirements, and the
second one shows how to create test cases from such state machine.

 Ruder’s [10] approach starts with functional requirements written in natural lan-
guage. The result is a set of functional test cases obtained from a coverage criterion
based on combinations that support Boolean propositions. Binder’s book [11]
describes the application of the category-partition method over use cases. The cat-
egories are any point in which the behavior of the use case may be different between
two realizations of the use case. This application is named the extended use case
pattern. Finally, Ibrahim et al. [12] offer a tool, called GenTCase, which generates
test cases automatically from a use case diagram enriched with each use case tabular
text description.

 Escalona’s survey claims that there is no defi nitive approach that closes the prob-
lem of generating functional text cases automatically in a satisfactory way, what
implies a lack of evolution among the existing approaches. Thus, there are some
aspects to be improved, like the use of standards for inputs and outputs, the applica-
tion of standards and more formal methods to describe the process itself, the need
for empirical results or the measure of the possible automation, and a profi table tool
supporting, among others. Conclusions of Denger’s survey go in the same line.

3 Techniques for Test Cases Generation

 Two techniques have been identifi ed for generating test cases from use cases, from
the surveys cited in previous sections: round-strip strategy and extended use cases
(terminology defi ned by Binder in [11]). Below, these techniques will be described
in depth.

 The round-strip strategy consists in the application of a classic algorithm of path
fi nding over a state machine. The behavior described in a functional requirement may
be managed as a graph or as state machine despite its concrete syntax. Hence, a path
searching allows identifying all the different paths across the behavior. Each path will
be a scenario designed together with the system. Each scenario is a potential test case
for testing the right implementation of such scenario in the system under test.
Generation of test cases from state machines is a widely described topic in research
literature. Previous section presented several references about this topic in the specifi c
use cases context, like [6 , 7 , 9]. Figure 2(a) shows an example of the round-strip strat-
egy using the behavior of a use case defi ned as an activity diagram.

 The extended use case pattern consists in applying the category-partition method
[13] to use cases. The category-partition method is a technique based on identifying
categories and partitions and then generating combinations among such partitions
(Fig. 2b). In the context of functional requirements, a category is any point for
which the functional requirement defi nes an alternative behavior (Fig. 2b). Besides,
a partition is defi ned as a subset of the domain of the condition evaluated in the
category which decides whether a concrete piece of behavior is executed or not.
Once all categories and partitions are identifi ed, a combination among them is per-
formed and each combination becomes a potential test case. The previous section
presented several references about this topic in the specifi c context of use cases, like
[10] or [11]. Figure 2b shows an example of the category-partition method (as
described in [11]) using the same behavior as Fig. 2a .

 Fig. 2 Examples of round-strip strategy (a) and extended use cases (b) techniques

4 Extension of NDT

 This section describes the work carried out to extend NDT after including the two
techniques presented in the previous section. Section 4.1 defi nes the information
involved. Then, Sect. 4.2 defi nes how to apply both techniques to obtain the target
test artifacts from the functional requirements. Finally, Sect. 4.3 offers an overview
on the application of Sects. 4.1 and 4.2 results.

4.1 Concepts and Metamodels

 Due to the model-driven nature of NDT, the concepts involved in generating func-
tional test cases should be identifi ed and defi ned as metamodels. A metamodel defi nes
the concept in terms of its attributes and its relationships with other concepts [1].

 Four metamodels were designed. The fi rst one (Fig. 3) defi nes the necessary ele-
ments from functional requirements to generate test cases. These elements consti-
tute a subset of functional requirements. Therefore, it only involves the elements
used for test cases generation. This metamodel may be applied with other frame-
works apart from NDT. The functional requirement metamodel (Fig. 3) includes
classic elements of functional requirement defi ned as use cases , Step or Actor,
among others, widely described in the literature.

 The second metamodel (Fig. 4) defi nes the concepts resulting from the round-
strip technique (Fig. 2a). Each path is called test scenario (element TestScenario in
Fig. 4) and the traverse/crossed steps are classifi ed into actions (element
 ActionFromTestScenario in Fig. 4) when performed by an external actor or into
verifi cations (element Verifi cationFromTestScenario in Fig. 4) when performed by
the system and, therefore, is suitable to introduce an assert during the test.

 The third metamodel (Fig. 5) defi nes the concepts resulting from the category-
partition method. Categories are modeled using the element OperationalVariable

class Functional Requirement Metamodel

SystemActor

name: String
description: String

FunctionalRequirement

name: String
description: String
priority: String
notes: String [0..1]

Step

action: String
mainStep: Boolean

ExecutionOrder

target1

in*

1

out *

executor

0..1

interaction

1..*1
step

1..*
{ordered} source

 Fig. 3 Metamodel for functional requirements

(as named in [11]), whereas partitions are modeled through the element Partition.
The element Instance points out an evaluation of an operational variable, for
example, A or B cells in Fig. 2b , and allows distinguishing it from other evalua-
tions of the same operational variable, in case the behavior of the functional
requirement has loops. A Quantum element models a value transfer from a partition
to an instance. A combination (a row in Fig. 2b) is modeled using the element
 Instancecombination .

 Finally, the last metamodel introduces artifacts that combine the results of the
two previous techniques in the same model. This last metamodel does not introduce
any new information. However, it offers glue elements to represent the information
through a common artifact (called test case), the steps from a functional require-
ment as well as a combination of partitions. Figure 6 shows the tracing relation
between the four metamodels. Tracing enables knowing which test artifacts have
been generated for each functional requirement.

class Test scenarios

TestScenario

name: String
description: String
notes: String [0..1]

StepFromTestScenario

body: String

TestActor

name: String
description: String

VerificationFromTestScenarioActionFromTestScenario

testScenarioStep

1..* {ordered}

scenario

1..*

executor

1
interaction

1..*

{complete,
disjoint}

 Fig. 4 Metamodel for test scenarios

class Test Values

OperationalVariable

name: String
description: String
domain: String [0..1]
comments: String [0..1]

InstanceCombination

description: String [0..1]

DataPartition

name: String
description: String [0..1]
rangeOfValues: String [0..1]

Instance

Quantum

partition

1..*

subdomain

specific *

general
0..1

instance
1..*
{ordered}

operationalVariable

quantums

1..*

combination
1..*

quantum
1..*

instance
1

quantum

1..*

dataPartition

1

 Fig. 5 Metamodel for test values

 Some additional elements from the metamodels have been omitted. These elements
introduce additional concepts like preconditions and packages. The four former
metamodels have been added to the set of metamodels managed and supported by
NDT as part of its MDD development process.

4.2 Relations and Transformations

 Section 4.1 described the concepts involved in the improvement of NDT to generate
functional system test cases. This section goes one step beyond and describes how to
apply the two techniques presented in Sect. 2 (round-strip and extended use cases)
using the information from the functional requirements metamodels (in the previous
section) as source and the information from the testing metamodels as target.

 The process of applying both techniques is defi ned according to the identifi cation
of a set of relations between source concepts (functional requirements) and target
concepts (test scenarios and operational variables combinations), as observed in
Fig. 7 . The task of identifying these relations consists in detecting how to build up one
target element, for example, a test case, by means of the source elements and their
information. Next paragraphs provide an overview of the three relations (named T1,
T2, and T3 in Fig. 7) defi ned to create test scenarios, combinations of operational
variables, and test cases from functional requirements.

 Relation T1 involves functional requirements and the round-strip strategy. As it
was represented in Fig. 2a , the functional requirement behavior may be modeled as
a state machine; the concept Step from Fig. 3 models the states; and the concept
 Execution Order models the transitions. Thus, a classic coverage criterion may be
selected to traverse/cross the functional requirement and generate test scenarios.
The all-loops criterion, in which all combinations among loops are traversed at least
once, is the one selected to extend NDT. Test scenarios steps are generated from all
the functional requirements steps. Action (element ActionFromTestScenario) and
verifi cation (element Verifi cationFromTestScenario) classifi cations depend on
whether there is a relation with a system actor. Finally, test actors are generated
from actors, which, due to their attributes, are the same ones.

class Dependencies

Functional Requirements Metamodel

Test Scenario Metamodel Test Values MetamodelTest Case Metamodel

«trace» «trace»«trace»

«trace» «trace»

 Fig. 6 Tracing relationships among metamodels

 Relation T2 in Fig. 7 involves functional requirements and the category- partition
method. Operational variables are created from steps that have more than one output
transition (modeled as an ExecutionOrder element). The outputs of the steps gener-
ate the different partition. Again, combinations may be calculated using several
criteria, from calculating all possible solutions or calculate just a subset.

 Relation T3 (Fig. 7) combines both techniques results. Test scenarios and com-
binations of operational variables merge using test cases.

4.3 Application

 On one hand, previous metamodels and transformations do not impose a concrete
representation of the involved elements (functional requirements, test scenarios,
operational variables, and test cases), but on the other hand, working directly with
the metamodels object may be diffi cult, as shown in Figs. 8 and 9 . NDT does not
impose a concrete syntax for requirements, allowing the defi nition of use cases by
means of either a model defi ned in UML or a text template. As it can be observed in
Fig. 8 , several concrete syntaxes may be used for defi ning functional requirements.
The “?” indicates that any other syntaxes or formats plus the indicated one may be
used.

 Thus, the fi rst step to apply the generation of functional test cases from func-
tional requirements deals with defi ning a process for extracting a functional require-
ment model in accordance with the metamodel introduced in Sect. 4.1 . This process
depends on the specifi c syntax and it is out of the scope of this paper. Some previous
work in this line was published in [14].

T1 T2

T3

 Fig. 7 Transformations among models

?
Use cases (concrete notation) Functional requirement metamodel

U
C

-0
1.

 A
ña

di
r

nu
ev

o
en

la
ce

.
N

o 1

E

l
vi

si
ta

nt
e

so
lic

it
a

añ
ad

ir
 u

n
nu

ev
oe

nl
ac

e.
2

E

l
si
st

em
a

so
lic

it
a

la
 i
nf

or
m

ac
ió

n
de

l
en

la
ce

(S
R

-0
2)

.
3

E

l
vi

si
ta

nt
ei

nt
ro

du
ce

 l
a

in
fo

rm
ac

ió
n

de
l
nu

ev
o

en
la

ce
.

4

E

l
si
st

em
a

al
m

ac
en

a
el

 n
ue

vo
en

la
ce

.
3.

1.
i

E

l
vi

si
ta

nt
ec

an
ce

la
 l
a

op
er

ac
i

te
rm

in
a.

3.
2.

i

Si

 e
l
vi

si
ta

nt
ed

es
ea

 c
am

bi
ar

 l
a

ca
te

go
rí
a

ca
so

 d
e

us
o

“C
am

bi
ar

 c
at

eg
or

ía
”

y
es

te
 c

as
o

de
 u

so

co
nt

in
ua

.
4.

1.
p

 S
i
el

 n
om

br
e

de
l
en

la
ce

 o
 s

u
U

R
L

 e
st

 á
n

va
cí

os

la
 i
nf

or
m

ac
ió

n
de

l
en

la
ce

.
N

ue
vo

 e
nl

ac
e

añ
ad

id
o

al
 s

is
te

m
a.

P
or

 d
ef

ec
to

,
el

 s
is
te

m
a

se
le

cc
io

na
 l
a

ca
te

go
rí
a

“T
op

”
en

la
ce

.

N
om

br
e

Pr
ec

on
di

ci
ón

Po
st

-c
on

di
ci

ón
N

ot
as

Se
cu

en
ci

a
pr

in
ci

pa
l

E
rr

or
/

Se
cu

en
ci

as
al

te
rn

at
iv

es

 F
ig

. 8

 C
on

cr
et

e
sy

nt
ax

es
 f

or
 f

un
ct

io
na

l r
eq

ui
re

m
en

ts
 m

od
el

Test models Concrete syntax

?

 F
ig

. 9

 C
on

cr
et

e
sy

nt
ax

es
 f

or
 te

st
 a

rt
if

ac
ts

 In the same way, a model including the testing artifacts obtained after the applica-
tions of both previous techniques may not result the most suitable syntax (Fig. 9).
Even more, different models may require different syntaxes. For example, a valid
syntax for a test scenario model (an activity diagram) may not be the proper syntax
for instance combinations. In this case, a table or an Excel sheet (Fig. 9) should be
more valuable. Again, a question mark in Fig. 9 represents any other valuable syn-
tax. Next section introduces the software tools that implement these techniques and
explain the concrete syntax they manage.

 The relations stated in the previous section (T1, T2, and T3 from Fig. 7) were
defi ned through the QVT-operational language as a necessary step to know how to
implement the transformation process into an automatic tool. The QVT code may
be downloaded from [15]. The metrics of the QVT code are collected in Table 1 and
defi ned in [16].

 Table 1 adds an additional transformation, called T0, not included in Fig. 7 . This
transformation contains common code used in other transformations. As reference,
the Umls2Rdb transformation written in QVT operational and included in the QVT
reference [17] has 65 lines of code, 6 mappings, and 1 query.

5 Practical Experiences

 Nowadays, several companies in Spain work with NDT. This is possible due to the
fact that NDT is completely supported by a set of free tools, mainly grouped in
NDT-Suite [18]. This suite enables the defi nition and use of every process and task
supported by NDT (Fig. 1) and offers relevant resources for quality assurance, man-
agement, and metrics with the aim of developing software projects. The suite was
also extended to implement the fi rst technique for test case generation using activity
diagrams as the concrete input for functional requirements, and for the concrete
syntax of the test scenarios generated. The implementation of the second technique
is still an ongoing work.

 However, the MDD perspective allows the concrete notations independency.
Thus, the metamodels and transformations defi ned in previous section may be used
out of the scope of NDT. The only request is that the source functional requirements
must include the concepts defi ned in the functional requirements metamodel used

 T0 T1 T2 T3

 Total lines 124 118 290 170
 Lines of codes 104 97 238 124
 No. of mappings 1 4 5 3
 No. of helpers 1 2 3 1
 No. of queries 3 2 1 3
 No. of input models 1 1 1 3
 No. of output models 1 1 1 1

 Table 1 Metrics for
QVT-operational code

as the basis for the process. To remark this independency, a second tool, called
MDETest, was created. The main differences between this tool and NDT-Suite are
that MDETest implements the three target metamodels and it generates the tool
use instances only for metamodels, so that it does not impose any restrictions over
the concrete notations of the functional requirements input. Nowadays, this tool sup-
ports activity diagrams such as the syntax for functional requirements whereas it does
not support any concrete syntax for the output. This tool is also available in [15].

 A very fi rst application of this extension was the AQUA-WS [19] project.
EMASESA is a public company which deals with the general management of the
urban water cycle, providing and ensuring water supply to all citizens in Sevilla.
AQUA-Web-Services (also called AQUA-WS) project consists in the develop-
ment and implantation of an integrated business system for customer management,
interventions in water distribution, cleaning, and net management. This system had
1,808 functional requirements, which individually include several scenarios and
alternatives.

 During the development of AQUA-WS project the development team used NDT-
Tool to generate the test plan, which had over 7,000 test cases generated from the
different scenarios out of the 1,808 functional requirements. Estimating 5-min
length to create a test scenario in the modeling tool, the amount of time gained with
NDT-Tool reached 583 h (73 days, working 8 h a week). Even more, the test cases
obtained were classifi ed in the right packages and they had tracing relations with
the use cases source. The modeling tool used to manage use cases and test cases has
search options to map the tracing relations, which makes more easy the task of
working with a wide set of test cases.

6 Conclusions and Ongoing Work

 This paper presents a model-driven process, based on metamodels and transforma-
tions, with the aim of generating test cases from functional requirements. As a result
of this work, NDT has been enriched with metamodels and transformations so as to
generate test cases from functional requirements automatically by means of the
NDT-Suite tool.

 Extension has been tested in several projects and it opens new research lines.
Firstly, we have to work in test cases prioritization mechanisms, consisting in giving
relevance to functional requirements, as well as in redundant test cases detection.
The practice concludes that it continues producing a high number of redundant test
cases that the test teams have to detect by hand. One last ongoing work would deal
with supporting the semantic of the inclusion and extension relations defi ned in
UML [20] for use cases.

 Acknowledgements This research has been supported by the Tempros project (TIN2010-
20057- C03-02) and Red CaSA (TIN 2010-12312-E) of the Ministerio de Ciencia e Innovación,
Spain, and NDTQ-Framework project of the Junta de Andalucía, Spain (TIC-5789).

 References

 1. Schmidt DC (2006) Guest editor’s introduction: model-driven engineering. Computer
39(2):25–31

 2. Escalona MJ, Aragón G (2008) NDT. A model-driven approach for web requirements. IEEE
Trans Software Eng 34(3):370–390

 3. Myers G (2004) The art of software testing, 2nd edn. Addison-Wesley, Boston, MA
 4. Denger C, Medina M (2003) Test case derived from requirement specifi cations. Fraunhofer

IESE Report, Germany
 5. Escalona MJ, Gutiérrez JJ, Mejías M, Aragón G, Ramos I, Torres J, Domínguez FJ (2011)

An overview on test generation from functional requirements. J Syst Software: Elsevier
84(8):1379–1393

 6. Fröhlich P, Link J (2000) Automated test case generation from dynamic models. ECOOP
2000, pp 472–491

 7. Naresh A (2002) Testing from use cases using path analysis technique. In: International
conference on software testing analysis & review

 8. Mogyorodi GE (2002). What is requirements-based testing? In: 15th Annual software technology
conference, Salt Lake City, USA, 28 Apr to 1 May

 9. Boddu R, Guo L, Mukhopadhyay S (2004) RETNA: From requirements to testing in natural
way. In: Proceedings of 12th IEEE international requirements engineering RE’04

 10. Ruder A (2004) UML-based test generation and execution. Rückblick Meeting. Berlin
 11. Binder RV (1999) Testing object-oriented systems. Addison Wesley, Boston, MA
 12. Ibrahim R, Saringat MZ, Ibrahim N, Ismail N (2007) An automatic tool for generating test

cases from the system’s requirements. In: 7th International conference on computer and infor-
mation technology, Fukushima, Japan

 13. Ostrand TJ, Balcer MJ (1988) Category-partition method. Communications of the ACM,
pp 676–686

 14. Gutiérrez JJ, Nebut C, Escalona MJ, Mejías M, Ramos I (2008) Visualization of use cases
through automatically generated activity diagrams. Lect Notes Comput Sci 5301:83–96

 15. Supporting web www.iwt2.org/mdetest . Last updated 15 Apr 2012
 16. Kapova L, Goldschmidt T, Becker S, Henss J (2010). Evaluating maintainability with code

metrics for model-to-model transformations. Research into practice–reality and gaps, Springer,
pp 151–166

 17. Object Management Group (2011) Query View Transformation Specifi cation 2.0. http://www.
omg.org. Accessed 7 Jan 2012

 18. García-García J, Cutilla CR, Escalona MJ, Alba M, Torres J (2011) NDT-Driver, a Java Tool
to Support QVT Transformations for NDT. In: 20th International conference on information
systems development, Edinburgh, Scotland, 24–26 August

 19. Cutilla CR, García-García JA, Alba M, Escalona MJ, Rodríguez-Catalán L (2011) Aplicación
del paradigma MDE para la generación de pruebas funcionales. Experiencia dentro del
proyecto AQUA-WS. In: Proceeding of Automating Test Case Design, Selection and
Evaluation ATSE 2011, Chaves, Portugal

 20. Object Management Group (2011) Unifi ed Modeling Language 2.4. www.omg.org. Accessed
24 June 2012

http://www.iwt2.org/mdetest

	Improving NDT with Automatic Test Case Generation
	1 Introduction
	2 Related Work
	3 Techniques for Test Cases Generation
	4 Extension of NDT
	4.1 Concepts and Metamodels
	4.2 Relations and Transformations
	4.3 Application

	5 Practical Experiences
	6 Conclusions and Ongoing Work
	References

