Biomass-derived carbon materials for energy storage applications

Aurora Gómez Martín
BIOMASS-DERIVED CARBON MATERIALS FOR ENERGY STORAGE APPLICATIONS

PhD Thesis presented by

Aurora Gómez Martín

To obtain the Doctor's degree from the University of Seville in

Science and Technology of New Materials

Supervisors:
Julián Martínez Fernández
Joaquín Ramírez Rico

Department of Condensed Matter Physics
University of Seville

May, 2019
“You look at science (or at least talk of it) as some sort of demoralizing invention of man, something apart from real life, and which must be cautiously guarded and kept separate from everyday existence. But science and everyday life cannot and should not be separated. Science, for me, gives a partial explanation for life.”

——— Rosalind Franklin
Acknowledgements

With the permission of the reader, I would like to write part of the personal acknowledgements in Spanish.

Quisiera con estas primeras páginas agradecer el apoyo de todas esas personas que han contribuido de alguna manera al desarrollo de este trabajo.

En primer lugar, me gustaría comenzar expresando mi más sincero agradecimiento a mis directores de tesis. Al Dr. Julián Martínez Fernández, por haber confiado en mí desde el principio y haberme ofrecido la oportunidad de comenzar mi etapa investigadora en su grupo de investigación. Al Dr. Joaquín Ramírez Rico, por su infinito apoyo, paciencia e incontables contribuciones a este trabajo. Ha sido un placer poder trabajar contigo.

Agradecer a todos los miembros del Departamento de Física de la Materia Condensada y del Grupo de Materiales Biomiméticos y Multifuncionales por su amable acogida y compañerismo.

A Rafa, gracias por su amistad y cariño, por encontrar siempre tiempo para aconsejarme y apoyarme. Por hacer que este camino haya sido mucho más fácil, por todos los buenos momentos y risas, por todos los desayunos con jamón del bueno. A Desirée, por sus ánimos, generosidad y apoyo sobre todo en este último tramo. A Pilar, muchas gracias por el buen equipo que hicimos juntas, por estar siempre dispuesta a ayudar. A Antonio, por su ayuda con el trabajo experimental al principio de esta etapa. A Alfonso Bravo, por el efecto terapéutico de sus cafés.

A José Hidalgo, por estar siempre dispuesto a ayudar cuando ha sido necesario.

Al personal del Taller Mecánico de la Facultad de Física, en especial a José Luis Benjumea por ser siempre diligente y solícito.

Al personal de los Servicios Generales de Investigación de la Universidad de Sevilla. En especial a Javier Quispe y Paco Varela por estar siempre disponibles y dispuestos para poner solución a cualquier problema.

I would also like to extend my deepest grateful to Dr. Tobias Placke and Prof. Martin Winter from the University of Münster for giving me the opportunity of doing two research stays at the Münster Electrochemical Energy Technology Centre (MEET). Also, to the German Academic Exchange Service (DAAD) for funding my time there under the programs “Short-term research grant 2017/2018 programs”. A very special thanks to all the members of “Selected Materials” team: in particular to Vanessa, Mirco, Andreas, Kolja and Karina for the friendly and motivating working environment. My deepest gratitude to Mirco for all his support with the experimental work. My special thanks to Vanessa and Karina for their friendship and all their support. It was a pleasure to share those great moments.
with you. A Christian, por su compañía y entusiasmo. A Nuria, por entrar a formar parte de mi vida, gracias por llamar a la puerta de mi habitación en busca urgente de una española.

Por último, y por encima de todo, quisiera agradecer el estimable e incondicional apoyo de mi familia. A mis padres, por haberme enseñado a ser quien soy, por transmitirme su bondad, fortaleza y perseverancia, por darme todo el amor y cariño que han podido y por nunca dejar de creer en mí. Estaré eternamente agradecida por todo lo que habéis hecho por nosotros. A mis hermanos, por su constante apoyo, generosidad y risas.

A Antonio, por quererme sin condiciones, por estar dispuesto a compartir tu vida conmigo. Por todo lo bueno que nos queda por vivir, ya eres parte de mi familia.
Table of Contents

Abstract ... i

List of Figures ... iii

List of Tables ... xiii

List of Abbreviations ... xv

Notation .. xvii

Chapter 1. Introduction .. 1

1.1. Motivation ... 2

1.2. Aim and objectives of the thesis ... 3

1.3. Outline of the thesis ... 4

1.4. List of publications .. 4

1.5. References ... 8

Chapter 2. Scientific background ... 9

2.1. Introduction .. 10

2.2. Carbon materials .. 10

2.2.1. Carbonization and graphitization ... 12

2.2.1.1. Biomass resources ... 12

2.2.1.2. Structural development ... 12

2.2.2. Catalytic graphitization ... 16

2.2.2.1. Factors influencing catalytic graphitization process .. 16

2.2.2.2. Graphitization mechanism ... 21

2.3. Energy storage systems ... 23

2.3.1. Current energy background .. 23

2.3.2. Lithium-ion batteries ... 25

2.3.2.1. Working principle and fundamentals .. 25

2.3.2.2. Carbon materials as anodes for lithium-ion batteries ... 29

2.3.3. Sodium-ion batteries .. 34

2.3.3.1. Working principle and fundamentals .. 34

2.3.3.2. Carbon materials as anodes for sodium-ion batteries ... 37

2.3.4. Supercapacitors .. 41

2.3.4.1. Working principle and fundamentals .. 41

2.3.4.2. Carbon materials as electrodes for supercapacitors .. 44

2.4. References ... 47
Chapter 3. Fe-graphitized carbon from biomass resources as alternative anodes for lithium-ion batteries

3.1. Introduction ...65
3.1.1. Motivation and background ...65
3.1.2. Aim of this chapter ...69
3.2. Materials and methods ..70
3.2.1. Materials ..70
3.2.1.1. Starting biomass precursor ..70
3.2.1.2. Fe-catalyzed carbon ..71
3.2.1.3. Non-catalyzed carbon ..72
3.2.2. Microstructural and thermal characterization ...72
3.2.2.1. Thermogravimetric analysis (TGA) coupled with mass spectrometry73
3.2.2.2. Electron microscopy ...73
3.2.2.3. Inductively coupled plasma optical emission spectroscopy (ICP-OES).73
3.2.2.4. Powder X-ray diffraction measurements (XRD)74
3.2.2.5. Raman spectroscopy ..74
3.2.3. Surface characterization ..76
3.2.4. Electrochemical characterization for lithium-ion batteries applications78
3.2.4.1. Working electrode preparation ...79
3.2.4.2. Cell assembly ...81
3.2.4.3. Electrochemical measurements ..82
3.3. Results and discussion ...84
3.3.1. Studies on the mechanism responsible for catalytic graphitization84
3.3.2. Microstructural and morphological characterization90
3.3.3. Surface properties ..99
3.3.4. Electrochemical properties ..102
3.3.4.1. First-cycle electrochemical performance ...102
3.3.4.2. Specific capacity trend ...106
3.3.4.3. Fe-catalytically graphitized carbon vs. heat-treated soft/hard carbons as anodes for lithium-ion batteries ..109
3.3.4.4. Rate performance and long-term cycling ..112
3.4. Conclusions ...114
3.5. References ..115

Chapter 4. Biomass-derived hard carbons as anodes for sodium-ion batteries123

4.1. Introduction ..124
4.1.1. Motivation and background ...124
4.1.2. Aim of this chapter ..126
Chapter 5. Porous graphene-like carbon materials for high-rate power applications .. 161

5.1. Introduction ... 162
 5.1.1. Motivation and background .. 162
 5.1.2. Aim of this chapter ... 164

5.2. Materials and methods .. 165
 5.2.1. Materials .. 165
 5.2.1.1. Starting biomass precursor .. 165
 5.2.1.2. Synthesis of porous graphene-like carbons 165
 5.2.2. Microstructural, thermal and surface characterization 166
 5.2.2.1. Fourier transform infrared spectroscopy (FTIR) 167
 5.2.2.2. X-ray photoelectron spectroscopy (XPS) 167
 5.2.3. Electrochemical characterization for supercapacitor applications 167
 5.2.3.1. Working electrode preparation 167
 5.2.3.2. Three-electrode set-up cell configuration 168
 5.2.3.3. Two-electrode set-up cell configuration 170

5.3. Results and discussion ... 171
 5.3.1. Morphological characterization .. 171
 5.3.2. Thermal and pre-carbonization characterization 174
5.3.3. Microstructural and surface characterization .. 179
5.3.4. Electrochemical properties for supercapacitor applications 184
 5.3.4.1. Three-electrode set-up .. 184
 5.3.4.2. Two-electrode set-up .. 186
5.3.5. Electrochemical properties for lithium-ion batteries applications 187
5.4. Conclusions .. 189
5.5. References ... 191

Chapter 6. Conclusions and future prospects ... 197
 6.1. Summary and main conclusions ... 198
 6.2. Future prospects ... 202
Abstract

Energy storage systems are an essential link in the implementation of renewable energies and in the development of electric vehicles, which are needed to reduce our dependence on fossil fuels and the emission of greenhouse gases. Various technologies have been proposed for energy storage based on different working principles, including lithium-ion batteries, emerging sodium-ion batteries and electric-double layer capacitors. Besides the quest for improving key aspects such as energy and power densities, current research efforts are devoted to foster the manufacturing of more environmentally friendly devices using sustainable materials. Carbon-based electrodes hold considerable promise in such terms due to their low cost, tailorable morphology and microstructure, and the possibility of processing them by direct carbonization of eco-friendly and naturally-available biomass resources.

The main goal of this thesis is to develop carbon materials from biomass resources and study their applications as electrode for lithium-ion batteries, sodium-ion batteries and electric-double layer capacitors. En route towards that goal, it also aims at expanding our understanding of the microstructural changes of biomass-derived carbons with varying processing conditions and their effect on the electrochemical performance for each of these technologies.

The first part of this work reports on the synthesis of graphitized carbon materials from biomass resources by means of an Fe catalyst, and the study of their electrochemical performance as anode materials for lithium-ion batteries (LIBs). Peak carbonization temperatures between 850 °C and 2000 °C were covered to study the effect of crystallinity, surface and microstructural parameters on the anodic behavior, focusing on the first-cycle Coulombic efficiency, reversible specific capacity and rate performance. Reversible capacities of Fe-catalyzed biomass-derived carbons were compared to non-catalyzed hard carbon and soft carbons materials heated up to 2800 °C. Moreover, in-situ characterization experiments were carried out to advance our understanding of the mechanisms responsible for catalytic graphitization.

The second part of this work reports a comprehensive study on the structural evolution of hard carbons from biomass resources as a function of carbonization temperature (800 - 2000 °C), and its correlation with electrochemical properties as anode materials for sodium-ion batteries (SIBs). Synchrotron X-ray total scattering experiments were performed and the associated atomic pair distribution function (PDF) extracted from the data to access quantitative information on local atomic arrangement in these amorphous materials at the nanoscale, as well as its evolution with increasing processing temperature. Then, electrochemical properties and the storage mechanisms involved on Na ions insertion into hard carbon structures at each characteristic potential regions were elucidated and correlated with microstructural properties.
Finally, the third part of this work reports on the synthesis of nanostructured porous graphene-like materials from biomass resources using an explosion-assisted activation strategy by nitrate compounds and Ni as a graphitization catalyst. The thermal behavior during carbonization as well as the resulting microstructural and surface properties were evaluated at two different processing temperatures, 300 and 1000 ºC. Finally, their application as electrode materials for electric-double layer capacitors (EDLCs) and LIBs is investigated, with a view to their performance under high charge/discharge specific current densities experiments.
List of Figures

Figure 2. 1. Schematic illustration of a) crystal structure of hexagonal graphite and the unit cell. Redrawn from (10); b) turbostratic carbon with stacking disorder. Redrawn from (11).11

Figure 2. 2. Schematic illustration of carbonization and graphitization processes depending on the starting precursor (graphitizing and non-graphitizing carbons). Redrawn from (19) and (20).13

Figure 2. 3. Schematic representation of the structure of graphitizing and non-graphitizing carbons proposed by R. Franklin (21). ...14

Figure 2. 4. Dependence of \(d_{002}\), \(L_c\) and \(L_a\) on HTT (8, 31) for graphitizing and non-graphitizing carbons. (8, 23, 26, 31-37). ...15

Figure 2. 5. a) X-ray diffraction patterns of petroleum coke (homogeneous graphitization)(26) and charcoal (heterogeneous graphitization) (8); b) Relation between \(d_{002}\), \(L_c\) and (002) reflection position for both non-graphitizing carbons and graphitizing carbons (25). ...16

Figure 2. 6. Active catalysts for graphitization of carbon precursors from the works (red ones) (39, 48, 50-55). References are included in red color. ...17

Figure 2. 7. Dependence of interplanar distance (\(d_{002}\)) (top panel) and Raman intensity ratio between D and G bands (\(I_D/I_G\); bottom panel) with HTT for carbons treated with transition metal catalysts. The differences between \(I_D/I_G\) ratio for the same precursor are visually shown with surrounding dotted areas to guide the eye (48, 56-60). ..18

Figure 2. 8. a) Changes of (002) diffraction profiles of the Ni-catalyzed phenol formaldehyde carbon (30 wt. % catalyst) (71); b) Size distributions of Ni particles as a function of temperature (71) and c) TEM image of beech-derived carbon at 1600 ºC with a Ni catalyst where it can be observed the precipitation of three-dimensional graphite crystals (labelled as G) (70). ..19

Figure 2. 9. Fe-C phase diagram. Redrawn from (89). ...23

Figure 2. 10. Ragone chart displaying current trends for electrical energy storage systems. Redrawn from (98). ...24

Figure 2. 11. Lithium-ion battery market from 2000 to 2016. Redrawn from (104). ...25

Figure 2. 12. Schematic illustration of the working principle of a lithium-ion cell (during charge). Redrawn from (105). The cell reaction, based on graphite as negative electrode and transition metal oxide as positive electrode, is shown in the inset...26

Figure 2. 13. Overview of active anode materials for LIBs represented in terms of potential vs. Li/Li\(^+\) and the corresponding specific capacity. Redrawn from (114).28

Figure 2. 14. a) Anode commercial market for LIBs from 2006 to 2016 and b) detailed percentage data for 2016. Data from (104). ...29

Figure 2. 15. Schematic illustration of the LiC\(_6\) structure a) AA layer stacking sequence and b) perpendicular view to the basal plane of LiC\(_6\). Redrawn from (10). ..30
Figure 2.16. a) Schematic illustration of stage formation during electrochemical intercalation of lithium ions into graphite structure and galvanostatic charge curve. b) Schematic voltammetry curve. Redrawn from (125).

Figure 2.17. Evolution of the reversible specific capacity as a function of HTT for graphitizing and non-graphitizing carbons without catalyst (26, 133).

Figure 2.18. Evolution of the reversible specific capacity as a function of HTT for non-graphitizing carbon catalyzed with transition metals (61, 78, 80, 134-141). Note: Ref. (78) Fe:precursor molar ratio 1:25; Ref. (134); Ref. Fe:precursor molar ratio 12.5:87.5; (135) 10 wt. % Fe and 17 wt. % Fe; Ref. (80) Fe:carbon weight ratio 11:1; Ref. (136) Fe:carbon volume ratio 1:1; Ref. (137) 5 wt. % iron acetate addition to precursor; (61) impregnation 10mmol iron acetylacetonate; Ref. (138) 5 wt. % Co(NO$_3$)$_2$ addition to precursor; Ref. (139) and Ref. (140) Ni:precursor weight ratio 3:10; Ref. (141) 10 wt. % Ni(NO$_3$)$_2$ addition to precursor.

Figure 2.19. Number of publications on sodium-ion batteries (2000 - 2018 from Scopus database).

Figure 2.20. Possible anode materials for sodium-ion batteries as a function of working potential and specific capacity. Reprinted with permission of (167).

Figure 2.21. a) Schematic depiction of Na$^+$ insertion into pristine graphite (PG) and expanded graphite (EG), along with a comparison of charge/discharge potential profiles and specific capacities of PG, EG and graphene oxide (labelled as GO). Reprinted from (176); b) Charge/discharge potential profile of natural graphite in sodium cells in different electrolytes i) 1 M NaCF$_3$SO$_3$ in diglyme (DGM), ii) 1 M NaPF$_6$ in DGM and iii) 1 M NaPF$_6$ in EC: DEC (1:1) and iv) NaClO$_4$ in EC: DEC. Reprinted from (179).

Figure 2.22. Constant current charge/discharge curves (2nd cycle) in a sodium half-cell of graphite (grey), soft carbon (green) and hard carbon (black). Reprint from (19).

Figure 2.23. Schematic representation of the a) “intercalation-adsorption” sodium storage mechanism in hard carbon according to the house of cards model, b) “adsorption-intercalation” theory (184) and c) four stage-model proposed by Saurel et al. (19): Typical constant current chronopotentiogram of hard carbon (left) and its derivative curve (right), with the three main voltage regions highlighted: initial drop (I), sloping voltage (II), and low voltage plateau (III).

Figure 2.24. Reversible capacities as a function of carbonization temperatures for biomass-derived carbon from palm date seeds (36), cellulose (35), corn cob (33), corn straw (32), kelp (37) and mangosteen shell (34), as representative carbon materials. The dashed line represents the average value of reversible capacities, whereas the light-shaded region represents the range. The dark or green shaded region indicates the region where the reversible capacity peaks.

Figure 2.25. Scheme of a) conventional capacitors, b) electrostatic capacitors and c) electrochemical double-layer capacitors (EDLCs). Redrawn from (5).

Figure 2.26. Schematic representation of the BMD model in a solution electrode interface. Redrawn from (203).
Figure 2.27. Schematic illustration of catalytic graphitization process used for introducing porosity into carbon materials.................................45

Figure 3. 1. Schematic depiction of MDF manufacturing process. Redrawn of (55)...............70
Figure 3. 2. Schematic depiction of impregnation process with the catalytic solution. The security flask was used to avoid direct entry of solution into the vacuum pump..71
Figure 3. 3. a) Outline of the heat-treatment set-up and b) Schematic of the carbonization procedure vs. time. ..72
Figure 3. 4. Raman spectra of a commercial graphite (KS44, Timcal Timrex) (top panel) and a commercial hard carbon (Carbotron PS (F), Kureha Corporation) (bottom panel) depicting main excitation bands. Raman spectra was deconvoluted into different bands using a least-square method and using pseudo-Voigt line-shapes functions..75
Figure 3. 5. IUPAC isotherms classification according to porous surface features. Type-I is characteristic of microporous materials, whereas type-II is reflected by macroporous solids. Type-IV is characteristic for mesoporous material with multilayer-adsorption. Type-III and V show materials which a weak interaction between absorbent and adsorbate, while type-VI is a rare structure associated to non-porous surface. Redrawn from (65)..77
Figure 3. 6. Illustration of nitrogen adsorption at different kinds of surface areas for graphitic carbon surfaces: a) prismatic surface areas, b) basal plane surface areas and c) defect surfaces. Redrawn from (70). ..78
Figure 3. 7. Representative particle size distribution of MDF Fe 1600 ⁰C sample.79
Figure 3. 8. a) Lab-scale doctor-blade technique for electrode slurry coating; b) punched 12 mm in diameter electrode discs; SEM micrographs of MDF Fe 1600 ⁰C electrode: c) top and d) side views. ..80
Figure 3. 9. a) Schematic diagram of the three electrode stainless steel Swagelok® cells considering half-cell configuration and b) pictures of lithium-ion cells assembly...81
Figure 3. 10. a) Schematic depiction of potential vs. time variation for the anode side during CV measurements (OCV stands for open-circuit potential, E₁ the first vertex potential and E₂ the second vertex potential) and b) Representative CV measurement at a sweep rate of 20 µV·s⁻¹ of MDF Fe 2000 ⁰C where different cathodic and anodic peaks arises from the formation of lithium-carbon intercalation compounds (77). ..81
Figure 3. 11. Time-dependent specific current (red line) and potential (black line) profiles for a constant current charge/discharge cycling experiment using MDF Fe 2000 °C as representative negative electrode material (half-cell setup with lithium metal as CE and RE; at a charge/discharge specific current of 37.2 mAh·g⁻¹)..83
Figure 3. 12. TGA and DSC analysis along with mass spectrum of evolved gases (treatment temperature vs. mass/charge ratio) of raw MDF (a, b), FeCl₃ powder (c, d), and MDF impregnated with
1.0 M FeCl₃ solution (e, f) heating at 10°C·min⁻¹ under inert atmosphere. Mass spectrum are represented as a function of temperature for different mass values in terms of the logarithm of the ion current in arbitrary units. ...86

Figure 3. 13. Mass spectrum: ion current signal vs. treatment temperature at m/z = 36 u.m.a related to evolved Cl₂ gases for a) MDF impregnated with 1.0 M FeCl₃ and b) FeCl₃ powder. ..87

Figure 3. 14. In-situ TEM pictures during heating (from 700 to 750 ºC), where it can be seen the movement of the Fe-C droplets at temperature much lower than the melting point of Fe. It is observable the precipitation of more ordered graphitic regions behind. a) 0 s; b) 9 s; c) 18 s and d) 34 s after reaching 700 ºC..88

Figure 3. 15. In-situ X-ray diffraction patterns of MDF sample impregnated with FeCl₃ solution while a) heating and b) cooling process upon heat-treatment under a flowing atmosphere of nitrogen. Heating rate (10°C·min⁻¹). Holder XRD pattern is included for comparison...89

Figure 3. 16. Scanning electron micrographs (SEM) of carbon obtained from carbonization of MDF up to 1000 ºC without any catalyst, using secondary electrons: a) radial and b) axial directions. Axial sections are perpendicular to the direction of fibre compaction ..91

Figure 3. 17. Representative electron micrographs of MDF-Fe carbon carbonized at 1600 ºC: a, b) before and c, d) after iron removal. Two different phases can be distinguished under backscattered electrons: carbon fibres appear black while globular Fe catalyst particles are light grey.................91

Figure 3. 18. Representative TEM micrograph of Fe-carbons treated at 1000 ºC (a) before and (b) after iron removal, showing imperfect graphitic lattice and longer interplanar spacing than the theoretical of graphite; c,d,e) TEM micrographs of Fe-carbons heated up to 2000 ºC before (c) and after (d,e) iron removal. Typical (c) Fe core nanoparticles encapsulated in several ordered carbon layers; d, e) hollow ordered regions after iron removal ..92

Figure 3. 19. Typical SEM and TEM micrographs of Fe-carbons platelets after carbonization at 2000 ºC; a, b) well-ordered graphite plate regions along with associated SAED pattern and c) detailed (002) lattice fringes of graphite; d, e) SEM micrographs of MDF Fe 1600 ºC before Fe removal, showing the precipitation of bulk graphitic crystals surrounding catalyst particles. ...93

Figure 3. 20. Representative TEM micrographs of MDF carbon without catalyst heat-treated up to (a) 2000 ºC, (b) 2400 ºC, (c) 2800 ºC; d) line profile of the (002) lattice fringes of MDF 2400 and 2800 ºC samples, showing interlayer distance along the stacking direction. Numbers (1) and (2) indicate the area considered for line profile..94

Figure 3. 21. Raman spectra results of MDF-derived carbon using a) Fe as catalyst (carbonization temperatures from 850 ºC and 2800 ºC) and b) without catalyst (temperatures ranging between 850 and 2800 ºC). Data carbonized MDF without catalyst up to 1600 ºC from (39) is included for comparison purposes...95

Figure 3. 22. Degree of graphitization, α, estimated on the basis of Raman fitting as a function of the treatment temperature of Fe-catalyzed MDF, non-catalyzed MDF carbon (from this work and (39)), as
well as an estimation from the results previously reported by Fromm et al. (33) for a soft carbon
reference precursor (petroleum coke) up to 2800 °C.

Figure 3. 23. X-ray diffraction patterns of a) MDF-Fe catalyzed and b) non-catalyzed carbons at
different carbonization temperatures. Data of non-catalyzed MDF carbon up to 1600 °C from (39) is
included for comparison purposes.

Figure 3. 24. X-ray diffraction patterns of non-catalyzed carbons up to 2000, 2400 and 2800 °C.
Structures depiction redrawn from (81). The graph (1) refers to turbostratic order whereas (2) refers to
graphitic one.

Figure 3. 25. a) Representative fit of the low angle region of the X-ray diffraction pattern of a MDF
carbon sample carbonized up to 1200 °C in the presence of the Fe-catalyst. Samples contained 10 wt.
% of sieved pure Si powder which served as internal standard to correct sample displacement. b) Results of the quantitative X-ray analysis for Fe-treated carbons. The position and associated interlayer
distance of the (002) graphite peak (black symbols) and the turbostratic peak (blue symbols) are plotted
as a function of carbonization temperature. The black line represents the ideal position of graphite
(characteristic interlayer distance of 0.3354 nm), while the blue line is only included as a guide to the
eye. Error bars represent one standard deviation from two measurements.

Figure 3. 26. N_2 adsorption/desorption isotherms of powder carbonaceous samples (< 45 µm) treated
with an Fe catalyst at different peak temperatures and b) BET/DFT specific surface areas as a function
of treatment temperature.

Figure 3. 27. Pore size distributions based on DFT calculations of representative Fe-catalyzed carbons
at 850, 1400 and 2000 °C.

Figure 3. 28. Incremental surface area vs. adsorptive potential plots of Fe-graphitized carbons.
Adsorptive potentials for “prismatic” (< 50 K), “basal plane” (50 to 60 K) and “defect” surface (> 60 K)
areas are separated by dotted vertical lines and different coloured backgrounds; b) Evolution of “non-
basal” (taking into account both prismatic and defect surface areas from DFT calculations) and “basal
plane” surface areas vs. treatment temperature for Fe-catalyzed carbons.

Figure 3. 29. a) Representative constant-current potential profile (at a specific current of 37.2 mA·g$^{-1}$)
and b) CV experiment (at a sweep rate of 20 μV·s$^{-1}$) for the 1st charge/discharge cycle. The specific
capacity is also provided in terms of the stoichiometry of graphite lithium-intercalation compounds Li$_x$C$_6$,
being $x = 1$ the theoretical capacity of graphite (372 mAh·g$^{-1}$). Black dotted line points out the lithiation
(charge) and de-lithiation (discharge) curves according with the half-cell set-up configuration. Red
dotted line shows the irreversible capacity between the 1st cycle charge/discharge capacities. Potential
range: 0.02 to 1.5 V vs. Li/Li$^+$.

Figure 3. 30. a) 1st cycle Coulombic efficiencies (CEs) along with associated irreversible capacity loss
(Q_{irr}) as a function of carbonization temperature and b) Q_{irr} (%) plotted against the “non-basal” plane
surface area from MNLDFT. The red dotted line represents a linear regression between Q_{irr} and
average values of non-basal surface areas for each temperature (correlation $r^2 = 0.96$).
Figure 3.31. a) Evolution of CE (%) and b) Cumulative irreversible capacity (%) with respect to cycle number (from cycle 1st to 15th) (specific currents of 37.2 mA·g⁻¹ and 372 mA·g⁻¹). Error bars represent the standard deviation from the measure of three cells for each sample. ..106

Figure 3.32. a) Representative charge/discharge potential profiles at 37.2 mA·g⁻¹ (34th cycle from C-rate test) of Fe-catalyzed carbons derived from MDF at different temperatures from 850 to 2000 °C and b) Associated differential capacity (dQ/dV) profiles. The specific capacity is also provided in terms of the stoichiometric factor x in LiₓC₆. ..107

Figure 3.33. Evolution of specific capacity contributions over and below 0.2 V vs. Li/Li⁺ as a function of carbonization temperature for Fe-catalyzed carbons. ...107

Figure 3.34. Average specific discharge capacity (at a specific current of 37.2 mA·g⁻¹) of graphitized Fe-carbons plotted against the degree of graphitization, α, estimated by fitting of Raman spectra...108

Figure 3.35. Specific discharge capacity of Fe-graphitized carbons as a function of crystal size along the stacking direction, Lc. Dotted black line is plotted to guide the eye but does not imply any fit. Specific current 37.2 mA·g⁻¹. ...109

Figure 3.36. Evolution of the reversible specific capacity (at a specific current of 37.2 mA·g⁻¹) as a function of pyrolysis temperature. Fe-graphitized MDF carbon data from this work is plotted as colored circles, while not catalyzed samples are represented as green circles. Data for petroleum coke and oak wood-derived carbons (33), and a review of hard and soft carbon trends from ref. (116) is also included for comparison purposes..111

Figure 3.37. Representative comparative of charge/discharge voltage profiles at a specific current of 37.2 mA·g⁻¹ of MDF carbon heated up to 2000 °C with and without Fe. ...111

Figure 3.38. a) Discharge capacities of Fe-graphitized/Non-catalyzed MDF samples during cycling at different rates. b) Capacity retention as a function of specific charge/discharge current density. Error bars are equal to one standard deviation. C-rate test plan → Cycles 1-3: 37.2 mA·g⁻¹; Cycles 4-30: 372 mA·g⁻¹; Cycles 31-70: specific currents of 37.2 mA·g⁻¹, 74.4 mA·g⁻¹, 186 mA·g⁻¹, 372 mA·g⁻¹, 744 mA·g⁻¹, 1116 mA·g⁻¹, 1860 mA·g⁻¹ and 3720 mA·g⁻¹ for each rate 5 cycles; Cycle 70 onwards: 372 mA·g⁻¹. ...112

Figure 3.39. Long-term cycling performance of Fe-graphitized/Non-catalyzed MDF-derived carbon anode materials at a specific current of 372 mA·g⁻¹ for 200 cycles after the C-rate test.113

Figure 4.1. Illustrative scheme of the morphology of olive fruit. Redrawn from (40).........................129

Figure 4.2. Picture of a) as-received olive stones as well as b) derived carbons.130

Figure 4.3. Pictures of the MSPD beam-line (51). ...133

Figure 4.4. a) Thermogravimetric (TGA) (left y-axis) and differential thermogravimetric analysis (DTG) (right y-axis) of olive stones during carbonization at a heating rate of 10°C·min⁻¹ (flow rate N₂ 100 ml·min⁻¹), b and c) Representative SEM micrographs of olive stone-derived hard carbons carbonized up to 1200 °C. ...135
Figure 4.5. Representative HR-TEM micrographs of olive stone-derived hard carbons at a) 1000 ºC, b) 1400 ºC, c) 1600 ºC and d) 2000 ºC along with corresponding selected area electron diffraction (SAED) patterns shown in the inset of the micrographs. The dotted red and white circles in c) and d) indicate the presence of mesopores and ordered regions, respectively. ... 136

Figure 4.6. a) N\textsubscript{2} at 77 K adsorption/desorption and b) CO\textsubscript{2} at 273 K adsorption isotherms at different carbonization temperatures. .. 137

Figure 4.7. a) Evolution of measured specific surface area as a function of carbonization temperature, according to the Brunauer-Emmett-Teller (BET) model; 2D-NLDFT pore size distribution assuming a slit-shaped pore geometry for b.1) CO\textsubscript{2} and b.2) N\textsubscript{2} analyses. .. 138

Figure 4.8. Raman spectra of olive stone-derived carbons along with corresponding least-square fitting. The concentration of defects, β, as a function of heat-treatment temperature is shown in the inset of the figure. See Section 3.2.2.5 for further details of representative bands. .. 139

Figure 4.9. Qualitative analysis of PDF results: Normalized scattering factor measured at the MSPD beamline for carbonized olive stone at different temperatures. ... 141

Figure 4.10. a) Short range region (1 - 6 Å) of the atomic PDFs for samples carbonized at 800 ºC (bottom) and 2000 ºC (top), interatomic distances in graphene are marked and the main peaks in the region are identified. b) Schematic of the atomic structure and graphene and near-neighbour interatomic distances. .. 141

Figure 4.11. Results of fitting the PDFs to the structural model described in the text. Examples of observed (hollow coloured circles) and calculated values (red curve), along with the difference curves (green ones). .. 143

Figure 4.12. Evolution as a function of heat-treatment temperature of: b) a-spacing of the model, c) interlayer spacing, d) crystallite size and e) displacement parameter U\textsubscript{33}. See text for further details. ... 144

Figure 4.13. Schematic illustration of interplanar spacing (d\textsubscript{002}) distribution as a function of heat-treatment temperature for representative samples: a) 800 ºC, b) 1400 ºC and c) 2000 ºC. .. 144

Figure 4.14. a) Representative constant-current charge/discharge potential profile vs. specific capacity (at a specific current of 20 mA·g-1, 11th cycle of C-rate test, see Section 4.2.3) of hard carbons derived from olive stone at different carbonization temperatures from 800 to 2000 ºC. Potential range: 0.01 to 1.5 V vs. Na/Na+. The black dotted line (at 0.1V) points out two different profile regions with different storage mechanism; b) associated differential capacity (dQ/dV) profiles ... 146

Figure 4.15. Evolution of the reversible specific capacity as a function of heat-treatment temperature (specific current 20 mA·g-1). Data for other biomass-derived carbons is also included for comparison purposes (18-23). Grey-coloured area represents one standard deviation from three cells for each sample, while green-coloured area highlights the highest capacities region. .. 147
Figure 4. 16. Specific sodiation (charge) capacities from the plateau (< 0.1 V vs. Na/Na\(^+\)) and sloping regions (1.5 - 0.01 V vs. Na/Na\(^+\)) for all olive stone-derived carbons during the sodiation (insertion) as a function of peak heat treatment temperature. ... 148

Figure 4. 17. Correlation between the plateau part of the sodiation capacity (< 0.1 V vs. Na/Na\(^+\)) and the interplanar spacing as measured by PDF analysis. ... 149

Figure 4. 18. a) Correlation between the sloping part of the sodiation capacity and the computed crystallite size from PDF analysis and b) correlation between the sloping specific sodiation capacity (referring to the sloping region in the potential profile between 1.5 - 0.1 V vs. Na/Na\(^+\)) at a specific current of 20 mA·g\(^-1\) and the \(\beta\) parameter determined by Raman spectroscopy. The dotted line represents a linear fitting between both parameters (correlation \(r^2 = 0.878\)). ... 150

Figure 4. 19. Constant-current charge (sodiation) potential profile vs. specific capacity (at a specific current of 20 mA·g\(^-1\), bottom panels) of representative (800, 1400 and 2000 °C) biomass-derived hard carbon and schematic representation of sodium storage mechanism (top panels) at different potential regions for each of these samples. ... 151

Figure 4. 20. a) Specific discharge capacity vs. cycle number using specific charge/discharge current between 20 mA·g\(^-1\) and 2000 mA·g\(^-1\). Potential range: 0.01 - 1.5 V vs. Na/Na\(^+\). b) Capacity retention as a function of specific charge/discharge current (capacity at 20 mA·g\(^-1\) was defined as 100 %). Error bars: standard deviation of three cells for each sample. C-rate cycling protocol: Cycles 1-3: 20 mA·g\(^-1\); Cycles 4-8: 200 mA·g\(^-1\); Cycles 9-48: 20 mA·g\(^-1\), 40 mA·g\(^-1\), 100 mA·g\(^-1\), 200 mA·g\(^-1\), 400 mA·g\(^-1\), 600 mA·g\(^-1\), 1000 mA·g\(^-1\), and 2000 mA·g\(^-1\) for each rate 5 cycles; Cycles 49-59: 200 mA·g\(^-1\).............. 152

Figure 4. 21. Representative potential profiles of hard carbons derived from olive stone up to 1000 °C (a), 1200 °C (b), 1400 °C (c) and 1600 °C (d) at constant current charge/discharge rates of 20 mA·g\(^-1\) (black), 40 mA·g\(^-1\) (grey), 100 mA·g\(^-1\) (red), 200 mA·g\(^-1\) (green) and 400 mA·g\(^-1\) (yellow). 153

Figure 5. 1. Picture of a) as-received cut MDF panels as well as b) impregnated MDF wood with water-based 3.0 M Ni (NO\(_3\))\(_2\) solution. .. 165

Figure 5. 2. a) Schematic illustration and b) picture of supercapacitor working electrodes................. 168

Figure 5. 3. Schematic illustration of three-electrode set-up.. 168

Figure 5. 4. a) Typical cyclic voltammetry (CV) curves and b) galvanostatic charge-discharge (GCD) curves for the case of an ideal supercapacitor (black curves); and for the practical case of having pseudocapacitance and curve distortion due to Faradaic reactions (red curves). Redrawn from (37). .. 169

Figure 5. 5. Schematic diagram of symmetric two-electrode Swagelok® cells. Redrawn from (39). 170

Figure 5. 6. Representative SEM micrographs: a, b) Front and side views of a representative fibre from conventional non-treated MDF carbon carbonized at 300 °C; c, d) Front and side views of a representative fibre of MDF Ni H\(_2\)O 300°C sample; e) MDF Ni H\(_2\)O 1000°C sample where globular
nickel nanoparticles are appreciable under light contrast before acid washing, and f) after acid washing with HCl. ... 172

Figure 5.7. Representative TEM micrographs of MDF Ni H$_2$O 300 ºC (a, b, c) and 1000 ºC (d, e, f) samples; b, c) TEM image 300 ºC sample, showing the crumpled morphology along with the homogeneous distribution of nickel nanoparticles (particle size distribution shown in the inset of the figure c); f) Combined compositional map in STEM-HAADF images (bright field) of MDF Ni H$_2$O 1000 ºC sample showing EDX elemental mapping of C and Ni elements. The green-coloured area corresponds to Ni phase, while the red-one corresponds to C. ... 173

Figure 5.8. Representative TEM micrographs of MDF Ni H$_2$O 1000 ºC sample after acid etching with HCl at different magnifications. The letter G represents the hollow ordered graphitic structures and the arrows show the edges and corrugations on the sheets surface. ... 174

Figure 5.9. SEM micrographs of MDF impregnated with nickel nitrate water-based solution before heat-treatment, showing the debonding of cellulosic fibres but no change in fibre morphology; a) low magnification and b) high magnification SEM image. ... 174

Figure 5.10. TGA/DSC of raw MDF, MDF impregnated with Ni (NO$_3$)$_2$ isopropanol-based solution (40) and MDF impregnated with Ni (NO$_3$)$_2$ water-based solution: a) weight loss (left; solid lines) and derivative weight loss (right; dotted lines) versus temperature during carbonization; b) Heat-flow curve versus temperature. ... 175

Figure 5.11. Representative TGA (left; solid line)/ DSC (right; dotted line) analyses of hexahydrate nickel nitrate powder. Weight loss (left axis- solid line) and heat flow (right axis-dotted line) signals vs. temperature during heat-treatment under a nitrogen flow rate of 100 ml·min$^{-1}$ (heating rate 10ºC·min$^{-1}$). Different stages during thermal decomposition are illustrated as grey-scale coloured areas, according to the work of Brockner et al. (50). ... 176

Figure 5.12. FTIR spectra of raw MDF and MDF impregnated with water-based Ni (NO$_3$)$_2$ solution. ... 176

Figure 5.13. Schematic illustration of the wood cell wall structure, fabrication of medium density fibreboard wood and synthesis of 3D framework of graphene-like nanosheets by previous impregnation with water-based nickel nitrate solution. ... 177

Figure 5.14. FT-IR spectra of nitrocellulose synthetized by esterification of hydroxyl groups with nitric acid and sulphuric acid (ratio weight 1:3) of natural cotton. ... 178

Figure 5.15. a) N$_2$ adsorption/desorption isotherms and pore size distributions (inset of the figure) calculated by applying the BJH method to the desorption data of MDF Ni H$_2$O 300 and 1000 ºC samples; High-Resolution TEM images showing the porous structure of MDF Ni H$_2$O b) 300 ºC and c) 1000 ºC. ... 180

Figure 5.16. X-ray diffraction patterns of MDF Ni H$_2$O 300 and 1000 ºC. ... 180
Figure 5. 17. Raman spectra of MDF Ni H$_2$O a) 300 and b) 1000 °C samples. Spectra were deconvoluted into relevant carbonaceous bands as described in the main text. The green line corresponds to the residual, while the red one represents the fitted data. ..181

Figure 5. 18. High-resolution TEM image and selected-area electron diffraction pattern (SAED) inset of a MDF sample impregnated with Ni (NO$_3$)$_2$ solution after pyrolysis up to 300 °C.182

Figure 5. 19. XPS spectra exhibiting characteristic peaks located at approximately 285, 400, 533 and 855 eV, corresponding to C$_{1s}$, N$_{1s}$, O$_{1s}$ and Ni$_{2p}$ contributions. a) General XPS spectra and b, c, d) Results of C$_{1s}$ spectra fitting of MDF Ni H$_2$O 300 and 1000 °C compared to that of MDF Ni isop 1000 °C. ...183

Figure 5. 20. a) Representative CV curves of MDF Ni H$_2$O 1000 °C carbon at sweep rates ranging from 5 to 200 mV·s$^{-1}$; b) Typical galvanostatic charge/discharge curves of MDF Ni H$_2$O 1000°C at different current densities...185

Figure 5. 21. a) Specific capacitance as a function of current density; b) Capacitance retention of MDF Ni H$_2$O 1000 °C over 1000 galvanostatic charge/discharge experiments at 500 mA·g$^{-1}$..........................185

Figure 5. 22. Summary of relevant electrochemical measurements on a symmetric two-electrode set-up of MDF Ni H$_2$O 1000 °C. a) Representative CV curves at different sweep rates ranging from 5 to 200 mV·s$^{-1}$; b) Typical galvanostatic charge/discharge curves at different current densities. c) Variation of specific capacitance as a function of current density (from 0.02 to 50 A·g$^{-1}$). ...186

Figure 5. 23. a) Discharge capacities of Fe-graphitized MDF / MDF Ni H$_2$O carbon samples at 1000 °C compared to one commercial graphite (SMG A4) during cycling at different specific current densities; b) Capacity retention as a function of specific charge/discharge current density. Error bars are equal to one standard deviation. C-rate test plan → Cycles 1 - 3: 37.2 mA·g$^{-1}$; Cycles 4 - 30: 372 mA·g$^{-1}$; Cycles 31 - 70: rates 37.2, 74.4, 186, 372, 744, 1166, 1860, 3720 mA·g$^{-1}$ for each rate 5 cycles; Cycle 70 onwards: 372 mA·g$^{-1}$..188

Figure 5. 24. Cycling performance of a commercial SMG A4 graphite and MDF Ni H$_2$O derived carbon anode materials (100 0°C) at specific current of 372 mA·g$^{-1}$ for 200 cycles after the C-rate test.189

Figure 5. 25. a) Representative constant-current potential profile (at a specific current of 37.2 mA·g$^{-1}$) for the 1st charge/discharge cycle. Red area shows the irreversible capacity between the first cycle charge/discharge capacities..189
List of Tables

Table 2.1. Comparative of lithium-ion batteries and supercapacitors (100-102).24
Table 2.2. Sodium versus Lithium characteristics (147, 156). ..35
Table 2.3. Properties and characteristics of various carbon materials as supercapacitors electrode materials (from (210) and (222)) for aqueous electrolytes. ..46

Table 3.1. Overview of graphitic anode materials for lithium-ion batteries by using catalytic graphitization by means of Fe. Data were collected from previous works as indicated in the table. ...67
Table 3.2. Summary of electrode preparation and cell assembly parameters.80
Table 3.3. Summary of most relevant microstructural of MDF-derived carbon samples, with and without the effect of an Fe catalyst. [Note: Degree of graphitization, α, calculated from Raman spectra fitting; d_{002} stands for the interplanar distance of the maximum point reflection of graphite peak (Average values of two measurements); L_c indicates a stack thickness of the graphite domains along the c-axis estimated from Scherrer equation; L_a refers to the crystallite size along the basal planes and was estimated from Raman fitting]. ...94
Table 3.4. Summary of surface properties from BET and MNLDFT theories. “Non-basal” and “basal” plane surface areas were calculated from nitrogen adsorption/desorption curves using DFT theory and both sum up to the DFT surface area ...100
Table 3.5. Specific discharge/charge capacities (Q_{dis} and Q_{ch}) of all carbonaceous materials studied in this work (with and without catalyst), along with respective Coulombic efficiency (CE) and irreversible capacity (Q_{irr}) of three first galvanostatic charge/discharge cycles (specific current 37.2 mA·g^{-1}).....105
Table 3.6. Specific discharge capacities of all carbon anodes at specific current densities from 37.2 mA·g^{-1} to 3.72 A·g^{-1}) (values from C-rate study, each corresponding to the 4th cycle after specific current change) ..113

Table 4.1. Overview of biomass-derived anode materials for sodium ion batteries.127
Table 4.2. Summary of surface areas as well as pore volumes of olive stone-derived hard carbons as a function of carbonization temperature from N_{2} at 77 K as well as CO_{2} at 273 K adsorption isotherms analysis. True density values estimated from helium pycnometry are also included for comparison. ..138
Table 4.3. Results from the deconvolution of Raman spectra: D\text{1}/G intensity ratio, estimated degree of graphitization (α) and concentration of defects (β) as a function of heat-treatment temperature.139
Table 4.4. Specific reversible capacities of all carbon anodes at specific current densities between 20 mA·g^{-1} and 2000 mA·g^{-1} (values from c-rate study, each corresponding to the 3rd cycle after current rate changes). Errors represent one standard deviation from three cells. ...152
Table 5.1. Summary of relevant microstructural parameters of MDF samples impregnated with nickel nitrate solutions from N\textsubscript{2} adsorption/desorption measurements and Raman results fitting of relevant carbonaceous bands: D\textsubscript{1}/G and D\textsubscript{2}/G intensity ratios, estimated degree of graphitization (\(\alpha\)) and G band FWHM.

Table 5.2. XPS elemental analysis. Atomic content of C, O, Ni and N chemical groups, estimation of C/O and sp3 to sp2 ratio from peak deconvolution.
List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC</td>
<td>Activated Carbon</td>
</tr>
<tr>
<td>ASA</td>
<td>Active Surface Area</td>
</tr>
<tr>
<td>ATR</td>
<td>Attenuated Total Teflection</td>
</tr>
<tr>
<td>BET</td>
<td>Brunauer, Emmett And Teller</td>
</tr>
<tr>
<td>BJH</td>
<td>Barrett-Joyner-Halenda</td>
</tr>
<tr>
<td>BMD</td>
<td>Bockris-Müller-Devanathan</td>
</tr>
<tr>
<td>CE</td>
<td>Counter Electrode</td>
</tr>
<tr>
<td>CMC</td>
<td>Carboxymethyl Cellulose</td>
</tr>
<tr>
<td>CNT</td>
<td>Carbon Nanotube</td>
</tr>
<tr>
<td>CV</td>
<td>Cyclic Voltammetry</td>
</tr>
<tr>
<td>CVD</td>
<td>Chemical Vapour Deposition</td>
</tr>
<tr>
<td>DEC</td>
<td>Diethyl Carbonate</td>
</tr>
<tr>
<td>DF</td>
<td>Dark Field</td>
</tr>
<tr>
<td>DFT</td>
<td>Density Functional Theory</td>
</tr>
<tr>
<td>DGM</td>
<td>Dyglime</td>
</tr>
<tr>
<td>DMC</td>
<td>Dimethyl Carbonate</td>
</tr>
<tr>
<td>DSC</td>
<td>Differential Scanning Calorimetry</td>
</tr>
<tr>
<td>DTG</td>
<td>Differential Thermogravimetric</td>
</tr>
<tr>
<td>EC</td>
<td>Ethylene Carbonate</td>
</tr>
<tr>
<td>EDLC</td>
<td>Electric Double-Layer capacitor</td>
</tr>
<tr>
<td>EDX</td>
<td>Energy Dispersive X-Ray</td>
</tr>
<tr>
<td>EG</td>
<td>Expanded Graphite</td>
</tr>
<tr>
<td>EMC</td>
<td>Ethyl Methyl Carbonate</td>
</tr>
<tr>
<td>EV</td>
<td>Electric Vehicle</td>
</tr>
<tr>
<td>FEC</td>
<td>Fluoroethylene Carbonate</td>
</tr>
<tr>
<td>FTIR</td>
<td>Fourier Transform Infrared Spectroscopy</td>
</tr>
<tr>
<td>FWHM</td>
<td>Full Width at Half Maximum</td>
</tr>
<tr>
<td>GCD</td>
<td>Galvanostatic Charge/Discharge</td>
</tr>
<tr>
<td>GIC</td>
<td>Graphitic Intercalation Compounds</td>
</tr>
<tr>
<td>HAADF</td>
<td>High-Angle Annular Dark Field</td>
</tr>
<tr>
<td>HR</td>
<td>High-Resolution</td>
</tr>
<tr>
<td>HTT</td>
<td>Heat Treatment Temperature</td>
</tr>
<tr>
<td>ICP-OES</td>
<td>Inductively Coupled Plasma Optical Emission Spectroscopy</td>
</tr>
<tr>
<td>IR</td>
<td>Infrared Radiation</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>LIB</td>
<td>Lithium Ion Battery</td>
</tr>
<tr>
<td>LTO</td>
<td>Lithium Titanate Oxide</td>
</tr>
<tr>
<td>MDF</td>
<td>Medium Density Fiberboard Wood</td>
</tr>
<tr>
<td>MNLDFT</td>
<td>Modified Non-Local Density Functional</td>
</tr>
<tr>
<td>NG</td>
<td>Natural Graphite</td>
</tr>
<tr>
<td>NMP</td>
<td>1-Methyl-2-Pyrrolidinone</td>
</tr>
<tr>
<td>OCV</td>
<td>Open-Circuit Potential</td>
</tr>
<tr>
<td>PC</td>
<td>Propylene Carbonate</td>
</tr>
<tr>
<td>PDF</td>
<td>Pair Distribution Function</td>
</tr>
<tr>
<td>PG</td>
<td>Pristine Graphite</td>
</tr>
<tr>
<td>PSD</td>
<td>Pore Size Distribution</td>
</tr>
<tr>
<td>PTFE</td>
<td>Polytetrafluoroethylene</td>
</tr>
<tr>
<td>PVDF</td>
<td>Polyvinylidene Difluoride</td>
</tr>
<tr>
<td>RE</td>
<td>Reference Electrode</td>
</tr>
<tr>
<td>SA</td>
<td>Sodium Alginate</td>
</tr>
<tr>
<td>SAED</td>
<td>Selected Area Diffraction</td>
</tr>
<tr>
<td>SEI</td>
<td>Solid Electrolyte Interphase</td>
</tr>
<tr>
<td>SEM</td>
<td>Scanning Electron Microscopy</td>
</tr>
<tr>
<td>SG</td>
<td>Synthetic Graphite</td>
</tr>
<tr>
<td>SHE</td>
<td>Standard Hydrogen Electrode</td>
</tr>
<tr>
<td>SIB</td>
<td>Sodium Ion Battery</td>
</tr>
<tr>
<td>STEM</td>
<td>Scanning Transmission Electron Microscopy</td>
</tr>
<tr>
<td>TEM</td>
<td>Transmission Electron Microscopy</td>
</tr>
<tr>
<td>TGA</td>
<td>Thermogravimetric Analysis</td>
</tr>
<tr>
<td>TMO</td>
<td>Transition Metal Oxides</td>
</tr>
<tr>
<td>VC</td>
<td>Vinylene Carbonate</td>
</tr>
<tr>
<td>WE</td>
<td>Working Electrode</td>
</tr>
<tr>
<td>XPS</td>
<td>X-Ray Photoelectron Spectroscopy</td>
</tr>
<tr>
<td>XRD</td>
<td>X-Ray Diffraction</td>
</tr>
<tr>
<td>Symbol</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>a</td>
<td>Degree of graphitization</td>
</tr>
<tr>
<td>β</td>
<td>Concentration of defects</td>
</tr>
<tr>
<td>$at.$</td>
<td>Atomic</td>
</tr>
<tr>
<td>CE</td>
<td>Coulombic efficiency</td>
</tr>
<tr>
<td>d_{002}</td>
<td>Interplanar distance</td>
</tr>
<tr>
<td>dQ/dV</td>
<td>Differential capacity plot</td>
</tr>
<tr>
<td>I_c</td>
<td>Charge current</td>
</tr>
<tr>
<td>I_d</td>
<td>Discharge current</td>
</tr>
<tr>
<td>I_{D1}/I_G</td>
<td>Raman intensity ratio between D$_1$ and G bands</td>
</tr>
<tr>
<td>L_a</td>
<td>Crystallite size along the basal plane of graphite</td>
</tr>
<tr>
<td>L_c</td>
<td>Crystallite size along the stacking direction of graphite</td>
</tr>
<tr>
<td>MDF</td>
<td>Medium density fibreboard-derived carbon treated with Fe</td>
</tr>
<tr>
<td>MDF</td>
<td>Medium density fibreboard-derived carbon treated with water-based nickel nitrate solution</td>
</tr>
<tr>
<td>MDF</td>
<td>Medium density fibreboard-derived carbon treated with isopropanol-based nickel nitrate solution</td>
</tr>
<tr>
<td>P/P_0</td>
<td>Relative pressure</td>
</tr>
<tr>
<td>P_0</td>
<td>Saturation pressure</td>
</tr>
<tr>
<td>Q</td>
<td>Capacity</td>
</tr>
<tr>
<td>Q_{ch}</td>
<td>Charge capacity</td>
</tr>
<tr>
<td>Q_{dis}</td>
<td>Discharge Capacity</td>
</tr>
<tr>
<td>Q_{irr}</td>
<td>Irreversible capacity</td>
</tr>
<tr>
<td>Q_{rev}</td>
<td>Reversible capacity</td>
</tr>
<tr>
<td>t_c</td>
<td>Charge time</td>
</tr>
<tr>
<td>t_d</td>
<td>Discharge time</td>
</tr>
<tr>
<td>v/v</td>
<td>Volume to Volume Ratio</td>
</tr>
<tr>
<td>wt.</td>
<td>Weight</td>
</tr>
</tbody>
</table>
Chapter 1
Introduction
1.1. Motivation

As a result of climate change and global economic growth, the topic of energy supply and storage has emerged as one of the main issues that humanity faces and, despite their impact in global warming, fossil fuels still remain our main source of energy (1). However, due to the global concerns regarding a future shortage of fossil fuels and raising levels of environmental pollution, there is an urgent need to develop new renewable and sustainable energy sources.

Renewable energy sources, such as solar or wind, have been steadily increasing in recent years (2), but still fall short on supplying energy in a stable and continuous manner due to their strong dependence on atmospheric conditions, which means that peak renewable production normally occurs during periods of low energy demand. Thus, one of the current topics of study is the implementation of large-scale energy storage systems next to power plants to offset the problem of continuity of supply and endow such technologies with future prospects (3). In addition, the growing market of electric vehicles with lower CO₂ emissions and portable electronic devices has also prompted the development of energy storage technologies (4, 5).

The development and improvement of energy storage systems constitutes one of the greatest challenges of present times and has become a primary focus in the scientific and industrial communities (6). Among the variety of systems based on either chemical or physical processes that are capable of storing electrical energy, two major technologies are nowadays in the front line: rechargeable batteries and supercapacitors (7). Lithium-ion rechargeable batteries represent the state-of-the-art technology for portable and electric vehicles applications due to their high gravimetric and volumetric energy densities, despite their poor power density (8). Alternatively, sodium-ion batteries have been proposed as alternative devices to lithium-ion batteries because of the wider availability of source materials and lower manufacturing costs. Meanwhile, supercapacitors deliver excellent cyclic stability and power density, but have rather low energy densities.

Besides the quest for higher energy and power densities, there is interest in developing more environmentally-friendly processes for the manufacturing of these devices, as currently state-of-the-art systems rely on scarce resources, the extraction of which has a tremendous environmental impact (9,
Despite intensive effort devoted to find alternative active materials for electrode formulation, carbon materials are still at the forefront of research due to their interesting intrinsic physicochemical properties such as good electrical conductivity, high chemical stability, tailorable surface properties and ease of processing. Carbon materials can be easily obtained from carbonization of naturally available biomass resources, making their synthesis eco-friendly and cost-effective in a circular economy framework (11). However, further efforts are needed to optimize the electrochemical performance of biomass-derived carbon electrodes. Our understanding of how the carbon microstructure and surface properties evolve with processing conditions and their effect on the electrochemical properties is still lacking.

1.2. Aim and objectives of the thesis

The main goal of this thesis is to develop sustainable carbon materials from biomass resources, for their use as electrodes in energy storage systems such as lithium-ion batteries, sodium-ion batteries and supercapacitors. To achieve this goal, we need to establish a correlation between electrochemical properties and structural aspects of the materials, and understand how they are influenced by processing conditions. Accordingly, the specific objectives addressed along the thesis are as follows:

- Explore routes to obtain highly crystalline graphitic materials from biomass resources, by using Fe as a catalyst to induce graphitization at low temperatures (850 - 2000 °C), as well as to contribute to our understanding of the mechanisms responsible for catalytic graphitization.
- Evaluate the electrochemical properties of Fe-graphitized carbons as anodes for lithium-ion batteries and investigate the influence of processing, microstructural and surface parameters on the anodic electrochemical properties.
- Study the effect of processing parameters on the microstructural and textural characteristics of biomass-derived hard carbon materials (800 - 2000 °C). Carry out a comprehensive study on their structural evolution and local range atomic order as a function of target processing temperature by alternative approaches.
- Evaluate the electrochemical properties of hard carbons from biomass resources as anodes for sodium-ion batteries. Obtain further insight into the storage mechanisms involved at characteristic potential regions and study the dependence of the structural evolution and microstructural features on the anodic electrochemical properties.
- Synthesis and microstructural characterization of nanostructured porous graphene-like carbon materials derived from biomass resources, using an explosion-assisted activation strategy by nitrate compounds and Ni as graphitization catalyst. Evaluation of their electrochemical properties as electrodes in supercapacitors as well as lithium-ion batteries.
1.3. Outline of the thesis

This thesis is structured in six chapters. This first chapter states the goals of this thesis, followed by an outline of each of the following chapters.

The second chapter reviews the classification of carbon materials in terms of their microstructure and the phenomena of catalytic graphitization process by transition metals. Then, the chapter gives an overview of current energy framework, energy storage devices technologies, and state-of-the-art carbonaceous electrode materials for lithium-ion batteries, sodium-ion batteries and electric double-layer capacitors.

The third chapter presents the main results of the graphitization of biomass resources by using Fe as a catalyst and the related microstructural and surface characterization as a function of treatment temperature. Then, the chapter focuses on the electrochemical study of these materials as anodes for lithium-ion batteries to discuss the correlation between microstructural features and anodic electrochemical properties.

The fourth chapter reports on the synthesis of hard carbons from biomass resources and their application as anode materials for sodium-ion batteries, in order to understand the relationship between microstructure and anodic electrochemical properties. This chapter gives significant insights into the sodium storage mechanisms at each characteristic potential regions, contributing to the current debate regarding storage mechanisms of sodium ions into hard carbon structures.

The fifth chapter presents the results of the thermal and microstructural characterization of porous graphene-like carbon materials synthetized by an explosion-assisted activation strategy using highly concentrated nickel nitrate solution as the activating agent. Then, the electrochemical performance of these materials as electrodes for supercapacitors and lithium-ion batteries is reported.

Third, fourth and fifth chapters include each a brief scientific background of previous works on specific topics to better understand the main motivation of performing such investigations.

Finally, the sixth chapter outlines the main contributions of this thesis to each of the topics covered and the main conclusions. In addition, some possible future research lines are presented.

1.4. List of publications

The following works are original and fully carried-out by the author and co-authors during the thesis period. The author has express authorization for using their content as parts of the thesis.

Papers in indexed journals directly related to this thesis:

“New insights into the correlation of structure and performance of hard carbons as anodes for sodium ion batteries” (under review).

Contributions to national and international conferences directly related to this thesis:

Papers in indexed journals not directly related to this thesis:

Contributions to national and international conferences not directly related to this thesis:

Awards in national and international conferences:

1.5. References