Clipped cyclodextrins.

Figure A1. 1H and 13C NMR (600 MHz and 125.7, D$_2$O and MeOD, respectively) spectra of 1.
Figure A2. 1H and 13C NMR (600 MHz and 125.7 MHz, D$_2$O and MeOD, respectively) spectra of 2.
Figure A3. 1H and 13C NMR (600 MHz and 100.6 MHz, MeOD, respectively) spectra of 3.
Figure A4. 1H and 13C NMR (600 MHz and 100.6 MHz, MeOD, respectively) spectra of 4.
Figure A5. 1H and 13C NMR (600 MHz and 151.2 MHz, MeOD, respectively) spectra of 5.
Figure A6. 1H and 13C NMR (600 MHz and 151.2 MHz, D$_2$O, respectively) spectra of 6.
Facially differentiated α-cyclodextrin derivatives.

Figure A7. 1H and 13C NMR (500 MHz and 100.6 MHz, CDCl$_3$, respectively) spectra of 7.
Figure A8. ^1H and ^{13}C NMR (500 MHz and 100.6 MHz, CDCl$_3$, respectively) spectra of 8.
Figure A9. 1H and 13C NMR (500 MHz and 100.6 MHz, CDCl$_3$, respectively) spectra of 9.
Figure A10. 1H and 13C NMR (500 MHz and 125.7 MHz, CDCl$_3$, respectively) spectra of 10.
Figure A11. 1H and 13C NMR (600 MHz and 125.7 MHz, MeOD and CDCl$_3$, respectively) spectra of 11.
Figure A12. 1H and 13C NMR (500 MHz and 100.6 MHz, CDCl$_3$, respectively) spectra of 12.
Figure A13. 1H and 13C NMR (500 MHz and 100.6 MHz, CDCl$_3$, respectively) spectra of 13.
Figure A14. 1H and 13C NMR (500 MHz and 125.7 MHz, DMSO-d_6, 343 K and 323 K, respectively) spectra of 14.
Figure A15. 1H and 13C NMR (500 MHz and 100.6 MHz, DMSO-d_6, 323 K and 298 K, respectively) spectra of 15.
Figure A16. 1H and 13C NMR (400 MHz and 125.7 MHz, DMSO-d_6, 343 K and 323 K, respectively) spectra of 16.
Figure A17. 1H and 13C NMR (500 MHz and 100.6 MHz, D$_2$O, 343 K and 298 K, respectively) spectra of 17.
Figure A18. 1H and 13C NMR (400 MHz and 125.7 MHz, DMSO-d_6, 343 K and 323 K, respectively) spectra of 18.
Figure A19. 1H and 13C NMR (500 MHz and 100.6 MHz, D$_2$O, 323 K and 298 K, respectively) spectra of 19.
Figure A20. 1H and 13C NMR (500 MHz and 125.7 MHz, DMSO-d_6, 343 K and 323 K, respectively) spectra of 20.
Figure A21. 1H and 13C NMR (500 MHz and 100.6 MHz, D$_2$O, 323 K and 298 K, respectively) spectra of 21.
Figure A22. 1H and 13C NMR (500 MHz and 150.9 MHz, DMSO-d_6, 343 K and 298 K, respectively) spectra of 22.
Figure A23. 1H and 13C NMR (500 MHz and 125.7 MHz, DMSO-d_6, 323 K, respectively) spectra of 23.
Figure A24. 1H and 13C NMR (500 MHz and 125.7 MHz, DMSO-d_6, 343 K and 323 K, respectively) spectra of 24.
Figure A25. 1H and 13C NMR (500 MHz and 100.6 MHz, 2:1 MeOD:D$_2$O and D$_2$O, 323 K and 298 K, respectively) spectra of 25.
Figure A26. 1H and 13C NMR (400 MHz and 100.6 MHz, DMSO-d_6, 343 K, respectively) spectra of 26.
Figure A27. 1H and 13C NMR (500 MHz and 100.6 MHz, 10:1 DMSO-d_6:D$_2$O, 323 K and 298 K, respectively) spectra of 27.
Figure A28. 1H and 13C NMR (500 MHz and 125.7 MHz, DMSO-d_6, 343 K and 298 K, respectively) spectra of 28.
Figure A29. 1H and 13C NMR (500 MHz and 100.6 MHz, DMSO-d_6, 343 K and 298 K, respectively) spectra of 29.
Figure A30. 1H and 13C NMR (500 MHz and 100.6 MHz, DMSO-d_6, 343 K, respectively) spectra of 30.
Figure A31. 1H and 13C NMR (500 MHz and 100.6 MHz, DMSO-d_6, 343 K, respectively) spectra of 31.
Figure A32. 1H and 13C NMR (500 MHz and 100.6 MHz, DMSO-d_6, 343 K, respectively) spectra of 32.
Figure A33. 1H and 13C NMR (500 MHz and 100.6 MHz, D$_2$O, respectively) spectra of 33.
Facially differentiated β-cyclodextrin derivatives.

Figure A34. 1H and 13C NMR (500 MHz and 125.7 MHz, CDCl$_3$, respectively) spectra of 34.
Figure A35. 1H and 13C NMR (500 MHz and 125.7 MHz, CDCl$_3$, respectively) spectra of 35.
Figure A36. 1H and 13C NMR (500 MHz and 100.6 MHz, MeOD, respectively) spectra of 36.
Figure A37. 1H and 13C NMR (600 MHz and 125.7 MHz, MeOD and CDCl$_3$, respectively) spectra of 37.
Figure A38. 1H and 13C NMR (500 MHz and 100.6 MHz, CDCl$_3$, respectively) spectra of 38.
Figure A39. 1H and 13C NMR (500 MHz and 125.7 MHz, CDCl$_3$, respectively) spectra of 39.
Figure A40. 1H and 13C NMR (500 MHz and 125.7 MHz, DMSO-d_6, 343 K, respectively) spectra of 40.
Figure A41. 1H and 13C NMR (500 MHz and 125.7 MHz, DMSO-d_6 and D$_2$O, 343 K and 323 K, respectively) spectra of 41.
Figure A42. 1H and 13C NMR (500 MHz and 100.6 MHz, DMSO-d_6, 343 K, respectively) spectra of 42.
Figure A43. 1H and 13C NMR (500 MHz and 100.6 MHz, MeOD, respectively) spectra of 43.
Figure A44. 1H and 13C NMR (500 MHz and 125.7 MHz, DMSO-d_6, 343 K, respectively) spectra of 44.
Figure A45. 1H and 13C NMR (500 MHz and 100.6 MHz, D$_2$O, 323 K, respectively) spectra of 45.
Figure A46. 1H and 13C NMR (500 MHz and 125.7 MHz, DMSO-d_6, 343 K and 323 K, respectively) spectra of 46.
Figure A47. 1H and 13C NMR (500 MHz and 125.7 MHz, 10:1 MeOD-D$_2$O, 323 K, respectively) spectra of 47.
Figure A48. 1H and 13C NMR (500 MHz and 125.7 MHz, DMSO-d_6, 343 K, respectively) spectra of 48.
Figure A49. 1H and 13C NMR (500 MHz and 125.7 MHz, D$_2$O, 323 K and 298 K, respectively) spectra of 49.
Figure A50. \(^1\)H and \(^{13}\)C NMR (500 MHz and 100.6 MHz, DMSO-\(d_6\), 343 K, respectively) spectra of 50.
Figure A51. 1H and 13C NMR (500 MHz and 100.6 MHz, 10:1 MeOD-D$_2$O, 323 K and 298 K, respectively) spectra of 51.
Figure A52. 1H and 13C NMR (500 MHz and 125.7 MHz, DMSO-d_6, 343 K, respectively) spectra of 52.
Figure A53. 1H and 13C NMR (500 MHz and 100.6 MHz, 10:1 MeOD-D$_2$O, respectively) spectra of 53.
Figure A54. H and 13C NMR (500 MHz and 100.6 MHz, DMSO-d_6 323 K and 298 K, respectively) spectra of 54.
Figure A55. 1H and 13C NMR (500 MHz and 100.6 MHz, 10:1 MeOD-D$_2$O, respectively) spectra of 55.