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Abstract—The paper addresses a comparison of architectures
for hardware implementation of Gaussian image pyramids. Main
differences between architectural choices are in the sensor front-
end. One side is for architectures consisting of a conventional
sensor that delivers digital images and which is followed by
digital processors. The other side is for architectures employing a
non-conventional sensor with per-pixel embedded pre-processing
structures for Gaussian spatial filtering. This later choice belongs
to the general category of “artificial retina” sensors which
have been for long claimed as potentially advantageous for
enhancing throughput and reducing energy consumption of
vision systems. These advantages are very important in the
internet of things context, where imaging systems are constantly
exchanging information. The paper attempts to quantify these
potential advantages within a design space in which the degrees
of freedom are the number and type of ADCs (single-slope, SAR,
cyclic, Σ∆ and pipeline), and the number of digital processors.
Results show that speed and energy advantages of pre-processing
sensors are not granted by default and are only realized through
proper architectural design. The methodology presented for the
comparison between focal-plane and digital approaches is a useful
tool for imager design, allowing for the assessment of focal-plane
processing advantages.

I. I NTRODUCTION

Images andVision, i.e. the extraction of meaningful spatial-
temporal information from the visual stimulus, are crucialfor
the interaction of “things” with the environment. Indeed, these
days image and vision sensors are flooding all application ter-
ritories, their usage and markets are increasing at exponential
pace and they are expected to play important roles within
Internet of Things domains [1], [2].

One major obstacle faced by image and vision sensor
architects is the huge amount ofdata required for image
coding. These data stress intermediate storage resources and
communication channels. Also, their handling requires large
energy budget particularly ifon-line reaction is targeted.
Different paths are being explored in the quest of overcoming
these difficulties, covering from innovative sensor front-ends
to enhancedmulti-core back-end processors. Dynamic vision
sensors [3] and computational image sensors [4]-[6] are rele-
vant examples of advances regarding front-ends. In both cases
sensors are meant to extractinformation, instead of just data,
from the scene. Thus, reduced sets ofabstractdata, as opposed
to raw data, are downloaded from the sensor for processing,
hence de-stressing the system.

This paper deals withinformation-centric computational
image sensors. Particularly a 6-T active pixel is proposed
to expedite the calculation of the Gaussian Pyramid (GP)
[7]. This is relevant because image pyramids, and in par-
ticular the GP, constitute the first stage of many computer
vision processing pipelines [8]-[11]. Also, their computation
mobilises significant computational resources and resultsinto
large delay and energy consumption. However, the functional
primitive underlying GP calculation is rather simple — just
diffusionsacross the scene plane are needed. Diffusions can
be implemented by embedding simple mixed-signal circuits at
pixel level, as done for instance in [12], [13]. Actually, results
in [13] demonstrate orders of magnitude of improvement
in throughput and energy consumption when compared to
architectures using conventional,data-centric, sensors. But
these advantages have the counterpart of much largerpixel
pitch. The sensor hereby described aims at overcoming this
drawback by using only two extra transistors per pixel; i.e.by
employing a 6-T APS instead of the standard 4-T APS used
in conventional image sensors [14].

The main asset of the 6-T GP pixel proposed in this
paper comes from the parallel implementation of diffusions.
However, data interchange requirements are still significant.
It means that potential advantages of the non-conventionalar-
chitecture are not granted by default. Exploring the conditions
under which these advantages really occur, and benchmarking
them, is the main purpose of this paper. In other words, we
perform comparative throughput and energy analyses of a
non-conventional architecture based on a 6-T GP pixel, on
the one hand, and a conventional architecture, on the other
hand. In this later architecture all processing for the GP
takes place in the digital domain — no pre-processing at all
is performed in the sensor. We consider different kinds of
data readout and various architectural choices regarding the
number of analog-to-digital converters (ADCs) embedded in
the sensor readout channel, the type of ADC, and the number
of processors in the digital back-end. Results presented inthis
paper show that potential advantages of the non-conventional
architecture are largely dependent on the choice of these high-
level, architectural degrees of freedom.

The paper is organized as follows: Sec. II defines the con-
cept of Gaussian Pyramid and sets the context of its hardware
realization; Sec. III addresses a pixel implementation where
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only 6 transistors are required to perform GP processing; time
and energy numerical comparisons are presented in Secs. IV
and V, respectively; a case study is described in Sec. VI in
order to validate the proposed implementation; finally some
concluding remarks are presented in Sec. VII.

II. GAUSSIAN PYRAMID IN COMPUTERV ISION

Object detection is the starting point for most computer
vision pipelines. Once a particular object of interest is de-
tected, it can be segmented, tracked, recognized etc. A major
challenge for the implementation of this early vision task
is that the scale of targeted objects is not known a priori.
Objects can enter the surveyed scene at different distances
from the image sensor. Those appearing at distant locations
will require higher resolution to be detected than close-up
objects for which most of the pixels will contain redundant
information. The concept ofpyramid representation[7] thus
arises as a multi-resolution scene representation where each
frame making up an image flow is progressively filtered and
subsampled in order to efficiently deal with the search of
objects at different scales. An example of pyramid is shown
in Fig. 1(a). The images with no subsampling are depicted
in Fig. 1(b) for better visualization of the applied filtering.
Formally, filtering followed by subsampling is defined by the
reduceoperation given by:

fl(i, j) =
∑

m

∑

n

K(m,n) · fl−1(2i+m, 2j + n), (1)

whereK is the filtering kernel andfl is the image of the pyra-
mid at levell [7]. The canonical way to construct a pyramid
representation is based on Gaussian filtering [10]. This filter
ensures that no artifacts are generated when going from finerto
coarser scales. Indeed,Gaussian Image Pyramidis one of the
predefined vision functions included in the industrial standard
OpenVX [15]. We make use of this standard definition in our
analysis.

Concerning hardware realization, a conventional approach
to generate a GP is that of Fig. 2(a). The image sensed by
an M×N pixel array is converted into digital and stored in
memory. A prescribed number of Processing Elements (PEs)
then access memory in order to process the image just captured
and generate the corresponding pyramid. PEs can operate in
parallel. This approach will constitute our reference realization
for comparison.

Due to the significance of the GP as a fundamental process-
ing primitive in computer vision, numerous non-conventional
approaches aiming at boosting its hardware performance have
also been reported [12], [13], [16]-[20]. Among them, mixed-
signal focal-plane sensing-processing [12], [13], [16], [17]
stands out as the best approach in terms of parallelization
and energy efficiency. Additional circuitry is incorporated
per pixel, usually connected to its counterpart at neighboring
pixels, in order to concurrently process the image sensed by
photo-sensitive circuit elements. Unfortunately, this approach
typically suffers from large pixel pitch, thereby having a
negative impact on key parameters of image sensing like
sensitivity, resolution, noise etc.

Fig. 1: (a) Example of pyramid representation; (b) Pyramid in
(a) with no subsampling in order to highlight the effect of the
applied filtering.
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Fig. 2: Block diagram of two approaches for hardware re-
alization of the Gaussian Pyramid: (a) conventional digital
approach, where PE stands for Processing Element. PEs
can operate in parallel; (b) focal-plane sensing-processing
approach.

III. PROPOSEDPIXEL IMPLEMENTATION

In order to address this drawback of focal-plane sensing-
processing realizations, we thoroughly analyze a focal-plane
realization of Gaussian filtering requiring only two extra
transistors per pixel. A basic block diagram of this realization
is depicted in Fig. 2(b). The proposed circuit implementation
is shown in Fig. 3. An n-channel transistor can be used as
a switch, resulting in a pixel with six transistors [21]. Pixel
operation starts by resetting the floating diffusion nodes.After
the integration time, the charge accumulated at the photodi-
ode cathode is transferred (according to TX) to the floating
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Fig. 3: 2×2 section of a matrix with the proposed pixel for
focal-plane Gaussian filtering computation. Two transistors
acting as switches (s1 and s2) are included inside each pixel
to connect the floating diffusion nodes of neighboring pixels.

diffusion node. When the switches close, charge redistribution
is performed among parasitic capacitors at the corresponding
floating diffusion nodes. The average voltage after charge
redistribution represents the mean luminance in the sub-matrix
where the pixels were connected. This operation is lossy.
Once pixels are interconnected in a sub-matrix, all parasitic
capacitors end up holding the same voltage level. This loss of
the original information does not prevent the GP generation.

As an example, consider the 8×8 matrix in Fig. 4(a), where
the pixel values encode an original image. This first step
consists in connecting the pixels into 2×2 blocks, to perform
an average operation inside each block, as shown in Fig. 4(b).
If we sample one pixel inside each block, then the resulting
image has half the number of rows and half the number of
columns of the original image. The first step is necessary to
perform convolution in the proposed way, but it reduces the
resolution of the image. Sub-sampled image pixel positions
are written in pi,j format in the middle of each block in
Fig. 4(b). All subsequent steps perform Gaussian filtering
on this sub-sampled matrix. In the first subsequent step, we
change the grid and, again, group the pixels into 2×2 blocks.
This grid change and the result of the new charge redistribution
step is shown in Fig. 4(c). After the charge redistribution we
have thatp′i−1,j−1 = (pi−1,j−1 + pi−1,j + pi,j−1 + pi,j)/4,
p′i−1,j = (pi−1,j + pi−1,j+1 + pi,j + pi,j+1)/4, p′i,j−1 =
(pi,j−1+pi,j+pi+1,j−1+pi+1,j)/4 andp′i,j = (pi,j+pi,j+1+
pi+1,j+pi+1,j+1)/4, wherep′ represents the pixel values after
the second charge redistribution. The result is equivalentto
filtering the sub-sampled image from Fig. 4(b) with the 2×2
binomial filter:K = [1 1; 1 1]/4.

If we change the grid again, back to the first grid, as
shown in Fig. 4(d), we perform the same filtering for a second
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Fig. 4: Gaussian filtering example.

time. Changing the grid back to the first one corresponds to
filtering the sub-sampled image from Fig. 4(c) with the 2×2
binomial, or equivalently, to filtering the sub-sampled image
from Fig. 4(b) twice with the 2×2 binomial, or once with the
3×3 kernel:K = [1 2 1; 2 4 2; 1 2 1]/16.

According to the example in Fig. 4 we conclude that, for
every grid change, the sub-sampled image is filtered with
the 2×2 binomial kernel. The size of the targeted kernel
determines the number of times that the grid must be shifted
and charge redistribution enabled. The possible kernels that
can be implemented with the proposed hardware are 2×2
binomial kernel cascade associations.

Figure 5 presents the steps required for the generation of
a three-level pyramid according to the definition of GP of
the standard OpenVX. Step (2) from Fig. 5, is required for
changing the image resolution. To generate Level 0, which is
the GP starting level, we sample one pixel inside each 2×2
block of the image generated after this charge redistribution.
This image is then filtered through steps (4) to (7), resulting in
the image that is subsampled to generate Level 1. To compute
Level 2, we connect the pixels into 4×4 blocks, with the
same goal of step (2), thus reducing the resolution. As in the
calculation of Level 1, four charge redistribution operations
are performed to filter the image, which is done in steps
(10) to (13). By the end of these operations the result is
subsampled, generating Level 2. To create a pyramid with
four levels, the pixels are connected into 8×8 pixel blocks.
The maximum number of levels that can be generated by
the proposed hardware mainly depends on the fabrication
technology leakage current and the floating diffusion node
capacitance.
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Fig. 5: Example of Gaussian Pyramid generation at the focal plane.

IV. T IME ANALYSIS COMPARISON

The main goal of this paper is to compare our reference
digital implementation — depicted in Fig. 2(a) — to the focal-
plane approach just described — sketched in Fig. 2(b). Note
that for the focal-plane realization the resolution of the Level-
0 filtered image (M×N) is a quarter of the resolution of the
captured image (2M×2N).

In the digital processor, the convolution is based on sliding a
binomial kernel across the image. At every location, the image
pixels inside the kernel window are multiplied by the kernel
elements, and the multiplication results are summed. For
efficiency, the digital processor has a multiply and accumulate
(MAC) unit, formed by one or more PE. The binomial kernel
only requires addition and division by four, so the MAC unit
is realized by simple digital circuitry (logic adders and shift
registers) placed outside the pixel array. Filtering with a2×2
kernel requires four pixel values for each kernel window, but
two of these values are kept from the previous window oper-
ation, requiring only two memory-read accesses per window.
Likewise, one MAC operation per window can be spared if
we consider a partial result from the previous window. After
each window computation the memory is accessed for writing
the result.

For a numerical comparison, the flows of both architectures
are broken into tasks, which are analyzed considering pro-
cessing time and energy consumption. In the time analysis,
each task is related to a variableτ that represents the time to
perform a given task once. We then compute the number of
times the task is executed. Overall time is equal toτ multiplied
by the number of executions of that task. After finding the

processing time expressions for both approaches as functions
of τ, eachτ is associated with the clock period,τClk, which
leads to expressions with a single global variable. The time
needed for image capture is approximately the same for both
approaches, so it is not considered in the time comparison.
The same idea applies to the data output transmission.

A. Focal-Plane Approach Time Analysis

The focal-plane approach steps are inferred from Figs. 5
and 2(a). Aside from capture and transmission, there are two
main steps:

1) Gaussian Pyramid generation: the time it takes to gen-
erate the GP depends on the number of charge redistri-
bution operations multiplied by the time it takes for a
single charge redistribution. Image size does not affect
the GP generation time, because this operation runs
concurrently across the matrix. Kernel size determines
the number of charge redistributions per level. We need
nk − 1 charge redistribution operations to implement an
nk × nk kernel. From Fig. 5 we see that this operation
is repeated at every level, except the last one. Finally,
we sum the charge redistribution operations that take
place when the pyramid level changes. The overall
number of charge redistribution operations isNCR =
(NLev − 1) · (nk − 1) + (NLev − 1) = nk (NLev − 1),
whereNLev is the number of pyramid levels. Multiply-
ing NCR by the time required for performing one charge
redistribution,τCR, we have the overall processing time
τFPProc

= nk (NLev − 1) · τCR.
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2) Analog-to-digital conversion: after each computation at
the focal plane, pixel values are read out and sent to
an analog-to-digital conversion stage, which comprises
one or more ADCs. The time required for performing
one sample conversion by one ADC isτADC . Overall
data conversion time depends on the number of ADCs,
NADC , and on the amount of data converted,Nconv. To
computeNconv, we note that for every pyramid level
the image size is reduced by a factor of 4:Nconv =
MN +MN/4 + . . .+MN/22(NLev−1).
Overall conversion time is thus:

τADCTotal
=

NLev
∑

n=1

M ·N

22(n−1)
·

τADC

NADC
. (2)

Overall focal-plane processing time is obtained by adding
up τFPProc

andτADCTotal
:

τFPTotal
= nk (NLev − 1) τCR +

NLev
∑

n=1

M ·N

22(n−1)
·

τADC

NADC

(3)

B. Digital Implementation Time Analysis

The digital approach requires more steps than the focal-
plane approach, as it can be seen in Fig. 2:

1) Analog-to-digital conversion: the captured image is im-
mediately converted to digital. This is the only data
conversion required by this approach. The size of the
converted data is equal to the pixel array size. Thus,
τADCTotal

= M ·N · τADC/NADC .
2) Memory storage: the resulting M×N digital values are

stored into an internal memory. Time taken by this step
is M · N · τMem, where τMem is the time required
for accessing a single memory position. To consider
simultaneous memory access, we introduce a new vari-
able,NbusMem, that represents the number of possible
parallel accesses. The total time required by this step is
τmatrixMemWrite = M ·N · τMem/NbusMem.

3) Gaussian Pyramid generation: the digital processor reads
input values for the current pyramid level from a mem-
ory, performs multiply and accumulate operations and
writes the result back into the memory. The number of
times this operation is performed depends on image size
and on the number of times the image is filtered by the
binomial kernel inside each level. Image size changes at
every level according to a series similar to the one given
for the number of conversions,Nconv, except for the fact
that we do not perform convolutions at the highest level.
The number of operations is equal to:

Nop = (nk − 1) ·

NLev−1
∑

n=1

M ·N

22(n−1)
. (4)

At least two pixel values are necessary in every com-
putation of the 2×2 binomial kernel convolution, so we
defineτmemRead = 2τMem. At least three multiply and
accumulate operations are used in the 2×2 kernel. The

time required for performing these operations by one
MAC unit is τconvolutionWindow = 3τop, where τop

is the time required by a single MAC operation. The
resulting value is written in the memory through a single
access, and soτmemWrite = τMem.
The time needed by a single PE to perform the convo-
lution is obtained by multiplying the number of opera-
tions by the sum(τmemRead + τconvolutionWindow +
τmemWrite). Assuming that more than one PE is
available, and thatNbusMem simultaneous mem-
ory accesses are allowed, parallel convolution op-
erations are carried out. The overall time required
for performing the convolution operations is, then,
τconvolution = Nop(2τMem/NbusMem + 3τop/NPE +
τMem/NbusMem). If NPE > NbusMem, then memory
access collisions occur. To simplify the analysis, we
ignore this issue by assuming that every PE may ac-
cess the memory at any moment, with no additional
hardware complexity. Then, in theτconvolution equa-
tion, NbusMem is substituted byNPE : τconvolution =
Nop(2τMem + 3τop + τMem)/NPE .

By addingτADCTotal
, τMatrixMemWrite, andτconvolution,

we have the digital approach overall time:

τdigitalTotal
= M ·N ·

τADC

NADC
+M ·N ·

τMem

NbusMem
+

(nk − 1) ·

NLev−1
∑

n=1

M ·N

22(n−1)

(

2τMem + 3τop + τMem

NPE

) (5)

C. ADC Architectures Comparison

Before using the above equations to compare focal-plane
and digital approaches, it is important to remember that it is
common to work with the ADC at a clock period different
from the one used for the other parts of the circuit. In our
case, we defineτClk as the period of the clock signal that
controls the pixel array, memory, and digital circuitry. The
ADC clock period, on the other hand, isKADC · τClk, where
KADC depends on ADC type.

We consider five ADCs commonly used in CMOS im-
age sensors: ramp, successive approximation register (SAR),
sigma-delta (Σ∆), cyclic and pipeline [22]. To compare ADC
types and find the appropriate clock period in each case,
we use reported imagers in which the performance figures
of the embedded ADCs are included [23]-[58]. ADCs have
already been compared by different authors [22], [59]. The
present comparison focuses exclusively on ADCs designed for
image sensors, in the context of comparative time and energy
analysis, including recently published works.

The ramp converter, a linear approximation converter with
simple architecture requiring low area and low power con-
sumption [60], is probably the most used converter in image
sensor applications [36]-[46]. It is suitable for working with
high clock frequencies. We thus use it as a reference for
other converter types: the ramp ADC clock period is equal
to the global clock,τClkRamp

= KRamp · τClk = τClk, so
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KRamp = 1. The data converters in the comparison were
designed for different resolutions. For a fair comparison,we
normalize the conversion rates and energies for the same
number of bits, which is set asNbits = 8. Although im-
agers with higher number of bits are common, eight bits per
pixel is more typical [61]. The conversion rate normalization
depends on the number of clock cycles per bit each con-
verter architecture requires. A single slope ramp converter,
for example, requires2Nbits · τClkRamp

(maximum) for a
conversion. The normalized conversion rate considering eight
bits is f ′

s = 2Nbits · fs/28, where fs and Nbits are the
reported conversion rate and resolution. For the SAR and
cyclic converters, the conversion time isNbits ·τClkSAR,Cyclic

,
so the normalization isf ′

s = Nbits · fs/8. The Σ∆ con-
version time depends on the oversampling rate (OSR). For
second-order incrementalΣ∆ converters, the number of bits
is Nbits = log2 [OSR· (OSR+ 1)] − 1, where OSR is the
reported oversampling rate. We consider an oversampling rate
equal to 25, which yields resolution equal to 8.3 bits. The
normalization isf ′

s = OSR · fs/25. The pipeline converter
conversion time is oneτClkPipeline

, with some latency, which
does not depend on the number of bits, i.e. normalization is
not required. Pipeline converters are not as common in image
sensors as the other converter types (simulation results have
been reported, as well as experimental results from ADC chips
working together with imaging chips), but they are included
in the comparison because of their improved speed.

To normalize energy figures, we assume that the power
consumption doubles for every bit added [59]:E = 28 ·
P/(f ′

s · 2Nbits). Walden’s figure of merit for ADCs [62]
uses the effective number of bits (ENOB) instead of the
resolution. The normalized energy values in Fig. 6 are based
on the resolution because some of the references do not
report ENOB. Figure 6 shows the normalized energy versus
normalized conversion rate for the five ADC types consid-
ered. The median conversion rate and energy (black markers
in the figure) are chosen as representative values for each
converter type. The median values suggest that, for eight-
bit resolution, cyclic and SAR converters are approximately
two times faster than ramp converters. The conversion times
are related according toτADCRamp

= 2 · τADCSAR,Cyclic

and τADCRamp
= 28 · τClkRamp

, τADCSAR,Cyclic
= 8 ·

τClkSAR,Cyclic
. So, the cyclic or SAR converters run at a

clock which is approximately 16 times slower than the ramp
converter clock. For the focal-plane and digital approaches
comparison, we thus assumeKSAR,Cyclic = 16, where
KSAR,Cyclic is the constant that multiplies the global clock
periodτClk to yield τClkSAR,Cyclic

. TheΣ∆ conversion time
is 1.3 times smaller than the ramp ADC conversion time,
so τClkΣ∆

= 28 · τClkRamp
/(1.3 · 25) ≈ 8τClkRamp

. The
multiplying constant isKΣ∆ = 8. For the pipeline converter,
τClkPipeline

= [28/(τADCRamp
/τADCPipeline

)]τClkRamp
and

τADCRamp
/τADCPipeline

≈ 130, KPipeline = 2.
Summarizing, we definedKramp = 1, since this con-

verter is used as reference, and, using reported figures, found
KSAR,Cyclic = 16, KΣ∆ = 8 and KPipeline = 2. These
constants define the ratio between the ADC clock period and
the clock periodτClk, used for the other stages of the circuit.
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Fig. 6: Eight-bit normalized conversion rate versus energyper
sample of five types of ADC. The median values for each
type of ADC are plotted using black unfilled markers of the
corresponding shape.

D. Time Comparison Results

We now establish some default values for the parameters in
Eqs. (3) and (5), and associate the overall times to a global
clock period. As explained in Sec. IV-C,τClk is the period
of the clock signal that controls the pixel array, memory, and
digital circuitry andKADC · τClk is the ADC clock period.

Assuming that charge redistribution is practically instan-
taneous, it is clear from Eq. (3) that the bottleneck of the
focal-plane approach is at the ADC, because of the amount
of data to be converted. The digital approach bottleneck, on
the other hand, is either at the ADC or at the processing
stage, which depends on ADC type. For both approaches, we
explore different ADC types andNADC values. For the digital
approach, we explore severalNPE . We thus do not define
default values forτADC , NADC , and NPE . The maximum
NADC value is set to the number of columns at pyramid
Level 0, since image sensors with one ADC per column are
commonly found [63]. Although stacking technologies allow
for the integration of one ADC per pixel [23], this is still an
upcoming technology with high fabrication costs.

We use VGA (video graphics array, 640×480 pixels) stan-
dard for the pyramid Level 0 image size. Consequently, the
pixel array size in the focal-plane approach is 1280×960.
The time analysis does not change significantly if the res-
olution increases, but the bandwidth for the transmission of
the generated data increases. Increasing the resolution and
using one ADC per column also increases power consumption.
The pyramid size can not be too large, because computation
accuracy is limited by leakage currents. The operations can
be performed as long as the capacitance voltages are not
affected by these currents. We setNLev = 4. To achieve a
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TABLE I: Time analysis equations parameters.

Parameter Value
Pyramid Level 0 size (M×N) 640×480
Maximum number of ADCs (NADCMax

) 640
Equivalent kernel size (nk) 5
Number of bits (Nbits) 8
Number of levels (NLev) 4
Number of memory accesses (NbusMem) 4
Time to perform charge redistribution (τCR) 1τClk

Time to access the memory (τMem) 2τClk

Time to perform a MAC operation (τop) 2τClk

reasonable compromise between the circuit complexity and
speed, we setNbusMem = 4. ChoosingNbusMem = 1 would
impair digital circuit performance, but increasing the number
of simultaneous memory accesses increases digital circuitsize
and complexity.

Charge redistribution, memory access and MAC operation
times (τCR, τmem and τop) are written as functions of the
clock periodτClk. Charge redistribution itself is practically
instantaneous, but the time it takes to drive the charge redis-
tribution switches is considered, soτCR = 1τClk. The time to
access the memory,τmem, was defined as2τClk considering
that one clock period is necessary to define the position of the
memory access and another to actually access that position.
The time to perform a MAC operation,τop, was also defined
as 2τClk, since two clock cycles are necessary to perform
the division by four operation and that the sum is performed
with combinational logic, which does not depend on the clock.
Table I summarizes the established parameter values.

Applying the parameter values in Eqs. (3) and (5) yields:

τFP = 15τClk +
640 · 480 · 1.33τADC

NADCFP

, and (6)

τdigital = 640 · 480

(

τADC

NADCDig

+
τClk

2
+

63τClk

NPE

)

. (7)

Equations (6) and (7) allow differentNADC values for focal-
plane and digital approaches. Charge redistribution time is not
taken into account, because of its negligible contributionto
Eq. (6). The ratio between the expressions in Eqs. (7) and (6)
is:

τdigital

τFP
=

(

τADC/τClk

NADCDig

+ 1
2
+ 63

NPE

)

1.33τADC/τClk

NADCFP

. (8)

Using theKADC constants defined in Sec. IV-C, we re-
place τADC in Eq. (8) by an appropriate function ofτClk,
which depends on the converter architecture. For the ramp
converter we haveτADC = 28 · KRamp · τClk = 256τClk.
Considering that both the focal-plane and digital approaches
use the ramp converter, the maximum advantage that the
focal-plane approach achieves occurs whenNADCDig

= 1,
NPE = 1 andNADCFP

= NADCMax
= 640. The focal-plane

approach is then 600 times faster than the digital approach.
If NADCDig

= NADCFP
= NADCMax

= 640, the focal-plane
approach is 120 times faster. For ramp converters, the effect
of increasing the number of PEs is shown in Fig. 7, in dash-
dotted line, where the ratio between digital and focal-plane

total operation times is plotted. With only four PEs, the focal-
plane approach is 31 times faster, so for ramp ADCs the focal
plane advantage is modest.

For the SAR or cyclic converters, we haveτADC =
Nbits · KSAR,Cylic · τClk = 128 · τClk. These converters
require fewer clock cycles to perform one conversion, but their
operation frequency is limited, hence resulting in performance
comparable to that of the ramp ADC. The maximum advan-
tage the focal plane achieves with SAR or cyclic converters
corresponds to 700 times faster. The dashed line in Fig. 7
shows the evaluation of Eq. (8) for the SAR converter when
NADCDig

= NADCFP
= NADCMax

= 640. To reduce
the advantage of the focal plane to less than two orders of
magnitude, three PEs are necessary. With ten PEs, the focal-
plane approach is 28 times faster. TheΣ∆ conversion time
depends on the OSR, which is equal to 25, as explained in
Sec. IV-C: τADC = OSR · KΣ∆ · τClk = 200 · τClk. The
dotted line in Fig. 7 shows the comparison between focal-
plane and digital approaches when theΣ∆ converter is used.
The result is in between the ramp converter and the SAR
converters: only two PEs are necessary to reduce the advantage
of the focal plane to less than two orders of magnitude.
For the pipeline converter analysis, we assume that it is not
possible to integrate 640 converters inside the chip, because an
imager with one pipeline converter per column has not been
reported, to the best of our knowledge. For this converter,
τADC = KPipeline · τClk = 2 · τClk. The solid lines in Fig. 7
correspond to results considering different numbers of pipeline
ADCs. The focal-plane approach is highly advantageous when
the number of ADCs is higher than 64. In this case, 18 PEs
are necessary to drop the focal plane advantage to less than
two orders of magnitude.

The speed of the digital processor may be increased by using
double data rate (DDR), which allows for memory access and
shift operation (division by four) to be carried out in a single
clock period. In order to perform timing comparisons between
the focal-plane approach and generic digital circuits not having
additional power or area requirements, we do not take the DDR
into account in the analysis. Nevertheless, ifτmem = τop =
τClk, the processing time ratios presented in Fig. 7 halve.

While focal-plane processing is being performed it is not
possible to capture a new frame, which limits the frame rate.
Even though, we can guarantee that the frame is always way
above 30 frames/sec for the VGA resolution. If we consider a
100 MHz global clock, and one ramp converter per column,
then approximately 1600µs are necessary for generating the
GP. Assuming that the image capture requires an additional
400 µs, then 2000µs are necessary for image capture and
GP generation, which yields frame rate around 500 fps. If
the image resolution is increased to 6400×4800 (a factor of
100), it is still possible to achieve 60 fps by keeping the same
conditions, which are namely one ramp converter per column
and a global clock frequency of 100 MHz.

V. ENERGY ANALYSIS COMPARISON

The energy analysis is more complicated because it is highly
dependent on the architecture, the technology parameters are
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Fig. 7: Ratio between digital and focal-plane processing times
as a function of the number of PEs. Ramp, SAR,Σ∆, and
pipeline ADCs are shown, respectively, in dash-dotted, dashed,
dotted, and solid lines. For better visualization, a zoom ofthe
curves is presented in the top right of the figure.

also of major importance and there is no global parameter
(as the clock period was global in the time analysis). Also,
aside from the stages necessary for the GP generation in each
approach, both architectures must comprise the controlling
circuits outside the pixel matrix, which are responsible for the
interface between each stage shown in Fig. 2. Although these
circuits play an important part on the energy consumption, a
proper energy analysis of the controlling circuitry requires a
careful design of this stage, which is not under the scope of
this paper, so these circuits are not considered.

For the ADC stage, the energy consumption depends on
the type of converter and architecture. A general empirical
analysis on the energy efficiency of ADC architectures can be
found in [64]. This paper defines a lower boundary for energy
consumption per sample equal to22(ENOB−9), and states
that lowering the resolution below nine bits results in minor
advantages. The minimum energy per sample in our case, eight
bits, would be thus equal to 1 pJ/Sa. Although it is important
to have this lower boundary limit it is also interesting to
consider converters that have been used for image sensors.
As mentioned in Sec. IV-C, several references were used for
finding representative values of conversion rate and energy
consumption for each ADC architecture. The median energy
consumption per sample for each type of ADC, which can be
seen in Fig. 6, is used in this section.

Aside from the ADC, the other sources of energy consump-
tion can be divided in: DC consumption,EDC , when there is a
constant current flowing, usually for biasing circuits; dynamic
consumption,EDynamic, as a result of the circuit activity,
which requires charging and discharging capacitive nodes of
the circuit; static consumption,EStatic, which is the energy

WL WL

BLBLWrite

Wbit

Vbias

M1

M2

Mbias

Fig. 8: One-bit SRAM memory cell, inside the dashed box,
and memory write control circuit.

that the transistor consumes even when it is off, depending
on the leakage currentIleak; and short-circuit consumption,
EShortcircuit, which is another source of dynamic energy
and happens when switching the inputs of a logic gate, in
a moment when both n-channel and p-channel transistors
are on, thus allowing for a short-circuit current to flow.
The short-circuit current can be minimized by matching the
rise/fall times of the input and output signals, reaching a
maximum of 15% of the total dynamic consumption [65].
EShortcircuit is computed as a portion of the dynamic en-
ergy: EShortcircuit = 15(EDynamic + EShortcircuit)/100 →
EShortcircuit = 15EDynamic/85. In the following equations,
Cn is the node capacitance,VddM is the pixel matrix voltage
supply andVdd is the voltage supply outside the pixel matrix.

The dynamic power consumed by a digital circuit can be
estimated byPdynamic = Nd ·Cn ·V 2

dd ·f0→1 whereNd is the
number of nodes andf0→1 is the switching frequency of the
nodes from 0 to 1 [65]. This equation is found considering
that every node in the digital circuit is capacitive and that
the energy necessary to charge a capacitive node is equal to
Cn ·V 2

dd. The switching frequency can be written as a function
of the clock frequency:f0→1 = αfclk = α/τClk, whereα is
called switching activity factor and represents the probability
of a node switching from 0 to 1, resulting inPdynamic = α ·
Nd ·Cn ·V 2

dd/τClk. The energy is given byPdynamic multiplied
by the time during which the circuit operates:Edynamic =
α·Nd ·Cn ·V 2

ddτtotal/τClk. In our case,τtotal can be computed
according to the time analysis presented in Sec. IV.

The SRAM memory is considered for the energy analysis
of the digital circuit. The schematic diagram of a one-bit cell
of this memory is shown in Fig. 8. The memory has the same
size of the Level 0 image in the pyramid, M×N, and each
pixel is represented withNbits. In order to read a value from
the memory, we need to select the memory row using the
switch WL and read the result in the BL bus. Writing requires
selecting a memory cell through the WL switches and setting
Write to zero, which closes transistor M1 or M2, depending
on the bit that is being written, Wbit. If Wbit is logical zero,
transistor M2 closes and the bias current generated by Vbias

discharges the bitline BL. If Wbit is logical one, transistor M1
closes and the bias current discharges the bitlineBL and thus
charges BL.
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A. Focal plane

Except for the A/D conversion stage, which was explained
in the beginning of the section, the steps that were considered
for the energy consumption estimation are described next. As
opposed to the time analysis computation, here we have to
consider the image capture and readout steps because the pixel
matrix size has an influence in the consumption.

1) Image capture: this operation involves, for each pixel,
charging the floating diffusion node and operating the
Reset and TX switches, shown in Fig. 3.Dynamic: the
energy for capturing a single pixel can be estimated
as the one necessary for charging three capacitances,
EpixCapture = (CFD ·V 2

ddM )+ (CRst ·V 2
ddM )+ (CTX ·

V 2
ddM ). Since this operation happens for every pixel of

the matrix, Ecapture = 2M · 2N · EpixCapture. The
capacitancesCFD, CRst andCTX can be replaced by
the node capacitanceCn, thusEcapture = 2M ·2N · (3 ·
Cn·V 2

ddM ). Static:transistors M1 and M2 from Fig. 3 are
off for most of the operation and contribute with static
energy consumption,EmatrixStatic = 2(2M ·2N ·VddM ·
Ileak · τFPTotal

), whereτFPTotal
is given by Eq. (3).

2) Charge redistribution: this operation is passive, but en-
ergy is necessary to close the switches that connect the
floating diffusion nodes.Dynamic: the energy that is
needed to control two switches per pixel,2Cn · V 2

ddM ,
must be multiplied by the number of times the charge
redistribution is performed (from Sec. IV-A) and by the
size of the pixel matrix, since the operation is performed
throughout the entire matrix,ECR = (NLev−1)nk ·2M ·
2N · (2Cn · V 2

ddM ), wherenk is the size of the filter.
3) Image readout: reading a pixel requires closing the row

select switch and enabling the current source that biases
the source follower. This current flows for the time
necessary to charge the pixel matrix column capacitance.
Dynamic: the gate of transistor M4, from Fig. 3, is
connected to a bus with every other select transistor of
the same row of the matrix, the equivalent capacitance is
estimated as2M ·Cn. The pixel matrix column capaci-
tance, on the other hand, depends on the number of rows
and is estimated as2N ·Cn. The dynamic energy is thus
EpixelReadDynamic = (2M+2N) ·Cn ·V 2

ddM . The pixel
matrix columns capacitances are charged whenever a
pixel is read. The number of times a pixel is read is equal
to Nconv, defined in Sec. IV-A. The row select switch
is activated every time the image is being read, once
for each row, thusNconv/M times. The total energy is
EreadTotal = [(Nconv/M)·2M+Nconv ·2N ]·Cn ·V 2

ddM .

B. Digital

For the digital approach, we have the following steps:
1) Image capture: following the same analysis as in the

focal-plane case, but changing the image size, yields
Ecapture = M ·N · (3 ·Cn ·V 2

ddM ) andEmatrixStatic =
2(M ·N · VddM · Ileak · τDigital).

2) Image readout: also very similar to the focal plane, but
the bus capacitance changes and the image is read only
once,EreadTotal = (N ·M +M ·N ·N) · Cn · V 2

ddM .

3) MAC operation: the digital processor that is considered
is a MAC unit formed by a logic adder and a shift
register. Dynamic: the energy consumed by a digital
circuit was explained in the beginning of this section. In
the case of the MAC operation, the time during which
the circuit operates isNop·3τop (according to Sec. IV-B),
soEMACdynamic = α ·Nd ·Cn · V 2

dd(Nop · 3τop)/τClk.
Static: depends on the overall number of transistors
inside the digital ports. Half of the transistors inside a
common logic gate are off, soEMACstatic = NOff ·Vdd·
Ileak · τDigital. Short-circuit: as explained in the begin-
ning of the section,EMACshort = 15EMACdynamic/85.

4) Memory read: reading requires charging the WL bus
capacitanceCWL, two switches per bit, and the BL
or BL bus capacitance, represented byCBL. Dynamic:
EreadDyn = (α ·CBL+CWL) ·V 2

dd ·Nop ·2τmem/τClk,
where Nop · 2 is the number of times the memory
is accessed for reading, according to Sec. IV-B. The
activity factorα is only necessary for the BL bus and
represents the cases where the bus voltage does not
change when closing WL. The WL switch remains
closed while the reading is performed and opens right
after, so there is no activity factor in this case.Static:
from Fig. 8, inside a one-bit memory cell, each inverter
has one n-channel transistor and one p-channel tran-
sistor. Regardless of the state of the memory there is
one p-channel transistor off and one n-channel transistor
off. Besides, the WL switches can be formed by one n-
channel transistor each, which are off most of the time.
Thus,EreadStatic = 4·Vdd ·Ileak ·τDigital. Short-circuit:
EreadShortcircuit = 15(EreadDyn)/85.

5) Memory write: writing a single value in the memory
requires more energy than reading a single position
of the memory because the bias current is activated,
and the writing controlling circuits are used.Dynamic:
EwriteDyn = (α · CBL + CWL + α · CWbit

+ CWrite +
Cn) · V 2

dd · NMemWrite · τmem/τClk, whereCWbit
is

the capacitance of the inputWbit of the controlling
circuit, CWrite is the capacitance of the nodeWrite and
Cn is the gate capacitance of either M1 or M2, which
are complementary nodes, so only one capacitance is
considered. The number of times the memory is accessed
for writing is NMemWrite = M · N + Nop, from Sec.
IV-B. Static: the static power consumption is only due
to the contribution of the write control circuit, because
the cell circuit contribution was provided in item (4).
Transistors M1 and M2 are on only when a bit is written,
so we assume that they contribute with the static con-
sumption during the entire operation. These transistors
are necessary for every column of the memory matrix, so
it must be multiplied byNbits ·M . Furthermore, inside
the NOR gates there is always two transistors off. We
can consider that this circuit is repeated for each bit and
for, at least, eachNbusMem, resulting inEwriteStatic =
(M ·2·Cn+NbusMem ·4·Cn)·Nbits ·Vdd ·Ileak ·τDigital.
Short-circuit: EwriteShortcircuit = 15(EwriteDyn)/85.
DC: the bias current, that is activated whenever we need
to swap a bit in the desired writing position, flows only
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TABLE II: Energy analysis equations parameters.

Parameter Value
Node capacitance (Cn) 4 fF
Matrix voltage supply (Vdd) 3.3 V
Voltage supply outside the matrix (VddM ) 1.5 V
Leakage current (Ileak) 2.6 pA
Memory IbiasMem 50 µA
Clock frequency 100 MHz
Activity factor (α) 0.2; 0.8
Ramp ADC energy 43 pJ/sample
Σ∆ ADC energy 12 pJ/sample
SAR ADC energy 11 pJ/sample
Cyclic ADC energy 9 pJ/sample
Pipeline ADC energy 74 pJ/sample

for the time necessary to discharge the bus capacitance,
EMemDC = α ·NmemWrite · Vdd · IbiasMem · τClk/10,
where τClk is divided by ten to model capacitance
discharge time, which is significantly shorter than the
clock period. The activity factor is necessary to represent
the cases where the cell bit that is being written does
not change.

C. Energy comparison

To compare focal-plane and digital approaches, we use the
values shown in Tab. II. Node capacitance, voltage supply,
leakage and memory bias current were established by means
of simulations with a 110 nm CMOS technology. The clock
frequency determines static energy consumption: 100 MHz is
arbitrarily chosen, considering the clock frequency reported in
some papers. The activity factor is0 < α ≤ 1 [65]. Two values
were chosen forα to give an idea of how the energy changes
according to it. An activity factor closer to one benefits the
focal-plane approach. The energy of the converters are the
median energy consumption values from Fig. 6.

Aside from the values defined in the table, it is also neces-
sary to estimate the number of nodes of the MAC unit circuit.
An example of a two-bit adder with carry and an eight-bit
shift register is shown in Fig. 9. From the figures, we deduce
that anNbits adder requires at least4 + 7 · (Nbits − 1) nodes
and theNbits shift register at leastNbits nodes. Thus, a single
PE of our MAC unit can be implemented with(8 ·Nbits − 3)
nodes. The flip-flop from Fig. 9 actually requires more nodes,
but we are assumingNbits nodes as an optimistic estimation,
which benefits the digital approach.

Determining the memory node capacitances is also neces-
sary for the comparison. The capacitance of the nodeWrite,
CWrite, is equal to 2Cn, since Write is connected to two
logic gate inputs. For the bit capacitance, considering that
it is connected to a column bus,CWbit

= N · Cn. The
bitline capacitance also depends on the number of rows,
CBL = N · Cn. The wordline capacitance depends on the
number of the memory matrix columns:2 ·Nbits ·M · Cn.

Considering the values from Tab. II,α = 0.2 and 640
converters for both approaches, the focal-plane approach re-
quires 33 times less energy than the digital approach when the
ramp converter is being used. For the SAR, cyclic andΣ∆
converters, the focal plane is around 52 times more energy-
efficient. For the pipeline converter, the focal-plane approach
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b1
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s1

c2

c1

1 bit adder: 4 nodes

2-bit adder: (4 + 7) nodes
Generalizing, N-bit adder: 4+7 · (Nbits−1) nodes

(a)

D Q

Clk

D Q D Q
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Shift register: Nbits nodes
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Fig. 9: Circuits considered for the MAC energy estimation:
(a) NBits adder and (b) shift register.
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Fig. 10: Node capacitance effect on the energy consumption.

is 24 times more energy-efficient. Makingα = 0.8, there is
a modest increase in the advantage of the focal plane: it is
34, 54 and 25 times more energy efficient for the ramp, SAR
(also cyclic andΣ∆) and pipeline, respectively.

It is interesting to see the effect of the capacitance increase
on the result. Since most of the nodes considered for the
analysis are connected to metal input or output lines, the
metal parasitic effects would probably result in capacitances
higher than the ones considered. Figure 10 shows how the ratio
between digital energy consumption and focal-plane energy
consumption varies as theCn of the nodes connected to metal
lines increases. The activity factor used in this plot is 0.2.
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Let us consider, for example, that we use the ADC presented
in [30]. This is a column parallel SAR ADC that, normalized
to eight bits, consumes 14.6 pJ per sample, with an ADC clock
frequency ofτClkSAR

= 5.6 MHz. Under these conditions, the
focal-plane approach takes 911µs to generate the GP. If we
use 10 PEs in the digital approach, then the focal plane is
26 times faster. The energy consumed with the focal-plane
approach is around to 23µJ, 49 times more energy-efficient
than the digital approach.

VI. CASE STUDY: SIFT ALGORITHM

The first step of the scale invariant feature transform (SIFT),
which is an object recognition algorithm, is multiple-scale
image representation [66]. First, the image is filteredn times
with Gaussian kernels, thus creating the first octave. The image
from the middle of the octave is then copied and subsampled.
The resulting image is filtered with the same kernels of the
first octave, thus generating the second octave. The procedure
is repeated until the target number of octaves is obtained.
A difference of Gaussian (DoG) is performed afterwards in
order to create a scale-normalized Laplacian of Gaussian
(σ2∆2G) representation of the image. Points of interest are
then searched throughout the scales of the Laplacian scale-
space pyramid representation.

With the proposed hardware, it is possible to generate a
scale space that can be used by the SIFT without a sig-
nificant performance drop [21]. First, we capture the image
and group the pixels into 2×2 pixel blocks. After sampling
and quantization, the result is the first image from the first
octave of the scale space. We then change the grid and
obtain the second scale-space image. This kernel is a good
approximation of the Gaussian kernel with standard deviation
σfilter = σ1 = 0.5. By changing the grid again, we perform a
second filtering operation, which results in the third image
from the scale space. The resulting standard deviation is
σ2 =

√

σ2
1 + σ2

filter = 0.707. The ratio of the standard
deviations of adjacent scale-space filters must be kept constant
[21], k = σ2/σ1 =

√
2. Consequently, the next image

must be the result of filtering with a kernel with standard
deviation equal tok · σ2 = 1. This is achieved by using the
binomial kernel twice:

√

σ2
2 + σ2

filter + σ2
filter = 1, which

leads to the fourth image from the scale space. The next octave
is computed after all the images from the previous octave
are generated, by grouping the pixels into 4×4 blocks and
repeating the filtering procedure.

System-level simulations show that the results achieved with
the proposed hardware implementation are similar to those
obtained with the original approach. These simulations were
run using the database from [67] and OpenCV SIFT libraries.
By computing original image keypoints and comparing them
with transformed image keypoints, we evaluate whether the
proposed keypoint method is robust to those transformations.
This evaluation measure is denoted asrepeatability.

Table III shows repeatability results for the original, fully
digital, and the proposed, focal-plane, method. The original
method parameters are: three octaves, six scales per octave,
0.04 for contrast threshold (which is used for removing weak

TABLE III: System level repeatability results.

Image Bark Bikes
Transformation Original Proposed Original Proposed

H1to2 67.54% 65.77% 56.55% 76.57%
H1to3 62.76% 30.86% 57.06% 76.33%
H1to4 75.21% 23.70% 53.83% 73.40%
H1to5 73.09% 0.00% 55.29% 71.98%
H1to6 70.21% 9.82% 48.53% 67.78%
Image Boat Graf

Transformation Original Proposed Original Proposed
H1to2 59.39% 69.11% 60.47% 55.76%
H1to3 60.06% 10.04% 48.15% 22.19%
H1to4 43.47% 36.59% 22.96% 8.37%
H1to5 41.26% 57.42% 0.00% 0.00%
H1to6 31.97% 5.87% 0.00% 0.00%
Image Leuven Trees

Transformation Original Proposed Original Proposed
H1to2 63.99% 74.13% 51.47% 65.46%
H1to3 60.86% 75.34% 51.51% 64.54%
H1to4 60.34% 73.38% 44.17% 62.08%
H1to5 57.85% 71.92% 42.07% 66.28%
H1to6 52.49% 73.75% 38.49% 68.72%
Image UBC Wall

Transformation Original Proposed Original Proposed
H1to2 67.86% 83.26% 61.82% 67.77%
H1to3 63.84% 77.46% 57.12% 62.57%
H1to4 57.54% 72.37% 52.95% 47.56%
H1to5 42.46% 64.84% 41.35% 34.91%
H1to6 40.44% 59.21% 10.10% 15.53%

Average repeatability: Original = 50.16%; Proposed = 51.07%

features), and 10 for edge threshold (which is used for filtering
edge-like features). For the focal-plane method, we also have
three octaves, but four scales, 0.05 for contrast threshold(more
selective), and the same edge threshold. As it can be seen
in Tab. III, the systems yield similar results, which validates
focal-plane hardware scale-space implementation for SIFT.

The same time and energy analysis carried out in Secs. IV
and V can be extended for scale-space generation. In this
case, the image does not change resolution after each fil-
tering operation (more convolutions are performed at the
focal plane) and some specific images must be sampled. The
conclusions remain the same: the scenario in which the focal-
plane approach shows most advantage is the one in which fast
converters are being used, when we have one data converter
per column. The time equations obtained from the scale-space
analysis using the ideas presented in Sec. IV are:

τFPTotal
= Noct · 2

Nscales−2
· τCR +Noct · τCR+

+

Noct
∑

n=1

(M ·N ·Nscales)

22(n−1)
·

τADC

NADC
, (9)

τdigitalTotal
= M ·N ·

τADC

NADC
+M ·N ·

τMem

NbusMem
+

Noct−1
∑

n=1

M ·N

22(n−1)
·

(

4τMem + 4τop + τMem

NPE

)

+

2Nscales−2
Noct
∑

n=1

M ·N

22(n−1)
·

(

2τMem + 3τop + τMem

NPE

)

, (10)

where the number of scales isNscales (greater than or equal
to 2), and the number of octaves isNoct. Within each octave,
the number of charge redistribution operations is2Nscales−2.
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VII. C ONCLUSIONS

Sensors with embedded per-pixel processors have been
since long advocated as critical for increasing speed and
decreasing energy consumption of vision hardware. These
claims rely on two conceptual pillars: on the one hand, analog
processing is known to have larger energy efficiency than dig-
ital for applications with moderate SNR requirements; on the
other hand, sensor pre-processing features data compression at
the sensor, thus relaxing bandwidth and storage requirements.
The analyses that were carried out in this paper show that
these potential advantages are case-specific. These analyses
are completed for a vision primitive which is commonly
employed in computer vision, namely the image pyramid. The
computation of GPs can be accelerated by employing a non-
conventional sensor front-end with extra per-pixel circuitry
to perform spatial filtering. When comparing this approach
with the use of a conventional sensor, without embedded pre-
processing, followed by a conventional processor, a bottleneck
of the former is found at the required number of analog-to-
digital conversions. Different image sensors ADCs are consid-
ered in the paper with the goal of finding values for conversion
rate and energy consumption that can be used for comparison
purposes, taking into account each ADC type. Thus, regarding
processing time, results show that the non-conventional sensor
architecture requires fast ADCs, ideally one ADC per column,
to report significant advantages. Regarding energy savings, the
non-conventional architecture yields best results with SAR,
cyclic orΣ∆ topologies. To reach that conclusion, we consider
state-of-the-art experimental median figures regarding ADC
energy consumption. Considering specific cases, the best case
for energy savings is when the single-slope converter from [36]
is used. By way of example, analysis using a column parallel
SAR ADC with 14.6 pJ/sample shows that the architecture
with pre-processing sensor can be 26 times faster and 49
times more energy-efficient than the digital approach with
10 PEs. The methodology presented in this paper allows for
a quantitative estimation of the advantages that focal-plane
processing might bring about. This is an interesting tool for
imager designers to understand, before implementation, the
strengths of the proposed focal-plane processing techniques.
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