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problems in a multi-robot context
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Abstract
This work addresses the combination of a symbolic hierarchical task network planner and a constraint satisfaction
solver for the vehicle routing problem in a multi-robot context for structure assembly operations. Each planner has its
own problem domain and search space, and the article describes how both planners interact in a loop sharing infor-
mation in order to improve the cost of the solutions. The vehicle routing problem solver gives an initial assignment of
parts to robots, making the distribution based on the distance among parts and robots, trying also to maximize the
parallelism of the future assembly operations evaluating during the process the dependencies among the parts assigned
to each robot. Then, the hierarchical task network planner computes a scheduling for the given assignment and esti-
mates the cost in terms of time spent on the structure assembly. This cost value is then given back to the vehicle routing
problem solver as feedback to compute a better assignment, closing the loop and repeating again the whole process.
This interaction scheme has been tested with different constraint satisfaction solvers for the vehicle routing problem.
The article presents simulation results in a scenario with a team of aerial robots assembling a structure, comparing the
results obtained with different configurations of the vehicle routing problem solver and showing the suitability of using
this approach.
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Introduction and related work

The main goal of the European project that inspired our

work was constructing one structure defined in a computer-

aided design (CAD) model using multiple drones equipped

with robotic arms. This kind of system is of great interest in

situations where the assembly of a structure is required, but

the characteristics of the terrain or the environment make

the assembly operation difficult. This type of situations

may arise in civilian missions such as a mountain rescue
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or fire, but also in military missions like building a bridge.

Different scheduling and planning problems are involved in

this context: assembly planning, multi-robot task alloca-

tion, symbolic planning, and motion planning. There is a

huge amount of related work in any of these topics inde-

pendently, but the problem of combining these different

planning levels has been less addressed in the literature

until the last 10 years.

Assembly planning can be defined as the process of con-

structing a specific structure given a set of parts, by comput-

ing a plan that is composed of different assembly operations

and the order on which they must be executed to build the

structure. During the plan generation, different variables are

taken into account, such as the geometry of the parts, the

geometry of the final structure, the resources to handle the

parts and build the structure, the tools available, and so on. It

has been proven in Kavraki et al.1 that all assembly problems

have a nondeterministic polynomial time (NP)-complete

nature. A complete survey on assembly sequencing was pre-

sented by Jimenez,2 taking into account the geometry of the

problem and its combinatorial nature. The most complete

and recent taxonomy on the topic can be found in the study

by Ghandi and Masehian.3 In the context of multiple aerial

robots, a team that cooperatively constructs a structure is

presented by Lindsey et al.4 In this study, the different parts

had a simple geometry and the tools used by the aerial robots

were grippers, so picking and placing the parts did not need

any kind of manipulation planning. In addition, the parts

were placed sequentially, so the benefits of using a team

of robots for parallelization were not fully exploited and the

assembly tasks were done sequentially. On the other hand,

an automated system that uses a team of robots equipped

with different tools for the assembly of furnishing is pre-

sented by Knepper et al.5 In that work, a symbolic planner

determines the order of operations over the parts for the

assembly operation. However, the allocation of tasks to

robots is done at the symbolic level by using preconditions

and postconditions in an object-oriented symbolic planning

specification language, so the task allocation does not use

any optimization heuristic.

It can be seen that the assembly planning and sequen-

cing topics have been addressed since many decades ago,

but it still remains as an interesting research field and in

fact, nowadays the need to have robots with precise assem-

bly capabilities is increasing. One of the trends is to

enhance the precision of robots by using new data models

and sensors with better precision in their measurements. In

the study by Udai and Saha,6 the authors present a system

for the automatic generation of “depth maps” for peg-in-

hole assembly operations. Depth maps are two-dimensional

(2-D) arrays that contain the perpendicular distances of a

peg with respect to its mating hole and are commonly used

in assembly operations. Given a CAD model the system

automatically generates a depth map for the assembly oper-

ation. Another way of improving the precision of assembly

operations is by measuring the sound produced by mating

parts, as presented by Li and Gu.7 In this study, an acoustic

contacting detection is presented to substitute the tradi-

tional use of strain gauge load cells. By putting a receiver

into a part, when two parts come into contact, part of the

sound wave energy is transmitted from the part to the recei-

ver, making it possible to detect the contacting event. Gu

et al.8 perform object localization using a monocular cam-

era. The authors use an eye-in-hand manipulator and a

mobile platform for the task. Initially, a speeded up robust

features algorithm is applied for feature detection and

initial localization. Then, a new probability-based natural

right angle detection algorithm is applied, and finally, a 2-

D template matching algorithm is used to fine-tune the

object localization. Another interesting trend is the use

of augmented reality (AR) to improve the accuracy of the

assembly process in teleoperation. In the study by Brizzi

et al.,9 the effects of using an AR system are evaluated

with the intention of overcoming the differences in per-

ception between telepresence and real presence. The sys-

tem used an RGB-D camera (Microsoft Kinect 360), a

head-mounted display for the operator, and a Baxter robot

on the other side. With this setup, the authors demonstrated

that by using their AR system, the accuracy and efficiency of

the robot in the assembly tasks were improved. Regarding

high precision measurements, a case study of the error chain

is done by Zhao et al.10 In that work, a robotized assembly

system is studied, and an assembly accuracy analysis model

for misalignment errors is proposed. This model provides

an assembly accuracy estimation and has been tested in

different assembly experiments, giving a reliable worst-

case accuracy estimation.

An interesting application of assembly planning can

arise from the use of multiple robots. Self-assembly is a

process in which a disordered system of preexisting com-

ponents forms an organized structure or pattern as a con-

sequence of specific local interactions among the

components themselves, without external direction. Some

studies can be found in this matter. JianJu and YunJian.11

have addressed the self-assembly process for swarm robots.

In that study, the authors propose an enhanced self-

assembling morphology-distributed control algorithm for

swarm robots, enabling dynamic local navigation accord-

ing to the distance of seed robot and docking robot. The

work also presents time measurements for line-shaped,

arrow-shaped, T-shaped and star-shaped morphologies.

The case of using a heterogeneous group of robots for

self-assembling is studied by Dutta.12 In that work, each

agent can only become the neighbor of a specific set of

agents in the target pattern. A constrained bipartite graph-

matching algorithm is used to allocate the agents to spots in

the target pattern. The allocation is done in a way that

adjacent agents are allocated only if they are compatible.

The presented algorithm is also compared with other opti-

mal matching algorithms, showing lower run times.

Another application of assembly planning that also

requires cooperation among the different robots is
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collaborative assembly. Marino et al.13 address the problem

of moving objects with a group of autonomous robots.

Instead of using different planning strategies described in

the literature for pick and place, object passing, object

regrasping, and so on, the authors propose a planning

scheme that aims to unify the different solutions. The

implemented planner can exploit support surfaces if

required in order to reach the goal, for example, putting

an object in a region of a table that lets another robot to pick

it. The planner relies on the geometric information stored in

a database about support surfaces, possible approximations,

and feasible grasps, among others. Filipescu et al.14 present

a model for an assembly/dissasembly line that uses two-

wheeled robots working in parallel. One of the robots has a

robotic manipulator used for part manipulation, while the

other robot is used for transporting the parts. During the

assembly, if a part does not pass the quality test, the whole

assembly is canceled and the disassembly starts to recover

the different parts. The work is focused on task planning,

modeling and simulation of the assembly line, and use

Synchronized Hybrid Petri Nets to control the assembly/

disassembly. Regarding safety, some human–robot cells

trigger a safety stop when humans leave the safety zone.

Collaborative human–robot assembly requires further

research to avoid completely stopping robot operations

when humans are near the working area of the robots. In

Unhelkar et al.15, a human-aware robotic system is pre-

sented. The system is capable of predicting human motion

and plan in time to execute safe motions during automotive

assembly tasks, without needing to trigger a safety stop.

The main interest of this system lies in its ability to adapt

the behavior of the robot to the behavior of the human. The

robot can operate in a “Planning with Prediction” mode,

without knowing the task of the human. The robot uses the

detected human position and a set of predictions to adapt its

motion to the motion of the human. By this way, the robot

can pause its task or move to another zone to let the human

move freely, without needing to trigger a safety stop.

In our research, it was required to deal with the combi-

nation of a symbolic state and a geometric configuration,

where a trajectory can modify the symbolic state. Hence,

when an action is applied, both the symbolic and geometric

states can change. In the literature, there are different

approaches for the composition of the symbolic and geo-

metric states: in Şucan and Kavraki, Lozano-Pérez and

Kaelbling, Lagriffoul et al., Srivastava et al., and Kaelbling

and Lozano-Pérez,16–20 the symbolic level calls the geo-

metric level, the geometric level calls the symbolic level in

Garrett et al., Plaku and Hager, and Choi and Amir.,21–23

and the compound state is used directly in Cambon et al.,

Hauser, and Hauser and Latombe.24–26 The approach

adopted in our project belongs to the former group, where

the symbolic planner calls the geometric level for motion

planning purposes. However, this article is focused on the

combination of a symbolic hierarchical task network

(HTN) planner and a constraint satisfaction solver for the

vehicle routing problem (VRP). The scheme proposed for

this connection in a multi-robot context for assembly oper-

ations with aerial robots is the main novelty of this work.

Although there is a huge amount of work in robotics related

to the use of symbolic planners and the multi-robot task

allocation problem, to the best of our knowledge, it is the

first article that details the interactions between a symbolic

HTN planner and a constraint satisfaction solver for the

VRP in such a context.

This article is structured as follows. The problem state-

ment is presented in the first section. The assignment of

assembly tasks to aerial robots done by the solver is

described in the section “VRP solver.” After computing

the assignment, the optimization stage starts the symbolic

HTN planner described in the section “Symbolic HTN

planner.” This planner gives feedback to the previous sol-

ver by scheduling the assembly operations and computing

the time cost of executing the different actions. That cost

estimation allows the first solver to search for a better

assignment. The section “Connecting the VRP solver and

the HTN planner” explains in detail how both levels are

interleaved. After that section, simulation results using

different configurations for the VRP solver are presented,

in a scenario of structure assembly with multiple aerial

robots. Finally, the article is closed presenting the conclu-

sions and future work.

Problem statement

Given a set of parts that compose a structure, with the parts

distributed along a scenario, and given a set of aerial robots

also distributed along the scenario, our goal is to assemble

the whole structure using the aerial robots, minimizing the

total assembly time and maximizing the potential paralle-

lism of using a team of robots in a collaborative way.

The parts have a simple geometry (rectangular paralle-

lepiped), with a handle on top which makes it possible to

pick the part, and with a cavity beneath which allows stack-

ing the parts. All the robots are equipped with robotic

manipulators that let them pick and place the parts. In

addition, the assembly plan is known in advance, so for

each part, it is known which other parts must be assembled

first. The locations and orientations where the parts must be

picked and assembled are already known.

The problem of assembling the structure can be seen as

two problems highly coupled one with each other: the prob-

lem of assigning the parts to the robots and the problem of

scheduling the different task of the robots in time. They are

highly coupled because changing the assignment will lead

to a different scheduling, and changing the scheduling, that

is, changing the time on which the different tasks are

planned to be executed, will probably invalidate the

assignment.

The assignment problem consists in assigning the dif-

ferent parts to the available robots by following some cri-

terion. One valid criterion could be trying to minimize the
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routes of the used aerial robots, because it is reasonable to

think that by minimizing the routes of the robots, the total

assembly time will be minimized, as the robots will travel

the shortest paths possible. However, this is not always

true. If we think in the assembly plan, we know that the

parts must be assembled following some order, and one part

may need other parts to be assembled first. If the criterion

of minimizing the path is the only one used, this could

result in one “unbalanced” assignment, where some robots

were assigned lots of parts because they were near them,

and the other robots will have to wait until these unba-

lanced aerial robots assemble their parts. So, it seems clear

that the criterion of minimizing the routes of the robots

must be accompanied by another criterion. The other cri-

terion could be to do the assignment in a “balanced” way,

by inspecting the dependencies of each part and assigning

them in a way that the amount of time that the robots have

to wait for the other is also minimized. In any case, this

problem may be seen as a variant of the VRP described by

Dantzig and Ramser.27

On the other hand, once an assignment has been com-

puted, the aerial robots must have a detailed plan to execute

the assembly of the parts. The tasks that compose their

plans must be correctly scheduled. These tasks include

actions such as taking off, traveling to the points of interest,

synchronizing with other aerial robots, picking the parts,

placing the parts, and so on. The start and end times of each

action must be planned and computed.

A formal description of the problem described here was

presented in one of the previous works by Muñoz-Morera

et al.28 In the following sections, we describe a new

approach that connects a VRP solver and a symbolic HTN

planner in a bidirectional way to solve the whole problem.

Symbolic HTN planner

Our planning system needs to know how the structure is

built, that is, the parts that compose it, their geometry, and

how they are related to each other. Thus, the three-

dimensional (3-D) CAD model of the structure is given

as the input for the system. From this model, an external

planner extracts all the required information to compute an

assembly plan using the assembly-by-disassembly tech-

nique described by Jimenez2 and Ghandi and Masehian.3

This technique starts with the assembled structure, and on

each iteration disassembles one of the parts that are assem-

bled in the structure. After all the parts of the structure have

been disassembled, the order in which the parts were taken

from the structure is reversed and the assembly plan is

composed of that reversed order. We call this the assembly

planner. Although it is out of the scope of this article, a

detailed description can be found in Muñoz-Morera et al.28

The definition of the computed assembly plan is as fol-

lows. Each of the parts that compose the structure appears

in the assembly plan as one assembly task. The assembly

task represents the assembly of one specific part into the

structure and contains additional information needed to

assemble the part in the form of preconditions. The pre-

conditions consist of the parts that must be assembled in the

structure before the insertion of that part. We call this set of

preconditions the dependencies of the assembly task. As

the dependencies consist of a set of parts that have to be

already assembled, they are also assembly tasks. So, the

requirement to execute one assembly task at a given

moment is that its dependencies are met, that is, the whole

set of assembly tasks that appear as preconditions have

been already executed.

This way of defining the assembly plan makes it inde-

pendent from the number of available aerial robots for the

assembly. In a given time, one part can be chosen to be

assembled if and only if all its dependencies are met. If

there are enough robots, then all the parts that have their

dependencies met could be assembled simultaneously and

cooperatively, decreasing the assembly time. Of course,

this situation would require the correct synchronization of

the involved aerial robots.

HTN planning

To deal with all the aspects of the assembly operations and

to produce plans for the aerial robots, we have chosen the

java simple hierarchical ordered planner2 (JSHOP2) plan-

ner described in Nau et al.29 JSHOP2 is a symbolic planner

that uses HTN to solve problems. This type of symbolic

planner has been chosen due to his successful application in

the robotics area in past years.

The idea behind HTN is to try to solve higher level

problems by decomposing them into lower level problems,

which in turn can be decomposed into simpler problems,

and so on, until there is one available action that can be

directly applied to solve any of the simplest problems.

Once there is an action that can be applied to every simplest

problem, then the high-level problem is solved and the

sequence of actions needed to solve it can be constructed.

In general, the higher level problem is called the higher

level task, which can be decomposed into more simple

subtasks until finding actions that can be applied directly

to execute the simplest tasks. The way the high-level task

can be decomposed into subtasks results in a hierarchy of

tasks that can be represented as a tree. This is called a Task

Network. To help the reader understand this concept, we

present the following formalization, which is largely based

on Ghallab et al.30

Definition 1. Task network: A task network is a pair

w ¼ ðU ;CÞ, where U is the set of task nodes and C is a

set of precedence constraints.

Definition 2. HTN method: An HTN method is a four-tuple

m ¼ <name(m),task(m),(subtasks(m),constr (m))>, where

name (m) contains the name and variables of the method,

task(m) is the decomposable abstract task that this method
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can be applied to, and ð subtasksðmÞ; constrðmÞÞ is the task

network resulting from decomposing of the task.

Definition 3. Operator: An operator is a four-tuple o ¼
<name(o),task(o),precond(o),effects(o)>, where name (o)

contains the name and variables of the operator, task(o) is

a nondecomposable abstract task achieved by this operator,

precond(o) is a set of predicates that must hold true for the

operator to be applicable and effects(o) represents the

effects of the action.

Definition 4. HTN planning problem and domain: An HTN

planning domain is a pair D ¼ < O;M > and an HTN

planning problem is a three-tuple P ¼ < s0;w;D >,

where s0 is the initial state, w is the initial task network,

O is a set of operators, and M is a set of HTN methods.

The previous definitions show the hierarchical nature

of task networks. A task network is composed of a set of

tasks with precedence constraints, that is, the tasks on the

set can be partially or totally ordered. Additionally, every

task on the network can be decomposed into another task

network if it is a decomposable task, or into a single oper-

ator if it is a nondecomposable task. Operators are the

leaves of the tree representation of the task network

decomposition and represent the actions that are applica-

ble and compose the final plan.

To know how to decompose tasks, JSHOP2 needs the

definition of a planning domain using a language very sim-

ilar to a Planning Domain Definition Language. In the

domain, high-level task methods must be defined to repre-

sent the tasks to decompose. In JSHOP2, the task methods

also contain a number of preconditions in the form of logi-

cal expressions. In a given state, if the preconditions are

met, then the effect of applying the task method over a task

is its decomposition on smaller subtasks (methods, opera-

tors, or both). A task is said to be feasible if the precondi-

tions of its task method and the preconditions of all its

lower level subtasks methods and operators are all true,

in which case the task is decomposed into several actions.

The planning process works as follows. The tasks are

decomposed by using a depth-first algorithm. At each itera-

tion, the task m with the lowest precedence from w is

selected. If it is a nondecomposable task, then an applicable

operator from O is selected and applied (if possible). If it is

a decomposable task, then an applicable method from M is

selected and applied (if possible), decomposing the task

into the task network ðsubtasksðmÞ; constrðmÞÞ and insert-

ing these new tasks into the queue of tasks. The process is

repeated until the initial task network w has been com-

pletely decomposed into actions.

Symbolic domain

In JSHOP2, the current state is composed of a set of logical

predicates that define the entities and their states that take

part in the planning process. Taking into account the

problem definition previously described, the following ele-

ments should be present in the symbolic domain:

� The assembly parts and their preconditions lists.

� The initial and final poses of the parts in the

structure.

� The aerial robots and their home locations.

� The number of parts that remain unassembled.

� An assignment of assembly tasks (parts) to robots.

For our domain, we have designed one main task

method which is the task method at the highest level of the

hierarchy in the task network. This method is called to

solve the problem of assembling one specific structure,

given its parts and their dependencies. The method has

been defined to be recursive, so on each iteration, it will

be decomposed into two new subtasks: the task of assem-

bling one part from the set of unassembled parts and the

task of calling himself. As the engine of JSHOP2 plans for

the tasks in the order in which they appear, this will guar-

antee that on each recursive call to himself, the size of the

problem will be decreased in one unit because the previous

task assembled one part, so if there is a solution for the

problem, JSHOP2 will find it and stop.

Once a part is selected, the robots that are assigned to

execute that assembly task are checked, and the assembly

task is tried to be decomposed into an ordered set of smaller

subtasks that compose the low-level plans for the involved

robots.

In our defined scenario, with multiple aerial robots used

for the simulations, the subtasks on which an assembly task

is decomposed can include operations such as take-off,

move to specific locations, pick and place parts, or syn-

chronize the aerial robots when the assembly task is coop-

erative. During the assembly task decomposition, JSHOP2

computes a cost value for each subtask. This cost is an

estimation that represents the time needed to execute the

subtask, that is, its duration. In addition to the duration, the

planner computes the start time of the given subtasks. With

an estimation of the start time and duration of each of the

subtasks, it is possible to have the plans for each of the

aerial robots scheduled in time. A decomposition example

of a cooperative assembly task is shown in Figure 1.

VRP solver

The problem presented in this article is a complex problem

composed of several subproblems: part assignment, route

computation for the aerial vehicles, scheduling of the

assembly tasks, parallelization, and so on. Each of these

subproblems have been well-studied during the last

decades. In this section, we focus our attention on the route

computation problem.

It can be easily seen that the routing problem described

in the previous sections is a variant of the VRP from Dant-

zig and Ramser.27 In the study by Lenstra and Kan,31 it was
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demonstrated that the VRP is an NP-hard problem, so the

complexity of our routing problem is at least the same as

the original VRP, that is, the routing problem presented

here is an NP-hard problem. As many symbolic planners

use a classical graph, search algorithm to discover states

such as depth-first (as is the case of JSHOP2) or breadth-

first, among many others, the possibility of using JSHOP2

or any other symbolic planner to try to solve the routing

problem was not an option. The combinatorial nature of the

VRP leads to huge search trees, and classical graph search

algorithms will lead to far-from-optimized solutions with

high search times.

To solve this kind of problem, it seems more appropriate

the use of meta-heuristics (MH). The idea behind MH is to

find reasonably good solutions in reasonably good times.

They do not guarantee the finding of the optimal solution.

Indeed, almost sure they will not find it, but they can find a

good one with less computational effort than other approx-

imations. For this reason, to solve the routing problem we

choose OptaPlanner [version v6.2.0].

OptaPlanner32 is a Java planning engine with a highly

configurable planner algorithm that lets the user select dif-

ferent MH algorithms, which can be applied in different

phases, to solve some predetermined real-life problems

such as the VRP, or some classical problems such as the

N-queens problem (described in the study by Bruen

et al.33). Despite having numerous predetermined problems

that can be used and solved as examples, the user can define

its own problems, using the Java language. The key point of

OptaPlanner is that it has implemented different MH algo-

rithms that can be applied to solve any kind of problem,

producing good solutions in fast times. In addition, it has an

optimization mechanism based on a score calculation. All

solution found is given a score that acts as a measure of

how good the solution is. Instead of stopping, after finding

a solution, it continues the search trying to find a solution

whose score is better than the last solution found. By this

way, as the time goes by, the solution is improved. The

planning engine stops after the time configured by the user

expires. Of course, this has a drawback: The quality of the

solution depends on the time we give to OptaPlanner. Usu-

ally, the longer the time, the better the solution, but this is

not always true, as OptaPlanner may be stuck on a local

minimum.

Constraint satisfaction

The OptaPlanner planning engine relies on a score calcula-

tion mechanism that lets the solver optimize the solution

found as the time goes by. The score of a solution is com-

puted based on different constraints that are imposed by the

user when implementing the domain. In OptaPlanner, there

are three different types of constraints:

� Hard-constraints: This type of constraints represent

rules that should not be broken in any case. They are

the most restrictive constraints.

� Medium-constraints: This type of constraints repre-

sent rules that should be broken the less possible.

� Soft-constraints: This type of constraints represent

rules with the lower priority, and thus can be broken.

Still, the broken soft-constraints must be minimized

as much as possible.

Based on the broken constraints, OptaPlanner computes

a score composed of three negative values that match the

number of broken constraints of each type. Any solution

with a negative number for the hard-constraints will be

immediately discarded as unfeasible.

Solver phases

When searching a solution, the solver can go through dif-

ferent phases defined by the user. Each of these phases is

called a Solver Phase in the OptaPlanner terminology, and

basically consists on applying one algorithm to make an

initial assignment, to optimize a solution, or to try to solve

the problem directly.

The first phase is called the construction heuristic (CH)

phase, and it consists of selecting and applying one algo-

rithm among the different algorithms available to try to get

an initial assignment for the problem. This initial assign-

ment would serve as input for the second phase and can be

considered as an initial solution.

The second phase is called the MH phase, and it consists

on taking the initial assignment from the CH phase and

selecting and applying one algorithm among the different

local search algorithms available to try to optimize the

assignment and get a better solution. This is an iterative

Figure 1. Decomposition of a cooperative assembly task com-
puted by the symbolic planner. An assembly task is the process of
assembling a part on a specific location. In this example, the
actions needed to assemble the heaviest part of a structure are
shown in a time line. As a single robot cannot lift the part due to
its weight, the symbolic planner assigned the part to two different
robots. Both robots have to pick and place the part cooperatively.
The time lines for the two robots are shown. The boxes in the
time line represent the subtasks on which the assembly task has
been decomposed by the symbolic planner. The first robot, which
was initially idle before time t0, takes off and moves to the part
location. After that, it launches a synchronization subtask at time
t1 to wait for the second robot, which is initially finishing another
assembly task. When the second robot arrives at the part loca-
tion, it synchronizes with the first robot. Once they are syn-
chronized, they can execute actions cooperatively, so the
subtasks at times t2, and t3 onwards are executed by both. The
two aerial robots pick, move, and place the part on its assembly
location. The start time and duration estimations for the subtasks
are computed by the symbolic planner.
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phase and stops when the time configured by the user

expires. After finished, the solution with the best score is

given as the best solution.

The third phase is called the exhaustive search and is the

only phase that can be executed on its own. It consists of

applying the brute force or the branch and bound algo-

rithms to try to solve the problem. Regarding scalability,

this is the worst option as the applied algorithms explore

the whole search tree, but for problems of small size, it will

guarantee that the optimal solution is found.

VRP domain

An assignment problem can be defined in the simplest way

as assigning a set of entities to a set of resources available

which will manage these entities. In OptaPlanner, the set of

entities are called planning entities and the set of resources

are called planning variables. The planning entities are

modeled as Java classes and the planning variables as Java

variables or lists which must be assigned a value (the plan-

ning entities). For our problem, the domain was implemen-

ted as follows: the assembly tasks are the planning entities.

Each one represents a part that must be assembled by one or

more robots, depending on the part weight and the payload

capabilities of the robots. In addition to the weight, each

part has a dependency list that contains all the parts that

have to be assembled in the structure before that part. Each

of the robots has a list on which the assigned assembly tasks

will be stored. The same assembly task can appear in the

list of multiple robots if the weight of the part requires it to

be assembled by more than one, but the sum of the payload

weights of the given robots must be equal or greater than

the part weight.

Connecting the VRP solver and the HTN
planner

The VRP solver previously presented has been designed to

compute the location’s assignment to the robots. In its

domain, only the robots and assembly tasks along with their

dependencies are considered as entities, but the temporal

aspects of the problem are not present. The values of the

hard and medium constraints are computed within this

domain. The hard-constraint value indicates if the weight

of the assigned parts does not exceed the sum of the pay-

loads of the assigned robots. Once an assembly task is

allocated, the medium-constraint value indicates how many

of its dependencies (parts that should be already assem-

bled) are also allocated to the same robot.

On the other hand, the symbolic domain is designed to

compute the assembly tasks decomposition and scheduling

of the problem. In this case, the temporal domain is con-

sidered and the soft-constraint value is computed as the

total assembly time for the whole structure within this sym-

bolic domain.

The whole score calculation needs both planners to be

connected and to communicate in a bidirectional way. The

pseudo-code for the whole planning process can be seen in

Algorithm 1. First, the VRP planner must solve the

assignment problem and compute the related hard- and

medium-constraints values. After that, and only if the

hard-constraints for the given assignment are zero, it sends

the computed assignment to the symbolic planner, which

solves the decomposition and scheduling problem and com-

putes the soft-constraint value. Then this value is sent back

Algorithm 1. Pseudo-code showing the connection between the
involved planners. The inputs for the system are a precomputed
assembly plan composed of assembly tasks, the list of available
robots, the list of locations, and the time limit specified for the
computations. Initially, the values for the current hard- (H),
medium- (M), and soft- (S) constraints are set to the minimum
possible negative value. The best values computed during the
planning process for these variables are also kept and set to the
same minimum possible value. On each iteration, the VRP solver
calls the computeRoutes function, which computes an assignment
of assembly tasks to robots and defines the routes for each one.
After that, it calls the computeScore function to compute the
related hard- and medium-constraints values. If the hard-
constraints are zero, it calls the symbolic planner through the
HTN_Planner function, which in turn computes the decomposition
of the assembly tasks (the low-level plan for each aerial robot) and
the related soft-constraints value. If the decomposition was pos-
sible, then the VRP solver compares the new values for the hard-,
medium-, and soft-constraints with the best values that have been
found by calling the comparePlans function, and updates the best
values if the new ones are better, also storing the decomposition
computed by the symbolic planner, which is then the best plan
found. The process is repeated until the time is exhausted.
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to the VRP planner, closing the score calculation loop. With

the total score of the whole solution, the VRP planner can

compare different solutions and optimize the search to try to

find new assignments that lead to better scores and improved

solutions. Hence, the optimization is done cooperatively

between both planners, preserving each of them its own

domain and solving a different part of the whole problem.

Simulation results

Different simulations have been carried out in the environ-

ment shown in Figure 2, which is the 3-D model of the

indoor test bed used for the experiments. Within the test

bed, localization of the robots is given by the Vicon motion

tracking system (Vicon motion systems Inc., Oxford,

United Kingdom) with millimeter precision. In the study

done by Merriaux et al.,34 it has been proven that the Vicon

system can achieve errors below 2 mm at common speeds,

and below 1 mm for static objects. For the simulations, the

Robot Operating System (ROS), the global coordinate sys-

tem is used. The tests have been done on a machine with an

Intel i7 CPU at 2 GHz and 8 GB RAM. The goal of the

simulations is to compare different solvers.

A team of four aerial robots equipped with manipulators

has to assemble a given structure. Figure 3 shows one of the

prototypes developed in the context of the project that is

modeled and used in the simulations of this section.

Three structures with a different number of parts (see

Figure 4) have been considered and, for each of the struc-

tures, 10 data sets have been generated changing randomly

the initial locations of the parts.

The solver has been configured to use one CH phase fol-

lowed by one MH phase. The purpose of the former is to obtain

an initial solution for the assignment problem, which will be

later optimized by the second solver phase. Three CH algo-

rithms have been applied to our problem: First Fit, First Fit

Decreasing, and Cheapest Insertion. A detailed description of

each one can be found in Red Hat open source community.35

The results shown in Table 1 have been computed with a time

limit of 10 min if the search does not finish before. It can be

seen that the First Fit algorithm obtained slightly better values,

even reducing to zero the medium-constraints. In addition, its

computation times are lower than the others.

The second phase is the MH phase, which tries to opti-

mize the initial locations assignment computed by the

Figure 2. CAD model of the indoor test bed used for the
experiments of our European project. The parts are placed over
tables in three corners of the scene and are assembled on a
designated location.

Figure 3. Aerial robot prototype equipped with a robotic arm in
the indoor test bed located in the CATEC facilities in Seville
(Spain). The model of this prototype has been used in the simu-
lations of the missions.

Figure 4. Structures used for the benchmark with sizes of five,
eleven, and twenty-five parts (structures 1, 2, and 3 from top to
bottom for later reference).
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previous CH phase. Five local search algorithms, whose

description can also be found on Red Hat open source

community,35 have been compared: Hill Climbing, Tabu

Search, Simulated Annealing, Late Acceptance, and Step

Counting Hill Climbing. As this phase requires the use of a

previous CH phase, the First Fit algorithm was configured

as CH. The results are shown in Table 2. All the MH algo-

rithms reduced to zero, the values of the hard- and medium-

constraints, so only the mean and standard deviations of the

soft-constraint values are shown. The results show that the

Late Acceptance and Step Counting Hill Climbing algo-

rithms tie, obtaining better values than the others.

To study the effects over the solutions of changing the

number of aerial vehicles used, we have decided to focus

our attention on the Late Acceptance algorithm, although

the Step Counting Hill Climbing would have also been a

good choice. We have used only the third structure, since it

is the most complex one with the higher number of parts

(25). Five parts need to be transported between two aerial

robots due to its high weight, so these five parts are divided

into two assembly tasks, resulting in 30 different assembly

tasks. Then, the difficulty in solving the problem is greater

than using the other structures. To test the scalability of the

system when increasing the number of available aerial

vehicles, five data sets for the given structure have been

created with a number of available aerial vehicles of 10, 20,

30, 40, and 50, respectively. The results of the tests are

presented in Figure 5. Figure 5(a) shows the score (assem-

bly time) obtained for each of the data sets, whereas Figure

5(b) shows the number of aerial robots used in the

solutions.

As it is shown in Figure 5(a), increasing the number of

available aerial robots leads to better plans, as the

assembly time tends to decrease. However, when using

30 or more aerial robots the assembly time decreases

slower than previous data sets. In fact, the 50 data set gets

worse assembly times than the 30 and 40 aerial robots data

sets.

The resulting number of aerial robots used for each data

set is displayed in Figure 5(b). As the number of available

aerial robots is increased, the number of aerial robots used

in the solutions also tends to increase. For the data sets that

have a number of available aerial robots lower than or

equal to the number of assembly tasks (30), the solver

uses a number of vehicles that is near the maximum num-

ber of vehicles available, as it can be seen in the 10, 20,

and 30 aerial robots data sets. For a higher number of

available aerial robots, the number of used aerial robots

stabilizes near 30, which is the number of assembly tasks

for the structure. This fact tells us that the solver will

always try to use the maximum number of available aerial

robots, even using one aerial robot per assembly task if

there are enough aerial robots available. This may seem

logical because it is an (extreme) way of maximizing par-

allelism: in fact, many people will think on this as the

optimal solution. However, two associated issues should

also be taken into account:

� Having many aerial robots working in our test bed

with a size of tens of meters is unrealistic due to the

associated air traffic density. As the combined plan-

ner will always try to use the maximum number of

available resources, the usage of these resources

should be limited, for instance, introducing hard-

constraints that saturate the maximum number of

used vehicles.

Table 1. CH solver phase results for 30 simulations.a

CH algorithm Hard (SD) Medium (SD) Soft (SD) t (s)

First fit �0.33 (0.48) 0 (0) �625.80 (418.34) 3.12
First fit decreasing �0.33 (0.48) �0.33 (0.48) �630.15 (422.36) 9.56
Cheapest insertion �0.33 (0.48) �0.33 (0.48) �630.15 (422.36) 21.33

CH: construction heuristic.
aFor each algorithm, the mean and standard deviations for the hard-, medium- and soft-constraint values are presented, as well as the mean computation
time. The broken constraints are represented as negative values.

Table 2. MH solver phase results of the soft-constraints generated after 30 simulations with 3 different structures.a

CH algorithm Struct. 1 (SD) Struct. 2 (SD) Struct. 3 (SD) Total (SD)

Hill Climbing �205.80 (14.19) �415.80 (37.91) �1020.0 (54.33) �547.27 (353.15)
Tabu Search �205.80 (14.19) �403.10 (29.64) �1020.9 (55.95) �543.27 (354.99)
Simulated Annealing �203.70 (15.29) �413.40 (31.34) �1031.9 (49.81) �549.67 (359.18)
Late Acceptance �203.80 (15.33) �410.80 (31.27) �991.30 (73.75) �535.30 (342.06)
Step Counting Hill Climbing �203.80 (15.33) �410.80 (31.27) �991.30 (73.75) �535.30 (342.06)

CH: construction heuristic; MH: meta-heuristics.
aThe solver was configured with a time limit of 10 min if the search did not finish before. However, all the algorithms reached the time limit without
exhausting the search.
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� Increasing the number of available aerial robots also

increases the problem size indirectly. The VRP plan-

ner has a greater number of options to choose when

assigning assembly tasks, which can lead to obtain-

ing better plans but can also have the opposite effect

since the search tree size is increased, and many

more options would be available to be check. We

can see this in the results for the 50 available aerial

robots data set, whose assembly time is slightly

worse than the times for the 30 and 40 available

aerial robots data sets. Thus, if the number of avail-

able aerial robots is increased, then the solver’s com-

puting time should also be increased.

Although it is out of the scope of this article, our plan-

ning framework includes the possibility to simulate the

execution of the low-level plans computed for each vehicle.

An execution layer has been implemented as a Cþþ gra-

phical user interface application to read the low-level plans.

The interface, implemented using the Qt framework [ver-

sion v5.1], checks for the correct execution and synchroni-

zation of the tasks and generates Gantt charts to display the

different time lines of the aerial vehicles. The application

communicates with a middleware developed using the ROS

framework that connects with the Gazebo simulator (Open

source robotics foundation Inc.). Figure 6 shows a screen-

shot of a mission execution on the Gazebo simulator by one

aerial robot. A video of the execution can be downloaded

from https://grvc.us.es/symballoc#simulationPaper.

It should be mentioned that the motion planning, multi-

robot collision avoidance, and the control levels have also

been implemented in ROS. In particular, the approach fol-

lowed at the control level is described by Ruggiero et al.,36

whereas for multi-robot collision avoidance the techniques

implemented are presented by Alejo et al.37 Regarding

motion planning, a comparative study was presented by

Ragel et al.38 that lead to the use of the rapidly-exploring

random tree-Connect algorithm in our simulations.

The whole ROS stack developed for the integrated

planning framework has been used in the real aerial

robots equipped with manipulators. However, the imple-

mentation details of the other planners and their intercon-

nection are out of the scope of this article. As a reference,

there are some videos available also in https://grvc.us.es/

symballoc that show these additional planning capabil-

ities and the execution of plans with several aerial

robots both in simulation and in the test bed located in

CATEC.

Conclusions and future work

The combination of planners presented in this article per-

forms task assignment and scheduling to improve cooper-

ation and maximize parallelism in domains that mix

symbolic reasoning with the VRP. The main contribution

is the connection of a VRP solver with a symbolic HTN

planner in the field of structure assembly. The approach has

been tested successfully in missions involving multiple

simulated aerial vehicles.

Our approach has been able to generate aerial vehicles to

parts assignment as well as the low-level plans for each of

the vehicles in all the tested data sets. The bidirectional

communication between the planners has allowed the opti-

mization of the solutions found by the VRP planner, and

thus, the feedback of the symbolic layer has been a key

aspect to drive the search towards better solutions.

Different MH algorithms have been tested and com-

pared. Although these algorithms have not been able to

guarantee optimal solutions, they have computed feasible

Figure 5. Results of the scalability tests done in a range of available
aerial robots between 10 and 50. The third structure from Figure 4
has been used in the tests since it is the most complex one with a
higher number of parts. First Fit and Late Acceptance algorithms
have been configured in the solver. Five data sets have been created
with a number of available aerial vehicles of 10, 20, 30, 40, and 50
respectively. Increasing the number of available aerial robots leads
to better plans since the assembly times tend to decrease. As the
number of available aerial robots grows, the number of aerial
robots used in the solutions tends to increase. (a) Assembly times
for tests in a range of available aerial robots between 10 and 50. (b)
Number of aerial robots used for tests in a range of available aerial
robots between 10 and 50.
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solutions close to the optimal in short times, proving their

effectiveness.

One of the main drawbacks of the approach is the impos-

sibility of ensuring the completeness of the system.

JSHOP2 is proven to be sound and complete, but that is

not the case of OptaPlanner. The OptaPlanner engine guar-

antees to find a solution, but this solution may not be fea-

sible if it breaks hard-constraints. In addition, the planning

time is set beforehand by the user, so when the timer

expires, OptaPlanner may not have found a feasible solu-

tion. When these situations arise, the planning time has to

be increased and the constraints for the problem domain

have to be relaxed. This tunning is problem-specific, and it

is done by experience and knowledge on the domain, or by

trial and error. Although in all the simulations, we have

been able to find and generate a feasible solution without

increasing the planning time or tunning the constraints, our

system cannot ensure that it will always find a feasible

solution if one exists.

There are several advantages in using an aerial robot

with manipulation capabilities, and practical applications

of the research presented in this article can be found in

different industry fields. The AEROARMS (https://aero

arms-project.eu) European project aims to develop the first

aerial robotic platform equipped with multiple arms and

advanced manipulation capabilities, with the intention to

be used in inspection and maintenance tasks in industrial

plants. This project is based on the results obtained from the

aerial robotics cooperative assembly system (ARCAS)

(http://www.arcas-project.eu) European project that

inspired the work presented in this article, and one of its

main objectives is the development of systems which are

able to grab and dock with one or more arms and perform

dexterous accurate manipulation with another arm. Another

practical application can be found in the AEROMAIN

(https://grvc.us.es/national-projects/) Spanish project,

which is also based on the results of the ARCAS project.

AEROMAIN proposes the development of an aerial robotic

system with advanced manipulation capabilities to be

applied in inspection and maintenance of energy systems.

The system aims to be used particularly in the maintenance

of wind turbines, where the risk for human operators is very

high. Contact inspection and blade repairing of surface

damage or impacted areas are considered among other

tasks.

In future work, the goal is to enhance the planning

domain based on the realistic conditions with the proto-

types developed in our project. In addition, modifying the

architecture to ensure the completeness of the system is one

of our current goals. To achieve this, a new sound and

complete symbolic HTN planner with geometric reasoning

capabilities is under development, with the intention of

replacing the OptaPlanner planning engine.
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have a handle to hold and move them, and can be stacked.
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28. Muñoz-Morera J, Maza I, Fernandez-Aguera CJ, et al.

Assembly planning for the construction of structures with

multiple UAS equipped with robotic arms. In: Unmanned

aircraft systems (ICUAS), 2015 international conference

on, Denver, CO, USA, 9–12 June 2015, pp. 1049–1058,

IEEE Xplore Digital Library.

29. Nau D, Ilghami O, Kuter U, et al. SHOP2: an HTN planning

system. J Art Intelligence Res 2003; 20: 379–404.

30. Ghallab M, Nau D and Traverso P (eds.) Automated Plan-

ning. The Morgan Kaufmann Series in Artificial Intelligence,

Burlington: Morgan Kaufmann, 2004. ISBN 978-1-

55860856-6. DOI: 10.1016/B978-155860856-6/50000-4.

31. Lenstra JK and Kan AHGR. Complexity of vehicle routing

and scheduling problems. Networks 1981; 11(2): 221–227.

32. Red Hat open source community. OptaPlanner, http://www.

optaplanner.org/ (2014, accessed December 12, 2014

33. Bruen A and Dixon R. The n-queens problem. Discrete

Mathematics 1975; 12(4): 393–395.

34. Merriaux P, Dupuis Y, Boutteau R, et al. A study of Vicon

system positioning performance. Sensors 2017; 17(7). DOI:

10.3390/s17071591.

35. Red Hat open source community. OptaPlanner User Guide,

version 6.2.0, http://docs.jboss.org/optaplanner/release/6.2.0.

Final/optaplanner-docs/pdf/optaplanner-docs.pdf (accessed 1

May 2015).

36. Ruggiero F, Trujillo MA, Cano R, et al. A multilayer control

for multirotor UAVs equipped with a servo robot arm. In:

2015 IEEE international conference on robotics and automa-

tion (ICRA), Seattle, WA, USA, 26–30 May 2015, pp.

4014–4020, IEEE. DOI: 10.1109/ICRA.2015.7139760.

37. Alejo D, Cobano JA, Heredia G, et al. A reactive method for

collision avoidance in industrial environments. J Intelligent

Rob Syst 2016; 84(1): 745–758. DOI: 10.1007/s10846-016-

0359-7.

38. Ragel R, Maza I, Caballero F, et al. Comparison of motion

planning techniques for a multi-rotor UAS equipped with a

multi-joint manipulator arm. In: 2015 Workshop on

research, education and development of unmanned aerial

systems (RED-UAS), Cancun, Mexico, 23–25 November.

2015, pp. 133–141, IEEE. DOI: 10.1109/RED-UAS.2015.

7441000.
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