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On the analysis and detection of flames with an
asynchronous spiking image sensor

Juan A. Leñero-Bardallo, José M. Guerrero-Rodrı́guez, Ricardo Carmona-Galán, and Ángel Rodrı́guez-Vázquez

Abstract— We have investigated the capabilities of a custom
asynchronous spiking image sensor operating in the Near In-
frared (NIR) band to study flame radiation emissions, monitor
their transient activity, and detect their presence. Asynchronous
sensors have inherent capabilities, i.e. good temporal resolution,
high dynamic range, and low data redundancy. This makes
them competitive against Infrared (IR) cameras and CMOS
frame-based NIR imagers. In the article, we analyze, discuss
and compare the experimental data measured with our sensor
against results obtained with conventional devices. A set of
measurements have been taken to study the flame emission
levels and their transient variations. Moreover, a flame detection
algorithm, adapted to our sensor asynchronous outputs, has been
developed. Results show that asynchronous spiking sensors have
an excellent potential for flame analysis and monitoring.

Index terms –Flame monitoring; NIR sensors; CMOS;
Asynchronous Image Sensors; AER; Luminance sensors;
Octopus. 1

I. INTRODUCTION

The detection and the analysis of flames activity are neces-
sary in industrial and scientific environments. Flame flickering
and flame emissions have to be monitored in some industrial
processes [1], [2]. For obvious reasons, flame detection is
crucial in many situations. These tasks have been traditionally
implemented with infrared (IR) cameras or microbolometers.
Such devices are effective detecting hot spots and temperature
variations within the visual scene. However, they are still
relatively expensive, they require calibration in some cases,
and their speed response is limited, [3].

As an alternative to infrared detectors, CMOS or CCD
cameras operating in the Near Infrared (NIR) band can be
used in some specific application scenarios [4]–[7]. Placing a
NIR optical filter over them, they become NIR imagers. Hot
spots, fire or flames can be detected with a CMOS sensor
with a NIR filter [5], [8]. Regions whose temperature is above
350◦C can be identified [5]. Smoke detection is also possible
employing NIR sources, e.g. NIR LEDs, [5]. However, their
speed response is low for real-time flame activity monitoring
[1]. Also, the intra-scene dynamic range of an average CMOS
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Fig. 1. Integrate-and-fire pixel block diagram. Pixels spike with a frequency
proportional to light intensity. Every time that this occurs, pixels’ addresses
are transmitted off-chip with the AER communication protocol. Asynchronous
digital signals involved in the data transmission are displayed.

sensor is usually below 70dB [9], not being suitable to gauge
precisely energy variations inside very bright light sources.

Recently, asynchronous image sensors working in the NIR
band were introduced by the authors, as an alternative to
CMOS cameras with NIR filters [10]. Event-based spiking
luminance sensors, also known as octopus retinas [11]–[13],
have some inherent advantages over conventional frame-based
sensors: fast operation, high dynamic range operation, and
low output data throughout, i.e. only illuminated pixels send
data out. Therefore, they are good candidates to perform the
tasks previously described. If we place over them a NIR filter,
they become asynchronous luminance sensors operating in the
NIR band. They inherit two very important features to study
flames: good temporal resolution and high dynamic range. Fast
operation is necessary because flames flicker with frequency
components up to 100Hz [1]. High Dynamic Range (HDR)
operation is also mandatory because flames are very bright
sources; radiation emitted by a flame depends on the location
inside it [3].

In this article, we analyze, assess, and compare the perfor-
mance of NIR spiking sensors when monitoring flame activity
or detecting flames. In the first part of the manuscript, we
compare their performance studying the variation of energy
levels in flames against a commercial infrared camera. In
the second part, we focus on the measurement of transient
variations of NIR radiation due to flame flickering. Based
on their properties, we propose an algorithm to detect the
presence of flames with a spiking image sensor operating in
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Fig. 2. Experimental setup. (a) Sensor’s implementation and its optics. (b)
NIR optical filter.
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Fig. 3. Measured transfer function of the RS-72 NIR optical filter.

the NIR band.

II. NIR SENSOR IMPLEMENTATION

We built an asynchronous luminance sensor operating in the
NIR band. We used a previously reported and designed CMOS
spiking image sensor [14]. The device has several operation
modes. It can be configured to operate continuously, gener-
ating spikes with a frequency proportional to illumination. In
this operation mode, the pixel blocks involved in the light-to-
frequency conversion are shown in Fig. 1. Initially, the voltage
at the integration capacitance, VC , is reset and its value is
closer to VDD. Then, the voltage decreases with a slope that
is proportional to illumination. Whenever the voltages reaches
the value Vref , the pixel self-resets: the VC voltage is set

TABLE I
SPIKING NIR SENSOR FEATURES

Technology AMS 0.18µm HV
Power Supply 1.8V/5V

Chip Dimensions 4120µm×3315µm
Pixel Size 25µm×25µm

Number of Pixels 96×128
Fill Factor 10%

Latency <5ms@1klux or lower
Dynamic Range >100dB
Event sensitivity 0.0762events/∆V · lux

Power Consumption 52mW@100keps
Sense Node Capacitance 45fF

FPN (event output) 2.6%
Max. event rate 2Meps (same row),

10Meps (different rows)

again to VDD and the pixel’s coordinates are transmitted off-
chip using the AER (Address Event Representation) protocol
[15]. The reception of a pixel address off-chip is called event.
Specific asynchronous circuitry [12], [16] is added in-pixel and
on the sensor array periphery to implement the asynchronous
communication. For the sake of simplicity, we will not detail
it again in this publication.

Examining the pixel design, it can be easily demonstrated
that the pixel firing frequency is giving by this equation:

fosc ≈
Iph

C · (VDD − Vref )
=

Iph
C · ∆V

(1)

Where C is the pixel integration capacitance, Iph is the local
photocurrent, and ∆V is the voltage difference between VDD

and an adjustable programmable voltage threshold Vref .
The sensor was implemented in standard CMOS technology.

Hence it can sense all the radiation within the visible spectrum
and NIR radiation up to 1100nm. To restrict the sensor
operation to the NIR band, we placed over its optic an optical
HP filter that rejects all the radiation below the NIR band. The
experimental setup and the filter are shown in Fig. 2. There is
an FPGA attached to the sensor to send data to a PC and to
configure the sensor’s operation with a custom interface [14].
Optionally, a data logger can also be connected through an
IDC40 connector to the sensor. The filter transfer curve was
characterized in our laboratories with a monochromator and an
optical power meter. Results are displayed in Fig. 3. Radiation
below 700nm is rejected.

Sensor’s features are summarized on Table I. Among them,
its good temporal resolution (below than 5ms with 1klux chip
luminance), and the high dynamic range operation should
be highlighted. These two features make the sensor highly
competitive processing and monitoring flame activity. It should
be also remarked its low output data flow, operating as a NIR
imager. Only pixels exposed to NIR radiation will send data
off-chip. In Section III, the sensor capabilities to monitor,
study and detect flames will be discussed.

III. EXPERIMENTAL RESULTS

A. Detection of flame emission levels
Flames emit radiation within the NIR and the infrared band

[3], [17]. With our NIR sensor, radiation sensing is restricted
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Fig. 4. Snapshot of a flame taken with the NIR sensor. Relative NIR radiation
levels are indicated. Main regions inside the flame have been identified.
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Fig. 5. Snapshot of a flame taken with the LWIR camera from Flir Lepton
manufacturer. Relative IR radiation levels are indicated

TABLE II
FLIR LEPTON CAMERA FEATURES

Technology Uncooled microbolometer
Pixel Size 17µm

Number of pixels 80×60
Power Consumption 150mW @ room temperature
Thermal sensitivity <50mK (0.050 C)

Effective Frame Rate 8.6Hz
Spectral Operation Range 6-15µm
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Fig. 6. Snapshots of a flame taken by the NIR AER sensor. Images
are rendered after accumulating different numbers of events. For each one,
the amount of time to receive the events and the number of them are
indicated. Flames emission levels can be rendered much faster than employing
a conventional IR camera.

to the NIR band, within the wavelength window between
[700, 1100]nm. Infrared detectors detect radiation beyond the
NIR band. We can wonder how the performance can be de-
graded filtering radiation above the NIR band, when measuring
flame radiation emission levels with a CMOS HDR sensor. In
this part of our investigation, we focused on determining how
differ the response of the asynchronous NIR imager from the
response of an IR camera, when detecting the radiation emitted
by flames.

For the research, we compared the outputs of our camera
with the commercial Long Wave Infrared Camera (LWIR) Flir
from Lepton manufacturer. Its main features are summarized
on Table II. Its spectral operation range ranges within the
interval [6, 15]µm. For a fair comparison, we selected this
device because its pixel pitch and its array resolution are alike
to the implemented NIR asynchronous sensor.

We took snapshots of a gas lighter’s flames. The two devices
were at the same distance to the flames and mounted similar
optics. Samples with the NIR sensor are displayed on Fig. 4.
The main combustion regions inside the flame are indicated
in the plot. Fig. 5 shows a snapshot of the same kind of flame
taken with the commercial infrared camera. In this case, it is
also possible to identify the main emission regions inside the
flame and the hot smoke emitted by it (cyan halo above the
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flame).
Regarding the intra-scene dynamic range, we compared the

relative radiation levels measured by both sensors. Intra-scene
dynamic range was computed with this expression:

DR (dB) = 20 · log10 (Imax/Imin) (2)

Where Imax is the maximum and Imin is the minimum mea-
sured radiations level, respectively. Intra-scenes intensity levels
were similar with both sensors: 71.54dB with the infrared
camera and 73.76dB with our sensor. Therefore, both of them
exhibit similar performance gauging radiation levels emitted
by flames. The infrared camera can also detect radiation in
the IR band emitted by the hot fumes and the hot spots
around the flame, as it can be appreciated in Fig. 5. The NIR
CMOS image sensor is less sensitive to temperature variations
because, within the NIR band, only the radiation emitted by
matter with temperature above 350◦ can be detected [5]. For
this reason, the hot regions above the flame are identified with
more precision by the infrared camera.

To take a snapshot of a flame is challenging, because they
flicker with frequency components up to 100Hz [1]. Also wind
creates flame turbulences in the scene. Thus, fast operation
is desirable to avoid flame blurring, i.e. taking one snapshot
containing the same flame in different regions of the visual
scene. Regarding the operation speed, the NIR asynchronous
sensor outperforms the results obtained with the infrared
camera. The Flir Lepton device has an effective frame rate
of 8.6 frames per second. It reacts mainly to temperature
changes, that are much slower than irradiance variations within
the visual scene.

The NIR sensor does not require the selection of an inte-
gration time. Their pixels pulse continuously with a frequency
proportional to illumination. Hence, the user can decide how
many spikes needs to render one image. The lower the number
of spikes received the lower the amount of time to render one
image. In Fig. 6, we illustrate the amount of time and the
number of events required to take a snapshot of one flame.
Initially, the sensor was reset. Then we released the reset
signal and we recorded the incoming events. In the figure,
the reconstructed image is shown, after receiving different
numbers of events. It can be noticed how the location of
the highest illuminated pixel changes along time due to the
flame fast movement. Employing less than one millisecond,
it is possible to obtain a representation of the flame radiation
emitted in the NIR band with enough precision to study the
flame and its turbulences.

Summarizing, studying the radiation levels emitted by
flames, both sensors allows to identify the radiations levels
within flames with similar precision. The IR sensor exhibits
more accuracy by detecting temperature levels, especially in
the boundaries of the flame, at the expense of lower operation
speed and high data throughout. The IR camera can not track
flame flickering with enough temporal resolution.

B. Spectral Analysis of Flames

Flames flicker with frequency components than range be-
tween DC and 100Hz [1]. Their values are useful to study the
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Fig. 7. Top: Transient energy variations in the NIR band provoked by a
flame. (b) Fourier transform of the previous sequence. Spectral components
depend on the chemical composition of the flame.

flames chemical composition and for failure detection of the
flame in furnaces [1], [2]. Flickering provokes fast transient
variations of the energy emitted in the NIR band. Asyn-
chronous luminance sensors have enough temporal resolution
to implement a real-time processing of flames oscillations.
To do so, the energy in the NIR band of the whole scene
is computed at regular time intervals of duration Tsample:

E [k] =
#eventsTsample

Tsample
(3)

Where k is the k-th time interval with duration Tsample.
Time intervals duration must satisfy that 1/Tsample =

fmax/2, where fmax is the maximum frequency component
that can be detected. On top of Fig. 7, transient variations of
NIR levels provoked by a flame in the visual scene are shown.
On the bottom, the Fast Fourier Transform (FFT) of the previ-
ous signal was computed. Frequency main components spam
between DC and 20Hz. Results are similar to the reported by
other authors with high speed frame-based cameras [1]. The
DC level depends on the flame proximity to the sensor and the
flame intensity. The FFT can be updated periodically at regular
time intervals that can last a few seconds. In the example, it
was computed every six seconds and Tsample was set to 5ms to
detect frequency components up to 100Hz. With this approach,
we achieve a real-time computation of the flame spectrum that
is not possible with convectional procedures [1] with CMOS
or IR cameras. The computation load is reduced significantly
because only pixels exposed to NIR radiation can generate
output data continuously. With frame-based sensors, all the
entire pixel matrix has to be readout are regular time intervals.
Hence, the temporal resolution and the power consumption
associated to data processing are degraded with respect to the
proposed sensor.
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C. Flames Detection Algorithm

The detection of flames in the environment is not an
easy task that has to be robust to false alarms [17]. We
implemented a real-time algorithm to detect the presence
of flames, exploiting the good temporal resolution of our
asynchronous sensor. The algorithm was based on the analysis
of the experimental data shown on top of Fig. 7. Flames
provoke fast transient variations of the NIR levels within
the visual scene with certain frequency components. These
transient variations can be distinguish form other factors
that provoke transient changes of the NIR levels, taking into
account these two facts:

• In the majority of situations, flames flickering creates
faster variations of NIR levels than objects that are
moving around and reflect NIR emitted by other sources,
i.g. the sun.

• Flames provoke variations of the NIR levels around
their medium value with certain temporal periodicity
that makes possible to distinguish them from other light
sources emitting punctually in the NIR band, i.g. fast
moving objects or transient perturbations in the NIR
band.

The algorithm steps are as follows. First, we count the num-
ber of events, #eventsTsample

, received during a time interval,
Tsample. Afterwards, according Equation 3, the level of energy
in the NIR band, E [k] is computed. We are interested in the
energy variations between adjacent samples (time intervals).
By subtracting their values, D [k] = E [k] − E [k − 1], it is
possible to obtain such variations. Also, the average illumi-
nation value in the scene will be removed by performing this
operation. That is important, because the algorithm’s operation
should not depend on global scene illumination changes during
the day.

Once we obtain the energy variations D [k] =
E [k] − E [k − 1], we study the variations of the recorded
D [k] values during a larger time interval (Tscan=125-250ms).
We compute the signal envelope, maximum and the minimum
values of D [k] during Tscan. The difference between the
maximum and the minimum values (envelope) during this
interval will be the output of the fire detection algorithm,
F [n] = Dmax [n] − Dmin [n]. If F [n] is higher than a
threshold value F [n] > TH , we will conclude that there
are flames in the environment. In Section III-C.2, the value
selected for the parameter will be justified. The algorithm’s
execution steps are listed below:

1) Every time interval, Tsample, repeat the following oper-
ations:

a) The number of events #eventsTsample
received

during a time interval Tsample are counted. Then,
the global level of radiation within the NIR band,
E [k], is computed, according Equation 3, and
stored on a buffer.

b) The energy variation between consecutive samples,
D [k], is calculated and stored on a buffer:

D [k] = E [k] − E [k − 1] (4)

2) Every time interval, Tscan > Tsample, perform the
following operations:

a) Search the maximum and the minimum values of
D [k] during Tscan:

Dmax [n] = max (D [k − i]) ,

Dmin [n] = min (D [k − i]) ,

with i = 0...N, N =

⌊
Tscan

Tsample

⌋
(5)

b) The distance between Dmax [n] and Dmin [n],
F [n] is computed

F [n] = Dmax [n] −Dmin [n] (6)

c) If F [n] is greater than a threshold, TH , a signal
that represents the possible presence of fire, A [n],
is activated during Tscan:

A [n] =

{
1, if F [n] > TH

0, if F [n] < TH
(7)

3) If A [n] is more time active than inactive during more
than two seconds, we indicate the possible presence of
flames in the visual scene.

The first loop takes into account that flames flickering cre-
ates fast fluctuations if NIR radiation levels. Objects moving
around the visual scene usually cause slower variations of
the NIR levels because their speed is lower than the flames
flickering. Therefore, the difference D [k] between consecutive
values of E [k] with a temporal resolution of milliseconds will
be usually close to zero. It has to be noticed, that the algorithm
is robust to variations of the global average illumination value,
that changes much slower. Every time that D [k] is computed,
the average scene illumination level is removed. The method
just takes into account the NIR variations around this average
value.

The second loop calculates the envelope of D [k] periodi-
cally. If the distance between Dmax [n] and Dmin [n] is higher
than a certain threshold, we can infer that during such time
interval there were NIR variations that could be provoked by
flames.

Finally, is the signal A [n] is high during more than two
seconds, we emit and alarm, indicating the presence of flames.
This step takes into account that flame activity has certain
periodicity that is repeated along time. Thus, we can differen-
tiate the presence of flames from temporal noise or punctual
transient variations of NIR levels.

The first time constant was set to Tsampe = 1ms to
detect frequency components higher than 100Hz due to flame
activity. The majority of transient variations, that are usually
slower, are filtered by setting this value. The second time
constant, Tscan, must be set larger than the previous one.
Typically, at least ten times higher. This time constant takes
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T=0ms T=20ms

T=40ms T=60ms

Fig. 8. jAER interface [18] showing the NIR sensor’s outputs at different
time stamps 0f 20ms. Algorithm’s processing steps were implemented in Java
programming language. In the snapshot, average NIR radiation levels detected
by each pixel are shown. It can be noticed two effects: flame flickering and
fast flame movement due to turbulences.

into account the periodicity and the repeatability of the NIR
variations due to flames. Punctual transient variations are
excluded, by analyzing the algorithm outputs during several
periods of duration equal to Tscan.

1) Algorithm’s performance: The devised flame detection
algorithm computational load is compatible with real-time
image processing. We used the programmable jAER interface
[18] to display the sensor’s outputs and to run the algorithm’s
processing steps. In Fig. 9, there is a flame snapshot, taken
with the sensor. It can be appreciated a flame and the hot
regions above it, emitting NIR radiation. This interface gives
flexibility to debug and test the flame detection algorithms,
before migrating them to a microcontroller or an FPGA. It is
also possible to export data recordings.

To illustrate the algorithm’s performance, we run it in
three different situations: with and without flames, and in a
visual scene with people and objects moving around. The
algorithm’s parameters were set as follows: Tsample =5ms,
Tscan =250ms, and TH=1,000. An alarm indicating the pres-
ence of flames was triggered whenever the variable F [n] >
TH was more time active than inactive during two seconds.

Fig. 9 the algorithm’s outputs with the recording with flames
shown in Fig. 8. Less than 5% pixels in the whole array were
illuminated by the flame. On top of the Figure 9, the measured
levels of NIR radiations, E [k], are shown. These values were
computed at regular time intervals of duration Tsample=5ms.

0 1 2 3 4 5 6 7 8 9 10
0

2000

4000

6000

8000

R
el

at
iv

e 
N

IR
 E

ne
rg

y,
 E

[k
] Recording with flames

0 1 2 3 4 5 6 7 8 9 10
-3000

-2000

-1000

0

1000

A
lg

or
ith

m
 V

ar
ia

bl
es

D[k]=y[k+1]-y[k]
Dmax[n]

Dmin[n]

0 1 2 3 4 5 6 7 8 9 10
Time (s)

102

A
lg

or
ith

m
 O

ut
pu

ts

F[n]=Dmax[n]-Dmin[n]
TH

Fig. 9. Measured transient NIR levels and flame detection algorithm’s
outputs. Data was recorded in a visual scene with flames.
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Fig. 10. Measured transient NIR levels and flame detection algorithm’s
outputs. Data was recorded in a visual scene without flames.

In the middle plot, the difference between consecutive estima-
tions of the NIR energy, D [k] = E [k]−E [k − 1], is shown.
We plotted the values of the envelope of the signal Dmax [n]
and Dmin [n], that were computed at regular time intervals of
duration Tscan. For this reason, we use different indexes for
them, k and n, respectively. On the bottom plot, we display
the distance between Dmax [n] and Dmin [n]. We generate an
alarm when F [n] exceeds the threshold TH more than two
seconds.

In Fig. 10, we appreciate the NIR levels and the algorithm’s
outputs, corresponding to a visual scene without flames. The
algorithm’s outputs are always below the limit established to
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Fig. 11. Measured transient NIR levels and flame detection algorithm’s
outputs. Data was recorded in a visual scene with NIR sources moving around.

indicate the flame detection. NIR levels variations are due to
the sensor Fixed-Pattern-Noise (FPN).

Finally, in Fig. 11, we analyze data recordings in a visual
scene with people and objects moving around. The visual
scene was illuminated with a LED array emitting in the NIR
band to assure that the elements within the visual scene were
able to emit (reflect) NIR radiation that could be detected by
the sensor. After recording data during four seconds, a person
walking crossed the sensor’s field of view. In this case, the
variations of NIR levels are slow in comparison to the time
constant set by the algorithm. Hence, the algorithm discards
these variations as possible presence of flames. Later on, we
moved an object crossing the visual field at faster speed. In
this case, it causes transient variations of the NIR levels that
are detected. However, the algorithm checks the repeatability
of the NIR variations. This discards, in this case, the presence
of flames. Moreover, the algorithm was also tested with data
sets recorded in an office with people working and moving
around. No flame alarms were triggered.

2) Algorithm’s limitations: We identified two main factors
that limit the algorithm’s efficiency. The first one is the
presence of NIR light sources provoking periodic variations of
NIR levels. For instance, NIR illumination transient variations
emitted by bulbs. These distractors can be detected because
F [n] values are always high and constant. Periodic light
sources can also be discarded by correlating their spectral
response with the expected spectral response of a flame (see
bottom plot at Fig. 7). The penalty is a higher computational
load to calculate the FFT periodically.

The second limitation is referred to the sensor’s Fixed-
Pattern-Noise (FPN=2.6%, for the reported sensor). This pro-
vokes random variations of the pixels spiking frequencies
around its average value. To avoid false alarms, NIR transient
variations associated to flames should be higher than the

caused by FPN. In outdoors environments with very bright
sunlight, the average level of the NIR levels of the visual scene
increases significantly. In such circumstances, NIR variations
around the medium value are more difficult to differentiate
because they can be similar to the fluctuations due to FPN.
Therefore, FPN imposes a limit for the minimum NIR transient
variations that can be detected.

The algorithm’s threshold value, TH , is chosen trying to
reach an equilibrium between the algorithm’s sensitivity to
NIR fluctuations and false alarms inferred by FPN. In the
algorithm executions displayed in the article, the algorithm
threshold value was chosen to be TH =1,000. This value is
approximately twice the value of the algorithm output without
flames, with an average illumination value of 400lux (shown
on the bottom of Fig. 10). This implies that, under these
circumstances, any NIR variation generated by a flame that
is two times higher than the FPN variations will be detected.
The intensity of the NIR variations will depend on many
factors: distance from the flame to the camera, number of
pixels exposed to NIR radiation, the flame intensity, etc.

IV. CONCLUSIONS

We have demonstrated the capabilities of a NIR asyn-
chronous image sensor measuring flame radiation, monitoring
NIR transient changes, and detecting flame activity. Such tasks
have been traditionally relegated to IR and NIR frame-based
imagers. The experimental results provided show that spiking
NIR sensors are highly competitive in terms of temporal reso-
lution, data throughout, and dynamic range. They outperform
IR and NIR frame-based CMOS imagers operation speed.
Their high dynamic range allows to measure and identify
flames radiation levels with an acceptable precision. Exploiting
our sensor accurate temporal resolution, we monitored flames
flickering and we presented a flame detection procedure. As a
future work, we plan to refine the developed flame detection
algorithms for asynchronous luminance sensors and implement
them on an FPGA.
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