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1 Introduction

In a scattering experiment we make two particles to collide at different energies and study the
result of that collision to obtain information about the interaction. Scattering has always been
an important tool since Rutherford discovered the nucleus in 1911 using a beam of α particles
and a thin gold foil target. Almost everything we know about nuclear and atomic physics has
been explained using these kind of experiments.
Scattering a beam of particles off a target allows us to obtain the so-called cross section that
measures the relation between collision frequency and projectile incident flux; then phase shifts,
another very important scattering parameters can be calculated. Theses phase shifts contain
information about strength and functional dependence of the potential V acting between the
projectile and the target particle. The theoretical tool used to explain scattering experiments is
scattering theory.

Figure 1: Scattering schedule.(Image Rubin Landau [1]).

As a result of collisions, several outcomes are possible depending mainly on the beam energy.
We may then study separately different processes. See introduction of Ref [2].

A+B →


A+B, elastic
A+B∗ inelastic
A+B∗ + C inelastic
C absorption

Each of these possibilities is known as a channel. In general, the scattering process is multichan-
nel, but it sometimes happens that most of them are closed due to energy considerations. For
example if the beam energy is low enough then only the elastic channel is open. As the energy
increases new channels will open up. In this work the n− α and p− α scattering processes are
going to be studied. We will set the incident particle energies below 20 MeV, so only elastic
scattering is going to be considered.
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As we said, scattering theory tries to get an interaction potential including all important
information about it. Several potential models have been studied over the last years. Some
models studying our same energy ranges are for example “An optical model for the scattering
of nucleons from 4He bellow 20 MeV ” [7] or “Refinement of the n − α and p − α fish bone
potential” [8]. We are going to use the first one to build up our own method and reproduce
their main results.
These potential models are continuous functions with some parameters that have been fitted to
experiments. The approximation model proposed in this work uses a grained potential composed
by N square wells.The physical parameters in this model are the depth of each small square well
shaping the full potential. We aim to understand how many of them are actually necessary. As
we will see, a very good approximation is achieved with a considerably small number of square
wells if we allow to fit the strengths of the square well potential to the data.
First, we are going to mathematically develop this method reproducing important results of
differential cross sections and phase shifts using as our square well depths the ones predicted by
the Optical potential approximation. Then we leave our parameters free and find their values
after a minimization process using experimental data.
In this work, we will review Scattering theory highlighting relevant parts of the study. The
contents of this work are summarized as follows. First, we describe Schrödinger scattering equa-
tion and its solution (Section 3), we introduce important scattering parameters such as cross
section and polarization in Section 4, that are going to connect experiments and theory. Then
Spin-Orbit interaction (Section 5 ) and also Coulomb interaction for charged particles (Section
6 ) are taken into account. Once we have the theoretical tools we develop the graining method
using the Optical continuous potential model in Section 7, solve Schrödinger equation for each
well, join solutions and get important scattering information as phase shifts, differential cross
sections and polarizations (Section 8 ). Once we have built mathematically our solution method
we may be able to minimize parameters of the theoretical potential directly with experimental
data (Section 9). Finally, in order to obtain confidence intervals of the obtained results we use
a Monte Carlo Simulation in Section 10.

Several sources have been consulted while writing and developing this work, they are all
included in the bibliography, but the help of Rubin Landau (Quantum Mechanics II) book [1]
should be highlighted.
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2 Scattering description

In scattering theory it is convenient to recognize various possible characteristics of the problem:
relativistic and non-relativistic case, single-channel scattering or multi-channels scattering and
time-dependent or independent. In the present report we are going to study heavy particles at
low energies, from 0 to 20 MeV. This choice allows us to make the non-relativistic approximations
and also assume single-channel scattering.
We describe time-dependent scattering using wave packets. The one for the entire system is the
sum of incident and scattered wave packets (see Rubin Landau [1]).

Ψ(~r, t) = φk(~r, t) + ΨSC
k (~r, t). (1)

If we imagine a plane wave continuously entering along the axis instead of a wave packet,
each term would have the stationary-state time dependence (e−iEkt) which can be factored out,
getting the time-independent approximation:

Ψ(~r) = φk(~r) + ΨSC
k (~r). (2)

Where the incident plane wave packet φk(~r) is defined:

φk(~r) =

∫
d3kei

~k·~rAk0(~k) (3)

Where Ak0 is a peaked function around the beam momentum k0.
The scattered part is analogously defined as:

ΨSC
k (~r) =

∫
d3k

ei
~k·~r

r
Ak0(~k)F (~k, r̂) (4)

Where r̂ is the unit vector along the direction of the observed scattered wave and F (~k, r̂) is a
function describing the strength and the angular dependence of the scattering. Assuming the
outgoing wave packet will remain sharp and spreading slowly this function can be considered
to be sharp around the beam momentum k0 so it can be factored out of the integral. The full
wave function has the asymptotic form at r →∞:

Ψ(~r) ∼ N
[
eikz + fE(θ, φ)

eikr

r

]
(5)

Where fE(θ, φ) is the so-called scattering amplitude defined as F (~k, r̂) evaluated at k0. The
first term of previous equation corresponds to the incident plane wave and the second one to
the scattered spherical one, both normalized. This scattering wave function Ψ(~r) is the solution
of the time-independent Schrödinger equation.
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3 Schrödinger equation

3.1 2-Body Schrödinger equation

Scattering dynamics is determined by the 2-particles Schrödinger equation and in our specific
case, the time-independent one,

Htot ψ(~r1, ~r2) = Etot ψ(~r1, ~r2). (6)

This 2-body problem can be reduced to two separate, effective 1-body problems by changing
variables. We then get an equation that describes the CM’s motion:

p2
CM

2MT
φCM (~R) = ECM φCM (~R) (7)

and another one describing the relative motion of the two particles:[
p2

2µ
+ V (r)

]
Ψ(~r) = EΨ(~r) (8)

Where ~r is the relative position of particles ~r = ~r1− ~r2, ~R is the position of their center of mass
and µ = M1M2

M1+M2
is the reduced mass. Equation (7) is just the familiar plane wave one. The CM

of the system moves like a free particle. We are mainly going to solve the relative wave function
in the CM frame, Equation (8), throughout this work.

3.2 Relative motion Schödinger equation. Partial wave Expansion.

Assuming a central potential and rewriting Ψ(~r) in polar coordinates, we can write the wave
function as a linear combination of partial waves ψlm. This is the so-called partial wave expan-
sion.

Ψ(~r) =
∑
l,m

4πil
ul(kr)

kr
Ylm(r̂)

Y ∗lm(k̂)

(2π)3/2
(9)

This infinite sum can be truncated. When increasing the orbital momentum value l, the dis-
tortion of the scattered-wave becomes smaller up to a maximum value of the orbital momentum
lmax from which the wave function is no longer influenced by the interaction, becoming again
a plane wave. This value can be approximated as lmax = kaN where aN is the potential range
and k the free particle momentum.

Using the spherical harmonics addition theorem, Equation (9), can we written as:

Ψ(~r) =

∞∑
l=0

il
ul(kr)

kr
(2l + 1)

Pl(cos θ)

(2π)3/2
(10)

Those partial wave functions in the sum are composed by an angular and a radial part:

ψlm(~r) = Rl(kr)Ylm(θ, φ), (11)

The angular part Ylm(θ, φ) is described by the spherical harmonics functions. They are

eigenfunctions of ~L2 and Lz. The radial wave function Rl(r) is determined by the radial equation:[
p2
r

2µ
+
l(l + 1)

2µr2
~2 + V (r)

]
Rl(kr) = ERl(kr). (12)
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The left-hand side of the Hamiltonian represents the radial kinetic energy while the second is
the rotational kinetic energy acting as a repulsive potential (centrifugal barrier) where l is the
eigenvalue of orbital angular momentum and pr operator is pr ≡ −i~1

r
∂
∂rr.

Multiplying by 2µ/~2, introducing new variables U(r) = 2µV (r)/~2 , ε = 2µE/~2 and using
natural units ~ = c = 1 we get to the radial equation

d2Rl
dr2

+
2

r

dRl
dr

+

[
ε− U(r)− l(l + 1)

r2

]
Rl = 0 (13)

also, it is convenient to make the following substitution :

ul(kr) ≡ rRl(kr) (14)

where ul(r), the reduced radial function, satisfies the reduced radial equation for the partial
wave l:

Hlul = −u′′l +

[
l(l + 1)

r2
+ U(r)

]
ul = εul (15)

Reordering terms and using E = K2/2µ relation makes us rewrite the previous equation
more compactly as:

−u′′l +

(
l(l + 1)

r2
+ U(r)−K2

)
ul = 0 (16)

3.3 Reduced radial equation solution

The general solution of (16) for U(r) = U0 is a linear combination of first jl(kr) and second
kind nl(kr) spherical Bessel functions

ul(kr) = Akrjl(kr)−Bkrnl(kr) (17)

where k value is defined k = (−U0 + K2)1/2. We have to take into account two different
situations in order to solve the equation: r > aR where U(r) = 0 and r < aN , being aN the
potential range. Also introducing the reduced spherical Bessel functions krjl(kr) = ĵl(kr) and
−krnl(kr) = n̂l(kr) we may rewrite Equation (17) as:

ul(kr) = Aĵl(kr) +Bn̂l(kr) (18)

Solution at r < aN

The solution of the wave function has to be regular at r = 0. The reduced spherical Bessel
functions when r → 0 take the limit. See Galindo & Pascual [4]:

ĵl(x) =
(x)l+1

(2l + 1)!!

(19)

n̂l(x) =
(2l − 1)!!

xl

We get from these behaviors that B = 0 since ul(k1r) must be regular at the origin and nl(0)
term diverges. Then we obtain:

ul(k1r) = Aĵl(k1r) (20)

Where k1 =
√
K2 − U0
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Solution at r > aN

In this case the potential U(r) = 0 and k2 = K

ul(k2r) = Cĵl(k2r) +Dn̂l(k2r) (21)

In the r →∞ limit, l(l+1)
r2
→ 0. The solution is the free particle one plus a phase shift δl(E).

ul(r →∞) = sin(kr − lπ

2
+ δl(E)) (22)

This phase shift contains information about the scattering process. It can be interpreted as
the influence of the potential at large distances, that translates into a shifted solution of the
free particle one by the quantity δl(E). Note, by definition, that it depends on the potential
but also depends on the particle energy. We are going to leave aside this energy dependence in
equations for simplicity. Reduced spherical Bessel functions when r →∞ take the form

ĵl(x) = sin

(
x− lπ

2

)
, n̂l(x) = cos

(
x− lπ

2

)
(23)

then the solution ul(kr) at r →∞ states

ul(kr) = C sin

(
kr − lπ

2

)
+D cos

(
kr − lπ

2

)
(24)

We can rewrite the sine of two angles sum using the trigonometric identity:

sin

(
kr − lπ

2
+ δl(E)

)
= sin

(
kr − lπ

2

)
cos(δl) + cos

(
kr − lπ

2

)
sin(δl) (25)

Comparing this expression with the previous one we identify C = cos(δl) and D = sin(δl). Then
the general solution in the r > aR case is given by

ul(k2r) = cos(δl)ĵl(k2r) + sin(δl)n̂l(k2r) (26)
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4 Important Scattering parameters

4.1 Phase Shifts

As we said in previous section, the phase shift is a really important variable since it carries all
scattering process information and allow us to calculate all the important scattering observables
(Galindo Pascual Scattering theory) [3]. The phase shift δl is calculated using the continuity of
the wave function at r = aN . This condition is easily set by imposing continuity on ul(kr) and
its derivative u′l(kr). Both of them can be calculated simultaneously evaluating the logarithmic
derivative:

L (r = aN ) ≡ dul(kr)/dr

ul(kr)

∣∣∣∣
r=aN

(27)

Defining u1(k1r) as the solution at r < aN and u2(k2r) the other for the r > aN case, we
may calculate:

u′1(k1r)

u1(k1r)

∣∣∣∣
r=aN

=
u′2(k2r)

u2(k2r)

∣∣∣∣
r=aN

(28)

Where u′n is defined as u′n = dun(kr)
dr . Substituting u1(k1r) , u2(k2r) and their derivatives:

ĵ′l(k1aR)

ĵl(k1aR)
=

cos(δl)ĵ
′
l(k2aR) + sin(δl)n̂

′
l(k2aR)

cos(δl)ĵl(k2aR) + sin(δl)n̂l(k2aR)
(29)

Dividing by cos(δl) both numerator and denominator of the right-hand side term and defining

L =
ĵ′l(k1aR)

ĵl(k1aR)
, the phase shift can be calculated as:

tan(δl) =
L ĵl(k2aR)− ĵ′l(k2aR)

n̂′l(k2aR)−L n̂l(k2aR)
(30)

From the δl definition, we can calculate theoretically the most important observables of an
scattering experiment: scattering amplitude, differential cross section and total cross section.

4.2 Scattering amplitude

The scattering amplitude is the main experimental observable in scattering theory, it is usually
defined as the sum:

f(θ) =

∞∑
l=0

(2l + 1)Pl(cos (θ))
ηle

2iδl − 1

2ik
. (31)

Where Pl(cos(θ)) are the Legendre polynomials and ηl is a parameter that includes information
about the elasticity of the process. We are considering pure elastic scattering (no absorption),
then in our case ηl = 1.
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4.3 Differential cross section

Differential cross section for elastic scattering dσ
dΩ is a function that quantifies the intrinsic rate

at which the scattered projectiles can be detected at a given angle (θ, φ) with respect to the
beam direction and subtending a solid angle dΩ. It is defined:

dσ

dΩ
= lim

∆→0

N(θ, φ)/∆Ω

Nin/∆Ain
(32)

Differential cross section is a quantity independent of detector size, beam current and size of
the target. The total number of scattered particles N(θ, φ) within the subtended solid angle ∆Ω
is divided by the relation between the total number of incident particles Nin and the unit area
of the target ∆Ain, orthogonal to the beam. Then the limit for infinitesimally small detector
size and thin targets is taken.
Dividing by a time interval ∆t, taking the limit ∆t→ 0 to get currents we arrive to the relation
of scattering amplitude and differential cross section.

dσ

dΩ
= | fE(θ, φ) |2 vout

vin
(33)

If scattering incident and outgoing velocities are equal
(
vout
vin

= 1
)

and also in our particu-

lar case forces are central, then scattering is axially symmetric and does not depend on φ
(fE(θ, φ) = fE(θ)). Thus equation (33) can be simplified:

dσ

dΩ
= | fE(θ) |2 (34)

The differential cross section has the dimension of area per solid angle.

4.4 Total cross section

The total cross section is a scalar magnitude with area units. It measures the relation between
collision frequency and projectile incident flux. It is defined as the integration all over different
scattering angles of the differential cross section.

σt(E) =

∫
dΩ

(
dσel
dΩ

+
dσne
dΩ

)
(35)

In the present case (elastic process) σt = σel

σel(E) =

∫
dΩ

dσ

dΩ
(θ, φ) (36)

Total cross section is a very important observable since it is much more easy to measure than
differential cross section. It is related to the scattering amplitude by the Optical Theorem:

σt =
4π

k
ImfE(0o) (37)
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5 Scattering with spin-orbit Potential

Scattering theory for spin particles differs from the spinless theory just in one respect: There is
a large number of possible amplitudes and cross sections, one of them for every choice of initial
and final spin states.

The Hilbert space for particles with spin is more complicated and the Hamiltonian is spin-
dependent containing terms such as the spin-orbit interaction. Since V is invariant under ro-
tations (space’s isotropy), it may contain a central term Vc (function of k, k′ and r and other
scalar pieces under global rotations. See Rubin Landau [1] for further details.

VN = Vc + Va~s · ~k + Vb~s · ~k′ + Vs~s · (~k × ~k′) (38)

Usually, we call n̂ =
~k×~k′
|~k×~k′|

The surviving terms after imposing V to be invariant under time reversal and parity trans-
formation is just the scalar product of the two ~s and n̂ axial vectors. Then, the potential with
spin dependence states:

VN = Vc + Vs~s · n̂ (39)

usually written in coordinate representation:

V = Vc(r) + Vs(r)~s ·~l (40)

The solution of Schrödinger equation is the same that the one for spinless particles. In both
cases, one expects V will fall off to zero as the two particles move apart. Thus, we expect
Vs going to zero rapidly and we can still impose the same asymptotic conditions at r → ∞.
Schrödinger equation splits into two, uncoupled one-dimensional, differential equations. Now

each one for a state of different j: u
(+)
l for j = l + 1

2 and u
(−)
l for j = l − 1

2 .

[
−1

2µ

d2

dr2
+
l(l + 1)

2µr2
+ Vc(r) +

l

2
Vs(r)

]
u

(+)
l (kr) = Eu

(+)
l (kr) (41)[

−1

2µ

d2

dr2
+
l(l + 1)

2µr2
+ Vc(r)−

(l + 1)

2
Vs(r)

]
u

(−)
l (kr) = Eu

(−)
l (kr) (42)

As we mentioned above, the main difference compared to spinless theory cases comes when
calculating the values of the observables (scattering amplitude, differential cross section and
total cross section). When we have particles with spin there are multiple choices of initial and
final states and also experimental different conditions that modify the obtained results.

Scattering amplitude

We may distinguish two possible scattering amplitudes for each ul corresponding to the two
possible solutions (values of j for a given l except for l = 0). When decomposing the distorted-
wave in partial wave expansion and applying the boundary conditions at large distances we see
that, for a given initial spin, the scattered wave has a part with spin up and another one has

been flipped to down [1]. For example, distorted (initially spin up)-wave
(
u

(+)
l

)
has the form:

ψ↑(~r) ∼ φ↑(~r) +
eikr

r

f++(θ) |↑〉+ f−+(θ) |↓〉
(2π)3/2

(43)
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Here we have introduced the spin-nonflip amplitude and the spin-flip amplitude defined in terms
of the phase shifts δ+

l and δ−l defined for j = l + 1
2 case and j = l − 1

2 , respectively.

f(θ) = f++(θ) =
∞∑
l=0

1

k

[
(l + 1)eiδ

+
l sin δ+

l + leiδ
−
l sin δ−l

]
Pl(x) (44)

g(θ) = −f−+(θ, φ)e−iφ

sin θ
(45)

this latter equation leads to the simpler form:

g(θ) =
1

k

∞∑
l=1

[
eiδ

+
l sin(δ+

l )− eiδ
−
l sin δ−l

]dPl(x)

dx
(46)

We may write spin up to spin down amplitude (f−+) and spin down to spin up one (f+−) as a
function of g(θ).

f−+ = −eiφ sin θg(θ) (47)

f+− = e−iφ sin θg(θ) (48)

and

f++ = f−− (49)

Cross Sections

The definition of cross section is still the same as in the spinless scattering, namely as the
square of the scattering amplitudes. The problem is that amplitude depends on the initial spin
state and also on the experiment itself, obtaining different cross section values depending upon
whether the spin of the final state is observed or not. If the incident beam has spin up and the
scattered one is observed to be up, then the cross section is:

dσ

dΩ
(↑⇐↑) =

dσ

dΩ

∣∣∣∣
non−flip

= |〈↑ |F | ↑〉|2 = |f++|2 = |f(θ)|2 (50)

Where we can use an operator F in spin space (square matrix of two dimensions) which is
oftenly used to express spin dependence in an easier way, taking the suitable elements in each
case. Analogously, the cross section of a spin-down incident beam and spin-down observed
scattered one is:

dσ

dΩ
(↓⇐↓) =

dσ

dΩ

∣∣∣∣
non−flip

= |〈↓ |F | ↓〉|2 = |f−−|2 = |f(θ)|2 (51)

If the incident beam is known to have well-defined spin and scattered one is measured and it
has its spin flipped, then

dσ

dΩ
(↓⇐↑) =

dσ

dΩ

∣∣∣∣
flip

= |〈↓ |F | ↑〉|2 = |f−+|2 = sin2(θ)|g(θ)|2 (52)
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The other possibility:

dσ

dΩ
(↑⇐↓) =

dσ

dΩ

∣∣∣∣
flip

= |〈↑ |F | ↓〉|2 = |f+−|2 = sin2(θ)|g(θ)|2 (53)

In the case we know initial spin state i (i = +,−) but the scattered beam spin is not observed,
we have to add probabilities for scattering to spin up and down:

dσ

dΩ
(?⇐ i) =

dσ

dΩ

∣∣∣∣
flip

+
dσ

dΩ

∣∣∣∣
non−flip

=

= |〈↑ |F |i〉|2 + |〈↓ |F |i〉|2 = (54)

= |f−ii|2 + |fii|2 = sin2(θ)|g(θ)|2 + |f(θ)|2

If an initial beam is in one concrete spin state i it is because it has been polarized with a
polarization ~Pi.
~Pi is defined as the normalized expectation value of the spin:

~Pi =
〈χi|~σ|χi〉
〈χi|χi〉

(55)

Any |χi〉 state can be written as a linear combination of spin up and spin down states:

|χi〉 = α+ | ↑〉+ α− | ↓〉 (56)

Polarization in state χi is then given by:

~Pi = 〈χi|~σ|χi〉 =

(57)

= 2< (α∗+α−)êx + 2= (α∗+α−)êy + (|α+|2 − |α−|2)êz

We can write equation cross section introducing polarization concept:

dσ

dΩ
(?⇐ i) =

∑
χf=↑,↓

|〈χf |F |χi〉|2 =

(58)

sin2(θ)|g(θ)|2 + |f(θ)|2 + 2~Pi · n̂ sin θ = [g(θ)∗f(θ)]

In our particular study we consider non-polarized beams, so the average value of ~P = 0 is zero
and we have no contribution of the last factor in Equation 59. We may go back to equation
(54).
In order to obtain the polarization of the scattered particle, we define the scattered spin state:

|χf 〉 = F |χi〉 (59)

Using the polarization definition, Equation (55) and substituting this |χf 〉 and F expressions,
we get to the equation, for the particular case where the initial beam is unpolarized:

Pf (f ⇐ 0) =
2 =[g(θ)∗f(θ) sin(θ)]

|f(θ)|2 + |g(θ)|2 sin2(θ)
(60)
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6 Coulomb force. Charged particles.

We are going to calculate scattering parameters also for charged particles (protons). Then we
may introduce Coulomb’s force between particles. This part of the interaction is described by
the Coulomb Potential from an uniformly charged sphere of radius RC :

VC(r) =

{
1

4πε0
e2

RC

(
3− r2

R2
C

)
r < RC

1
4πε0

2e2

r r > RC
(61)

So, in this case the total potential is given by:

VT = VN + VC (62)

Radial equation including Coulomb potential is written:

−u′′l +

(
l(l + 1)

r2
+ 2µ(VN + VC)−K2

)
ul = 0 (63)

In the particular case r > RC : VN = 0 equation 63 can be written as:

u
′′
l +

(
1− 2η

ρ
− l(l + 1)

ρ2

)
ul = 0 (64)

Where we have divided by K2 , used ρ = Kr variable and introduced the Coulomb parameter

η =
µZpZT e

2

K
The general solution of Equation (63) at r < RC is mainly the same as the non-charged

equation solution, Equation (16), just introducing a new adding term in the potential function.
The problem comes when solving for r > RC . The solution of the reduced radial function
may differ from the non-charged particle one since now we cannot make the approximation of
potential set to 0 at r → ∞. The Coulomb potential term does not vanish faster enough for
large distances so the solution is not the same as for short-range potentials.
We may introduce Coulomb wave-functions Fl(η, ρ) and Gl(η, ρ) as the two linearly independent
solutions of the new differential equation. Most important properties for us are the r → 0 and
r →∞ behaviors:

Fl(η, ρ) =

{
ρl+1, for ρ→ 0
sin[ρ− ηln(2ρ)− lπ/2 + σl], for ρ→∞

(65)

Gl(η, ρ) =

{
ρ−l, for ρ→ 0
cos[ρ− ηln(2ρ)− lπ/2 + σl], for ρ→∞

Where σl are the so-called Coulomb phase shifts. They measure how much Fl(η, ρ) and Gl(η, ρ)
phases are shifted from free waves. The same theory is still applicable: ψ still decomposes into
incident plus scattered waves. These waves now are distorted also by the long range Coulomb
potential but scattering observables are defined in terms of currents so these are unaffected by

14



phase factors. If η = 0, Coulomb waves reduce to the previous neutral charge free scattering
case:

Fl(η = 0, ρ) = ĵl(ρ)

(66)

Gl(η = 0, ρ) = +n̂l(ρ)

A subroutine made by L.L.Salcedo using I.J.THOMPSON ([10]) has been used in order to
calculate the solution at r > RC in the specific case of charged particles.
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7 Potential graining

Our method in order to calculate different scattering observables is based on a grained description
of the potential. This method has been developed and used by F.S Pedro, R.Navarro Pérez,
J.E. Amaro and E.Ruiz Arriola ([6], [13], [14] and [15]). In this way, we can split the problem
into solving some Schrödinger equations of small square wells equally-spaced from 0 to aN . In
the process of developing the graining method we take concrete potential values for each small
well obtained by evaluating the optical potential function, Equation (38) at the center of each
of them. Then setting the continuity of the solution in the transition points we will calculate
phase shifts. Finally, using phase shifts we can easily calculate the rest of the observables. The
interaction as we have said is built as a sequence of square wells, the radial component of the
potential (non-charged particles case) stands:

V (r) =



V1 0 ≤ r < a1

V2 a1 ≤ r < a2

...
Vi ai−1 ≤ r < ai
...
VN aN−1 ≤ r < aN
0 r ≥ aN .

(67)

We are going to use this potential to solve the Schrödinger equation

−u′′l +

(
l(l + 1)

r2
+ U(r)−K2

)
ul = 0 (68)

Solutions in each small well are given

uln(r) =



ul1(k1r) = Aĵl(k1r) 0 ≤ r < a1

ul2(k2r) = cos(δ1)ĵl(k2r) + sin(δ1)n̂l(k2r) a1 ≤ r < a2

...

uli(kir) = cos(δi−1)ĵl(kir) + sin(δi−1)n̂l(kir) ai−1 ≤ r < ai
...

ulN (kNr) = cos(δN−1)ĵl(kNr) + sin(δN−1)n̂l(kNr) aN−1 ≤ r < aN
ulf (Kr) = cos(δN )ĵl(Kr) + sin(δN )n̂l(Kr) r ≥ aN .

(69)

Where:

ki =
√
K2 − 2µVi =

√
K2 − Ui (70)

We may impose continuity of the solution at points an, imposing continuity of the logarithmic
derivative:

Ln(r = an) ≡ duln(r)/dr

uln(r)

∣∣∣∣
r=an

=
dul(n+1)(r)/dr

ul(n+1)(r)

∣∣∣∣
r=an

, (71)

Once we obtain δ1 solving the previous equation when r = a1, we can obtain the rest of phase
shift recursively. The total one δN is called the accumulated phase shift. The general expression
for any δn is given by:

δn = tg−1

(
Lnĵl(kn+1an)− ĵ′l(kn+1an)

n̂l
′(kn+1an)−Lnn̂l(kn+1an)

)
(72)
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The only change that we have to make when dealing with the charged particle case is to
introduce an extra potential term when r < aN corresponding to the Coulomb force and, most
important, to replace the solution of the wave function at r > aN being in this case built by the
previously introduced Coulomb wave functions, Equation (66). This last solution outside the
potential will be described:

ulf (Kr) = cos(δN )Fl(Kr) + sin(δN )Gl(Kr) r ≥ aN . (73)

7.1 Reproduced Potential

The total potential VT (r) is considered real because we stay below the inelastic threshold un-
der the energies considered in this work. Also it includes a central term Vc(r), the Coulomb
interaction one VC(r) and the spin-orbit Vs−o(r) factor.

VT (r) = VN (r) + VC(r) (74)

VT (r) = Vc(r) + Vs−o(r) + VC(r) (75)

In equation 74, VC(r) is the Coulomb potential from an uniformly charged sphere of radius
RC described in previous section while VN is the non charged (neutral) part of the potential.
The potential equation (76) was proposed by G.R.Satchler and L.W.Owen [7] and their obtained
fitting parameters in equations (79) and (80) are used to give values to our potential wells depths
by evaluating the function in the center of each of them.

VN (r) = −V (ex + 1)−1 + (~/mπc)
2Vs~L · ~σr−1(d/dr)(exs + 1)−1 (76)

This potential VN (r) has the Woods-Saxon form, with a spin-orbit coupling term that has
the Thomas form but which is allowed to have parameters differing from those of the central po-
tential. We can distinguish the central potential Vc(r) (first term) and the spin-orbit interaction
potential Vs−o(r) (second term) where ~L · ~σ depends on j, l and s:

~L · ~σ = j · (j + 1)− s · (s+ 1)− l · (l + 1) (77)

A graphic representation example of this total potential VT (r) and its different components in
the proton case, for the particular partial wave p1/2 and energy Ep = 6MeV is shown on Figure
2 by the continuous lines. Also, represented points are the values that each small square well is
going to take as its potential depth.
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Figure 2: Total proton potential example for p1/2 partial wave and their constituent parts at a fixed
energy Ep = 6MeV . Lines represent analytic functions and points are the evaluated values of potential
at the Nsw that are going to be used for the graining.

In equation (76):

x = (r −R)/a, xs = (r −Rs)/as
(78)

R = r0(Mα/Mp)
1
3 Rs = rs(Mα/Mp)

1
3

Where Mα/Mp = 3.973 value is taken. For the proton Coulomb potential we use a charge

radius RC = 1.3(Mα/Mp)
1
3 . In “An Optical model for the scattering of nucleons from 4He at

energies below 20 MeV” [7], after some calculations and optimizations, potential parameters are
chosen as:

Vn = 41.8MeV, Vsn = (3.0 + 0.1En)MeV

Vp = 43.0MeV, Vsp = (2.7 + 0.1Ep)MeV

(79)

r0 = (1.50− 0.01E)fm, rs = 1.0fm

a = as = 0.25fm

In order to solve the Schrödinger equation using the square potential graining we set a
reasonable number of square wells Nsw = 20, what means that increasing the number of them
does not improve results significantly any longer. This approximation is done by splitting the
potential into Nsw square wells centered in equally-spaced points going from r = 0 to r = aN
with the same width, wn = aN

Nsw
, each of them with a different potential value determined by

evaluating the total potential VT (r) expression, Equation (76) in the center of each well. In
Figure 3 we can actually see how this potential graining is done taking each VT i(r) value as the
one evaluated in the center of the considered square well.
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Figure 3: Total potential graining example for p1/2 partial wave.
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8 Optical model main results reproduced using the graining po-
tential approximation.

The reaction that we are going to study is scattering of α particle with protons and neutrons.
It is a particular case in which the incident particles have spin 1

2 and the target particle 4He
is spinless. We make a first calculation using previous section grained potential for a range
of energies between 0 to 20 MeV for which inelastic processes are not of important relevance.
Potential range Rmax is approximated to be aN = 4fm.
We will assume that the potential is negligible (∼ 0) at r > aN in the neutron case and there
exist a Coulomb potential VC at r > aN in the proton one. As we explained in Section 3.2, the
expansion of the wave function in terms of partial waves does not contain infinite number of
them contributing to the scattering amplitude. There is a maximum value of partial waves lmax
that are actually influenced by the interaction (l ≤ lmax ∼ kaN ). In our study lmax for both
neutron and proton (as their mass difference is not relevant) can be approximated:

lmax =
√

2µEmaxRmax = 3.51 ≈ 4 (80)

This means we are going to consider waves up to l < 4 (s,p,d,f)

8.1 Phase Shifts Calculation

The first calculation and most important one consists on determining phase shifts of these
partial waves at different energies from 0 to 20 MeV. Using the square-well method, we are
able to calculate those values numerically. Some representative values have been obtained. The
ones providing the most important partial waves contributions (s,p) are given in Table 1 and
represented in Figure 4.
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Figure 4: Neutron Phase Shifts δ(o) obtained for s1/2, p1/2 and p3/2 partial waves for an energy range
0 to 20MeV using the square wells method. Black points are the same result obtained by G.R.Satchler
and L.W.Owen [7] using the optical continuous potential.
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Enn(MeV )
¯
δ

1/2
0 δ

1/2
1 δ

3/2
1

0.2 168.80 0.44 2.16

0.4 164.19 1.27 7.68

0.6 160.68 2.39 18.51

1.0 155.16 5.36 66.33

1.5 149.73 10.27 110.80

2.0 145.22 16.23 122.14

2.5 141.310 22.85 125.30

3.0 137.82 29.610 125.910

3.5 134.67 36.03 125.50

4.0 131.77 41.77 124.59

4.5 129.09 46.64 123.45

5.0 126.58 50.63 122.18

5.5 124.23 53.81 120.85

6.0 122.02 56.28 119.50

7.0 117.94 59.56 116.79

8 114.23 61.24 114.15

11.0 104.80 61.20 106.79

14.0 97.15 57.91 100.30

17.0 90.70 53.54 94.54

20.0 85.15 48.84 89.38

Table 1: Neutron Phase Shifts δ(o) of s1/2, p1/2 and p3/2 partial waves calculated using square wells.
En corresponds to the energy of the incident neutron in the laboratory frame.

In Figure 4 we can see the phase shifts of l = 0 and l = 1, that are the main contribution
to the partial wave expansion at this energy range. Some known characteristics of these phase
shifts can be seen in our results: In p3/2 phase shift we find a very quick change of its value
around E = 1MeV . This is a sign that there is a resonance in the interaction, which corresponds
to the known 5He state. Also in the proton case (Figure 6 ) a resonance is observed, this one
correspond to the 5Li state. In both cases the nuclear shell model predicts the filling process to
start at p3/2, just where the resonance is observed. Another standing up result is the s1/2 phase
shift value at low energies. The non-relativistic quantum scattering Levinson theorem states:

δl(0)− δl(∞) = nbπ (81)

This theorem relates the number of potential bound states nb with the difference in phase of
a scattered wave at zero and infinite energy. In our case it predicts a non-existing bound state
as the extracted value of δl(0) from Figure 4 is δl(0) = 180o = π but neither p− 4He , n− 4He
systems have any bound state. That is because they are forbidden by the Pauli Principle at the
level of nucleons as discussed in “Refinement of the n−α fish-bone potential” [8]. We can affirm
this result is a spurious bound state.

As we may see, the result obtained in our approximation is very similar to the one obtained
using a continuous potential function obtained by G.R.Satchler and L.W.Owen [7] and their
different way of solving the Schrödinger equation.

We obtain smaller phase-shifts values for l = 2 and l = 3 but they are still not negligible in
our calculations. Some of the values are given in Table 2 and the phase shifts representation is
shown in Figure 5
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Enn(MeV )
¯
δ

3/2
2 δ

5/2
2 δ

5/2
3 δ

7/2
3

2.0 0.05 0.07 0.00 0.00

3.0 0.13 0.18 0.00 0.00

4.0 0.25 0.35 0.00 0.00

5.0 0.41 0.59 0.01 0.01

6.0 0.60 0.88 0.01 0.02

7.0 0.81 1.23 0.02 0.03

8.0 1.05 1.64 0.03 0.04

9.0 1.30 2.09 0.04 0.05

10.0 1.56 2.59 0.05 0.07

11.0 1.82 3.13 0.07 0.10

12.0 2.08 3.71 0.08 0.12

13.0 2.34 4.31 0.10 0.15

14.0 2.58 4.94 0.12 0.19

15.0 2.81 5.59 0.13 0.23

16.0 3.02 6.25 0.15 0.27

17.0 3.21 6.92 0.17 0.31

18.0 3.37 7.59 0.19 0.36

19.0 3.51 8.27 0.21 0.41

20.0 3.62 8.94 0.22 0.47

Table 2: Neutron Phase Shifts δ(o) of d3/2, d5/2 , f5/2 and f7/2 partial waves calculated using square
wells. Enn corresponds to the energy of Neutron in the laboratory frame.
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Figure 5: Neutron Phase Shifts δ(o) obtained for d3/2, d5/2 , f5/2 and f7/2 partial waves for an en-
ergy range 0 to 20MeV using the square wells method. Black points are the same result obtained by
G.R.Satchler and L.W.Owen [7] using the optical continuous potential.
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As expected, much smaller values of phase shifts are obtained for l = 2 and l = 3.We found
them to be smaller by orders of magnitude. Contributions to the relevant scattering parameters
are going to be considerably smaller than those of the l = 0 and l = 1 partial waves at these
concrete energy ranges. Nevertheless, they are still important in partial wave expansion.

Analogously, using Coulomb functions at r > aN instead of spherical Bessel ones we obtain
very similar results for the proton scattering. This is reasonable since Coulomb potential VC
contribution inside the potential range is considerably small as can be easily seen in Table 3.

Epp(MeV )
¯
δ

1/2
0 δ

1/2
1 δ

3/2
1

1.0 167.82 1.92 7.10

1.5 162.11 4.48 22.06

2.0 157.23 8.03 51.67

2.5 152.95 12.45 83.60

3.0 149.12 17.58 101.61

3.5 145.64 23.14 110.06

4.0 142.45 28.83 114.07

4.5 139.50 34.33 115.93

5.0 136.75 39.38 116.64

5.5 134.17 43.82 116.70

6.0 131.75 47.61 116.37

6.5 129.46 50.75 115.78

7.0 127.28 53.30 115.03

8.0 123.24 56.90 113.24

10.0 116.15 59.99 109.22

12.0 110.06 60.00 105.14

14.0 104.73 58.47 101.20

16.0 99.99 56.17 97.47

18.0 95.72 53.45 93.94

20.0 91.84 50.53 90.62

Table 3: Proton Phase Shifts δ(o) of s1/2, p1/2 and p3/2 partial waves calculated using square wells. Epp

corresponds to the energy of the proton in the laboratory frame.

23



 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0  2  4  6  8  10  12  14  16  18  20

δs1/2

δ
p

3
/2

δp1/2P
h

a
s
e

 s
h

if
t 

(º
)

E (MeV)

Proton Phase Shifts I

Figure 6: Proton Phase Shifts δ(o) obtained for s1/2, p1/2 and p3/2 partial waves for an energy range 0 to
20MeV using the square wells method. Black points are the available results obtained using a continuous
potential (optical approximation)[7].

Epp(MeV )
¯
δ

3/2
2 δ

5/2
2 δ

5/2
3 δ

7/2
3

2.0 0.03 0.04 0.00 0.00

3.0 0.08 0.11 0.00 0.00

4.0 0.18 0.24 0.00 0.00

5.0 0.30 0.41 0.01 0.01

6.0 0.46 0.64 0.01 0.01

7.0 0.64 0.93 0.02 0.02

8.0 0.85 1.26 0.02 0.03

9.0 1.08 1.65 0.03 0.04

10.0 1.33 2.08 0.04 0.06

11.0 1.58 2.54 0.06 0.08

12.0 1.83 3.05 0.07 0.10

13.0 2.09 3.58 0.09 0.13

14.0 2.33 4.14 0.11 0.16

15.0 2.57 4.73 0.12 0.19

16.0 2.79 5.33 0.14 0.23

17.0 3.00 5.94 0.16 0.27

18.0 3.18 6.56 0.18 0.32

19.0 3.35 7.18 0.20 0.36

20.0 3.48 7.82 0.22 0.41

Table 4: Proton Phase Shifts δ(o) of d3/2, d5/2 , f5/2 and f7/2 partial waves calculated using square
wells. Epp corresponds to the energy of the proton in the laboratory frame.
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Figure 7: Proton Phase Shifts obtained for d3/2, d5/2 , f5/2 and f7/2 partial waves for an energy range 0
to 20MeV using the square wells method. Black points are available results obtained using a continuous
potential (optical approximation) [7].

8.2 Differential cross Section calculation

Once we have determined the phase shifts, we are able to calculate the most important ob-
servables. Differential cross section can be determined for a chosen energy. As an example,
differential cross sections and polarizations at energies between 2 and 16 MeV were calculated.
These results have been compared both to the ones calculated by the optical approximation [7]
and the experimental obtained values by B.Hoop in “Scattering of neutrons by α particles [9]
and T.H May, “Scattering of Polarized Neutrons by α particles [11]. Results for the neutron
and proton scattering are plotted in Figure 8 (Differential cross section) and Figure 9 (polariza-
tion). In order to make differences in energies more visual, since plots are very similar, we have
multiplied differential cross section by 10 when decreasing energy to have a well-separated curve
for each energy case in the same graph. In polarization results, polarization values are shifted
an unit from one to other for the same reason.
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Figure 8: Differential cross sections calculated for some energies. E is the energy of the incident particle
in the LAB frame. (a) Neutron Differential Cross Section; (b) Proton Differential Cross Section.

Analogously, we calculate neutron and proton polarizations.
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Figure 9: Polarization calculated for some energies. E is the energy of the incident particle in the LAB
frame. (a) Neutron Polarization; (b) Proton Polarization.

27



9 Potential graining parameters

We have reproduced the most important previous results obtained by G.R.Satchler and L.W.Owen
[7] using our square-well approximation and non-appreciable differences respect to the Optical
Approximation have been appreciated. At this point we may rely on the graining method and
leave aside the Optical Potential used to assign values to our parameters. We instead aim to
make a suitable fit to the experimental data in order to obtain their values. Those fitting pa-
rameters are the depth energy values of each square well composing the grained potential.
The most important idea under our solution method is that it is not efficient or, in any case,
necessary to introduce more parameters than experimental resolution can probe, as discussed
in “Partial wave analysis of Chiral NN interactions” [12]. Because of the uncertainty principle
∆r∆p ≥ ~

2 :

∆r ∼ 1

pmax
(82)

The potential graining we are doing relates width, number of square wells and potential
range as follows:

∆rNsw = aN (83)

By replacing equation (82) into (83) we get an equation that directly relates number of square
wells and energy of the incident particle:

Nsw = aN
√

2µE (84)

Where we have used pmax = pCM =
√

2µECM
It should be possible to reproduce the experimental data and get information about the potential
using just 2Nsw parameters. The potential description is done adding up (Vc + VC) as a whole
and then the spin-orbit term Vs−o multiplied by ~σ~L, whose value depends on j and l values for
each partial wave (See eq (77) ). Then:

VT (i)(r) = Vi(r) + ~σ~L · Vs−o(i)(r) i = 1, 2...Nsw (85)

The idea is to minimize the difference between the experimental data and the obtained value
using this potential function. Then we may get thoseNsw parameters using statistics distribution
theory. In our case we consider a limiting maximum energy of 23.8MeV then :

Nsw = aN
√

2µE = 3.83 ∼ 4 (86)

We can make the approximation of the potential as a sum of Vn, and Vns (n = 1...4) square
wells, a total of 8 parameters.

9.1 Fitting process

The fitting process is done by minimizing the χ2 distribution, directly comparing the theoretical
result obtained with the grained potential method and the experiment values as discussed in [16].
The χ2 expression and characteristics are studied in “The Chi-Squared test for a distribution”
J.R. Taylor [5].

χ2 =

Ndat∑
1

(xsw − xexp)2

(∆exp)
2 (87)
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Where xsw represents either a differential cross section value obtained by the square-well method
or a polarization one, depending on the case. xexp is the same experimental observable value
and ∆exp is the associated experimental error.

9.2 Experimental data set.

Experimental data has been taken from the Experimental Nuclear Reaction Data (EXFOR)
database. We are going to work with one of the two reactions ( n − 4He ). Differential cross
section and polarization data of neutrons in the range 0-22 MeV were selected from different
scattering experiments. A total of 202 data are taken into account in the χ2 minimization process
where 98 of them are differential cross section data and 104 are polarization measurements. The
energies and covered scattering angles of the data set can be summarized in Table 5.

E(MeV ) θrange(
o) Ndata

17.72 31.2-149.4 14

14.1 63.3-161.8 15

14.3 25-85 7

16.4 64-149.5 62

(a)

E(MeV ) θrange Ndata

3.38 73-149.3 7

7.8 49.6-149.35 9

11 47.7-159.1 17

17.7 47.7-159.1 12

23.8 47.7-159.1 13

17 47.8-153.7 11

14 46.8-152.5 11

15 61.4-165.7 12

17 61.4-165.7 12

(b)

Table 5: Experimental n − 4He scattering data. E is the energy of the incident particle in
the LAB frame and θ is the scattering angle measured in the CM frame. (a) Differential cross
section data , (b) Polarization Data

.

9.3 Minimization process using Downhill Simplex Method.

This multidimensional method consists of building a geometrical figure (Simplex) of N+1 vertices
in an N-dimensional space (where N is the number of parameters to be fitted). The Simplex is
built enclosing the searched minimum. Then the function is evaluated in each vertex and the
results are compared. The vertex with the largest obtained value of the function (in our case
χ2) is modified by reflection, contraction or expansion depending on the case. The process is
repeated until a pre-selected tolerance (difference between all evaluated vertices) is reached. In
order to start a multidimensional minimization, we might give our algorithm a starting guess.
Building a N+1 simplex requires a N × (N + 1) starting matrix where the rows contain N-
vectors of the independent variables and columns different initial values of the same variable.
In our particular case, a 2Nsw × (2Nsw + 1) matrix is needed to build up the simplex. The
values in the columns of the initial matrix have been carefully taken closed to the expected
minimum (comparing it with the optical model) and taking into account the χ2 dependence on
each parameter. If weak dependence of χ2 on an individual parameter value was found then
a largest range of possible values was selected. On the other hand, if strong χ2 dependence is
observed then the range of values of the initial parameter is defined narrower. (See Figure 10).
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Vn Erange(MeV )

V1 -48,-39

V2 -44,-30

V3 -10,-1.9

V4 -4,-1.5

Vn s−o Erange(MeV )

V1s -5,-0.5

V2s -10,-2.5

V3s -5,-0.2

V4s -3,-0.1

Table 6: Range of Vn and Vns selected for the initial simplex.

Vn Erange(MeV )

V1 -51.55

V2 -39.92

V3 -11.99

V4 1.37

Vn s−o Erange(MeV )

V1s -4.54

V2s -6.68

V3s -0.59

V4s -0.59

Table 7: Parameter Values obtained after downhill Simplex Method minimization

(a) (b)

Figure 10: χ2 dependence on the individual parameters. (a)Central Potential part. (b)Spin-orbit
Potential part.

After the minimization process, we obtain the results shown in Table 7. These calculated
potential values and the optical approximation model ones are shown in Figure 11.
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Figure 11: Neutron Optical Potential (E = 11MeV ) and its grained square well potential approximation
using the minimum values after the minimization process.

9.4 Weight of different parameters to the fit.

When analyzing the χ2 dependence on the different parameters we found some of them were
considerably more important than others in the fitting process.(See Figures 10a and 10b )
We had the hypothesis that this fact was directly related to the impact parameter b of the
incident particle. Each given experiment with an energy value E and a scattering angle θ has
an associated classical impact parameter b. Depending on this parameter, we can see details of
the potential up to a certain range. The smallest the impact parameter, the innest part of the
potential we can explore. The deflection function, Equation (88) is used in order to relate those
variables (E, θ, b) :

dθ =

∫ ∞
rmin

−b

r2

√
1− V (r)

E − b2

r2

dr (88)

This classical function is an approximation where the time dependence has been removed,
thus no resonance effects could be taken into account as, for example, the particular case shown
in Figure 12.
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Figure 12: Classical Resonance Example: Obtained for a Wood-Saxon Potential V0 = −10 MeV ,
a = 0.8 fm where the incident particle has energy E = 2.5MeV and an impact parameter b = 7fm.
Purple line represent the target trajectory, the green one the projectile trajectory and the blue one
corresponds to the relative trajectory.

To obtain a time-dependent solution of these variables, we solve directly the classical equa-
tions of motion eq (89). In the non-relativistic case numerically. We approximate the potential
to a Wood-Saxon form, Equation (90) with the concrete parameter values R = 2.5 fm , a = 0.2
and V0 = −40MeV

m
d2x

dt2
= −

(−→
∇V

)
x

, m
d2y

dt2
= −

(−→
∇V

)
y

(89)

V (r) =
V0

1 + e
r−R
a

(90)

This system of differential equations has been solved using the Euler method where we calculate
by iteration from some initial values of the particles using the first order approximation:

(
x(t+ h)
vx(t+ h)

)
=

(
x(t)
vx(t)

)
+ h

(
vx(t)
ax(t)

)
(91)

(
y(t+ h)
vy(t+ h)

)
=

(
y(t)
vy(t)

)
+ h

(
vy(t)
ay(t)

)
(92)

We can reproduce the trajectory of the particles and the relative trajectory as well for a
given incident energy E and impact parameter b (See Figure 13).

From them we can obtain the associated scattering angle.
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Figure 13: Example of obtained trajectories for different impact parameter b used to calculate scattering
angles E = 17.72MeV and an impact parameters from b = 0fm to b = 9fm. Purple lines represent the
incident particle while green ones are the target trajectories.

Once we have a table with enough different impact parameter trajectories we can associate a
b value to each one of our concrete experimental energies E and scattering angles θ. The result
of impact parameters obtained in a distribution form is shown in Figure 14.

Figure 14: Impact parameter values distribution associated to our experimental set.

Although this calculation is a classical approximation of our concrete case and also a Wood-
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Saxon potential has been taken, the fact that none of the experimental data is associated to an
impact parameter lower than 1fm can explain why the potential depths of the first square wells
have the weakest influence when minimizing the χ2, while the other square well parameters have
a stronger one, especially the central ones.
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10 Monte Carlo Simulation-Bootstrap method.

.
As suggested in [17], an alternative strategy for propagating errors of nuclear forces in nu-

clear structure calculations can be done using a Monte Carlo bootstrap. Instead of using the
obtained minima and aiming to estimate the minimization errors, we suppose that each one of
the experimental data used in the fit is composed by N independent and gaussian distributed
values around it with σ = ∆exp, where ∆exp is the error of each particular datum. (See an
example data distribution in Figure 15). We generate a total of N events for each experimental
datum. With each one of these different “experimental” input values, the calculated observables
(differential cross sections and polarizations) and the obtained minimization parameters become
distributions, e.g, we obtain N different set of parameters that minimize the χ2 function in each
case. Once we have the distributions it is possible to take the mean values and calculate the
68% confidence intervals that are going to determine our error estimation bands.

Figure 15: Gaussian distributed values generated for an experimental data point in the Bootstrap
method. Example of polarization data measured for incident energy E = 17 MeV and scattered angle
θ = 104.8o . The obtained gaussian after the Bootstrap method (green line) together with the error
estimation one (dashed orange one) are also represented.

All data points were generated as explained before a total of 10000 times in a gaussian dis-
tribution form, then using the downhill method the χ2 function was minimized. 10000 different
minimizing parameters sets and χ2 values were obtained after the simulation. Representing the
χ2 dependence with each parameter (see Figure 16 and Figure 17), we observed how in some of
the parameters, two different branches of solutions were being obtained. We also represent the
obtained χ2 distribution in Figure 18.
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Figure 16: χ2 distributions of each parameter of the central potential part obtained with the Bootstrap
method. The Right-Bottom distribution of parameter V4 shows two clearly distinguishable solution
branches.

Figure 17: χ2 distributions of each parameter of the spin-orbit potential part obtained with the Bootstrap
method. Except the V1s distribution, all parameters seem to have two solution branches.
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Figure 18: χ2 distribution values obtained with the Bootstrap Method.

Fortunately, the obtained parameter values are not completely independent as we can see
in the calculated correlation matrix in Figure 19, so we can study whether the independent-
parameter branches obtained are part of a general set of parameters or not.

Figure 19: Parameter correlation matrix. Warm colors represent positive correlations while cold ones
correspond to negative ones. Also, lighter ones infer low correlation and darker ones high correlation
between parameters.
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10.1 Selecting a solution branch.

If we represent the distributions in Figure 16 and 17 as histograms, we can observe the two
solution branches that some of the parameter are taken. (See Figures 20 and 21 )

Figure 20: Histogram of the distributions values of each central potential parameter obtained with
the Bootstrap method after minimizing the χ2 function. In the V4 parameter two branches are clearly
distinguished.

Figure 21: Histogram of the distributions values of each central potential parameter obtained with
the Bootstrap method after minimizing the χ2. Except for the V1s parameter two solution branches are
clearly distinguished.
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We have first proved that each one of the individual parameter branches (most populated
or less populated one) is correlated to the same (most populated or less populated) branch of a
different parameter. (This effect can be seen in the correlation matrix in Figure 19, where the
most correlated parameters are indeed the ones having the two different branches). We may see
the solution as two different set of parameters branches.

Our criteria in order to select one of the solution branches has both a physical component
and a statistical one. Suspecting that the model does not explain the low energy limit, where
the interaction could have other effects that have not been taken into account as pion exchange,
we excluded the only low energy data set containing a total of 7 experimental measurements
and observed how the least populated branch decreased dramatically. A comparison of both
distributions for the parameter V3s is shown on Figure 22.

Figure 22: Histogram of the distributions values of the V3s potential parameter obtained with the
Bootstrap method after minimizing the χ2 for the complete data set (left) and excluding low energy data
(right).

Those parameters values unaffected after removing the low energy data corresponded in all
cases to the branches containing considerably more events than the others. Both the statistical
criteria and the physical one seem to be in accordance.

We decided to select a new initial simplex for the minimization process whose values were
taken closely to the first obtained minimum and an unique solution branch was finally obtained.

10.2 Grained potential parameters results.

Once we have these distributions, we can obtain the values for each parameter that minimize
the χ2 function within that selected branch by taking the average value of their distributions.
The associate error is taken as the 68% confidence limits and re-scaled in accordance with the
χ2 obtained value (see discussion in Section 10.5). The parameter values are shown in (Table 8
and represented in Figure 23).
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Vn Erange(MeV )

V1 −41.6± 0.9

V2 −43.0± 0.3

V3 −9.9± 0.2

V4 2.46± 0.05

Vn s−o Erange(MeV )

V1s −6± 2

V2s −4.6± 0.2

V3s −2.1± 0.1

V4s −1.2± 0.1

Table 8: Parameter values obtained after Downhill Simplex minimization method and Bootstrap
simulation. Associated errors are 68% confidence limits re-scaled in accordance with the χ2

obtained value.

Figure 23: Optical Neutron Potential approximation (continuous lines), both central and spin-orbit
contributions (green and blue lines respectively) are shown. Filled boxes values represent grained square
well potential approximation using the average values after the minimization process using the Bootstrap
method. Both central (green) and spin-orbit (blue) contributions to the total potential are shown. Dashed
lines represent associated errors within 68% confidence limits after the selection of the branch. These
errors are re-scaled in accordance with the χ2 obtained value.

10.3 Differential Cross Section and Polarization results.

Using the selected branch we can get the average values of the different observables (differential
cross sections and polarizations) and the 68% confidence limits of their distributions. The results
are represented together with the experimental data in Figures 24 and 25.
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(a) (b)

Figure 24: Neutron differential cross section at different energies calculated using the grained potential
model with the average parameter values of Table 8. The bands associated to the errors represent the 68%
confidence limits. The dark bands have been calculated considering only the most populated branches
and the light ones both of them. These values are all re-scaled in accordance with the χ2 obtained value.
(b) Neutron differential cross section computed using the optical potential model. Dark blue points are
the experimental differential cross section values.
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(a) (b)

Figure 25: (a) Neutron polarization at different energies calculated using the grained potential model
with the average parameter values of Table 8. The bands associated to the errors represent the 68%
confidence limits. The dark bands have been calculated considering only the most populated branches
and the light ones both of them. These values are all re-scaled in accordance with the χ2 obtained
value. (b) Neutron polarization computed using the optical potential model. Dark blue points are the
experimental polarization values. 42



As we can quickly see, the lowest energies values show the biggest discrepancies. When
excluding those 7 data from the minimization, we achieve a much smaller χ2 value as we will
discuss in the next section.

10.4 χ2 obtained values.

We calculate the χ2 values first using the first found minimum in Table 7, then using the
Bootstrap method the average minimum value of the χ2 (first found minimum) is obtained
for both cases: before the selection of the branch (average obtained minimum), and the one
calculated with the new input simplex, rejecting the less populated solution branch (average
obtained minimum (2)). Finally, the Bootstrap method has been used excluding the low energy
data to calculate the χ2 value. (Average obtained minimum (3)). To compare our potential
method and the optical one we also calculated the χ2 distribution taking the initial 20 square
wells method using potential values predicted by the optical potential. A summary of the χ2

obtained values and the χ2 per degree of freedom.
(
χ2

ν

)
is shown in Table 9.

Grained Potential Approximation χ2 χ2

ν

First found minimum 6567 34

Average obtained minimum 6692 34

Average obtained minimum (2) 6511 34

Average obtained minimum (3) 1534 8

Optical Approximation χ2 χ2

ν

First χ2 calculation 15564 80

Second χ2 calculation 12072 65

Table 9: χ2 values obtained for both Grained Potential Approximation and Optical Approx-
imation. First found minimum Table (7), Average obtained minimum (average potential val-
ues obtained after the Bootstrap method Table (8) considering all branches), average obtained
minimum (2) (calculated considering only the most populated branch) and average obtained
minimum (3) (the one calculated excluding low energy data). For Optical Approximation, the
first calculation includes all data set and the second one excludes low energy data.

Although lower values have been obtained using the grained potential approximation, the
results are not statistically admissible. A theoretical model reproduces the experimental data

only if the χ2 per degree of freedom is χ2

ν = 1±
√

2
ν .

Two different fitting processes for each set of observables experimental data were also made,
obtaining the values shown in Table 10. The χ2 values obtained for a differential cross section
fit excluding polarization data drop dramatically. Polarization is dominating the total fit.

Grained Potential Approximation χ2 χ2

ν

D. cross section 123 1.4

Polarization 6050 63

Optical Approximation χ2 χ2

ν

D. cross section 261 2.9

Polarization 11811 123

Table 10: χ2 Values obtained independently for the two different observables for both grained
Potential Approximation and Optical Approximation.
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10.5 Re-scaling the confidence intervals

The 68% confidence intervals are the associated obtained errors of a χ2 distribution. In our

study the obtained value for the distribution is far from being the theoretical one
〈
χ2

ν

〉
= 1. As

suggested in [16] the χ2 distribution can be re-scaled to have the theoretical value
〈
χ2

ν

〉
= 1. To

estimate our error we have to re-scale the 68% confidence intervals using the same procedure.

They are
√

χ2

ν times larger than the theory (for χ2 = 1 ) predicts.
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11 Conclusions and outlook

In this work we have developed mathematically the coarse graining potential method which
reproduces successfully previous results obtained by other authors using a continuous function
for the interaction potential instead. This method, with a simple underlying theory (sum of
several square wells) gives the fitting parameters a physical meaning, they correspond to the
depth of such square well set. The number of fitting parameters can be determined beforehand
by the knowledge of the energies of the incident particle being such set considerably small.
It is not efficient or, in any case, necessary to increase this number because of the uncertainty
principle. Additionally, the weight of each parameter to the fitting process can be estimated when
selecting a concrete experimental data set since we can associate a classical impact parameter
to them. This is useful to know in advance the importance of each parameter in the fit. Also,
an analysis of confidence intervals of the results has been carried out with the Bootstrap Monte
Carlo simulation, providing us an idea of the errors associated to the method for parameters
and observables.
We observe that this model does not reproduce properly the results of low energy data and we
have proved that when excluding them, a considerably smaller χ2 is obtained. In the future some
considerations should be taken into account if we want to extend this coarse graining method
to the low-energy limit.
In general, for all possible scenarios, we achieve much better χ2 values with the graining method

than other studies, (in general 2.5 times lower values). Nevertheless, the
(
χ2

ν = 32.6
)

value, is

far from being a theoretically acceptable value
(
χ2

ν = 1±
√

2
ν

)
. This is mainly due to the high

precision polarization data, which dominate the fit. It could be that the errors predicted for this
data are underestimated. When selecting only differential cross section ones the χ2 value drops

dramatically achieving a χ2 per degree of freedom of
(
χ2

ν = 1.4
)

.

With this theoretical model it could be possible to search for experimental discrepancies in
large data bases by checking their incompatibility and possibly getting to exclude the ones lying
outside the prediction bands. Also in the future this model could be extended and implemented
to higher energy ranges taking into account new considerations in the potential, such as the
complex and energy dependent character of the optical potential.
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