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Abstract—The paper addresses a comparison of architectures  This paper deals withinformation-centric computational
for hardware implementation of Gaussian image pyramids. Main  jmage sensors. Particularly a 6-T active pixel is proposed
differences between architectural choices are in the sensor fnt- to expedite the calculation of the Gaussian Pyramid (GP)

end. One side is for architectures consisting of a conventional 71 This i | t b . id di
sensor that delivers digital images and which is followed by L/]- This is relevant because image pyramids, and in par-

digital processors. The other side is for architectures employing a ticular the GP, constitute the first stage of many computer
non-conventional sensor with per-pixel embedded pre-proceisgy  vision processing pipelines [8]-[11]. Also, their comptita
structures for Gaussian spatial filtering. This later choice belongs mobilises significant computational resources and resutits

to the general category of “artificial retina” sensors which large delay and energy consumption. However, the fundtiona
have been for long claimed as potentially advantageous for .~ " . . L ! .
enhancing throughput and reducing energy consumption of p_r|m|t_|ve underlying GP calculation is rather S|mple — just
vision systems. These advantages are very important in the diffusionsacross the scene plane are needed. Diffusions can
internet of things context, where imaging systems are constantly be implemented by embedding simple mixed-signal circuits a
exchanging information. The paper attempts to quantify these pixel level, as done for instance in [12], [13]. Actuallystdts
potential advantages within a design space in which the degreesin [13] demonstrate orders of magnitude of improvement

of freedom are the number and type of ADCs (single-slope, SAR, . th hout d i h d t
cyclic, ©A and pipeline), and the number of digital processors. ' throughput and energy consumption when compared 1o

Results show that speed and energy advantages of pre-prociegs architectures USing conventionalata-centri¢ sensors. But
sensors are not granted by default and are only realized through these advantages have the counterpart of much lpiyet

proper architectural design. The methodology presented for te  pitch. The sensor hereby described aims at overcoming this
comparison betwegn focal-plfine and digital approaches is a useful drawback by using only two extra transistors per pixel: .
tool for imager design, allowing for the assessment of focal-plane . 4
processing advantages. .employmg.a 6-T APS instead of the standard 4-T APS used
in conventional image sensors [14].
The main asset of the 6-T GP pixel proposed in this
|. INTRODUCTION paper comes from the parallel implementation of diffusions
Images and/ision, i.e. the extraction of meaningful spatial-However, data interchange requirements are still sigmfica
temporal information from the visual stimulus, are crud@l It means that potential advantages of the non-convent@anal
the interaction of “things” with the environment. Indeeldes$e chitecture are not granted by default. Exploring the coonié
days image and vision sensors are flooding all application tender which these advantages really occur, and benchngarkin
ritories, their usage and markets are increasing at expiahenthem, is the main purpose of this paper. In other words, we
pace and they are expected to play important roles withgerform comparative throughput and energy analyses of a
Internet of Things domains [1], [2]. non-conventional architecture based on a 6-T GP pixel, on
One major obstacle faced by image and vision sendgtie one hand, and a conventional architecture, on the other
architects is the huge amount dfata required for image hand. In this later architecture all processing for the GP
coding. These data stress intermediate storage resoundestakes place in the digital domain — no pre-processing at all
communication channels. Also, their handling requiregdaris performed in the sensor. We consider different kinds of
energy budget particularly ion-line reaction is targeted. data readout and various architectural choices regardiag t
Different paths are being explored in the quest of overcgmimumber of analog-to-digital converters (ADCs) embedded in
these difficulties, covering from innovative sensor frentds the sensor readout channel, the type of ADC, and the number
to enhancednulti-core back-end processors. Dynamic visiorof processors in the digital back-end. Results presentéisn
sensors [3] and computational image sensors [4]-[6] ae repaper show that potential advantages of the non-conveaition
vant examples of advances regarding front-ends. In bothscaarchitecture are largely dependent on the choice of thege hi
sensors are meant to extraeformation instead of just data, level, architectural degrees of freedom.
from the scene. Thus, reduced setslb$tractdata, as opposed The paper is organized as follows: Sec. Il defines the con-
to raw data, are downloaded from the sensor for processiiegpt of Gaussian Pyramid and sets the context of its hardware
hence de-stressing the system. realization; Sec. Il addresses a pixel implementation rehe



only 6 transistors are required to perform GP processing ti }
and energy numerical comparisons are presented in Secs. IV swcww

and V, respectively; a case study is described in Sec. VI in Slﬁiﬁ2
order to validate the proposed implementation; finally some I
concluding remarks are presented in Sec. VII. / Seale 2.
Il. GAUSSIAN PYRAMID IN COMPUTERVISION I
Object detection is the starting point for most computer ' o

vision pipelines. Once a particular object of interest is de
tected, it can be segmented, tracked, recognized etc. Armajo
challenge for the implementation of this early vision task

is that the scale of targeted objects is not known a priori.
Objects can enter the surveyed scene at different distances
from the image sensor. Those appearing at distant locations
will require higher resolution to be detected than close-up
objects for which most of the pixels will contain redundant
information. The concept gbyramid representatiofi7] thus ‘
arises as a multi-resolution scene representation wheaie ea Scale #0

frame making up an image flow is progressively filtered and ®)

subsampled in order to efficiently deal with the search @fig. 1: (a) Example of pyramid representation; (b) Pyramid i
objects at different scales. An example of pyramid is show@) with no subsampling in order to highlight the effect of th
in Fig. 1(a). The images with no subsampling are depictegplied filtering.

in Fig. 1(b) for better visualization of the applied filtegin
Formally, filtering followed by subsampling is defined by the
reduceoperation given by:

Scale #0
(a)

Al ) =YY K(m,n)- fis(2i+m,2j+n), (1) MXN
m n

whereK is the filtering kernel and; is the image of the pyra- ZM x 2N
mid at levell [7]. The canonical way to construct a pyramid
representation is based on Gaussian filtering [10]. Thisrfilt )
ensures that no artifacts are generated when going fromtéiner
coarser scales. Indee@aussian Image Pyramiid one of the Memory ::} Output
predefined vision functions included in the industrial st (Image pyramid V
OpenVX [15]. We make use of this standard definition in our fg;;g;gfth (Imaostp‘i;mi .
anaIySiS' : e : resolution MxN) startingg er)t}il images

Concerning hardware realization, a conventional approach Digital processor of resolution MxN)
to generate a GP is that of Fig. 2(a). The image sensed by (@) (b)

an MxN pixel array is converted into digital and stored i iq. 2 Block diaaram of two approaches for hardware re-
memory. A prescribed number of Processing Elements (P ?g t'. £ th g ian P de_ tional diait
then access memory in order to process the image just cdptua}e ation of the Gaussian Pyramid. (a) conventional digrta
and generate the corresponding pyramid. PEs can operateaRRmaCh' wh_ere PE s.tands for Processmg_EIement. I.DES
parallel. This approach will constitute our referenceirzdion can operate in paraliel; (b) focal-plane sensing-proogssi
for comparison. approach.

Due to the significance of the GP as a fundamental process-
ing primitive in computer vision, numerous non-convensbn
approaches aiming at boosting its hardware performance hav
also been reported [12], [13], [16]-[20]. Among them, mixed In order to address this drawback of focal-plane sensing-
signal focal-plane sensing-processing [12], [13], [16]7/][ processing realizations, we thoroughly analyze a focahgl
stands out as the best approach in terms of parallelizati@alization of Gaussian filtering requiring only two extra
and energy efficiency. Additional circuitry is incorpordte transistors per pixel. A basic block diagram of this redima
per pixel, usually connected to its counterpart at neigimigor is depicted in Fig. 2(b). The proposed circuit implemeotati
pixels, in order to concurrently process the image sensed ibyshown in Fig. 3. An n-channel transistor can be used as
photo-sensitive circuit elements. Unfortunately, thipmach a switch, resulting in a pixel with six transistors [21]. &lix
typically suffers from large pixel pitch, thereby having aperation starts by resetting the floating diffusion noddter
negative impact on key parameters of image sensing likee integration time, the charge accumulated at the photodi
sensitivity, resolution, noise etc. ode cathode is transferred (according to TX) to the floating

Ill. PROPOSEDPIXEL IMPLEMENTATION
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focal-plane Gaussian filtering computation. Two transssto
acting as switches {sand s) are included inside each pixel ©) (d)
to connect the floating diffusion nodes of neighboring fExel Fig. 4: Gaussian filtering example.

diffusion node. When the switches close, charge redistdbut

is performed among parasitic capacitors at the correspgndf'me' Changing the grid back to the first one corresponds to

floating diffusion nodes. The average voltage after char§€ring the sub-sampled image from Fig. 4(c) with the22
inomial, or equivalently, to filtering the sub-sampled gea

redistribution represents the mean luminance in the suibbtma § . ) ) ) i
where the pixels were connected. This operation is los§{P™M Fig. 4(b) twice with the 22 binomial, or once with the
Once pixels are interconnected in a sub-matrix, all pacasit3 kernel:i = [12.1; 2.4 2; 12 1]/16.
capacitors end up holding the same voltage level. This lbss o According to the example in Fig. 4 we conclude that, for
the original information does not prevent the GP generatiovery grid change, the sub-sampled image is filtered with
As an example, consider thex8 matrix in Fig. 4(a), where the 2<2 binomial kernel. The size of the targeted kernel
the pixel values encode an original image. This first stéjgtermines the number of times that the grid must be shifted
consists in connecting the pixels intoc2 blocks, to perform and charge redistribution enabled. The possible kernels th
an average operation inside each block, as shown in Fig. 4@3n be implemented with the proposed hardware ar@ 2
If we sample one pixel inside each block, then the resultifinomial kernel cascade associations.
image has half the number of rows and half the number of Figure 5 presents the steps required for the generation of
columns of the original image. The first step is necessary gothree-level pyramid according to the definition of GP of
perform convolution in the proposed way, but it reduces thRe standard OpenVX. Step (2) from Fig. 5, is required for
resolution of the image. Sub-sampled image pixel positiogganging the image resolution. To generate Level 0, which is
are written inp; ; format in the middle of each block inthe GP starting level, we sample one pixel inside eagl2 2
Fig. 4(b). All subsequent steps perform Gaussian filteringock of the image generated after this charge redistobuti
on this sub-sampled matrix. In the first subsequent step, Whis image is then filtered through steps (4) to (7), resglin
change the grid and, again, group the pixels ini®dlocks. the image that is subsampled to generate Level 1. To compute
This grid change and the result of the new charge redistoibut | evel 2, we connect the pixels intox4t blocks, with the
step is shown in Fig. 4(c). After the charge redistributiod wsame goal of step (2), thus reducing the resolution. As in the
have thatp, | ; | = (pi—1,j-1 +Pi—1,; +Pij—1 + pij)/4 calculation of Level 1, four charge redistribution opesat
P§_1,j = (pi—1,j + Pi—1j+1 + Pij + Dij+1)/4 pé,j_l = are performed to filter the image, which is done in steps
(Pij—1+Dij+Piv1j-1+Div15)/4andp; ; = (pij+pij1+ (10) to (13). By the end of these operations the result is
Pi+1,j+Piv1,5+1)/4, wherep’ represents the pixel values aftesubsampled, generating Level 2. To create a pyramid with
the second charge redistribution. The result is equivaient four levels, the pixels are connected inte® pixel blocks.
filtering the sub-sampled image from Fig. 4(b) with the2 The maximum number of levels that can be generated by
binomial filter: K’ = [1 1; 1 1]/4. the proposed hardware mainly depends on the fabrication
If we change the grid again, back to the first grid, atchnology leakage current and the floating diffusion node
shown in Fig. 4(d), we perform the same filtering for a secormhpacitance.
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Fig. 5: Example of Gaussian Pyramid generation at the folzalep

IV. TIME ANALYSIS COMPARISON processing time expressions for both approaches as fasctio
. . . of T, eacht is associated with the clock periotg;;, which
_The_maln goal (.)f this paper is to compare our referenge, gs 1o expressions with a single global variable. The time
digital implementation — depicted in Fig. 2(a) — to the fG‘Calneeded for image capture is approximately the same for both

plane approach just described — sketched in Fig. 2(b). NQig,oaches, so it is not considered in the time comparison.
that for the focal-plane realization the resolution of thevél- The same idea applies to the data output transmission
0 filtered image (MkN) is a quarter of the resolution of the '

captured image (2M2N).

In the digital processor, the convolution is based on sfjidin A Focal-Plane Approach Time Analysis
binomial kernel across the image. At every location, thegena _ )
pixels inside the kernel window are multiplied by the kernel The focal-plane approach steps are inferred from Figs. 5
elements, and the multiplication results are summed. FRd 2(&). Aside from capture and transmission, there are two
efficiency, the digital processor has a multiply and accateul Main steps:
(MAC) unit, formed by one or more PE. The binomial kernel 1) Gaussian Pyramid generation: the time it takes to gen-
only requires addition and division by four, so the MAC unit erate the GP depends on the number of charge redistri-
is realized by simple digital circuitry (logic adders andfish bution operations multiplied by the time it takes for a
registers) placed outside the pixel array. Filtering witB>e2 single charge redistribution. Image size does not affect
kernel requires four pixel values for each kernel window, bu the GP generation time, because this operation runs
two of these values are kept from the previous window oper-  concurrently across the matrix. Kernel size determines
ation, requiring only two memory-read accesses per window. the number of charge redistributions per level. We need
Likewise, one MAC operation per window can be spared if ny — 1 charge redistribution operations to implement an
we consider a partial result from the previous window. After ny x ny kernel. From Fig. 5 we see that this operation
each window computation the memory is accessed for writing  is repeated at every level, except the last one. Finally,
the result. we sum the charge redistribution operations that take

For a numerical comparison, the flows of both architectures  place when the pyramid level changes. The overall
are broken into tasks, which are analyzed considering pro- number of charge redistribution operationsNg:r =
cessing time and energy consumption. In the time analysis, (Npey —1)- (ng — 1) + (Npew — 1) = ng (Npew — 1),

each task is related to a variabtehat represents the time to where Ny, is the number of pyramid levels. Multiply-
perform a given task once. We then compute the number of ing N¢og by the time required for performing one charge
times the task is executed. Overall time is equat toultiplied redistribution,t¢ r, we have the overall processing time

by the number of executions of that task. After finding the TrPpr, = Nk (NLew — 1) - TCR-



2) Analog-to-digital conversion: after each computation a
the focal plane, pixel values are read out and sent to
an analog-to-digital conversion stage, which comprises
one or more ADCs. The time required for performing
one sample conversion by one ADC1spc. Overall
data conversion time depends on the number of ADCs,
N spc, and on the amount of data convertéd,,,,. To
compute N.,,.,, we note that for every pyramid level
the image size is reduced by a factor of X;,,, =
MN + MN/4+ ...+ MN/22(Neeo=1),

Overall conversion time is thus:

Npeo

=2

n=1
Overall focal-plane processing time is obtained by adding
UP Trpp,,. ANATADC 10t

M-N 7Tapc
22(n—1) NADC.

@)

TADCrotal

Npeo

M-N =t
TFProar = Mk (NLew — 1) Tor + E ADC
n=1

M-N 3
22(r=1 Napc ®)

B. Digital Implementation Time Analysis

The digital approach requires more steps than the focal-

plane approach, as it can be seen in Fig. 2:

1) Analog-to-digital conversion: the captured image is im-
mediately converted to digital. This is the only data
conversion required by this approach. The size of the
converted data is equal to the pixel array size. Thus,
TADCrpm =M - N -Tapc/Napc.

Memory storage: the resulting N digital values are
stored into an internal memory. Time taken by this steg'
is M - N - Tyrem, Where tye,, is the time required

2)

time required for performing these operations by one
MAC unit is TeonvolutionWindow = 3T0p1 where Top

is the time required by a single MAC operation. The
resulting value is written in the memory through a single
access, and SOnemWrite = TMem-

The time needed by a single PE to perform the convo-
lution is obtained by multiplying the number of opera-
tions by the Sum(TmemRead + TeonvolutionWindow +
TmemWrite)- ASsuming that more than one PE is
available, and thatNpysarern, Simultaneous mem-
ory accesses are allowed, parallel convolution op-
erations are carried out. The overall time required
for performing the convolution operations is, then,
Teonvolution = N()[)(ZTJ\'IETYL/Nb’leQME'm + 3Top/NPE +
TMem/NbusMem)- If NPE > Nbus]V[emn then memory
access collisions occur. To simplify the analysis, we
ignore this issue by assuming that every PE may ac-
cess the memory at any moment, with no additional
hardware complexity. Then, in the.,,,oution €QqUa-
tion, NbusMem is substituted byNPE: Teonvolution =
Nop(2TMem + 3Top + TMem)/NPE-

By addingTADCTomp TMatriz MemWrites anchonvolutionu

we have the digital approach overall time:

TADC TMem
Tdigitalporar — M-N - + M- N - 7]\[
ADC busMem
Npev—1
- M- N 2'1']\{5777, + 3Top + TMem

22(n—1) NPE

) ()

(e —1)- >

(

ADC Architectures Comparison
Before using the above equations to compare focal-plane

for accessing a single memory position. To considé@nd digital approaches, it is important to remember thas it i
simultaneous memory access, we introduce a new vagPmmon to work with the ADC at a clock period different
able, Nyusirem, that represents the number of possibl#om the one used for the other parts of the circuit. In our
parallel accesses. The total time required by this stepdase, we definec;, as the period of the clock signal that

Tmatriz MemWrite = M-N - T]VIem/NbusAlem-
3)

controls the pixel array, memory, and digital circuitry. €Th
Gaussian Pyramid generation: the digital processorsreadPC clock period, on the other hand, ISapc - Tcik, Where

input values for the current pyramid level from a memi& apc depends on ADC type.

ory, performs multiply and accumulate operations and We consider five ADCs commonly used in CMOS im-
writes the result back into the memory. The number g€ Sensors: ramp, successive approximation register (SAR
times this operation is performed depends on image sig@ma-deltaXA), cyclic and pipeline [22]. To compare ADC
and on the number of times the image is filtered by tHgpes and find the appropriate clock period in each case,
binomial kernel inside each level. Image size changesWe use reported imagers in which the performance figures

every level according to a series similar to the one givedf

the embedded ADCs are included [23]-[58]. ADCs have

for the number of conversional,.,..,, except for the fact already been compared by different authors [22], [59]. The
that we do not perform convolutions at the highest levefpresent comparison focuses exclusively on ADCs designed fo

The number of operations is equal to:

image sensors, in the context of comparative time and energy

analysis, including recently published works.

Npev—1 M-N
Nop=(mx =1)+ > o3myy- 4)
n=1

The ramp converter, a linear approximation converter with
simple architecture requiring low area and low power con-
sumption [60], is probably the most used converter in image

At least two pixel values are necessary in every consensor applications [36]-[46]. It is suitable for workingthv
putation of the %2 binomial kernel convolution, so we high clock frequencies. We thus use it as a reference for
define T emread = 2Tarem- At least three multiply and other converter types: the ramp ADC clock period is equal

accumulate operations are used in the2Xkernel. The to

the global CIOCkaTClkRamp = KRamp s Tolk = Tolk, SO



Kpremp = 1. The data converters in the comparison were  10°
designed for different resolutions. For a fair comparisee,
normalize the conversion rates and energies for the san
number of bits, which is set ad/,;;s = 8. Although im-
agers with higher number of bits are common, eight bits pe ¢ ]
pixel is more typical [61]. The conversion rate normaliaati | ¥ o8 -

depends on the number of clock cycles per bit each corz o

verter architecture requires. A single slope ramp conyerte
for example, requireMeits * TClkpam, (Maximum) for a
conversion. The normalized conversion rate considerigbtei
bits is f, = 2Neits . £ /28 where f, and Ny;s are the
reported conversion rate and resolution. For the SAR an
cyclic converters, the conversion timeN&g,;s - TCiksar.cyerics

so the normalization isf. = Npis - fs/8. The XA con- _ ® Cyclic
version time depends on the oversampling rate (OSR). Fc 107 N Ej{’gh““’
second-order incrementalA converters, the number of bits A
iS Npirs = logy [OSR- (OSR+ 1)] — 1, where OSR is the 103 ‘ ‘ ‘ Ramp
reported oversampling rate. We consider an oversamplieg ra 10! 10 10% 104 10°
equal to 25, which yields resolution equal to 8.3 bits. The Conversion rate (kSa/s)

T ‘ N
normah;atlo_n 'S].CS = OSR- f./25. _The pipeline conver_ter Fig. 6: Eight-bit normalized conversion rate versus engrey
conversion time is onecixy, ... » With some latency, which i .
ipeline o __..sample of five types of ADC. The median values for each

does not depend on the number of bits, i.e. normalization S . :

. L ..~ type of ADC are plotted using black unfilled markers of the
not required. Pipeline converters are not as common in imaj I esponding shape
sensors as the other converter types (simulation results ha P 9 pe-
been reported, as well as experimental results from ADCschip

working together with imaging chips), but they are included

pJ/Sa)
<

10[] L

1071

Energy per sample

in the comparison because of their improved speed. D. Time Comparison Results
To normalize energy figures, we assume that the power _ _
consumption doubles for every bit added [53: = 28 - We now establish some default values for the parameters in

P/(f. - 2Nvit=). Walden's figure of merit for ADCs [62] Egs. (3) and (5), and associate the overall times to a global
uses the effective number of bits (ENOB) instead of thfelock period. As explained in Sec. IV-Gcy is the period
resolution. The normalized energy values in Fig. 6 are basggthe clock signal that controls the pixel array, memoryd an
on the resolution because some of the references do Higttal circuitry andK4pc - tou is the ADC clock period.
report ENOB. Figure 6 shows the normalized energy versusAssuming that charge redistribution is practically instan
normalized conversion rate for the five ADC types considaneous, it is clear from Eq. (3) that the bottleneck of the
ered. The median conversion rate and energy (black markégreal-plane approach is at the ADC, because of the amount
in the figure) are chosen as representative values for e&fidata to be converted. The digital approach bottleneck, on
converter type. The median values suggest that, for eigkte other hand, is either at the ADC or at the processing
bit resolution, cyclic and SAR converters are approximatebtage, which depends on ADC type. For both approaches, we
two times faster than ramp converters. The conversion timesplore different ADC types andd 4 pc values. For the digital
are related according taapcu,,, = 2 TADCsan.cyen. aPProach, we explore severalpp. We thus do not define
and TApCramy, = 2% TClhgamps TADCsancyere = S - default values forcapc, Napc, and Npg. The maximum
TClhsan.cpeie- S0, the cyclic or SAR converters run at aVapc value is set to the number of columns at pyramid
clock which is approximately 16 times slower than the ramigevel 0, since image sensors with one ADC per column are
converter clock. For the focal-plane and digital approacheommonly found [63]. Although stacking technologies allow
comparison, we thus assumEsagcyaic = 16, where for the integration of one ADC per pixel [23], this is still an
Ksar.cyeic 1S the constant that multiplies the global clockipcoming technology with high fabrication costs.
periodtci, to yield Toirgap oy ThE LA conversion time  We use VGA (video graphics array, 64880 pixels) stan-
is 1.3 times smaller than the ramp ADC conversion timelard for the pyramid Level O image size. Consequently, the
SO Toihe, = 28 - TOlkramp/ (1.3 - 25) = 8TCikp...,- The pixel array size in the focal-plane approach is 12860.
multiplying constant isKs;n = 8. For the pipeline converter, The time analysis does not change significantly if the res-
TClkpipetine = [28/(TADCRWP/TADCPWMS)]TCM,RMP and olution increases, but the bandwidth for the transmissibn o
TADCramp/ TADCpiperine = 130, Kpipeline = 2. the generated data increases. Increasing the resolutidn an
Summarizing, we defined<,.,,, = 1, since this con- using one ADC per column also increases power consumption.
verter is used as reference, and, using reported figuresdfo'he pyramid size can not be too large, because computation
Ksar.cycic = 16, Kxa = 8 and Kpspeine = 2. These accuracy is limited by leakage currents. The operations can
constants define the ratio between the ADC clock period abhd performed as long as the capacitance voltages are not
the clock periodrok, used for the other stages of the circuitaffected by these currents. We s¥t., = 4. To achieve a



TABLE I: Time analysis equations parameters.
total operation times is plotted. With only four PEs, thedbc
Parameter Value plane approach is 31 times faster, so for ramp ADCs the focal
Pyramid Level 0 size (MN) 640x480 plane advantage is modest.

Maximum number of ADCS N apc,,..) 640 - _
Equivalent kemel sizer) M 5 For the SAR or cyclic converters, we haveipc =

Number of bits (Vpis) 8 Nbits. : KSAR,Cylic - Towe = 128 - toye. These qonverters
Number of levels §rc,) 4 require fewer clock cycles to perform one conversion, beirth
Number of memory accessedusarem) 4 operation frequency is limited, hence resulting in perfance
Time to perform charge redistribution¢r) ~ Ltcux comparable to that of the ramp ADC. The maximum advan-
Time to access the memoryjem) 2Tcik

tage the focal plane achieves with SAR or cyclic converters
corresponds to 700 times faster. The dashed line in Fig. 7

. - . _shows the evaluation of Eq. (8) for the SAR converter when
reasonable compromise between the circuit complexity al

. =N = N = 640. To reduce
speed, we seNyys17em = 4. ChoosingNyysazem = 1 would ) APCDis ADCrp ADCrraz

) e i : . the advantage of the focal plane to less than two orders of
impair digital circuit performance, but increasing the rhen . :

. . . ... magnitude, three PEs are necessary. With ten PEs, the focal-
of simultaneous memory accesses increases digital csiaat

. plane approach is 28 times faster. TR& conversion time
and complexity. depends on the OSR, which is equal to 25, as explained in
Charge redistribution, memory access and MAC operati ' !

times €cr, Tmem and T,,) are written as functions of the(yec' IV-C:tapc = OSR:- Ksa - Tk = 200 - Tou. The
. T : . dotted line in Fig. 7 shows the comparison between focal-
clock periodtg,. Charge redistribution itself is practically

. T . lane and digital approaches when & converter is used.
instantaneous, but the time it takes to drive the charges+e I

oo . . . . he result is in between the ramp converter and the SAR
tribution switches is considered, sgr = 1t¢;,. The time to

; S converters: only two PEs are necessary to reduce the ageanta
access the memory, ..., was defined a8t considering y y

T : o f the focal plane to less than two orders of magnitude.

that one clock period is necessary to define the positioneof t T . L
. For the pipeline converter analysis, we assume that it is not
memory access and another to actually access that position. . . L .
; ; ; possible to integrate 640 converters inside the chip, tsran
The time to perform a MAC operation,,, was also defined ' . o
. imager with one pipeline converter per column has not been
as 2toyk, Since two clock cycles are necessary to perform )
e . . reported, to the best of our knowledge. For this converter,

the division by four operation and that the sum is performe

with combinational logic, which does not depend on the clock*2¢ Kpipetine - Tou = 2 Toik. The solid lines in Fig. 7
: . correspond to results considering different numbers dlpip
Table | summarizes the established parameter values. -
ADCs. The focal-plane approach is highly advantageous when

Applying the parameter values in Egs. (3) and (5) ylelds:the number of ADCs is higher than 64. In this case, 18 PEs

Time to perform a MAC operationt(,) 2Tcik

tep = 15Tom + 640 - 480 - 1-33TADC’ and (6) are necessary to drpp the focal plane advantage to less than
Napcrpp two orders of magnitude.
The speed of the digital processor may be increased by using
Taigita = 640 - 480 ( TADC Tow | 63Tczk) . ) double data rate (DDR), which allows for memory access and
Napcp,, 2 Npg shift operation (division by four) to be carried out in a dng

Equations (6) and (7) allow differed¥ 4 pc values for focal- clock period. In order to perform timing comparisons betwee

plane and digital approaches. Charge redistribution teneot the focal-plane approach and generic digital circuits rawirig

taken into account, because of its negligible contribution additional power or area requirements, we do not take the DDR

Eq. (6). The ratio between the expressions in Egs. (7) and {8l account in the analysis. Neverthelesszife,, = T, =

is: Tok, the processing time ratios presented in Fig. 7 halve.
While focal-plane processing is being performed it is not

(TADC/TCM L1y &) possible to capture a new frame, which limits th_e frame rate.
Taigitat _ \ NADCpi, | 2 Nep @® Even though, we can guarantee that the_frame is always way
Trp 1.33tapc/Toik ‘ above 30 frames/sec for the VGA resolution. If we consider a

Naperp 100 MHz global clock, and one ramp converter per column,

Using the Kapc constants defined in Sec. IV-C, we rethen approximately 160Qs are necessary for generating the
place T4pc in Eq. (8) by an appropriate function afc;x, GP. Assuming that the image capture requires an additional
which depends on the converter architecture. For the ramp0 s, then 2000us are necessary for image capture and
converter we haverapc = 2% - Kramp - Taie = 256Tcik.  GP generation, which yields frame rate around 500 fps. If
Considering that both the focal-plane and digital appreachthe image resolution is increased to 64@B00 (a factor of
use the ramp converter, the maximum advantage that th@0), it is still possible to achieve 60 fps by keeping the sam
focal-plane approach achieves occurs whé€apc,,,, = 1, conditions, which are namely one ramp converter per column
Npg =1andNapcypr = Napcy., = 640. The focal-plane and a global clock frequency of 100 MHz.
approach is then 600 times faster than the digital approach.
If Napcp,, = Napcerr = Napcy,,, = 640, the focal-plane
approach is 120 times faster. For ramp converters, theteffec
of increasing the number of PEs is shown in Fig. 7, in dash- The energy analysis is more complicated because it is highly
dotted line, where the ratio between digital and focal-plardependent on the architecture, the technology parameters a

V. ENERGY ANALYSIS COMPARISON
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Fig. 8: One-bit SRAM memory cell, inside the dashed box,
and memory write control circuit.

that the transistor consumes even when it is off, depending
on the leakage currenf.,; and short-circuit consumption,

40 Esnhorteirewit, Which is another source of dynamic energy
and happens when switching the inputs of a logic gate, in
Fig. 7: Ratio between digital and focal-plane processinge§ a moment when both n-channel and p-channel transistors
as a function of the number of PEs. Ramp, SAR), and are on, thus allowing for a short-circuit current to flow.
pipeline ADCs are shown, respectively, in dash-dottedhelds The short-circuit current can be minimized by matching the
dotted, and solid lines. For better visualization, a zoorthef rise/fall times of the input and output signals, reaching a
curves is presented in the top right of the figure. maximum of 15% of the total dynamic consumption [65].
Esphorteirewit 1S cOmputed as a portion of the dynamic en-
ergy: EShortcircuit = 15(EDynamic + EShortcircuit)/]-OO -

also of major importance and there is no global parametBshortcircuit = 15EDynamic/85. In the following equations,
(as the clock period was global in the time analysis). Als&» IS the node capacitancqy is the pixel matrix voltage
aside from the stages necessary for the GP generation in e3@hP!y andVaa is the voltage supply outside the pixel matrix.
approach, both architectures must comprise the contgollin The dynamic power consumed by a digital circuit can be
circuits outside the pixel matrix, which are responsibletfe  estimated byPuynamic = Na-Cr - V- fo—1 whereNy is the
interface between each stage shown in Fig. 2. Although the¥¢mber of nodes and,,; is the switching frequency of the
circuits play an important part on the energy consumption,”@des from 0 to 1 [65]. This equation is found considering
proper energy analysis of the controlling circuitry regsira that every node in the digital circuit is capacitive and that
careful design of this stage, which is not under the scope 1€ energy necessary to charge a capacitive node is equal to
this paper, so these circuits are not considered. Cﬂ'vdzd' The SWitChiﬂg frequency can be written as a function
For the ADC stage, the energy consumption depends 8hthe clock frequencyfo_,1 = afur = a/Tcik, Wherea is
the type of converter and architecture. A general empiricé®lled switching activity factor and represents the prakgb
analysis on the energy efficiency of ADC architectures can B&a node switching from 0 to 1, resulting Biynamic = o -
found in [64]. This paper defines a lower boundary for energyd-Cn-Viy/Tcik- The energy is given by, amic multiplied
consumption per sample equal 83(ENOB-9) and states Py the time during which the circuit operateByy,omic =
that lowering the resolution below nine bits results in mino:Na-Cr Vi Tiotal/Tcik- IN OUr CaSET;01a1 CAN be computed
advantages. The minimum energy per sample in our case, eigffording to the time analysis presented in Sec. IV.
bits, would be thus equal to 1 pJ/Sa. Although it is important The SRAM memory is considered for the energy analysis
to have this lower boundary limit it is also interesting tf the digital circuit. The schematic diagram of a one-bit ce
consider converters that have been used for image sensofghis memory is shown in Fig. 8. The memory has the same
As mentioned in Sec. IV-C, several references were used fize of the Level 0 image in the pyramid, »MN, and each
finding representative values of conversion rate and enengixel is represented wittV,;;,. In order to read a value from
consumption for each ADC architecture. The median energye memory, we need to select the memory row using the
consumption per sample for each type of ADC, which can vitch WL and read the result in the BL bus. Writing requires
seen in Fig. 6, is used in this section. selecting a memory cell through the WL switches and setting
Aside from the ADC, the other sources of energy consumpVrite to zero, which closes transistor;Mr M, depending
tion can be divided in: DC consumptiofp, when there is a on the bit that is being written, Y. If Wy, is logical zero,
constant current flowing, usually for biasing circuits; dymic transistor M closes and the bias current generated ky,V
consumption,Epynamic, @S a result of the circuit activity, discharges the bitline BL. If W/, is logical one, transistor M
which requires charging and discharging capacitive nodes @oses and the bias current discharges the biffiheand thus
the circuit; static consumptionf’s.¢;., Which is the energy charges BL.




A. Focal plane

3)

Except for the A/D conversion stage, which was explained
in the beginning of the section, the steps that were coreider
for the energy consumption estimation are described next. A
opposed to the time analysis computation, here we have to
consider the image capture and readout steps because ¢he pix
matrix size has an influence in the consumption.

1)

2)

3)

Image capture: this operation involves, for each pixel,
charging the floating diffusion node and operating the
Reset and TX switches, shown in Fig. Bynamic:the
energy for capturing a single pixel can be estimated
as the one necessary for charging three capacitance
EpiwCapture = (CFD . VdeZ\/[) + (CRst . VdeM) + (CTX :
V2.r). Since this operation happens for every pixel of
the matrix, Ecoprure = 2M - 2N - Epipcapture- The
capacitance€'rp, Crs and Crx can be replaced by
the node capacitandg,,, thus E.qpiyre = 2M -2N - (3-
Cn-V2,,)- Static:transistors M and M, from Fig. 3 are
off for most of the operation and contribute with static
energy consumption,, atrizStatic = 2(2M 2N -Vaanr-
Licak - TFPy.,., ), Wheretpp,. . is given by Eqg. (3).
Charge redistribution: this operation is passive, but en
ergy is necessary to close the switches that connect the
floating diffusion nodesDynamic: the energy that is
needed to control two switches per pixet;, - V.i,,,,

must be multiplied by the number of times the charge
redistribution is performed (from Sec. IV-A) and by the
size of the pixel matrix, since the operation is performed
throughout the entire matriicgr = (Npep—1)ng-2M -

2N - (2C,, - V2,,,), whereny, is the size of the filter.

Image readout: reading a pixel requires closing the row
select switch and enabling the current source that biaseé)
the source follower. This current flows for the time
necessary to charge the pixel matrix column capacitance.
Dynamic: the gate of transistor M from Fig. 3, is
connected to a bus with every other select transistor of
the same row of the matrix, the equivalent capacitance is
estimated agM - C,,. The pixel matrix column capaci-
tance, on the other hand, depends on the number of rows
and is estimated &N - C,,. The dynamic energy is thus
EpimelReadDynamic = (2]V[+2N) Cn 'dedM' The pixel
matrix columns capacitances are charged whenever a
pixel is read. The number of times a pixel is read is equal
to N.onv. defined in Sec. IV-A. The row select switch

is activated every time the image is being read, once
for each row, thusV,,,,/M times. The total energy is
EreadTotal = [(Nconv/M) ’2M+Nconv 2N} Cn VdeM

S4)

B. Digital
For the digital approach, we have the following steps:

1)

2)

Image capture: following the same analysis as in the
focal-plane case, but changing the image size, yields
Ecapture =M-N- (3 : Cn : dedM) and EratrizStatic =

2(M - N - Vaanr - Dieak - TDigital)-

Image readout: also very similar to the focal plane, but
the bus capacitance changes and the image is read only
once, Eyeadrotat = (N M +M - N -N)-Cy, - V2,

MAC operation: the digital processor that is considered
is a MAC unit formed by a logic adder and a shift
register. Dynamic: the energy consumed by a digital
circuit was explained in the beginning of this section. In
the case of the MAC operation, the time during which
the circuit operates i8/,,-37,, (according to Sec. IV-B),

SO EMACdynamic = Q- Nd ' Cn . ded(Nop ' 3Top)/TClk-
Static: depends on the overall number of transistors
inside the digital ports. Half of the transistors inside a
common logic gate are off, By acstatic = Noss-Vaa:

Ticak - TDigitar. Short-circuit: as explained in the begin-
ning of the SeCtion-EMACshort = 15E]VIAC'dynamic/85-
Memory read: reading requires charging the WL bus
capacitanceCy 1, two switches per bit, and the BL
or BL bus capacitance, represented @y . Dynamic:
EreadDyn = (OZ : CVBL + C'WL) : Vd2d : Nop : 2"["WLem/TClku
where N,, - 2 is the number of times the memory
is accessed for reading, according to Sec. IV-B. The
activity factor « is only necessary for the BL bus and
represents the cases where the bus voltage does not
change when closing WL. The WL switch remains
closed while the reading is performed and opens right
after, so there is no activity factor in this casatic:
from Fig. 8, inside a one-bit memory cell, each inverter
has one n-channel transistor and one p-channel tran-
sistor. Regardless of the state of the memory there is
one p-channel transistor off and one n-channel transistor
off. Besides, the WL switches can be formed by one n-
channel transistor each, which are off most of the time.
Thus, Ereqdstatic = 4+ Viad licak - TDigital- Short-circuit:
EreadShortcircuit = 15(EreadDyn)/85-

Memory write: writing a single value in the memory
requires more energy than reading a single position
of the memory because the bias current is activated,
and the writing controlling circuits are useDynamic:
Ewritepyn = (a-Cpr + Cwr + a - Cw,,, + Cwees +

Cn) ' ded ' NMem.Write : Tmem/TClkv where CWb“, is

the capacitance of the inpdfl/,;; of the controlling
circuit, Cyc is the capacitance of the nod€rite and

C, is the gate capacitance of either; Mr My, which

are complementary nodes, so only one capacitance is
considered. The number of times the memory is accessed
for writing is Nayfemwrite = M - N + N,p, from Sec.
IV-B. Static: the static power consumption is only due
to the contribution of the write control circuit, because
the cell circuit contribution was provided in item (4).
Transistors M and M, are on only when a bit is written,
so we assume that they contribute with the static con-
sumption during the entire operation. These transistors
are necessary for every column of the memory matrix, so
it must be multiplied byN,;;s - M. Furthermore, inside
the NOR gates there is always two transistors off. We
can consider that this circuit is repeated for each bit and
for, at least, eactVyysprem, resulting iNEy, ritestatic =
(MQCTL + NousMem 4Cn) *NyitsVad-Tieak *TDigital -
Short-circuit: EwriteShortciTcuit = 15(EwriteDyn)/85-

DC: the bias current, that is activated whenever we need
to swap a bit in the desired writing position, flows only




TABLE II: Energy analysis equations parameters.

Parameter Value
Node capacitance(},) 4 fF
Matrix voltage supply Vaq) 33V
Voltage supply outside the matri¥fans;) 1.5V
Leakage currentl{..x) 2.6 pA
Memory Ibias]\lem 50 ,uA
Clock frequency 100 MHz
Activity factor («) 0.2; 0.8

Ramp ADC energy
> A ADC energy
SAR ADC energy
Cyclic ADC energy
Pipeline ADC energy

43 pJ/sample
12 pJ/sample
11 pJ/sample

9 pJ/sample

74 pd/sample

1 bit adder: 4 nodes

10

2-bit adder: (4 + 7) nodes

for the time necessary to discharge the bus capacitance,
Generalizing, N-bit adder: 44 7 (Np;ts — 1) nodes

EMemDC = NmemWM'te : Vdd : Ibias]VIem : TClk/lo,

where t¢, is divided by ten to model capacitance
discharge time, which is significantly shorter than the
clock period. The activity factor is necessary to represent

Shift register: Np;ts nodes

@

the cases where the cell bit that is being written does  _—{p oFdD oFYD oF=- 2D qF-
not change. =
> > > >
k[ [ [ i
C. Energy comparison (b)

To compare focal-plane and digital approaches, we use ¥ 9: Circuits considered for the MAC energy estimation:
values shown in Tab. Il. Node capacitance, voltage supply) n.,. adder and (b) shift register.
leakage and memory bias current were established by means

of simulations with a 110 nm CMOS technology. The clock
frequency determines static energy consumption: 100 MHz is
arbitrarily chosen, considering the clock frequency régubin
some papers. The activity factoris< o < 1 [65]. Two values
were chosen fory to give an idea of how the energy changes
according to it. An activity factor closer to one benefits the
focal-plane approach. The energy of the converters are the
median energy consumption values from Fig. 6.

Aside from the values defined in the table, it is also neces-
sary to estimate the number of nodes of the MAC unit circuit.
An example of a two-bit adder with carry and an eight-bit
shift register is shown in Fig. 9. From the figures, we deduce
that anVy;;s adder requires at leadt+ 7 - (Ny;1s — 1) nodes
and theN,;;, shift register at leasV,;;s hodes. Thus, a single
PE of our MAC unit can be implemented witB - Ny;;s — 3)
nodes. The flip-flop from Fig. 9 actually requires more nodes,
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but we are assuming/,;;s nodes as an optimistic estimation,
which benefits the digital approach. Fig. 10: Node capacitance effect on the energy consumption.
Determining the memory node capacitances is also neces-
sary for the comparison. The capacitance of the nddée,
Cyney IS equal to 2, since Write is connected to two is 24 times more energy-efficient. Making = 0.8, there is
logic gate inputs. For the bit capacitance, considering tha modest increase in the advantage of the focal plane: it is
it is connected to a column bu€)y,,, = N - C,. The 34, 54 and 25 times more energy efficient for the ramp, SAR
bitline capacitance also depends on the number of rowalso cyclic andXA) and pipeline, respectively.
Cpr, = N - C,. The wordline capacitance depends on the It is interesting to see the effect of the capacitance irsgea
number of the memory matrix column®: Ny;;s - M - C,,. on the result. Since most of the nodes considered for the
Considering the values from Tab. Iy = 0.2 and 640 analysis are connected to metal input or output lines, the
converters for both approaches, the focal-plane approach metal parasitic effects would probably result in capaciéen
quires 33 times less energy than the digital approach wheen tiigher than the ones considered. Figure 10 shows how thre rati
ramp converter is being used. For the SAR, cyclic &W between digital energy consumption and focal-plane energy
converters, the focal plane is around 52 times more energpnsumption varies as th@, of the nodes connected to metal
efficient. For the pipeline converter, the focal-plane apph lines increases. The activity factor used in this plot is 0.2
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Let us consider, for example, that we use the ADC presented ~ VABLE Il System level repeatability results.

in [30]. This is a column parallel SAR ADC that, normalized

. . . Image Bark Bikes
to eight bits, consumes 14.6 pJ per sample, with an ADC clock Transformation  Original  Proposed  Original  Proposed
frequency oftey, ., = 5.6 MHz. Under these conditions, the H1to? 67.54% 65.77%  56.55% 76.57%
focal-plane approach takes 91L& to generate the GP. If we H1to3 62.76%  30.86% 57.06%  76.33%
use 10 PEs in the digital approach, then the focal plane is H1to4 7521%  23.70% 53.83%  73.40%
26 ti ¢ h d with the focal-ol H1ito5 73.09% 0.00% 55.29%  71.98%
6 times .aster. The energy consume with the ocal-plane H1to6 7051% 982% 4853%  67.78%
approach is around to 23J, 49 times more energy-efficient image Boat Graf
than the digital approach. Transformation  Original  Proposed Original Proposed
H1to2 59.39%  69.11% 60.47%  55.76%
H1to3 60.06%  10.04% 48.15%  22.19%
VI. CASE STUDY: SIFT ALGORITHM H1to4 43.47%  36.59%  22.96% 8.37%
. . . H1ito5 4126%  57.42%  0.00% 0.00%
'I_'he flrst step Qf the scale _njvarlant fgature _transfo.rm (BIFT A1to6 31.97% 58700 0.00% 0.00%
which is an object recognition algorithm, is multiple-szal Image Leuven Trees
image representation [66]. First, the image is filteretimes Transformation  Original  Proposed  Original _ Proposed
with Gaussian kernels, thus creating the first octave. Tlagéen H1to2 6399%  74.13% 51.47%  6546%
. i . H1to3 60.86%  75.34% 51.51%  64.54%
from the m_|ddl_e of the_z octave is then copied and subsampled. Hitod 6034%  73.38% 24417%  62.08%
The resulting image is filtered with the same kernels of the H1to5 57.85%  71.92% 42.07%  66.28%
first octave, thus generating the second octave. The progedu :"HOG 52-49%UBC 73.75% 38-49‘@ 0 68.72%
. . . . mage al
is rgpeated until the t_arget numper of octaves is obtalngd. Transformation Ofiginal  Proposed  Original —Proposed
A difference of Gaussian (DoG) is performed afterwards in Hito? 67.86%  83.26% 61.80%  67.77%
order to create a scale-normalized Laplacian of Gaussian H1to3 63.84%  77.46% 57.12%  62.57%
(02A%G) representation of the image. Points of interest are Hitod 57.54%  72.37% 52.95%  47.56%
then searched throughout the scales of the Laplacian scale Ao 42.46% 5484% 4135  34.91%
g p H1to6 4044%  59.21%  10.10% _ 15.53%

space pyramid representation.
With the proposed hardware, it is possible to generate a _ Average repeatability: Original = 50.16%; Proposed = 5%07
scale space that can be used by the SIFT without a sig-
nificant performance drop [21]. First, we capture the imadeatures), and 10 for edge threshold (which is used for ifilger
and group the pixels into>22 pixel blocks. After sampling edge-like features). For the focal-plane method, we alse ha
and quantization, the result is the first image from the firthree octaves, but four scales, 0.05 for contrast threqinudde
octave of the scale space. We then change the grid awlective), and the same edge threshold. As it can be seen
obtain the second scale-space image. This kernel is a gaodrab. Ill, the systems yield similar results, which valies
approximation of the Gaussian kernel with standard devnatifocal-plane hardware scale-space implementation for SIFT
oriter = 01 = 0.5. By changing the grid again, we perform a The same time and energy analysis carried out in Secs. IV
second filtering operation, which results in the third imagend V can be extended for scale-space generation. In this
from the scale space. The resulting standard deviation case, the image does not change resolution after each fil-

o2 = /07 +0%e, = 0.707. The ratio of the standard tering operation (more convolutions are performed at the
deviations of adjacent scale-space filters must be keptanins focal plane) and some specific images must be sampled. The
[21], ¥ = os/o1 = +/2. Consequently, the next imageconclusmns remain the same: the scenario in which the-focal

must be the result of filtering with a kernel with standar@@ne approach shows most advantage is the one in which fast
deviation equal tdk - o» = 1. This is achieved by using the Converters are being used, when we have one data converter
— 1 which Per column. The time equations obtained from the scaleespac

binomial kernel twice:,/c? 4 o2, 2 . ; . .
. 72+ OFiter + Ofitter analysis using the ideas presented in Sec. IV are:
leads to the fourth image from the scale space. The nextectav

is computed after all the images from the previous octave
are generated, by grouping the pixels inte 4 blocks and
repeating the filtering procedure.

Nacalos—2
TFProra; = Noct - 275 ™% . Tor 4+ Noct - Tor+

Noct
f (M -N - Nscales) TADC

System-level simulations show that the results achievéll wi * nz::l 22(n—=1) " Napc’ ®)
the proposed hardware implementation are similar to those
obtained with the original approach. These simulationsewer <, ;. =M-N- TADC | ppo N Mem
run using the database from [67] and OpenCV SIFT libraries. N Napc Nousnrem
By computing original image keypoints and comparing them "ztjl M-N (4T]L{em + 4Top +TMem) n
with transformed image keypoints, we evaluate whether the 22(n—1) NrE
proposed keypoint method is robust to those transformstion Noet
This evaluation measure is denotedregeatability gNscates=2 %™ M jv : (ZTM”” + 3Top +TM‘”") . (10)
n=1 221 Npp

Table Il shows repeatability results for the original, Iyul
digital, and the proposed, focal-plane, method. The agiginwhere the number of scales 1¢,..;.s (greater than or equal
method parameters are: three octaves, six scales per pctew®), and the number of octavesi§,.;. Within each octave,
0.04 for contrast threshold (which is used for removing weake number of charge redistribution operation@iseates =2,



VII. CONCLUSIONS

Sensors with embedded per-pixel processors have begp

(2]

since long advocated as critical for increasing speed and
decreasing energy consumption of vision hardware. Theﬁ

claims rely on two conceptual pillars: on the one hand, anal

)

processing is known to have larger energy efficiency than digs]
ital for applications with moderate SNR requirements; o@ th [6]

other hand, sensor pre-processing features data compregsi

the sensor, thus relaxing bandwidth and storage requiresmen(7]
The analyses that were carried out in this paper show that
these potential advantages are case-specific. These emal
are completed for a vision primitive which is commonly
employed in computer vision, namely the image pyramid. Thél
computation of GPs can be accelerated by employing a Nofk;

conventional sensor front-end with extra per-pixel citgui

to perform spatial filtering. When comparing this approach
with the use of a conventional sensor, without embedded pF%lJ

processing, followed by a conventional processor, a btk

(12]

of the former is found at the required number of analog-to-

digital conversions. Different image sensors ADCs are ichns

ered in the paper with the goal of finding values for conversiq, 3;

rate and energy consumption that can be used for comparison

purposes, taking into account each ADC type. Thus, reggrdiﬂ4]

processing time, results show that the non-conventioma®se

architecture requires fast ADCs, ideally one ADC per column
to report significant advantages. Regarding energy savings [15]

non-conventional architecture yields best results withRSA

(16]

cyclic or XA topologies. To reach that conclusion, we consider
state-of-the-art experimental median figures regardingCAO17]
energy consumption. Considering specific cases, the bsst ca
for energy savings is when the single-slope converter fi@6h [ [1g]
is used. By way of example, analysis using a column parallel
SAR ADC with 14.6 pJ/sample shows that the architectuEf9
with pre-processing sensor can be 26 times faster and 4&3
times more energy-efficient than the digital approach with
10 PEs. The methodology presented in this paper allows for!
a quantitative estimation of the advantages that focalela
processing might bring about. This is an interesting tool f¢21]

imager designers to understand, before implementatian,
strengths of the proposed focal-plane processing techsiqu
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