
Concurrent focal-plane generation of compressed

samples from time-encoded pixel values

M. Trevisi
(1)

, H. C. Bandala
(2)

, J. Fernández-Berni
(1)

, R. Carmona-Galán
(1)

, Á. Rodríguez-Vázquez
(1)

(1) Instituto de Microelectrónica de Sevilla (IMSE-CNM), CSIC-Universidad de Sevilla, Spain

(2) Instituto Nacional de Astrofísica, Óptica y Electrónica (INAOE), Puebla, Mexico
trevisi@imse-cnm.csic.es

Abstract— Compressive sampling allows wrapping the

relevant content of an image in a reduced set of data. It exploits

the sparsity of natural images. This principle can be employed to

deliver images over a network under a restricted data rate and

still receive enough meaningful information. An efficient

implementation of this principle lies in the generation of the

compressed samples right at the imager. Otherwise, i. e.

digitizing the complete image and then composing the

compressed samples in the digital plane, the required memory

and processing resources can seriously compromise the budget of

an autonomous camera node. In this paper we present the design

of a pixel architecture that encodes light intensity into time,

followed by a global strategy to pseudo-randomly combine pixel

values and generate, on-chip and on-line, the compressed
samples.

Keywords— compressive sampling; cellular automaton; time-

encoded pixels;

I. INTRODUCTION

Sparsity in natural images can be exploited to compress the

signal and then recover the content from a number of samples

that is below the limit determined by Nyquist’s theorem [1] [2].

In order to implement this compressing mechanism, a pair of
matrices is applied to the coefficients of the original signal,

image pixel values in our case. These matrices are the

compressive strategy, Φ, and the sparsifying dictionary, Ψ.

Each compressed sample is a linear combination of the

elements of the original image. Then, from a set of compressed

samples much smaller than the original image, convex

optimization can lead to a unique solution. In order to achieve

this, the product of Φ and Ψ must hold the restricted isometry

property (RIP) [3].

Building a compressive strategy on-chip is not trivial. The

most common approach is to obtain the elements of Φ from a

random distribution. It has been implemented by using optical

elements [4] and also by employing dedicated circuitry [5]. The

simplest implementation consists in using a sub-Gaussian

distribution, i. e. the elements of Φ are obtained from a normal

distribution that is thresholded so they are either one or zero. In

this way each compressed sample results directly from the

addition of all the pixels selected by Φ. In practice, there are

two major limitations to implement these techniques at sensor
level. First of all, the compressive strategy must be known at

both extremes of the communication channel. This is, not only

the sensor must know which the compressive strategy is in

order to generate the corresponding compressed samples, but it

must be present also at the end of the channel, in order to

reconstruct the original image. Therefore, either the

compressive strategy is generated at the sensor and transmitted

to the image reconstruction system or it needs to be stored at

both ends. This represents an important burden as these options

will introduce strong requirements on the transmission

bandwidth and/or the in-sensor memory. The second question
is dynamic range. The number of bits required to describe the

linear combination of 𝑁 pixels is log2𝑁 in addition to the bits

required to describe one single pixel. This is a major limitation

for an implementation of this addition in the analog plane, as

dynamic range in analog circuits is limited by the available

output range and noise level.

 These two limitations can be alleviated with a widely

extended approach: block-based compressive sampling [6] [7]

[8]. The pixels of the complete image are divided into macro-

blocks to which the compressive strategy is applied. This

represents a considerable reduction of Φ and the infrastructure
required for its generation, transmission and/or storage. At the

same time, the required dynamic range to represent the

compressed samples is noticeably reduced. In exchange for

this, reconstruction departs from ideal and may require

additional samples to achieve a prescribed accuracy.

Our approach is the on-chip generation of a full-frame

compressive strategy [9] by means of a 1D cellular automaton

(CA) for the pseudo-random selection of pixels [10]. This

solution avoids both transmitting and storing the compressive

strategy as it can be error-free reconstructed from the initial
seed with an analogous CA implementation. In addition to this,

pixel values need to be represented in a form that does not

exhaust the available dynamic range when being added up. In

order to do this, we are encoding pixel values in time. Addition

is realized in the digital domain by asynchronously tagging

events in a per-column basis. In this paper we are displaying

the details of the design of the chip, starting with the individual

pixel, and following with the pseudo-random selection of

pixels, the time to digital conversion of the pixel value, the

column addition and the final generation of the compressed

sample.

II. PIXEL ARCHITECTURE

The output of a compressive sampling imager is given in

the form of linear combinations of randomly selected pixel

contributions. These linear combinations are the compressed

samples [1]. As we have already referred, the generation of the

random pattern for the selection of pixels has been left to a

one-dimensional cellular automaton that will be described later

on. As for now, just consider that a set of devices delivering

random logic zeroes and ones are employed to generate
selection signals for the rows and columns of the pixel array.

Apart from the generation of random selection signals, the

major difficulty on implementing a full-frame compressive

strategy is providing enough dynamic range to accommodate

compressed samples. Consider that each pixel value, either

originally a voltage or a current, is represented by 𝑁𝑏 bits. For

an image of 𝑀×𝑁 pixels that can be chosen at random to

compose a compressed sample, the number of bits required to

avoid any kind of clipping in the generation of compressed

samples is:

𝑁𝐵 = 𝑁𝑏 + log2(𝑀𝑁) (1)

Furthermore, even in block-based compressive sampling [11],

where images are divided into small blocks to reduce 𝑁𝐵,

compressive samples are generated using blocks that have a

minimum practical size of 8 × 8 pixels. Smaller blocks would

not be very sparse and as such one of the fundamental premises

behind compressive sampling would fall. To preserve

resolution, if each pixel value is encoded in 8b, we would still

need 14b of resolution in order to properly encode compressed
samples. Our approach to provide the number of bits prescribed

by Eq. (1) is to time-encode the pixel values and employ time-

to-digital conversion. The summation of pixels is then realized

in the digital domain, avoiding the requirement of a wide

dynamic range in the analog domain.

A. Time-encoding of light intensity

The elementary pixel (Fig. 1) contains an integrating

photodiode that discharges node 𝑉𝑝𝑖𝑥 at a rate determined by

the photocurrent. This is depicted inside the ‘Time-encoding of

light intensity’ box in Fig. 1. When 𝑉𝑝𝑖𝑥 crosses a reference

voltage 𝑉𝑟𝑒𝑓 , a voltage comparator flips its output, 𝑉1. It time-

encodes the magnitude of the light intensity, what is described

as pulse-modulation imaging [12]. The pixel value is then

contained in the period of time separating the reset of node 𝑉𝑝𝑖𝑥

and the moment in which 𝑉1 turns from low to high. The lower

(higher) the light intensity on the diode is, the longer (shorter)

it takes to the comparator to switch. In this chip, both 𝑉𝑟𝑠𝑡 and

𝑉𝑟𝑒𝑓 can be adjusted on-line in order to adapt to different

illumination conditions in real-time.

B. Pixel selection circuit

As previously mentioned, the contribution of each pixel to a

particular compressed sample is determined by a combination

of row and column selection signals, 𝑆𝑖 and 𝑆𝑗 , that are

generated with the help of a one-dimensional cellular

automaton positioned around the sensor array (Fig. 2). These

two signals are combined by a XOR gate, implemented by 6

transistors in Fig. 1. The voltage 𝑉2 is stuck at 𝑉𝑑𝑑 if selection

signals 𝑆𝑖 and 𝑆𝑗 are equal. If not, 𝑉2 is the inverse logic value

of 𝑉1. Using a XOR gate guarantees that the pixel contributes

to the linear combination that constitutes a compressed sample

in just half of the possible combinations of 𝑆𝑖 and 𝑆𝑗 . It is

important to notice that this pixel selection unit is allocated

right after the comparator because this helps reducing power

consumption. If a pixel is not contributing to the compressed

sample there is no reason to let the pixel activation front

propagate, inducing changes in the subsequent nodes that are
going to be discarded later.

C. Propagation of the activation edge

Signal 𝑉2 is active in low, eliciting a rising edge in 𝑉3 if this

signal has not been activated before. If it has, the feedback of

𝑉3̅ locks 𝑉3 to logic ‘1’ until the pixel is reset again. Now

consider that signal 𝑄′ is high. Later we will what makes 𝑄′
changes over time. If 𝑄′ is in logic ‘1’, then 𝑉4 is the inverse of

𝑉3, i. e. if the pixel is activated and is selected to contribute to

the compressed sample, 𝑉3 goes from logic ‘0’ to ‘1’ and 𝑉4

goes from ‘1’ to ‘0’. If signal 𝐶𝑖𝑛 is low, this falling edge in 𝑉4

induces a rising edge in 𝑉5 which is the signal controlling

driving transistor M2. The column bus, whose voltage 𝑉𝑜 is

pulled up to 𝑉𝑑𝑑 by default, experiences a pull down driven by

M2. 𝑉𝑜 will remain low if it was not for the event termination

circuit.

D. Event termination circuit

The rising edge in 𝑉5 is feedback to the event termination

circuit, where it is inverted as long as 𝑄, which is a global

signal, is high. This causes 𝑄′ to fall to logic ‘0’, switching

Fig. 1 Schematics of the elementary pixel

back 𝑉4 to logic ‘1’ and then 𝑉5 to logic ‘0’, terminating the

pulse that started before after a short delay.

The motivation to use a global pulse termination signal to

establish the duration of the events instead of a local delay unit

is to provide global control without introducing area and/or

power consuming elements in the pixel. In particular, 𝑄 is a

signal provided by a control unit in each column of the pixel

array. This unit senses the column bus and detects if it is being

pulled down. Once the falling edge is detected, and after a user-

controllable delay, 𝑄 rises enabling the termination of the pulse

only in the pixel that has already turned M2 on. This is verified

by the NAND gate in the ‘Event termination circuit’ box

(Fig. 1).

E. Pixel output control

As depicted in Fig. 1, all pixels in the same column of the

array share the same column bus to transmit its output pulse.

As will be explained later, the time-encoding of the pixel value

will be converted to digital by means of a time-to-digital

converter, which in this case will be built with a clock and a

counter. Of course, there is no a priori knowledge on the

proximity of the values of the pixels and, therefore, how close
in time will be the pulses emitted by the pixels. What is clear is

that each one of them needs to be taken into account if we do

not want to introduce additional errors in the image

reconstruction from its compressed samples. In order not to

skip any of the pulses, a token protocol is established so pixels

that are being triggered close in time are only allowed to emit

their pulse one after the other. This blocking mechanism needs

to be parallel to all pixels so that the first pixel that delivers its

event puts all other pixels on hold until its event is over. The

release mechanism on the contrary has to be sequential so that,

if there is more than one pixel in queue waiting to deliver its

pulse, it will be impossible to have more than one of them
active at the same time. In order to do so, each pixel receives a

signal 𝐶𝑖𝑛 from the pixel immediately above (Fig. 1), and sends

a signal 𝐶𝑜𝑢𝑡 to the pixel immediately below it. If there is no

preceding pixel waiting to deliver a pulse through the column

bus, 𝐶𝑖𝑛 will be low. This enables the propagation of a falling

edge in 𝑉4 when it occurs into a rising edge in 𝑉5. If 𝐶𝑖𝑛 is high,

however, this propagation is retained.

One pixel’s 𝐶𝑖𝑛 corresponds to its upper neighbor 𝐶𝑜𝑢𝑡. In
order to be ‘0’, three different conditions must hold, namely: its

𝐶𝑖𝑛 is low, what means that there is no pixel above it that wants

to deliver a pulse; 𝑉4 is high, what means that either the pixel

has not been activated or it has already delivered a pulse; and

𝑉𝑜 is high, what means that the column bus is available. If any

of these three conditions is not true 𝐶𝑜𝑢𝑡 will be stuck at the

logic ‘1’, thus preventing any of the pixels below it emitting a

pulse through the column bus. A 3-input NAND gate is

employed to combine the level at 𝐶𝑖𝑛, the pixel readiness to

pull down the column bus and the feedback on the actual state

of this column bus. This aggregated information is then sent as

𝐶𝑜𝑢𝑡 to the pixels below. Using this logic each pixel will know

that if 𝑉𝑜 = 𝑉𝑑𝑑 and no pixel above is waiting to pull it down it

is allowed to release its own event. Since 𝑉𝑜 is fed back to this

control block, when a pull down occurs, each pixel will

simultaneously block the pixel immediately below through

𝐶𝑜𝑢𝑡. The blocking mechanism is parallel. On the contrary,

when an event is over, its 𝐶𝑜𝑢𝑡 turns to ‘0’, so the pixels will be

released sequentially in a top down fashion.

III. SENSOR ARCHITECTURE

The pixel already described is part of an image sensor that

implements a full-frame compressive strategy. The architecture

of the chip is depicted in Fig. 2. The central element of the

architecture is an array of 64 × 64 pixels. The peripheral

circuit needs to implement the following functionalities:

pseudo-random column and row selection, time-to-digital

conversion of the pixel values, addition of the pixel values of

the selected pixels. Let us describe the circuits implementing

these functionalities one by one.

Fig. 2 Conceptual floorplan of the sensor chip

A. Pseudo-random generation of selection signals

The generation of pseudo-random patterns starting from a

seed can be realized using different methods. Some of them

have been employed before in the context of compressive

sampling, like Hadamard vectors [13] or linear feedback shift

registers [14]. As already mentioned, our approach consists in a

1-D cellular automaton, which has the advantage of being

easily implemented in CMOS technology and its scalability, as

the evolution of its cells only depends on their own state and

those of their closest neighbors. Typically a linear CA with
radius-1 interactions between its cells is defined by a truth table

defined on the cell state (S) and the states of the left (L) and

right neighbor (R). Table I shows the truth table for Rule 30,

which has been demonstrated to display aperiodic (class III)

behavior [10]. The circuit employed to implement a cell of this

cellular automaton is depicted in Fig. 3. The cell state is

precisely the selection signal that is delivered to a rows or a

column, depending on the position of the CA cell (Fig. 2).

Table I Truth table of Rule 30

L S R NS

1 1 1 0

1 1 0 0

1 0 1 0

1 0 0 1
0 1 1 1

0 1 0 1

0 0 1 1

0 0 0 0

Fig. 3 Implementation of a Rule 30 cell of a cellular automaton

B. Column-wise time-to-digital conversion

Events generated at the pixels and transmitted through the

column bus arrive to block ‘Sample & Add’ in (Fig. 2). These

pulses encode the pixel value in the period of time that has

passed between the pixels reset and the arrival to the ‘Sample
& Add’. A straightforward method to translate all this pulses

into digital codes is to use the pulses to activate the sampling of

a global time counter (Fig. 2) activated by a clock signal and

started with the global pixel reset —allocating some initial

delay to allow the pulses to reach the bottom of the array. Each

time a pixel activation pulse arrives, the 8b of the counter are

sampled and added to the already stored sum. After 256 clock

periods, the pixel values have been accumulated at the ‘Sample

& Add’, which delivers a 14b word containing this sum, as it is

the result of adding up to 64 pixel values. After that, the 64

column sums are added up into a compressed sample of 20b.

Compressed samples need to be encoded in a much larger

digital word, therefore there is an amount of compressed

samples beyond which it is better to just deliver the

uncompressed image. In our case, as pixel values are encoded

by 8b and, and compressed samples in 20b, the compression

ratio (𝑅), i. e. the number of samples delivered divided by the

total number of pixels in the image, needs to be below 0.4. This

means that for a 𝑀 ×𝑁-pixel image, we will be always

considering less than 0.4𝑀𝑁 compressed samples.

In addition, as compressed samples are generated
sequentially, it is necessary to operate the imager at a frame

rate (𝑓𝑐𝑠) —considering that it is referred to the time it takes to

deliver one single compressed sampling— that is at maximum

0.4𝑀𝑁 times the original frame rate (𝑓𝑠)

𝑓𝑐𝑠 = 𝑅 ∙ 𝑀𝑁𝑓𝑠 (2)

For 𝑓𝑠 = 30fps, 𝑅 = 0.4 and an image of 64 × 64 pixels,

compressed samples can be generated at ≈ 50kHz at

maximum. This is 20s per compressed sample. It the duration
of events is, for instance, 5ns, and the 64 pixels in a column are

selected, there is a 6.25% chance that two events will randomly

overlap. In order to avoid missing any pulses, we are delivering

them one by one so that, if there is more than one pixel in

queue waiting to deliver its event, it is impossible to have more

than one of them active at the same time. As the time-to-digital

conversion clock need to tick 256 times in the 20s, it is
possible that some pulses are detected in the following clock

period, what will introduce a 1LSB error in the 20b

compressed sample. Verification on the negligible influence of

this error has been performed at system level.

IV. CHIP PROTOTYPE

A prototype chip has been designed in a CMOS 0.18m
technology following the already described methodology. The

die size including pads is 3.17 × 2.23 sq. mm (Fig. 4). It has

84 pads, of which one third is dedicated to power supply and

ground connections. Table II contains a summary of the

features of the prototype that is already in fabrication.

Fig. 4 Layout of the prototype sensor chip

Table II Summary of chip features

Technology CMOS 0.18m 1P6M

Die size (w. pads) 3174μm× 2227μm

Pixel size 22μm× 22μm

Fill factor 9.2%

Resolution 64 × 64

Photodiode type n-well/p-substrate

Power supply 3.3V-1.8V

Predicted power consumption <100mW

Frame rate 30fps

Max. compressed sample rate 50kHz

Clock Freq. 24MHz

The central part of the chip is the array of 64 × 64 pixels.

Fig. 5 depicts the layout of the elementary pixel. The blocks

described in Sect. II can be identified. In order to reduce the

influence of the offset of the comparator, an auto-zeroing

scheme has been implemented using a MiM capacitor on the

top metal layers (not showing in the picture). Formal

verification of the chip performance has been realized with

post-layout simulation.

Fig. 5 Layout of the elementary pixel

V. CONCLUSIONS

The design of compressive sampling image sensor

prototype based on the on-chip generation of a full-frame

compressive strategy has been completed. Major design trade-

offs are related with accuracy of the reconstruction and frame

rate, because of compressed samples being too few or

inaccurate. Time-encoding of the pixel values and tagging of

asynchronous pulses coming from a collection of pulses is the

methodology employed to overcome dynamic range limitations

in the construction of the compressed samples. Experimental

characterization of the prototype will allow verifying the

advantages of full-frame compressive strategies versus block-

based compressed sampling.

ACKNOWLEDGMENT

This work has been funded by the Spanish Government

through projects TEC2015-66878-C3-1-R MINECO (European

Region Development Fund, ERDF/FEDER), by Junta de

Andalucía through project TIC 2338-2013 CEICE and by the

Office of Naval Research (USA) through grant

N000141410355 and CONACYT (Mexico) through grant

MZO-2017-291062.

REFERENCES

[1] Candès. “Compressive sampling”. Int. Congress of Mathematics, pp.

1433-1452. Madrid, Spain. August, 2006.

[2] J. Romberg. “Imaging via Compressive Sampling”. IEEE Signal

Processing Magazine, Vol. 25, No. 2, pp. 15-20. March, 2008.

[3] R. G. Baraniuk, V. Cevher, M. B. Wakin. “Low-Dimensional Models for

Dimensionality Reduction and Signal Recovery: A Geometric

Perspective”. Proc. of the IEEE, Vol. 98, No. 6, pp. 959-971. Jun 2010.

[4] M. B. Wakin, J. N. Laska, M. F. Duarte, D. Baron S. Sarvotham, D.

Takhar, K. F. Kelly, R. G. Baraniuk. “An Architecture for Compressive

Imaging”. IEEE International Conference on Image Processing,

pp. 1273 – 1276. Atlanta, USA. October, 2006.

[5] V. Majidzadeh, L. Jacques, A. Schmid, P. Vandergheynst and Y.

Leblebici. “A (256x256) Pixel 76.7mW CMOS Imager/Compressor

Based on Real-Time In-Pixel Compressive Sensing”. Proceedings of

2010 IEEE International Symposium on Circuits and Systems (ISCAS),

pp. 2956 – 2959. Paris, France. May, 2010.

[6] Y. Oike, A. El Gamal. “CMOS Image Sensor With Per-Column ΣΔ

ADC and Programmable Compressed Sensing”. IEEE Journal of Solid-

State Circuits, Vol. 48, No. 1, pp. 318 - 328, January. 2013.

[7] B. Kaliannan, V S. Rao Pasupureddi. “A Low Power CMOS Imager

Based on Distributed Compressed Sensing”. 27th International

Conference on VLSI Design and 13th International Conference on

Embedded Systems, pp. 534 – 538. Mumbai, India. January. 2014.

[8] M. Dadkhah, M. Jamal Deen, S. Shirani. “CMOS Image Sensor With

Area-Efficient Block-Based Compressive Sensing”. IEEE Sensor

Journal, Vol. 15 No. 7, pp 3699-3710, July, 2015.

[9] M. Trevisi, R. Carmona-Galán, Á. Rodríguez-Vázquez, "Compressive

Image Sensor Architecture with On-Chip Measurement Matrix
Generation". IEEE Int. Conf. PhD Research in Microel. and Electronics

(PRIME 2017), pp. 25-28, Taormina, Sicily (Italy), June 2017.

[10] E. Jen. “Aperiodicity in one-dimensional cellular automata”. Physica D:

Nonlinear Phenomena, Vol. 45 No. 1-3, pp 3-18. September, 1990.

[11] Lu Gan "Block Compressed Sensing of Natural Images", 15th

International Conference on Digital Signal Processing, pp. 403-406.

Singapore, Republic of Singapore. July, 2007.

[12] D. G. Chen, D. Matolin, A. Bermak, C. Posch, “Pulse-Modulation

Imaging—Review and Performance Analysis”. IEEE Trans. on

Biomedical CAS, Vol. 5, No. 1, pp. 64-82, February 2011.

[13] G. Sudhish, P. Deepthi. “A Secure LFSR Based Random Measurement
Matrix for Compressive Sensing”. Sensing and Imaging, New York,

Springer, 2014, Vol. 15 No. 1.

[14] L. Wang, Y. Zhao Z. Dai. “A Random Sequence Generation Method for

Random Demodulation Based Compressive Sampling System”.

International Journal of Signal Processing, Image Processing and

Pattern Recognition, Vol. 8 No. 1, pp 105-114, 2015.

