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Abstract— Compressive sampling allows wrapping the 

relevant content of an image in a reduced set of data. It exploits 

the sparsity of natural images. This principle can be employed to 

deliver images over a network under a restricted data rate and 

still receive enough meaningful information. An efficient 

implementation of this principle lies in the generation of the 

compressed samples right at the imager. Otherwise, i. e. 

digitizing the complete image and then composing the 

compressed samples in the digital plane, the required memory 

and processing resources can seriously compromise the budget of 

an autonomous camera node. In this paper we present the design 

of a pixel architecture that encodes light intensity into time, 

followed by a global strategy to pseudo-randomly combine pixel 

values and generate, on-chip and on-line, the compressed 
samples. 

Keywords— compressive sampling; cellular automaton; time-
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I.  INTRODUCTION 

Sparsity in natural images can be exploited to compress the 

signal and then recover the content from a number of samples 

that is below the limit determined by Nyquist’s theorem [1] [2]. 

In order to implement this compressing mechanism, a pair of 
matrices is applied to the coefficients of the original signal, 

image pixel values in our case.  These matrices are the 

compressive strategy, Φ, and the sparsifying dictionary, Ψ. 

Each compressed sample is a linear combination of the 

elements of the original image. Then, from a set of compressed 

samples much smaller than the original image, convex 

optimization can lead to a unique solution. In order to achieve 

this, the product of Φ and Ψ must hold the restricted isometry 

property (RIP) [3]. 

Building a compressive strategy on-chip is not trivial. The 

most common approach is to obtain the elements of Φ from a 

random distribution. It has been implemented by using optical 

elements [4] and also by employing dedicated circuitry [5]. The 

simplest implementation consists in using a sub-Gaussian 

distribution, i. e. the elements of  Φ are obtained from a normal 

distribution that is thresholded so they are either one or zero. In 

this way each compressed sample results directly from the 

addition of all the pixels selected by Φ. In practice, there are 

two major limitations to implement these techniques at sensor 
level. First of all, the compressive strategy must be known at 

both extremes of the communication channel. This is, not only 

the sensor must know which the compressive strategy is in 

order to generate the corresponding compressed samples, but it 

must be present also at the end of the channel, in order to 

reconstruct the original image. Therefore, either the 

compressive strategy is generated at the sensor and transmitted 

to the image reconstruction system or it needs to be stored at 

both ends. This represents an important burden as these options 

will introduce strong requirements on the transmission 

bandwidth and/or the in-sensor memory. The second question 
is dynamic range. The number of bits required to describe the 

linear combination of 𝑁 pixels is log2𝑁 in addition to the bits 

required to describe one single pixel. This is a major limitation 

for an implementation of this addition in the analog plane, as 

dynamic range in analog circuits is limited by the available 

output range and noise level.  

  These two limitations can be alleviated with a widely 

extended approach: block-based compressive sampling [6] [7] 

[8]. The pixels of the complete image are divided into macro-

blocks to which the compressive strategy is applied. This 

represents a considerable reduction of Φ and the infrastructure 
required for its generation, transmission and/or storage. At the 

same time, the required dynamic range to represent the 

compressed samples is noticeably reduced. In exchange for 

this, reconstruction departs from ideal and may require 

additional samples to achieve a prescribed accuracy. 

Our approach is the on-chip generation of a full-frame 

compressive strategy [9] by means of a 1D cellular automaton 

(CA) for the pseudo-random selection of pixels [10]. This 

solution avoids both transmitting and storing the compressive 

strategy as it can be error-free reconstructed from the initial 
seed with an analogous CA implementation. In addition to this, 

pixel values need to be represented in a form that does not 

exhaust the available dynamic range when being added up. In 

order to do this, we are encoding pixel values in time. Addition 

is realized in the digital domain by asynchronously tagging 

events in a per-column basis. In this paper we are displaying 

the details of the design of the chip, starting with the individual 

pixel, and following with the pseudo-random selection of 

pixels, the time to digital conversion of the pixel value, the 

column addition and the final generation of the compressed 

sample.  

II. PIXEL ARCHITECTURE 

The output of a compressive sampling imager is given in 

the form of linear combinations of randomly selected pixel 



contributions. These linear combinations are the compressed 

samples [1]. As we have already referred, the generation of the 

random pattern for the selection of pixels has been left to a 

one-dimensional cellular automaton that will be described later 

on. As for now, just consider that a set of devices delivering 

random logic zeroes and ones are employed to generate 
selection signals for the rows and columns of the pixel array. 

Apart from the generation of random selection signals, the 

major difficulty on implementing a full-frame compressive 

strategy is providing enough dynamic range to accommodate 

compressed samples. Consider that each pixel value, either 

originally a voltage or a current, is represented by 𝑁𝑏 bits. For 

an image of 𝑀×𝑁 pixels that can be chosen at random to 

compose a compressed sample, the number of bits required to 

avoid any kind of clipping in the generation of compressed 

samples is: 

𝑁𝐵 = 𝑁𝑏 + log2(𝑀𝑁)    (1) 

Furthermore, even in block-based compressive sampling [11], 

where images are divided into small blocks to reduce 𝑁𝐵, 

compressive samples are generated using blocks that have a 

minimum practical size of 8 × 8 pixels. Smaller blocks would 

not be very sparse and as such one of the fundamental premises 

behind compressive sampling would fall. To preserve 

resolution, if each pixel value is encoded in 8b, we would still 

need 14b of resolution in order to properly encode compressed 
samples. Our approach to provide the number of bits prescribed 

by Eq. (1) is to time-encode the pixel values and employ time-

to-digital conversion. The summation of pixels is then realized 

in the digital domain, avoiding the requirement of a wide 

dynamic range in the analog domain.  

A. Time-encoding of light intensity 

The elementary pixel (Fig. 1) contains an integrating 

photodiode that discharges node 𝑉𝑝𝑖𝑥  at a rate determined by 

the photocurrent. This is depicted inside the ‘Time-encoding of 

light intensity’ box in Fig. 1. When 𝑉𝑝𝑖𝑥  crosses a reference 

voltage 𝑉𝑟𝑒𝑓 , a voltage comparator flips its output, 𝑉1. It time-

encodes the magnitude of the light intensity, what is described 

as pulse-modulation imaging [12]. The pixel value is then 

contained in the period of time separating the reset of node 𝑉𝑝𝑖𝑥  

and the moment in which 𝑉1 turns from low to high. The lower 

(higher) the light intensity on the diode is, the longer (shorter) 

it takes to the comparator to switch. In this chip, both 𝑉𝑟𝑠𝑡  and 

𝑉𝑟𝑒𝑓  can be adjusted on-line in order to adapt to different 

illumination conditions in real-time. 

B. Pixel selection circuit 

As previously mentioned, the contribution of each pixel to a 

particular compressed sample is determined by a combination 

of row and column selection signals, 𝑆𝑖 and 𝑆𝑗 , that are 

generated with the help of a one-dimensional cellular 

automaton positioned around the sensor array (Fig. 2). These 

two signals are combined by a XOR gate, implemented by 6 

transistors in Fig. 1. The voltage 𝑉2 is stuck at 𝑉𝑑𝑑 if selection 

signals 𝑆𝑖 and 𝑆𝑗  are equal. If not, 𝑉2 is the inverse logic value 

of 𝑉1. Using a XOR gate guarantees that the pixel contributes 

to the linear combination that constitutes a compressed sample 

in just half of the possible combinations of 𝑆𝑖 and 𝑆𝑗 . It is 

important to notice that this pixel selection unit is allocated 

right after the comparator because this helps reducing power 

consumption. If a pixel is not contributing to the compressed 

sample there is no reason to let the pixel activation front 

propagate, inducing changes in the subsequent nodes that are 
going to be discarded later. 

C. Propagation of the activation edge 

Signal 𝑉2 is active in low, eliciting a rising edge in 𝑉3 if this 

signal has not been activated before. If it has, the feedback of 

𝑉3̅ locks 𝑉3 to logic ‘1’ until the pixel is reset again. Now 

consider that signal 𝑄′ is high. Later we will what makes 𝑄′ 
changes over time. If 𝑄′ is in logic ‘1’, then 𝑉4 is the inverse of 

𝑉3, i. e. if the pixel is activated and is selected to contribute to 

the compressed sample,  𝑉3 goes from logic ‘0’ to ‘1’ and 𝑉4 

goes from ‘1’ to ‘0’. If signal 𝐶𝑖𝑛 is low, this falling edge in 𝑉4 

induces a rising edge in 𝑉5 which is the signal controlling 

driving transistor M2. The column bus, whose voltage 𝑉𝑜 is 

pulled up to 𝑉𝑑𝑑 by default, experiences a pull down driven by 

M2. 𝑉𝑜 will remain low if it was not for the event termination 

circuit. 

D. Event termination circuit 

The rising edge in 𝑉5 is feedback to the event termination 

circuit, where it is inverted as long as 𝑄, which is a global 

signal, is high. This causes 𝑄′ to fall to logic ‘0’, switching 

 

Fig. 1 Schematics of the elementary pixel 

 



back  𝑉4 to logic ‘1’ and then 𝑉5 to logic ‘0’, terminating the 

pulse that started before after a short delay. 

The motivation to use a global pulse termination signal to 

establish the duration of the events instead of a local delay unit 

is to provide global control without introducing area and/or 

power consuming elements in the pixel. In particular, 𝑄 is a 

signal provided by a control unit in each column of the pixel 

array. This unit senses the column bus and detects if it is being 

pulled down. Once the falling edge is detected, and after a user-

controllable delay, 𝑄 rises enabling the termination of the pulse 

only in the pixel that has already turned M2 on. This is verified 

by the NAND gate in the ‘Event termination circuit’ box 

(Fig. 1). 

E. Pixel output control 

As depicted in Fig. 1, all pixels in the same column of the 

array share the same column bus to transmit its output pulse. 

As will be explained later, the time-encoding of the pixel value 

will be converted to digital by means of a time-to-digital 

converter, which in this case will be built with a clock and a 

counter. Of course, there is no a priori knowledge on the 

proximity of the values of the pixels and, therefore, how close 
in time will be the pulses emitted by the pixels. What is clear is 

that each one of them needs to be taken into account if we do 

not want to introduce additional errors in the image 

reconstruction from its compressed samples. In order not to 

skip any of the pulses, a token protocol is established so pixels 

that are being triggered close in time are only allowed to emit 

their pulse one after the other. This blocking mechanism needs 

to be parallel to all pixels so that the first pixel that delivers its 

event puts all other pixels on hold until its event is over. The 

release mechanism on the contrary has to be sequential so that, 

if there is more than one pixel in queue waiting to deliver its 

pulse, it will be impossible to have more than one of them 
active at the same time. In order to do so, each pixel receives a 

signal 𝐶𝑖𝑛 from the pixel immediately above (Fig. 1), and sends 

a signal 𝐶𝑜𝑢𝑡 to the pixel immediately below it. If there is no 

preceding pixel waiting to deliver a pulse through the column 

bus, 𝐶𝑖𝑛 will be low. This enables the propagation of a falling 

edge in 𝑉4 when it occurs into a rising edge in 𝑉5. If 𝐶𝑖𝑛 is high, 

however, this propagation is retained. 

One pixel’s 𝐶𝑖𝑛 corresponds to its upper neighbor 𝐶𝑜𝑢𝑡. In 
order to be ‘0’, three different conditions must hold, namely: its 

𝐶𝑖𝑛 is low, what means that there is no pixel above it that wants 

to deliver a pulse; 𝑉4  is high, what means that either the pixel 

has not been activated or it has already delivered a pulse; and 

𝑉𝑜  is high, what means that the column bus is available. If any 

of these three conditions is not true 𝐶𝑜𝑢𝑡 will be stuck at the 

logic ‘1’, thus preventing any of the pixels below it emitting a 

pulse through the column bus. A 3-input NAND gate is 

employed to combine the level at 𝐶𝑖𝑛, the pixel readiness to 

pull down the column bus and the feedback on the actual state 

of this column bus. This aggregated information is then sent as 

𝐶𝑜𝑢𝑡 to the pixels below. Using this logic each pixel will know 

that if 𝑉𝑜 = 𝑉𝑑𝑑  and no pixel above is waiting to pull it down it 

is allowed to release its own event. Since 𝑉𝑜 is fed back to this 

control block, when a pull down occurs, each pixel will 

simultaneously block the pixel immediately below through 

𝐶𝑜𝑢𝑡. The blocking mechanism is parallel. On the contrary, 

when an event is over, its 𝐶𝑜𝑢𝑡 turns to ‘0’, so the pixels will be 

released sequentially in a top down fashion. 

III. SENSOR ARCHITECTURE 

The pixel already described is part of an image sensor that 

implements a full-frame compressive strategy. The architecture 

of the chip is depicted in Fig. 2. The central element of the 

architecture is an array of 64 × 64 pixels. The peripheral 

circuit needs to implement the following functionalities: 

pseudo-random column and row selection, time-to-digital 

conversion of the pixel values, addition of the pixel values of 

the selected pixels. Let us describe the circuits implementing 

these functionalities one by one. 

 

Fig. 2 Conceptual floorplan of the sensor chip 

A. Pseudo-random generation of selection signals 

The generation of pseudo-random patterns starting from a 

seed can be realized using different methods. Some of them 

have been employed before in the context of compressive 

sampling, like Hadamard vectors [13] or linear feedback shift 

registers [14]. As already mentioned, our approach consists in a 

1-D cellular automaton, which has the advantage of being 

easily implemented in CMOS technology and its scalability, as 

the evolution of its cells only depends on their own state and 

those of their closest neighbors. Typically a linear CA with 
radius-1 interactions between its cells is defined by a truth table 

defined on the cell state (S) and the states of the left (L) and 

right neighbor (R). Table  I shows the truth table for Rule 30, 



which has been demonstrated to display aperiodic (class III) 

behavior [10]. The circuit employed to implement a cell of this 

cellular automaton is depicted in Fig. 3. The cell state is 

precisely the selection signal that is delivered to a rows or a 

column, depending on the position of the CA cell (Fig. 2). 

Table  I Truth table of Rule 30 

L S R NS 

1 1 1 0 

1 1 0 0 

1 0 1 0 

1 0 0 1 
0 1 1 1 

0 1 0 1 

0 0 1 1 

0 0 0 0 

 

Fig. 3 Implementation of a Rule 30 cell of a cellular automaton 

B. Column-wise time-to-digital conversion 

Events generated at the pixels and transmitted through the 

column bus arrive to block ‘Sample & Add’ in (Fig. 2). These 

pulses encode the pixel value in the period of time that has 

passed between the pixels reset and the arrival to the ‘Sample 
& Add’. A straightforward method to translate all this pulses 

into digital codes is to use the pulses to activate the sampling of 

a global time counter (Fig. 2) activated by a clock signal and 

started with the global pixel reset —allocating some initial 

delay to allow the pulses to reach the bottom of the array. Each 

time a pixel activation pulse arrives, the 8b of the counter are 

sampled and added to the already stored sum. After 256 clock 

periods, the pixel values have been accumulated at the ‘Sample 

& Add’, which delivers a 14b word containing this sum, as it is 

the result of adding up to 64 pixel values. After that, the 64 

column sums are added up into a compressed sample of 20b. 

Compressed samples need to be encoded in a much larger 

digital word, therefore there is an amount of compressed 

samples beyond which it is better to just deliver the 

uncompressed image. In our case, as pixel values are encoded 

by 8b and, and compressed samples in 20b, the compression 

ratio (𝑅), i. e. the number of samples delivered divided by the 

total number of pixels in the image, needs to be below 0.4. This 

means that for a 𝑀 ×𝑁-pixel image, we will be always 

considering less than  0.4𝑀𝑁 compressed samples. 

In addition, as compressed samples are generated 
sequentially, it is necessary to operate the imager at a frame 

rate (𝑓𝑐𝑠) —considering that it is referred to the time it takes to 

deliver one single compressed sampling— that is at maximum  

0.4𝑀𝑁 times the original frame rate (𝑓𝑠) 

𝑓𝑐𝑠 = 𝑅 ∙ 𝑀𝑁𝑓𝑠    (2) 

For 𝑓𝑠 = 30fps, 𝑅 = 0.4 and an image of 64 × 64 pixels, 

compressed samples can be generated at ≈ 50kHz at 

maximum. This is 20s per compressed sample. It the duration 
of events is, for instance, 5ns, and the 64 pixels in a column are 

selected, there is a 6.25% chance that two events will randomly 

overlap. In order to avoid missing any pulses, we are delivering 

them one by one so that, if there is more than one pixel in 

queue waiting to deliver its event, it is impossible to have more 

than one of them active at the same time. As the time-to-digital 

conversion clock need to tick 256 times in the 20s, it is 
possible that some pulses are detected in the following clock 

period, what will introduce a 1LSB error in the 20b 

compressed sample. Verification on the negligible influence of 

this error has been performed at system level. 

IV. CHIP PROTOTYPE 

A prototype chip has been designed in a CMOS 0.18m 
technology following the already described methodology.  The 

die size including pads is 3.17 × 2.23 sq. mm (Fig. 4). It has 

84 pads, of which one third is dedicated to power supply and 

ground connections. Table  II contains a summary of the 

features of the prototype that is already in fabrication. 

  

Fig. 4 Layout of the prototype sensor chip 
 



Table  II Summary of chip features 

Technology CMOS 0.18m 1P6M 

Die size (w. pads) 3174μm× 2227μm 

Pixel size 22μm× 22μm 

Fill factor 9.2% 

Resolution 64 × 64 

Photodiode type n-well/p-substrate 

Power supply 3.3V-1.8V 

Predicted power consumption <100mW 

Frame rate 30fps 

Max. compressed sample rate 50kHz 

Clock Freq. 24MHz 

The central part of the chip is the array of 64 × 64 pixels. 

Fig. 5 depicts the layout of the elementary pixel. The blocks 

described in Sect. II can be identified. In order to reduce the 

influence of the offset of the comparator, an auto-zeroing 

scheme has been implemented using a MiM capacitor on the 

top metal layers (not showing in the picture). Formal 

verification of the chip performance has been realized with 

post-layout simulation. 

 

Fig. 5 Layout of the elementary pixel 
 

V. CONCLUSIONS 

The design of compressive sampling image sensor 

prototype based on the on-chip generation of a full-frame 

compressive strategy has been completed. Major design trade-

offs are related with accuracy of the reconstruction and frame 

rate, because of compressed samples being too few or 

inaccurate. Time-encoding of the pixel values and tagging of 

asynchronous pulses coming from a collection of pulses is the 

methodology employed to overcome dynamic range limitations 

in the construction of the compressed samples. Experimental 

characterization of the prototype will allow verifying the 

advantages of full-frame compressive strategies versus block-

based compressed sampling. 
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