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ABSTRACT. 

 We report the synthesis and structural characterization of five-coordinate 

complexes of rhodium and iridium of type [(5-C5Me5)M(N^N)]+ (3-M+), where N^N 

represents the aminopyridinate ligand derived from 2-NH(Ph)-6-(Xyl)C5H3N (Xyl = 

2,6-Me2C6H3). The two complexes were isolated as salts of the BArF anion (BArF = 

B[3,5-(CF3)2C6H3]4). 

 The M—Namido bond of complexes 3-M+ activated readily CO, C2H4 and H2. 

Thus, compounds 3-M+ reacted with CO under ambient conditions, but whereas for 3-

Rh+, CO migratory insertion was fast yielding a carbamoyl carbonyl species, 4-Rh+, the 

stronger Ir—Namido bond of complex 3-Ir+ caused the reaction to stop at the CO 

coordination stage. In contrast, 3-Ir+ reacted reversibly with C2H4 forming adduct 5-Ir+, 

which subsequently rearranged irreversibly to a [Ir](H)(=C(Me)N(Ph)-) complex 6-Ir+, 

that contains a N-stabilized carbene ligand. Computational studies supported a 

migratory insertion mechanism, giving first a -stabilized linear alkyl unit, [Ir]-

CH2CH2N(Ph)-, followed by a multi-step rearrangement that led to the final product 6-

Ir+. Both - and -H eliminations, as well as their microscopic reverse migratory 

insertion reactions, were implicated in the alkyl-to-hydride/carbene reorganization. The 

analogous reaction of 3-Rh+ with C2H4 originated a complex mixture of products from 

which only a branched alkyl [Rh]-C(H)(Me)N(Ph)- (5-Rh+) could be isolated, featuring 

a -agostic methyl interaction. Reactions of 3-M+ with H2 promoted a catalytic 

isomerization of the Ap ligand from classical k2-N,N´ binding to k-N plus 3-

pseudoallyl coordination mode. 
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INTRODUCTION 

 In recent years we have explored the chemistry of cationic [(5-C5Me5)M(III)] 

complexes of rhodium and iridium stabilized by coordination to bulky, formally 

monoanionic bidentate ligands (L^X), encompassing cyclometalated phosphines and 

especially in the context of this work, aminopyridinates.1,2 The latter are also called 

pyridylamido ligands and are represented onwards in a simplified manner as Ap or as 

N^N (see Figure 1).3 Compounds built around [(5-C5Me5)M] rhodium and iridium 

frameworks have arisen considerable interest, for they are valuable molecules finding 

countless applications in catalysis,4-7 bio-organometallic studies,8,9 and other areas of 

research.10 

Similarly to previously reported amido complexes of late transition metals,11 the 

amido nitrogen atom of metal-bound aminopyridinate groups can function as a -donor 

(Figure 1a), partially offsetting the electronic unsaturation of positively charged metal 

centers, and allowing the stabilization of five-coordinate complexes of the type [(5-

C5Me5)M(N^N)]+. As represented in Figure 1, bulky aryl substituents on both the amido 

and six-position of the pyridine termini, may provide desirable steric protection to the 

low-coordinate metal center. 

 The previously reported complexes1,2 behaved as markedly reactive Lewis acids 

when treated with a variety of Lewis bases (L), forming readily the corresponding six-

coordinate, 18-electron adducts [(5-C5Me5)M(N^N)(L)]+ (L = NH3, NCMe, CNXyl, 

and others). Intriguingly, none of the compounds investigated reacted with C2H4 even 

under rather forcing conditions, hampering observation of products originating from 

migratory insertion of the alkene into the M—Namido bond.12,13 It appeared plausible that 

failure to detect C2H4 reactivity was due to steric reasons, in other words, that the 

required side-on metal approach of the C=C bond was impeded by steric interactions 

with the C5Me5 and Ap ligands, in particular with the aryl substituents of the amido 

nitrogen atom. In accordance with this assumption, it was found that complexes of 

rhodium and iridium alike, exhibited a significant decrease in the rate of the H2-

catalyzed isomerization of the coordinated pyridylamido ligand from the common k2-
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N,N´ binding to an unconventional k-N,3-benzylic bonding mode (Figure 1b), when 

the Namido substituent was changed from 2,6-Me2C6H3 to 2,6-Pr2
iC6H3. 

Considering the above information, we deemed of interest studying the 

chemistry of related [(5-C5Me5)M(N^N)]+ complexes, 3-Rh+ and 3-Ir+, in which the 

aminopyridinate ligand is the conjugated base of phenyl[6-(2,6-

dimethylphenyl)pyridine-2-yl]amine (compound 1 in Figure 1c). Relative to previously 

assayed Ap ligands, little if any relevant changes are introduced in the overall electronic 

properties of the N^N chelating unit, whereas replacing the Namido 2,6-R2C6H3 (R = Me, 

Pri) substituent by the substituent-devoid phenyl group is expected to mitigate 

significantly steric hindrance in the vicinity of the short  bond of 

complexes 3-M+, facilitating ligand coordination. 

In this contribution we report studies on the reactivity of complexes 3-M+ 

toward C2H4 that proceeds under mild conditions yielding products stemming from 

migratory insertion of the olefin into the M—Namido bond.12,13 Computational studies 

supporting a mechanistic path entailing irreversible C-N bond formation, along with 

reversible - and -H eliminations, and their microscopic reverse migratory insertion 

reactions, are also incorporated.14 Furthermore, for the investigated reaction of 3-Ir+ 

with C2H4, formation of the experimentally observed hydride-carbene product 6-Ir+ was 

computed to be more favorable than generation of the alternative hydride-olefin isomer. 

The mentioned reactivity adds to the observation of CO migratory insertion into the 

Rh—Namido bond of 3-Rh+, and to the diverse and unusual H-H, C-H and N-H bond 

activation encountered in the reactions of H2 with complexes 3-M+, although the latter 

activations are predictable on the basis of previous work.1,2 
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Figure 1. (a) General representation for five-coordinate complexes of [(5-

C5Me5)M(III)]+ units (M = Rh, Ir) and aryl-substituted aminopyridinate ligands. (b) 

Previously reported H2-catalyzed isomerization of the Ap ligand of complexes of type a. 

(c) The aminopyridinate precursor, 1, utilized in this work. 

 

RESULTS AND DISCUSSION 

Rhodium and iridium cationic [(5-C5Me5)M(Ap)]+ complexes. The synthesis 

of the amine ligand precursor ApH (compound 1, Figure 1c) was performed as reported 

previously for analogous, differently substituted aminopyridines.1b Synthetic and 

characterization details can be found in the Supporting Information (SI, see Scheme 

S1). The neutral chloride complexes [(5-C5Me5)M(Cl)(Ap)] (2-Ir, 2-Rh), were 

obtained from the corresponding [(5-C5Me5)MCl2]2 dimers and the lithium amide, 

LiAp. As shown in Scheme 1, the chloride ligand of compounds 2-M was readily 

extruded by action of NaBArF (BArF = B[3,5-(CF3)2C6H3]4) to give the five-coordinate 

amido-pyridine complexes [(5-C5Me5)M(N^N)]+ (3-Ir+, 3-Rh+). The reactions were 

accompanied by a pronounced color change from the original yellow or reddish to 

almost black or dark brown, for Ir and Rh, respectively. As noted previously,1,2 the dark 

color of these complexes is typical of compounds of this kind in which the M—Namido 

functionality has multiple bond character, due to - and -donation from the anionic 

nitrogen atom.10,15 

 

 

Scheme 1. Synthesis of the cationic complexes 3-M+. 
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 The four complexes 2-M and 3-M+ (M = Rh, Ir) were fully characterized by 

microanalysis, IR and multinuclear 1D and 2D NMR spectroscopy (see the 

Experimental Section and SI). In addition, neutral compounds 2-M, as well as 3-Ir+, 

were structurally authenticated by single-crystal X-ray studies. Figure 2 depicts the 

molecular structure of 3-Ir+, while those of chloride derivatives 2-M (Ir and Rh) are 

collected in Figures S35-S36 (see the SI). Metrical parameters have normal values, 

though it is worth remarking that the Ir—Namido bond length of this complex (Ir1—N2 

in Figure 2) at 1.972(6) Å, is significantly shorter than the corresponding bond in the 

neutral chloride precursor 2-Ir (2.092(2) Å), in agreement with the proposed -donor 

nature of the Namido function of 3-Ir+. Besides, the Ir1—N2 bond is also significantly 

shorter than the dative covalent Ir1—N1 bond to the pyridine moiety (2.109(6) Å) 

 

Figure 2. X-ray structure of complex 3-Ir+ (30% ellipsoids, anion BArF
- and hydrogens 

omitted for clarity). Selected bond lengths (Å) and angles (deg): Ir(1)–N(1) 2.109(6), 

Ir(1)–N(2) 1.972(6), Ir(1)–C(22) 2.158(7), Ir(1)–C(23) 2.176(7), Ir(1)–C(20) 2.133(8), 

Ir(1)–C(24) 2.194(7), Ir(1)–C(21) 2.155(7), N(2)-Ir(1)-N(1) 64.3(2), C(1)-N(1)-Ir(1) 

93.2(4), C(1)-N(2)-Ir(1) 98.2(4), N(1)-C(1)-N(2) 104.3(6) 

 

Reactions of Complexes 3-M+ with CO and C2H4. Similarly to related 

complexes of diversely substituted Ap ligands,1,2 the rhodium and iridium derivatives 3-

M+ exhibited distinct behaviour toward CO (Scheme 2). Thus, the room-temperature 

reaction of 3-Ir+ afforded the carbonyl adduct 4-Ir+, characterized by an IR absorption 

at 2048 cm-1 due to the stretching of the iridium-bound C—O bond. Under the reaction 

conditions (Scheme 2) migratory insertion of CO into the Ir—Namido bond did not take 

place. In contrast, an analogous CO adduct was not detected for rhodium, for 
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nucleophilic attack of the Rh—Namido bond to the coordinated carbonyl occurred very 

rapidly, with formation of a five-member chelating carbamoyl-pyridine group that 

became stabilized by coordination of a second molecule of CO, giving the isolated 

complex 4-Rh+. The incorporated CO units of this derivative gave rise to IR bands at 

2077 (Rh—CO) and 1687 cm-1 (Rh—C(O)N), along with corresponding 13C NMR 

resonances with  187.1 and 189.3 ppm (1JCRh = 76 and 30 Hz), respectively. Although 

not unprecedented, the insertion of carbon monoxide into a late transition metal-amide 

bond is a rather uncommon reaction.2,16 It seems probable that the stronger third-row 

metal-Namido bond, relative to the Rh—Namido bond, retards migratory insertion of CO, 

preventing observation of the analogous iridium-carboxamide linkage. In this regard it 

is worth remarking that migratory insertion of CO into the M—CH3 bond of the two 

different systems, fac-[M(CH3)(I)3(CO)2]
- and [(5-C5Me5)M(Me)Cl(CO)], is five or six 

orders of magnitude faster on rhodium than on iridium.17 

 

Scheme 2. Synthesis of the carbonyl complexes 4-Ir+ and 4-Rh+. Reactions were 

performed at room temperature under 1 bar of CO.  

 

 The carbonyl derivatives 4-M+ were also characterized by single-crystal X-ray 

studies. Figure 3 contains ORTEP perspective views of the molecules of the two 

compounds. Some relevant bond distances and angles are also given. Besides the 

noticeable, although expected increase in the length of the Ir—Namido bond of 4-Ir+, now 

devoid of -component, relative to 3-Ir+ (2.089(6) vs. 1.972(6) Å), metrical parameters 

have normal values. 
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Figure 3. X-ray structure of complexes 4-Ir+ and 4-Rh+ (30% ellipsoids, anion BArF
- 

and hydrogens omitted for clarity). Selected bond lengths (Å) and angles (deg) for 4-

Ir+: Ir(1)–N(1) 2.137(7), Ir(1)–C(21) 2.163(6), Ir(1)–N(2) 2.089(6), Ir(1)–C(22) 

2.232(7), Ir(1)–C(30) 1.874(8), Ir(1)–C(23) 2.259(8), O(1)–C(30) 1.145(9), Ir(1)–C(24) 

2.216(10), Ir(1)–C(20) 2.181(7), C(30)-Ir(1)-N(1) 94.2(3), C(1)-N(1)-Ir(1) 94.3(5), 

C(30)-Ir(1)-N(2) 94.5(3), C(1)-N(2)-Ir(1) 96.3(5), N(2)-Ir(1)-N(1) 62.0(2), N(1)-C(1)-

N(2) 107.1(8). Selected bond lengths (Å) and angles (deg) for 4-Rh+: Rh(1)N(2) 

2.152(3), Rh(1)C(21) 1.908(5), O(2)C(21) 1.115(6), Rh(1)C(20) 2.026(4), 

O(1)C(20) 1.200(5), Rh(1)C(22) 2.235(5), Rh(1)C(23) 2.251(5), Rh(1)C(24) 

2.157(4), Rh(1)C(25) 2.262(4), Rh(1)C(26) 2.333(5), C(21)-Rh(1)-N(2) 94.55(17), 

C(21)-Rh(1)-C(20) 88.9(2), C(20)-Rh(1)-N(2) 79.13(15), N(1)-C(20)-Rh(1) 111.9(3), 

C(1)-N(2)-Rh(1) 112.5(3), N(2)-C(1)-N(1) 115.0(4). 

 

 As already recalled, the reported [(5-C5Me5)M(N^N)]+ iridium and rhodium 

complexes analogous to 3-M+ (Figure 1b) were unreactive against C2H4 (1 bar, room 

temperature to 130 ºC). Alkenes react readily with M—H and M—C bonds through 

migratory insertion, a fundamental reaction in organotransition metal chemistry, key to 

a large number of stoichiometric and catalytic transformations.10 In marked contrast, the 

analogous reaction of an olefin with the M—N bond of an isolated metal-amido 

complex to generate a new C—N bond is a less well stablished transformation, the first 

examples of which having been reported in recent years.12,13 

 When an ethylene atmosphere (1 bar) was introduced in a Young NMR tube 

containing a CD2Cl2 solution of 3-Ir+, an immediate color change from almost black to 
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orange took place, hinting the formation of the desired C2H4 adduct [(5-

C5Me5)Ir(N^N)(C2H4)]
+ (5-Ir+), with the structure shown in Scheme 3. Though C2H4 

coordination was reversible, such that removal of the ethylene atmosphere under 

vacuum restored the original black color of complex 3-Ir+, upon standing at room 

temperature under C2H4 over a period of 24 h, adduct 5-Ir+ rearranged irreversibly to 

the hydride complex 6-Ir+. As depicted in Scheme 3, the coordination of the Ir(III) 

center of this species is completed by a chelating carbene-pyridine ligand resulting from 

C-N coupling between a molecule of C2H4 and the amido nitrogen atom of the original 

pyridylamido ligand. 

 

Scheme 3. Reaction of cation 3-Ir+ with ethylene. 

 

 Adduct 5-Ir+ could only be studied by solution NMR spectroscopy due to the 

facility of C2H4 dissociation, whereas the stable complex 6-Ir+ was isolated as a 

crystalline solid and fully characterized by microanalytical, spectroscopic (IR and 

NMR) and X-ray data. No 1H NMR resonances were recorded at room temperature for 

the coordinated ethylene molecule of 5-Ir+, but at -40 ºC a characteristic AA´BB´ 

multiplet was observed centered at  4.02, with A nearly equal to B. In the 13C{1H} 

NMR spectrum registered also at -40 ºC, the corresponding signal appeared at 61.7 

ppm. Comparison with the  value found for free C2H4 of 123 ppm reveals a  shift to 

low frequency of around 61 ppm. This shift is smaller than that recorded for the related 

[(5-C5Me5)Rh(P^C)(C2H4)]
+ species of cyclometalated PPr2

iXyl (ca.  47 and  76 

ppm),18 suggesting reduced -back-bonding to ethylene in the present complex. 

 The existence of hydride and carbene ligands in the formulation proposed for the 

isomeric complex 6-Ir+ is strongly backed by spectroscopic data. The Ir—H bond gives 

rise to an IR band at 2096 cm-1 due to its stretching vibration, and to a shielded 1H NMR 

resonance at -16.42 ppm that appears as a broad singlet. In turn, the 13C nucleus of the 



10 

 

carbene ligand resonates at 235.9 ppm. Figure 4 shows the solid-state structure of the 

molecules of this complex, corroborating the formulation anticipated in Scheme 3 on 

the basis of spectroscopic data. The Ir1—C20 bond to the carbene carbon atom has a 

length of 1.911(12) Å, very similar to distances found for other cationic and neutral 

carbene complexes of Ir(III) reported by our group.18-21 The Ir1—N1 bond to the 

pyridine ring has a distance of 2.113(8) Å that is also comparable to Ir—Npyridine 

distances found in related complexes described in this paper or previously.1,2 

 

 

Figure 4. X-ray structure of complex 6-Ir+ (30% ellipsoids, H atoms and anion BArF
- 

omitted for clarity). Selected bond lengths (Angstroms) and angles (degrees): Ir(1)–

C(20) 1.911(12), Ir(1)–C(23) 2.340(11), Ir(1)–N(1) 2.113(8), Ir(1)–C(24) 2.280(13), 

Ir(1)–H(1Ir) 1.6070, Ir(1)–C(25) 2.161(12), N(2)–C(20) 1.345(14), Ir(1)–C(26) 

2.226(10), Ir(1)–C(22) 2.284(11), C(20)-Ir(1)-N(1) 78.4(4), C(20)-N(2)-C(1) 115.5(10), 

C(20)-Ir(1)-H(1Ir) 89.1, N(1)-C(1)-N(2) 116.2(10), N(1)-Ir(1)-H(1Ir) 87.0, N(2)-C(20)-

Ir(1) 118.8(8), C(1)-N(1)-Ir(1) 111.1(7). 

 

 By analogy with previously reported studies, the -H elimination that leads to 

complex 6-Ir+ is expected to be reversible.18-23 Indeed, observation of the hydride 

resonance of 6-Ir+ as a broad singlet (vide supra) may be suggestive of fast 

equilibration of this complex with undetectable concentrations of the cyclic alkyl-

pyridine solvent species 6-Ir·CD2Cl2
+ (Scheme 4), resulting from fast migratory 
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insertion of the carbene ligand of 6-Ir+ into the Ir—H bond, promoted by coordination 

of CD2Cl2.
19a Reaction of 6-Ir+ with an excess of PMe3 triggered the anticipated 1,2-H 

shift from iridium to the carbene carbon atom, though subsequent chemical changes 

must be invoked to account for the chemical constitution of the resulting product 7-Ir+. 

As specified in Scheme 4, this complex incorporates two molecules of PMe3 and 

contains in addition a -functionalized linear alkyl Ir—CH2CH2Namido(Ph)-, that derives 

formally from a direct N—C coupling reaction between the amido terminus of the Ap 

ligand and a molecule of C2H4. In other words, beyond accomplishing migratory 

insertion reactivity between the hydride and carbene units of 6-Ir+, PMe3 induces a 

branched-to-linear isomerization of the resulting secondary alkyl ligand, Ir—

CH(Me)N(Ph)-, and decoordination of its pyridine end. As discussed in the following 

paragraphs dealing with computational studies, the reactivity represented in Schemes 3 

and 4 entails competitive - and -H elimination reactions and their microscopic 

reverse migratory insertions of carbene and olefin functionalities into Ir—H bonds. 

Monitoring of the reaction between 6-Ir+ and PMe3 by 31P{1H} spectroscopy at low 

temperature (from -80 ºC to 20 ºC) did not provide additional useful information. 

Immediate formation of a complex mixture of products occurred at low temperatures 

and at 0 ºC this mixture slowly converted into the final complex 7-Ir+, that became the 

only observable species after 15 h at room temperature. 

 

 

Scheme 4. Reaction of complex 6-Ir+ with PMe3. 

 Although the NMR properties of 7-Ir+ permitted unambiguous structural 

identification, additional support was sought through X-ray crystallography. The 

31P{1H} NMR spectrum contains the expected singlet with chemical shift -45.4 ppm. In 

the 1H NMR spectrum, the two equivalent  alkyl protons, Ir—CH2CH2- appear as a 

multiplet centered at 1.47 ppm, as a consequence of coupling to the two  H atoms and 
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the two 31P nuclei. Likewise, the Ir—CH2CH2- resonance is a multiplet, albeit 

substantially deshielded (3.67 ppm). Corresponding 13C{1H} resonances appear at -7.1 

and 56.0 ppm, with two- and three- bond coupling to the 31P nuclei of 7 and 5 Hz, 

respectively. 

 Figure 5 presents an ORTEP perspective view of the molecular structure of 

complex 7-Ir+. As for related complexes, the coordination of the C5Me5 ring is fairly 

symmetrical, with Ir—C distances spanning the rather narrow range 2.236(5)-2.281(4) 

Å. The two Ir—P bonds have similar distances which are indistinguishable within 

experimental error (2.2734(12) and 2.2854(13) Å, and the  iridium-carbon bond to 

C21 has a length of 2.140(4) Å. 

 

 

Figure 5. X-ray structure of complex 7-Ir+ (30% ellipsoids, H atoms and anion BArF
- 

omitted for clarity). Selected bond lengths (Angstroms) and angles (degrees): Ir(1)–

C(21) 2.140(4), Ir(1)–C(23) 2.246(5), Ir(1)–P(1) 2.2854(13), Ir(1)–C(24) 2.278(4), 

Ir(1)–P(2) 2.2734(12), Ir(1)–C(25) 2.281(4), C(20)–C(21) 1.534(6), Ir(1)–C(26) 

2.236(5), Ir(1)–C(22) 2.267(5), P(1)-Ir(1)-P(2) 96.22(5), Ir(1)-C(21)-C(20) 117.6(3), 

P(1)-Ir(1)-C(21) 83.23(13), C(21)-C(20)-N(2) 112.0(4), C(21)-Ir(1)-P(2) 89.86(13). 
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 Similarly to the iridium cation 3-Ir+ the rhodium analogue 3-Rh+ reacted 

instantly with ethylene. Rather disappointingly, as discussed below a very complex 

mixture of compounds was observed even at low temperature (-80 ºC), limiting 

considerably the synthetic and mechanistic utility of this reaction. Nevertheless, some 

useful information could be collected and will be briefly discussed. Mixing the rhodium 

complex 3-Rh+ and C2H4 at 0 ºC caused immediate consumption of the metal reagent 

and generation of a complex manifold of products. The 1H NMR spectrum of this 

mixture (Figure S24) contained discernible 5-C5Me5 resonances between 1.2 and 1.6 

ppm for at least four rhodium compounds. One of these species originated in addition a 

significantly shielded doublet resonance at -0.21 ppm (3JHH ~ 6 Hz). Keeping in mind 

the results already described for the analogous iridium system and by similarity with 

NMR data reported in the literature for the Rh···CH3 -agostic bond found in the 

cationic Rh(III) [(5-C5Me5)Rh(H)(PMeXyl2)]
+ complex ( -0.02 ppm),23 it can be 

proposed that one of the components of the said mixture contains a chelating secondary 

alkyl-pyridine ligand in which the Rh—C(H)MeCH2N- unit is further engaged in a -

agostic methyl interaction (structure 5-Rh+ in Figure 6). In one of the many 

crystallization attempts effected, a few single crystals were obtained and while no full 

NMR characterization of the pure isolated complex could be accomplished, its 

molecular structure was disclosed by a single-crystal X-ray study. The ORTEP view of 

the molecules of 5-Rh+ is shown on the right-hand-side of Figure 6 and provides 

unequivocal proof for a C—N coupling reaction alike that described for the analogous 

iridium complex. As can be seen, the complex contained a five-membered C^N 

metallacycle consisting of secondary-alkyl and pyridine ligands, with the Rh(III) center 

being additionally decorated by a -agostic interaction, helping to achieve an 18-

electron count. Despite the uncertainties in determining the positions of H atoms by X-

ray diffraction, the metric parameters for the Rh—CH(CH3)- linkage are in agreement 

with the existence in the solid state of a Rh···CH3 -agostic interaction. The Rh1—C31 

distance is relatively short at 2.362(7) Å, and both the Rh1—H(C31) distance of 1.937 

Å and the Rh1—H—C31 angle of 103.15º are well in the 1.8-2.3 Å and 90-140º ranges 

commonly found, for such bonds.24 Although the limited experimental evidence 

obtained for the reaction of 3-Rh+ and C2H4 prevents a proper discussion of these 

results, it should be noted that observation of the agostic structure for 5-Rh+ is in line 

with common knowledge that agostic bonds are favored for cationic complexes of first- 
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and second-row metals, whereas their third-row counterparts prefer the isomeric hydride 

formulation.25,26 Computational data discussed next are also in accordance with these 

observations. 

 

Figure 6. X-ray structure of complex 5-Rh+ (30% ellipsoids, H atoms and BArF
- anion 

omitted for clarity). Selected bond lengths (Angstroms) and angles (degrees): Rh(1)–

C(30) 2.009(7), Rh(1)–C(31) 2.362(7), Rh(1)–C(21) 2.153(9), Rh(1)–H(31C) 1.9373, 

Rh(1)–C(22) 2.123(8), Rh(1)–N(2) 2.153(5), Rh(1)–C(23) 2.179(6), N(1)–C(30) 

1.431(8), Rh(1)–C(24) 2.259(6), Rh(1)–C(20) 2.188(7), C(30)-Rh(1)-N(2) 78.2(3), 

C(7)-N(1)-C(30) 118.3(5), C(30)-Rh(1)-H(31C) 63.9, N(1)-C(7)-N(2) 114.5(5), N(2)-

Rh(1)-H(31C) 88.5, N(1)-C(30)-Rh(1) 111.5(4), C(7)-N(2)-Rh(1) 112.3(4), C(31)-

H(31C)-Rh(1) 103.15. 

 

 

 The structure presented in Figure 6 for complex 5-Rh+ may be viewed as a 

model for the intermediate preceding -H elimination to furnish an isomeric hydride-

alkene product. DFT calculations revealed that while an energy barrier of only 7.8 

kcal·mol-1 needs be overcome (Figure 7), the β-H elimination reaction is 

thermodynamically uphill by 5.1 kcal·mol-1. Moreover, in a different conformation, 5´-

Rh+, which is just 2.2 kcal·mol-1 above the observed structure (Figure 7), α-H 

elimination to yield a hydride alkylidene complex analogous to 6-Ir+, thereby 

containing an N-stabilized carbene ligand, could occur with an affordable energy barrier 

of 6.4 kcal·mol-1. Notwithstanding, the purported hydride carbene rhodium complex 

would be thermodynamically unstable in comparison with the isolated complex 5-Rh+ 

and also with conformation 5´-Rh+. 
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Figure 7. Calculated energy of energy profiles for β- (solid line) and α-H (dotted line) 

elimination from the appropriate conformer of 5-Rh+. Optimized geometries of 5-Rh+ 

and the transition state for β-H elimination. Zero Point corrected Potential Energies 

calculated in dichloromethane relative to the ethylene adduct. 

 

Computational studies on the reaction of 3-Ir+ with C2H4. The nature of the carbene 

ligand of product 6-Ir+, which besides the N—heteroatom features a methyl substituent 

at the carbene carbon, denotes that 6-Ir+ forms by -H elimination from a chelating 

pyridine-alkyl ligand alike intermediate 6-Ir·ClCD2Cl+ of Scheme 4 (vide supra). 

Hence, we initially envisioned a reaction route implicating a highly reactive cationic 

iridium ethylidene group, [Ir]=C(H)Me, with a structure akin to A in Figure 8, formally 

arising from an iridium promoted tautomerization of coordinated C2H4 in 5-Ir+. The 

said prototropism could be followed by ethylidene migratory insertion into the Ir—

Namido bond, yielding an unsaturated branched alkyl (B in Figure 8) which would 

convert into the product by -H elimination. 

 A direct 1,2-shift within the coordinated ethylene molecule could account for the 

ethylene-to-ethylidene tautomerism, similarly to well-established metal promoted 

acetylene-to-vinylidene rearrangements.27 While the C2H4 and C2H2 tautomerizations 

are strongly endothermic (ca. 80 and 45 kcal·mol-1 for the former21a and the latter,27 
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respectively), the relative energies of the corresponding -hydrocarbon and carbene 

isomers change dramatically in the coordination sphere of transition metals. In many 

reported examples, the driving force for the isomerization is largely associated with the 

strong electronic interaction between the metal and the carbene type ligand.21a,27c 

Indeed, our computational studies evince that the ethylidene intermediate A (Figures 8 

and S45-46 in the SI) is only 12.5 kcal·mol-1 less stable than its olefin isomer 5-Ir+, and 

moreover than the consequent N—C bond formation resulting from nucleophilic attack 

of the Ir—Namido bond to the Ir=C(H)Me one, needs overcoming a barrier of just 12.1 

kcal·mol-1. Nevertheless, all attempts to model the direct 1,2-H shift within the Ir—

C2H4 linkage of 5-Ir+ gave unrealistically high energy barriers which justified ruling out 

this path. 

 As a variant to the direct 1,2-H shift we analyzed a shuttling function28-30 of the 

Ir—Namido unit, abstracting first an olefinic hydrogen atom to yield an iridium-vinyl C 

(Figure 8 and S46) and then protonating the -C atom of the ligated vinyl to produce A. 

Once again, whereas structure C is energetically feasible, laying in energy 10.5 

kcal·mol-1 above 5-Ir+, conversion of the latter into the former requires surmounting a 

barrier of ca. 32.6 kcal·mol-1, which is at odds with experimental conditions. Aside 

from that, this barrier is significantly higher than the topmost step in the migratory 

insertion mechanism discussed next. 

 

 

Figure 8. Possible intermediates for an ethylidene route to complex 6-Ir+. 

 

 Scheme 5 summarizes the mechanistic route that implies migratory insertion of 

ethylene into the Ir—Namido bond of complex 5-Ir+. Figures 9 and 10 display relevant 

information on key steps of the calculated energy profile. The migratory insertion is 
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relatively facile, an energy barrier E≠ = 22.1 kcal·mol-1 needs be surpassed to afford an 

intermediate D (Scheme 5 and Figure 9) that is in actuality isoenergetic with the initial 

pyridylamido ethylene complex 5-Ir+. The proposed intermediate exhibits a six-member 

chelating moiety consisting of pyridine and alkyl ends and becomes stabilized by 

formation of a dative covalent bond between iridium and the former Namido function, 

now converted into an NH amino one (Ir—Namino distance of 2.27 Å, vs. 2.15 Å for Ir—

Npyridine).  

 

Scheme 5. Key intermediates in the proposed migratory insertion leading to 

complex 6-Ir+. 

 

 

 

Figure 9. Energy profile including the initial steps of the migratory insertion path. Zero 

Point corrected Potential Energies calculated in dichloromethane relative to the ethylene 

adduct. 
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 Elongation of the Ir—Namino distance of D to 3.00 Å results in a conformation, 

D´ (Figure 9 and S47; E0 = 2.9 kcal·mol-1), from which β-H elimination can take place 

easily (E≠ = 10.3 kcal·mol-1). As already anticipated, formation of 6-Ir+ from the 

resulting species, E (Figure 9, E0 = -2.2 kcal·mol-1) requires a change of the 

coordinated face of the prochiral olefin. If this process is assisted by the Namino 

functionality, the barrier for Ir—C to Ir—N slippage required to allow olefin 

dissociation to yield F (Figure 9) turned out as rate limiting (E≠ = 27.4 kcal·mol-1 from 

E), but it is still more accessible than the hydrogen abstraction from C2H4 discussed 

previously. As expected, rotation of the Na—CH=CH2 bond and re-coordination of the 

olefin through the other face to give the hydride-olefin species G, i.e. stereoisomer of E, 

are fast, and the latter step is also very exothermic (E0 = -26.3 kcal·mol-1 from F). 

From this point, formation of 6-Ir+ requires hydride insertion and α-elimination from B, 

both steps having accessible energy barriers. Notice that -H elimination from B 

appears faster than -H elimination from B´, and more significantly, that the energy 

return from the former process to produce the carbene product 6-Ir+ is larger than that 

associated with -H elimination from B´ to generate the unobserved hydride olefin 

tautomer G. It is worth recalling that although H elimination is usually faster than H 

elimination when the two reactions can compete, examples are known where the 

opposite is true. Specifically, in sterically congested systems in which the M-C-C-H 

atoms cannot readily adopt the required syn approximately coplanar arrangement,31 

formation of -agostic bonds and -H elimination may become faster than 

corresponding processes for -H atoms.21,23,32 
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Figure 10. DFT calculated energy profiles for α- (solid line) and β-H (dotted line) 

elimination from the appropriate conformer, B or B´, and optimized geometries of 

relevant species involved in α-H elimination. Zero Point corrected Potential Energies 

calculated in dichloromethane relative to 5-Ir+. 

 

Reactions of iridium and rhodium complexes 3-M+ with H2. The title reactions 

proceeded much as expected on the basis of previous studies.1,2 Briefly, we recall that 

catalytic amounts of H2 promote reversible isomerization of the aminopyridinate ligand 

between classical 2-N,N´-bidentate binding, to an unprecedented -N,3-pseudo-allyl-

coordination, as depicted in Scheme 6 (left part) for 3-Ir+ and 8-Ir+. The isomerization 

implies reversible formation and cleavage of H—H, C—H and N—H bonds. 

Experimental and computational studies1,2 support the mechanistic pathway presented in 

Scheme S2 (see the SI). 

Treatment of 3-Ir+ with an excess of H2 yielded the known binuclear hydride 

{[(5-C5Me5)Ir]2(-H)3}
+,33 whereas catalytic amounts of H2 (ca. 2 mol%) promoted 

isomerization of the Ap ligand of 3-Ir+ to the 3-benzylic-pyridine coordination found 

in the new complex 8-Ir+ (Scheme 6). The prototropic rearrangement resulted in a 3-

Ir+:8-Ir+ equilibrium mixture of ca. 1:3, with a half-life, t1/2, of about 1.2 h (20 ºC, 

CD2Cl2). Under similar experimental conditions and a H2 concentration of 1.6 mol%, 

the analogous complex in which the Namido aryl substituent was 2,6-Pri
2C6H3 instead of 

C6H5, equilibrated with t1/2 = 9.1 h. This difference in the rate of almost one order of 

magnitude clearly reflects the importance of the steric effects of the Namido aryl 

substituent in the reactivity of complexes alike 3-M+. 
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Scheme 6. The H2-catalyzed isomerization of the aminopyridinate ligand of 3-Ir+ 

and the formation of carbonyl complex 9-Ir+. 

 

 Spectroscopic data for 8-Ir+ are similar to those recorded for related complexes.1 

The NH resonance is, however, slightly deshielded relative to values found for 

analogous complexes (6.25 vs. ca. 5.94 ppm).1 It is tempting to associate this shift with 

the relatively short Ir···HN contact of 2.89 Å observed in the solid state molecular 

structure of the complex (Figure 11, left). Nonetheless, recalling that hydrogen positions 

determined by X-ray studies are not particularly accurate and that the Ir···HN contact in 

8-Ir+ is longer than known Ir···HC agostic bonds,34 such a NH···Ir interaction must be 

very weak and most probably meaningless in terms of electron density sharing. Close 

similarity of 8-Ir+ to earlier analogues was also found in the reaction with CO (Scheme 

6) that occurred with 3-to-1 benzyl coordination change and formation of carbonyl 

complex 9-Ir+. The latter exhibits ῡ(CO) at 2029 cm-1 (see Experimental Section). 

 

Figure 11. X-ray structures of complexes 8-Ir+ (left) and 8-Rh+ (right) (30% ellipsoids, 

H atoms and anion BArF
- omitted for clarity). Selected bond lengths (Angstroms) and 

angles (degrees) for [8-Ir]BArF: Ir(1)–N(1) 2.086(3), C(10)–C(11) 1.378(6), Ir(1)–C(6) 

2.387(4), C(6)–C(11) 1.423(6), Ir(1)–C(7) 2.252(4), Ir(1)–C(20) 2.170(3), Ir(1)–C(12) 

2.118(4), Ir(1)–C(21) 2.153(4), C(6)–C(7) 1.449(5), Ir(1)–C(22) 2.202(3), C(7)–C(12) 

1.449(6), Ir(1)–C(23) 2.225(4), C(7)–C(8) 1.423(6), Ir(1)–C(24) 2.187(4), C(8)–C(9) 

1.355(7), Ir(1)–H(2N) 2.891, C(9)–C(10) 1.408(6), N(1)-Ir(1)-C(6) 62.04(12), N(1)-

Ir(1)-C(12) 80.11(14), C(7)-Ir(1)-C(6) 36.27(13), N(1)-C(5)-C(6) 108.5(3), C(12)-Ir(1)-

C(7) 38.59(16), N(1)-C(1)-N(2) 115.1(3). Selected bond lengths (Angstroms) and 

angles (degrees) for [8-Rh]BArF: Rh(1)–N(1) 2.101(3), C(10)–C(11) 1.372(7), Rh(1)–

C(6) 2.379(4), C(6)–C(11) 1.428(7), Rh(1)–C(7) 2.237(4), Rh(1)–C(20) 2.176(4), 
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Rh(1)–C(12) 2.124(5), Rh(1)–C(21) 2.155(4), C(6)–C(7) 1.441(6), Rh(1)–C(22) 

2.191(4), C(7)–C(12) 1.437(7), Rh(1)–C(23) 2.218(4), C(7)–C(8) 1.432(7), Rh(1)–

C(24) 2.174(4), C(8)–C(9) 1.350(8), Rh(1)–H(2N) 2.987, C(9)–C(10) 1.406(8), N(1)-

Rh(1)-C(6) 62.43(14), N(1)-Rh(1)-C(12) 81.00(17), C(7)-Rh(1)-C(6) 36.21(16), N(1)-

C(5)-C(6) 110.3(4), C(12)-Rh(1)-C(7) 38.37(19), N(1)-C(1)-N(2) 115.4(4). 

 

 

 Monitoring the progress of the reaction of 3-Ir+ with an excess of H2 (1 bar) 

allowed observation of a hydride intermediate in high spectroscopic yield (-6.32 ppm, 

relative intensity 1 H). Isolation of this complex proved unattainable, for in the presence 

of H2 converted quickly into {[(5-C5Me5)Ir]2(-H)3}
+, whereas in the absence of this 

gas it yielded, also rapidly, the 1:3 equilibrium mixture of 3-Ir+ and 8-Ir+. No NH 

resonance or other relevant NMR data could, however, be assigned with certainty to this 

intermediate, which refrains us from putting forward a definitive structural proposal. 

 Complex 3-Rh+ also reacted quickly with 1 bar of H2 at room temperature 

though a complex mixture compounds was obtained including {[(5-C5Me5)Rh]2(-

Cl)3}
+.35 At least two 4-C5Me5H-containing complexes36 were detected by NMR, the 

latter possibly related to those that were fully characterized for bulkier aminopyridinate 

ligands.2 Likewise, the 3-benzyl complex 8-Rh+ resulting from the H2-catalyzed 

isomerization of the aminopyridinate ligand was detected in the crude reaction mixture. 

The latter complex was subsequently generated in moderate quantities (ca. 50% 

spectroscopic yield) using sub-stoichiometric amounts of H2 (60 mol%). Complex 8-

Rh+ was fully characterized. Its X-ray molecular structure is presented in Figue 9 (right-

hand-side) and features metrical parameters for the metal-3-benzyl moiety similar to 

those of analogous complexes. 
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CONCLUSIONS 

This work demonstrated that the M—Namido bond of the pyridylamido 

complexes [(5-C5Me5)M(N^N)]+ (3-M+), activates readily CO, C2H4 and H2. Whereas 

CO and C2H4 brought about migratory insertion reactivity, H2 catalyzed a prototropic 

rearrangement within the Ap ligand, whereby remote transfer of a benzylic hydrogen 

from the pyridine xylyl substituent to the Namido atom occurred readily in a reversible 

fashion. 

Only 3-Rh+ experienced CO migratory insertion into the Rh—Namido bond, 

expanding the original four-member ring to a five-membered pyridine-

carbamoyl rhodacycle, whereas for iridium the stronger M—Namido bond decisively 

retarded the migratory CO insertion step affording the carbonyl adduct 4-Ir+ as the only 

observable product. In contrast, 3-Ir+ formed easily, albeit reversibly, the ethylene 

adduct 5-Ir+, which rearranged spontaneously by migratory insertion, the end product of 

the reaction being the hydride N-substituted alkylidene complex 6-Ir+. DFT studies 

reinforced a mechanistic scheme encompassing irreversible C—N bond formation 

followed by reversible - and -H elimination reactions. 

 

EXPERIMENTAL SECTION 

General Procedures. Microanalyses were performed by the Microanalytical Service of 

the Instituto de Investigaciones Químicas (Sevilla, Spain). Infrared spectra were 

obtained from Bruker Vector 22 spectrometer. The mass spectra were obtained at the 

Mass Spectroscopy Service of the University of Sevilla. The NMR instruments were 

Bruker DRX-500, DRX-400 and DPX-300 spectrometers. Spectra were referenced to 

external SiMe4 ( 0 ppm) using the residual protio solvent peaks as internal standards 

(1H NMR experiments) or the characteristic resonances of the solvent nuclei (13C NMR 

experiments). Spectral assignments were made by routine one- and two-dimensional 

NMR experiments where appropriate. All manipulations were performed under dry, 

oxygen-free dinitrogen, following conventional Schlenk techniques. The crystal 

structures were determined in a Bruker-Nonius, X8Kappa diffractometer. Metal 

complexes [Cp*IrCl2]2,
37 [Cp*RhCl2]2

37 as well as NaBArF
38 were prepared as 
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previously described. The lithium salt of the aminopyridinate ligand employed in this 

work was prepared according to published procedures.1b The 1H and 13C{1H} NMR 

spectral data for the BArF anion (BArF = B[3,5-(CF3)2C6H3)4]) in CD2Cl2 are identical 

for all complexes and therefore are not repeated below. 1H NMR: δ 7.75 (s, 8 H, o-Ar), 

7.58 (s, 4 H, p-Ar); 13C{1H} NMR: δ 162.1 (q, 1JCB = 37 Hz, ipso-Ar), 135.3 (o-Ar), 

129.2 (q, 2JCF = 31 Hz, m-Ar), 124.9 (q, 1JCF = 273 Hz, CF3), 117.8 (p-Ar). 

Compound 2-Ir. A toluene solution of LiAp (1g, 3.57 mmol; 35 mL) at -50 ºC 

was added to a suspension of [Cp*IrCl2]2 (1.4 g, 1.78 mmol) in toluene at -50 ºC. The 

resulting mixture was stirred while allowing to warm to room temperature, and stirred 

further for a period of 14 h. The solution was filtered through celite and the solvent 

removed under reduced pressure. 1H NMR analysis of the crude reaction mixture 

showed only the presence of 2-Ir, which was crystallized from CH2Cl2-hexane mixtures 

at -23 ºC. Yield: 1.55 g (68%). 1H NMR (C6D6, 25 ºC):  = 7.54, 7.26, 6.96 (d, t, t, 

2:2:1, 3JHH ~ 7.5 Hz, 5 CHPh), 7.06, 7.00, 6.96 (t, br d, br d, 1 H each, 3JHH ~ 7.5 Hz, 3 

CHXyl), 6.80 (t, 1 H, 3JHH = 7.9 Hz, 1 CHPyr), 6.35 (d, 1 H, 3JHH = 8.7 Hz, 1 CHPyr), 5.81 

(d, 1 H, 3JHH = 7.0 Hz, 1 CHPyr), 2.66, 2.13 (s, 3 H each, 2 MeXyl), 1.16 (s, 15 H, 5 

MeCp*); 
13C1H NMR (C6D6, 25 ºC):  =  171.2, 156.4 (Cq-Pyr), 146.3 (Cq-Ph), 140.0, 

139.0, 136.7 (Cq-Xyl), 137.3, 108.9, 106.5 (CHPyr), 129.0, 124.1, 122.1 (2:2:1, CHPh), 

128.5, 128.3, 127.0 (CHXyl), 84.0 (Cq-Cp*), 21.9, 20.8 (MeXyl), 9.1 (MeCp*); elemental 

analysis calcd (%) for C29H32ClIrN2: C, 54.7; H, 5.1; N, 4.4; found: C, 54.6; H, 5.1; N, 

4.5. 

 

Compound 2-Rh. Following the procedure described above for 2-Ir, but using 

[Cp*RhCl2]2, compound 2-Rh was obtained in quantitative spectroscopic yield and was 

crystallized from CH2Cl2-hexane mixtures at -23 ºC. Yield: 0.8 g (64%). 1H NMR 

(C6D6, 25 ºC): δ = 7.65, 7.28 (d, t, 1:1, 3JHH ~ 7.5 Hz, 4 CHPh), 7.04 (m, 3 H, 1 CHPh + 2 

CHXyl), 6.95 (d, 1 H, 3JHH ~ 7.5 Hz, 1 CHXyl), 6.79, 6.33, 5.81 (m, d, d, 1 H each, 3JHH ~ 

7.5 Hz, 3 CHPyr), 2.70, 2.18 (s, 3 H each, 2 MeXyl), 1.10 (s, 15 H, 5 MeCp*); 
13C1H 

NMR (C6D6, 25 ºC): δ = 170.4, 158.1 (Cq-Pyr), 147.9 (Cq-Ph), 140.4, 139.2, 136.6 (Cq-Xyl), 

137.4, 108.8, 105.0 (CHPyr), 129.1, 125.3, 122.2 (2:2:1, CHPh), 128.2, 127.9, 126.8 

(CHXyl), 91.9 (d, 1JCRh = 8 Hz, Cq-Cp*), 21.9, 20.8 (MeXyl), 8.8 (MeCp*); elemental 

analysis for C29H32ClRhN2: C, 63.7; H, 5.9; N, 5.1; found: C, 63.7; H, 6.0; N, 5.2. 
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Compound [3-Ir]BArF. To a solution of 2-Ir (1.5 g, 2.36 mmol) in CH2Cl2 (40 

mL), NaBArF (2.1 g, 2.36 mmol) in CH2Cl2 (25 mL) was added. Inmmediately the 

solution turned from orange to dark grey as a consequence of the formation of the 

cationic complex. The resulting mixture was filtered through celite, evaporated to 

dryness and the residue washed with pentane, to yield quantitatively the desired 

product. An analytically pure sample was obtained by crystallization from solutions in 

hexane:ether mixtures at -23 ºC. Yield: 2.8 g (80%). 1H NMR (CD2Cl2, 25 ºC):  = δ 

7.65 (t, 1 H, 3JHH = 8.0 Hz, 1 CHPyr), 7.44 (t, 2 H, 3JHH = 7.7 Hz, 2 CHPh), 7.33 (t, 1 H, 

3JHH = 7.6 Hz, 1 CHXyl), 7.19 (m, 3 H, 1 CHPh  + 2 CHXyl), 7.08 (d, 2 H, 3JHH = 7.8 Hz, 2 

CHPh), 6.36, 5.89 (br s., 1 H each, 2 CHPyr), 2.25 (s, 6 H, 2 MeXyl), 1.31 (s, 15 H, 5 

MeCp*).
13C1H NMR (CD2Cl2, 25 ºC):  = δ 178.3, 155.8 (br, Cq-Pyr), 145.1, 119.5, 

104.9 (br, CHPyr), 143.5 (br, Cq-Ph), 136.8, 135.9 (1:2, Cq-Xyl), 130.5, 128.6 (1:2, CHXyl), 

129.9, 128.1, 123.1 (br, 2:1:2, CHPh), 88.1 (Cq-Cp*), 20.6 (MeXyl), 10.2 (MeCp*); HRMS 

(FAB): m/z calcd for C29H32N2Ir [M]+: 601.2195; found: 601.2202. 

 

Compound [3-Rh]BArF. Following the procedure described above for [3-

Ir]BArF, but using 2-Rh, complex [3-Rh]BArF was obtained in quantitative 

spectroscopic yield. 1H NMR (CD2Cl2, 25 ºC): δ = 7.44 (m, 3 H, 1 CHPyr + 2 CHPh), 

7.36, 7.26 (t, d, 1:2, 3JHH ~ 7.5 Hz, 3 CHXyl), 7.22 (m, 3 H, 3 CHPh), 6.33, 6.07 (d, 1 H 

each, 3JHH ~ 7.5 Hz, 2 CHPyr), 2.32 (s, 6 H, 2 MeXyl), 1.34 (s, 15 H, 5 MeCp*); 
13C1H 

NMR (CD2Cl2, 25 ºC): δ 175.3, 157.5 (Cq-Pyr), 145.6 (Cq-Ph), 143.5, 116.5, 104.2 

(CHPyr), 137.9, 136.4 (1:2, Cq-Xyl), 130.2, 123.2 (2:3, CHPh), 130.1, 128.6 (1:2, CHXyl), 

95.2 (d, 1JCRh ~ 8 Hz, Cq-Cp*), 20.8 (MeXyl), 9.6 (MeCp*); HRMS (FAB): m/z calcd for 

C29H32N2Rh [M]+: 511.1621; found 511.1619. 

 

Compound [4-Ir]BArF. CO (g) was bubbled through a solution of compound [3-

Ir]BArF (0.2 g, 0.14 mmoles) in CH2Cl2 (5 mL) at room temperature for 5 min. During 

this period of time the color of the solution changed from dark grey to bright orange. 

The resulting mixture was stirred for 10 minutes and the volatiles were then removed 

under reduced pressure. 1H NMR analysis of the crude product revealed quantitative 
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conversion into the desired complex, which was crystallized from CH2Cl2-pentane 

mixtures at -23 ºC. Yield: 60%. IR (Nujol): (CO) 2048 cm-1; 1H NMR (CD2Cl2, 25 

ºC): δ = 7.59 (m, 1 H, 1 CHPyr), 7.40 (t, 2 H, 3JHH = 7.7 Hz, 2 CHPh), 7.33 (t, 1 H, 3JHH = 

7.6 Hz, 1 CHXyl), 7.19 (m, 3 H, 2 CHXyl + 1 CHPh), 7.02 (d, 2 H, 3JHH = 7.8 Hz, 2 CHPh), 

6.53 (d, 1 H, 3JHH = 8.8 Hz, 1 CHPyr), 6.42 (d, 1 H, 3JHH = 7.3 Hz, 1 CHPyr), 2.19 (s, 6 H, 

2 MeXyl), 1.59 (s, 15 H, 5 MeCp*); 
13C1H NMR (CD2Cl2, 25 ºC): δ = 174.4, 157.0 (Cq-

Pyr), 168.8 (Ir-CO), 141.9 (Cq-Ph), 140.8, 112.8, 107.9 (CHPyr), 137.1, 136.3, 136.2 (Cq-

Xyl), 130.3, 125.1, 123.7 (2:1:2, CHPh), 130.3, 128.7, 128.5 (CHXyl), 101.6 (Cq-Cp*), 21.3, 

20.4 (MeXyl), 9.3 (MeCp*); elemental analysis for C62H44BF24IrN2O: C, 49.9; H, 3.0; N, 1.9; 

found: C, 49.6; H, 3.0; N, 1.8. 

 

Compound [4-Rh]BArF. Following the procedure described above for [4-

Ir]BArF, but using [3-Rh]BArF, compound [4-Rh]BArF was obtained in quantitative 

spectroscopic yield (the color of the solution changed from dark brown to orange-

colored) and was crystallized from CH2Cl2-pentane mixtures at -23 ºC. Yield: 50%. IR 

(Nujol): (CO) 2077 cm-1, (COamide) 1687 cm-1; 1H NMR (CD2Cl2, 25 ºC): δ = 7.77, 

7.00, 6.66 (t, d, d, 1 H each, 3JHH ~ 7.5 Hz, 3 CHPyr), 7.63, 7.23 (m, br d, 3:1, 3JHH ~ 7.5 

Hz, 4 CHPh), 7.40 (t, 1 H, 3JHH ~ 7.5 Hz, 1 CHXyl), 7.28 (m, 3 H, 2CHXyl + 1 CHPh), 

2.20, 2.12 (s, 3 H each, 2 MeXyl), 1.59 (s, 15 H, 5 MeCp*); 
13C1H NMR (CD2Cl2, 25 

ºC): δ = 189.3, 187.1 (d, 1JCRh = 30 Hz, 1JCRh = 76 Hz, Rh-CON and Rh-CO, resp.), 

162.7, 158.7 (Cq-Pyr), 141.4, 123.4, 111.2 (CHPyr), 138.7, 137.2, 137.0 (Cq-Xyl), 136.5 

(Cq-Ph), 131.3, 131.2, 130.8, 129.3, 129.0 (CHPh), 130.6, 129.4 (1: 2, CHXyl), 109.3 (d, 

1JCRh = 5 Hz, Cq-Cp*), 22.3, 21.7 (MeXyl), 9.5 (MeCp*); elemental analysis for 

C63H44BF24N2O2Rh: C, 52.9; H, 3.1; N, 2.0; found: C, 53.3; H, 3.2; N, 1.8; HRMS 

(FAB): m/z calcd for C31H32N2O2Rh [M]+: 567.1519; found: 567.1503. 

 

Compound [5-Ir]BArF. C2H4 (g) was bubbled through a solution of compound 

[3-Ir]BArF (0.02 g, 0.014 mmoles) in CH2Cl2 (3 mL) in a Young NMR tube for 3 min. 

During this period of time the color of the solution changed from black to orange. 1H 

NMR analysis of the crude product revealed quantitative conversion into complex [5-
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Ir]BArF in admixture with free ethylene. This complex could not be isolated due to its 

reversion to the starting material in absence of C2H4 and to its evolution at room 

temperature to 6-Ir+. 1H NMR (CD2Cl2, -40 ºC):  = 7.44 (t, 1 H, 3JHH = 8.1 Hz, 1 

CHPyr), 7.34 (t, 2 H, 3JHH = 7.1 Hz, 2 CHPh), 7.28, 7.17 (m, 1:2, 3 CHXyl), 7.09 (t, 1 H, 

3JHH = 7.4 Hz, 1 CHPh), 7.00 (d, 2 H, 3JHH = 7.9 Hz, 2 CHPh), 6.50 (d, 1 H, 3JHH = 8.9 

Hz, 1 CHPyr), 6.24 (d, 1 H, 3JHH = 7.2 Hz, 1 CHPyr), 4.02 (br d, 4 H, 3JHH = 8.6 Hz, Ir-

C2H4), 2.15, 2.06 (s, 3 H each, 2 MeXyl), 1.34 (s, 15 H, 5 MeCp*); 
13C1H NMR 

(CD2Cl2, -40 ºC):  = 171.0, 156.6 (Cq-Pyr), 141.7 (Cq-Ph), 139.1, 111.4, 108.0 (CHPyr), 

137.1, 136.3, 135.2 (Cq-Xyl), 129.5, 123.4, 122.2 (2:1:2, CHPh), 129.4, 128.1, 127.5 

(CHXyl), 98.5 (Cq-Cp*), 61.7 (Ir-C2H4), 21.8, 20.9 (MeXyl), 8.5 (MeCp*). 

 

Compound [6-Ir]BArF. C2H4 (g) was bubbled through a solution of compound 

[3-Ir]BArF (0.1 g, 0.068 mmoles) in CH2Cl2 (15 mL) for 3 min. The resulting mixture 

was stirred for 24 h. The color changed from orange to green and then the volatiles were 

removed under reduced pressure. Quantitative conversion into [6-Ir]BArF was 

ascertained by 1H NMR, and the product was crystallized from Et2O-pentane mixtures 

at -23 ºC. Yield 78 mg (75%). IR (Nujol): (Ir-H) 2096 cm-1; 1H NMR (CD2Cl2, 25 ºC): 

 = 7.73 – 7.67 (m, 5 H, 5 CHPh), 7.60 (t, 1 H, 3JHH = 8.0 Hz, 1 CHPyr), 7.34 (t, 1 H, 3JHH 

= 7.7 Hz, 1 CHXyl), 7.25 (m, 2 H, 2 CHXyl), 6.93 (dd, 1 H, 3JHH = 7.5 Hz, 4JHH =1.5 Hz, 

1 CHPyr), 6.84 (dd, 1 H, 3JHH = 8.5 Hz, 4JHH =1.5 Hz, 1 CHPyr), 2.69 (d, 3 H, 4JHH = 2.3 

Hz, Ir=CMe), 2.10, 2.06 (s, 3 H each, 2 MeXyl), 1.65 (s, 15 H, 5 MeCp*), -16.42 (br s, 1 

H, Ir-H); 13C1H NMR (CD2Cl2, 25 ºC):  = 235.9 (Ir=CMe), 165.9, 160.6 (Cq-Pyr), 

139.7 (Cq-Ph), 139.4, 137.7, 137.3 (Cq-Xyl), 138.2, 124.6, 113.9 (CHPyr), 131.8, 131.4, 

127.6 (2:1:2, CHPh), 130.4, 129.2 (1:2, CHXyl), 98.4 (Cq-Cp*), 35.4 (Ir=CMe), 21.5, 19.7 
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(MeXyl), 9.8 (MeCp*); elemental analysis for C63H48BF24IrN2: C, 50.7; H, 3.2; N, 1.9; 

found: C, 50.6; H, 3.5; N, 1.7. 

 

Compound [7-Ir]BArF. To a solution of compound [6-Ir]BArF (0.02 g, 0.013 

mmoles) in CD2Cl2 (0.5 mL) in a Young NMR, an excess of PMe3 was added (0.05 mL, 

0.5 mmol). 1H NMR analysis of the crude product revealed quantitative conversion into 

complex [7-Ir]BArF after 15 h at room temperature. Free trimethylphosphine was 

removed under reduced pressure and compound [7-Ir]BArF was crystallized from 

CH2Cl2-pentane mixtures at -23 ºC. Yield: 15 mg (70%). 1H NMR (CD2Cl2, -40 ºC):  = 

7.49, 7.31 (t, m, 2:3, 3JHH ~ 7.5 Hz, 3 CHPh), 7.35, 6.50, 6.21 (t, d, d, 1 H each, 3JHH ~ 

7.5 Hz, 3 CHPyr), 7.15, 7.06 (m, 1:2, 3 CHXyl), 3.67 (m, 2 H, 1 IrCH2CH2), 2.09 (s, 6 H, 

2 MeXyl), 1.62 (s, 15 H, 5 MeCp*), 1.47 (m, 2 H, 1 IrCH2CH2), 1.38 (d, 18 H, 2JHP = 9.5 

Hz, 2 PMe3); 
13C1H NMR (CD2Cl2, 25 ºC):  = 158.6, 158.3 (Cq-Pyr), 145.4 (Cq-Ph), 

142.5, 136.3, 127.4 (Cq-Xyl), 131.0, 129.8 (2:3, CHPh), 128.1, 127.9 (1:2, CHXyl), 126.8, 

113.4, 106.9 (CHPyr), 99.0 (Cq-Cp*), 56.0 (t, 3JCP = 5 Hz, IrCH2CH2), 20.7 (MeXyl), 18.1 

(d, 1JCP = 38 Hz, PMe3), 10.1 (MeCp*), -7.1 (t, 3JCP = 7 Hz, IrCH2CH2). 
31P{1H} NMR 

(160 MHz, CD2Cl2, 25 ºC):  = -45.4. 

 

Compound [8-Ir]BArF. A solution of complex [3-Ir]BArF (0.05 g, 0.034 

mmoles) in CH2Cl2 (1.25 mL) was treated with H2 (1 atm) and the resulting mixture 

was stirred for 10 min at room temperature. 1H NMR analysis of the reaction mixture 

revealed formation of complex [8-Ir]BArF together with its isomer [3-Ir]BArF in a ca. 

3:1 ratio. [8-Ir]BArF was separated by fractional crystallization from CH2Cl2-pentane 

mixtures at -23 ºC as bright orange crystals. Yield: 10 mg (22%). 1H NMR (CD2Cl2, 25 
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ºC):  = 7.71 (br s., 1 H, 1 CHXyl), 7.69 (m, 1 H, 1 CHPyr), 7.50 (t, 2 H, 3JHH = 7.8 Hz, 2 

CHPh), 7.46 (m, 1 H, 1 CHXyl), 7.33 (t, 1 H, 3JHH = 7.5 Hz, 1 CHPh), 7.24 (d, 2 H, 3JHH = 

7.8 Hz, 2 CHPh), 6.98 (d, 1 H, 3JHH = 8.4 Hz, 1 CHXyl), 6.93 (d, 1 H, 3JHH = 8.7 Hz, 1 

CHPyr), 6.25 (br s, 1 H, NH), 6.23 (d, 1 H, 3JHH = 7.7 Hz, 1 CHPyr), 3.61, 2.11 (d, 1 H 

each, 2JHH = 4.8 Hz, Ir-CH2), 2.47 (s, 3 H, 1 MeXyl), 1.58 (s, 15 H, 5 MeCp*); 
13C1H 

NMR (CD2Cl2, 25 ºC): δ = 154.5, 154.0 (Cq-Pyr), 141.4, 118.8, 108.8 (CHPyr), 137.8 (Cq-

Xyl), 136.9 (Cq-Ph), 134.0, 130.4, 129.5 (CHXyl), 130.8, 126.8, 122.8 (2:1:2, CHPh), 100.8 

(Ir-CH2-Cq), 93.9 (Ir-Cq-Xyl), 90.3 (Cq-Cp*), 35.6 (Ir-CH2), 20.8 (MeXyl), 9.3 (MeCp*); 

HRMS (FAB): m/z calcd. for C29H32N2Ir [M]+: 601.2195; found: 601.2181; elemental 

analysis for C61H44BF24IrN2: C, 50.0; H, 3.0; N, 1.9; found: C, 49.8; H, 3.1; N, 1.8. 

 

Compound [8-Rh]BArF. In a Young NMR tube, a solution of complex [3-

Rh]BArF (40 mg, 0.029 mmol) in CH2Cl2 (0.5 mL) was treated with H2 (60 mol %) and 

after 24 h at room temperature 1H NMR analysis of the reaction mixture revealed 

transformation into complex [8-Rh]BArF in 50 % spectroscopic yield. [8-Rh]BArF was 

separated by fractional crystallization from CH2Cl2-pentane mixtures at -23 ºC as bright 

red crystals. Yield: 16 mg (38%). IR (Nujol): (NH) 3396 cm-1; 1H NMR (CD2Cl2, 25 

ºC): δ = 7.73 (br s, 1 H, 1 CHXyl, detected by NOESY experiment, under the BArF
– 

signal), 7.63, 6.90, 6.30 (t, d, d, 1 H each, 3JHH ~ 7.5 Hz, 3 CHPyr), 7.49 (m, 3 H, 1 

CHXyl + 2 CHPh), 7.31, 7.25 (t, d, 1:2, 3JHH ~ 7.5 Hz, 3 CHPh), 6.97 (d, 1 H, 3JHH ~ 7.5 

Hz, 1 CHXyl), 6.14 (br s, 1 H, NH), 3.64, 2.54 (d, 1 H each, 2JHH ~ 3.5 Hz, Rh–CH2), 

2.48 (s, 3 H, 1 MeXyl), 1.51 (s, 15 H, 5 MeCp*); 
13C1H NMR (CD2Cl2, 25 ºC): δ = 

155.6, 153.8 (Cq-Pyr), 141.4, 117.5, 109.1 (CHPyr), 137.9 (Cq-Xyl), 137.3 (Cq-Ph), 133.5, 

131.0, 129.0 (CHXyl), 130.8, 126.6, 122.6 (2:1:2, CHPh), 107.3 (br, Rh–CH2–Cq-Xyl, 
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detected by HMBC experiment), 100.6 (br, Rh–Cq-Xyl), 96.7 (d, 1JCRh = 7.3 Hz, Cq-Cp*), 

47.9 (d, 1JCRh = 13.8 Hz, Rh–CH2), 20.8 (MeXyl), 9.5 (MeCp*). HRMS (FAB): m/z calcd. 

for C29H32N2Rh [M]+: 511.1621; found: 511.1620. 

 

Observation of a hydride intermediate in the reaction of [3-Ir]BArF with H2. In 

a Young NMR tube, a solution of complex [3-Ir]BArF (0.02 g, 14 µmol) in CD2Cl2 (0.5 

mL) was treated with H2 (500 mol %) and after 1-2 min. at room temperature the 

solution color changed from dark grey to orange and 1H NMR analysis of the reaction 

mixture revealed formation of a hydride intermediate in  95% spectroscopic yield. This 

complex could not be isolated nor be completely characterized (see text). 1H NMR 

(CD2Cl2, 25 ºC):  = 8.03 (t, 1 H, 3JHH = 7.9 Hz 1 CHAr), 7.53-6.85 (10 CHAr), 2.12 (s, 6 

H, 2 MeXyl), 1.20 (s, 15 H, 5 MeCp*), -6.32 (s, 1 H, Ir–H). A resonance attributable to a 

possible NH proton could not be located. 

 

Compound [9-Ir]BArF. CO (g) was bubbled through a solution of compound [8-

Ir]BArF (0.01 g, 6.8 μmol) in CH2Cl2 (2.5 mL), at room temperature for 5 minutes. The 

solution changed color immediately from orange to light yellow. The solvent was 

removed under reduced pressure and 1H NMR analysis of the reaction product showed 

quantitative conversion into [9-Ir]BArF. It was washed with pentane and dried under 

vacuum. IR (Nujol): (NH) 3356 cm-1, (CO) 2029 cm-1; 1H NMR (CD2Cl2, 25 ºC):  = 

δ 7.64, 6.87 (t, d, 1 H each, 3JHH ~ 7.5 Hz, 2 CHPyr), 7.54, 7.42 (m, t, 2:1, 3JHH = 7.5 Hz, 

3 CHPh), 7.30 (m, 3 H, 2 CHPh + 1 CHXyl), 7.19 (m, 3 H, 1 CHXyl + 1 CHPyr + NH), 7.10 

(d, 1 H, 3JHH = 7.5 Hz, 1 CHXyl), 3.73, 2.99 (d, 1 H each, 2JHH = 11.0 Hz, Ir–CH2), 2.32 
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(s, 3 H, 1 MeXyl), 1.67 (s, 15 H, 5 MeCp*); 
13C1H NMR (CD2Cl2, 25 ºC):  = 168.1 

(CO), 159.7, 155.2 (Cq-Pyr), 144.6 (Cq-Ph), 140.4, 118.6, 108.4 (CHPyr), 138.1, 137.9, 

137.5 (Cq-Xyl), 131.1, 128.2, 125.3 (2:1:2, CHPh), 129.9, 129.3, 123.6 (CHXyl), 101.9 (Cq-

Cp*), 21.9 (MeXyl), 8.9 (Ir–CH2), 8.8 (MeCp*); elemental analysis for C62H44BF24IrN2O: 

C, 49.9; H, 3.0; N, 1.9; found: C, 49.7; H, 3.4; N, 1.6. 

 

Computational details 

DFT calculations were carried out with the Gaussian 09 program.39 Geometry 

optimizations of all species were calculated in the gas phase without restrictions using 

the PBE0 functional.40 All light atoms were represented with the 6-31g(d,p) basis set, 

while the Ir and Rh atoms were described by the SDD basis set and its associated 

electron core potential.41 Frequency calculations were performed on the optimized 

structures at the same level of theory to characterize the stationary points, as well as for 

the calculation of gas-phase enthalpies (H), entropies (S) and Gibbs energies (G). The 

nature of the intermediates connected by a transition state was determined by Intrinsic 

Reaction Coordinate (IRC) calculations or by perturbing the transition states along the 

TS coordinate and optimizing to a minimum. Bulk solvent effects were modelled using 

Truhlar’s SMD continuum solvent model42 and empirical dispersion corrections were 

added with the D3 version of Grimme’s dispersion.43-45 Both corrections were made on 

the gas phase geometries by single point calculations. All energies reported throughout 

the text are Zero Point corrected Potential Energies in dichloromethane. 
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 A study on the reactivity of cationic Rh(III) and Ir(III) complexes of 

composition [(5-C5Me5)M(N^N)]+ (complexes 3-M+) with small molecules such as 

CO, C2H4 and H2 is reported. Migratory insertion reactivity is observed with CO and 

C2H4 while H2 catalyzed the isomerization of the aminopyridinate ligand from the 2-

N,N´ coordination to a -N-3-pseudo-allylic bonding mode. 
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I. SYNTHESIS AND CHARACTERIZATION: 

 

Compound 1. 

 

Scheme S1. Synthesis of the aminopyridine ligand utilized in this work. 

 

Step 1. To a suspension of magnesium turnings in THF (6 g, 247 mmol; 120 mL), a 

solution of 2-Br-1,3-Me2C6H3 in THF (39.1 g, 211.2 mmol, 28.1 mL; 40 mL) was 

added dropwise. The reaction mixture was activated using 1,2-dibromoethane (2.5 mL). 

An ice bath was used to cool the reaction mixture when it became too vigorous. The 

reaction mixture was stirred at room temperature for 12 h and then filtered and the 

filtrate used directly in step 2. 

Step 2: The filtrate (step 1) was transferred and added dropwise to a Schlenk flask 

containing a cooled (0 ºC) solution in THF (100 mL) of 2,6-dibromopyridine (47.5 g, 

200.4 mmol), tricyclohexylphosphane (0.13 g, 0.45 mmol) and [NiBr2(dme)] (dme = 

dimethoxyethane) (0.07 g, 0.23 mmol). The resulting mixture was warmed to room 

temperature, stirred for 1 h, and then heated at 50 ºC for 72 h. Water (200 mL) and 

CH2Cl2 (200 mL) were added and the resulting suspension transferred to a separating 

funnel. The organic phase was collected and the aqueous phase washed with CH2Cl2 
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(100 mL) and extracted. The combined organic phases were washed with a saturated 

sodium chloride solution and dried with Na2SO4. After filtration, the organic phase was 

concentrated to dryness under vacuum resulting in an orange-coloured oily product, 

which was purified by column chromatography on silica gel using dichloromethane as 

eluent. The residue obtained after evaporation of the solvent was washed with pentane. 

Yield: 45.2 g (86 %). 

Step 3: the solid obtained in step 2 (10 g, 38.2 mmol), 1,3-

bis(diphenylphosphanyl)propane (0.58 g, 1.4 mmol), 

tris(dibenzylideneacetone)dipalladium(0) (0.63 g, 0.7 mmol) and sodium tert-butoxide 

(4.2 g, 43 mmol) were combined in a Schlenk flask and aniline (3.6 g, 38.2 mmol, 3.5 

mL) dissolved in toluene (120 mL) was added to the flask. The resulting mixture was 

heated at 95 °C for 72 h, was then cooled to room temperature and treated with water 

(200 mL) and diethyl ether (200 mL). The organic phase was extracted and the aqueous 

phase washed with diethyl ether (3x100 mL). The combined organic phases were 

washed with a saturated sodium chloride solution and the organic phase was dried with 

sodium sulfate. After filtration, the organic phase was concentrated to dryness under 

vacuum and the resulting solid was purified by column chromatography on silica gel 

using CH2Cl2 as eluent, and crystallised from a CH2Cl2:Et2O:pentane mixture at -20 °C 

as colourless crystals. Yield: 5.2 g (50%). IR (Nujol): ν(NH) 3204 cm-1; 1H NMR 

(CDCl3, 25 ºC): δ = 7.66 (t, 1 H, 3JHH = 7.8 Hz, 1 CHPyr), 7.40 (br s, 2 H, 2CHPh), 7.34 

(br s, 3 H, 1 CHXyl + 2 CHPh), 7.26 (d, 2 H, 3JHH = 9.6 Hz, 2 CHXyl), 7.15 (t, 1 H, 3JHH = 

7.5 Hz, 1 CHPh), 7.01 (d, 1 H, 3JHH = 8.2 Hz, 1 CHPyr), 6.85 (br s, 1 H, NH), 6.80 (d, 1 

H, 3JHH = 7.3 Hz, 1 CHPyr), 2.32 (s, 6 H, 2 MeXyl); 
13C{1H} NMR (CDCl3, 25 ºC): δ = 

158.5, 155.9 (Cq-Pyr), 140.6, 135.7 (1:2, Cq-Xyl), 137.9, 115.5, 105.7 (CHPyr), 129.1, 

122.5, 120.2 (2:1:2, CHPh), 127.6, 127.5 (1:2, CHXyl), 122.2 (Cq-Ph), 20.3 (MeXyl); Anal. 

Calcd (%) for C19H18N2: C, 83.2; H, 6.6; N, 10.2. Found: C, 83.0, H, 6.4; N, 10.5. 

 

Compound [5-Rh]BArF. C2H4 (g) was bubbled through a cold (0 ºC) solution of 

compound [3-Rh]BAr F (0.3 mg, 0.217 mmol) in CH2Cl2 (15 mL) for 5 min. During this 

period of time the colour of the solution changed from dark green to orange. After 

evaporating the solvent under reduced pressure, 1H NMR analysis of the crude product 

revealed the formation of complex [5-Rh]BAr F in admixture with at least four more 
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rhodium componds. A few crystals of complex [5-Rh]BAr F were obtained by 

crystallization from CH2Cl2-hexane mixtures at -23 ºC. Selected NMR data was 

extracted from the crude reaction mixture. 1H NMR (CD2Cl2, 25 ºC): δ = 5.02 (q, 1 H, 
3JHH ~ 6 Hz, CH(CH3)), 2.29 (s, 6 H, 2 MeXyl), 1.35 (s, 15 H, MeCp*), -0.21 (d, 3 H, 3JHH 

~ 6 Hz, CH(CH3)); 
13C{1H} NMR: δ = 99.8 (d, 1JCRh = 8 Hz, Cq-Cp*), 79.8 (d, 1JCRh ~21 

Hz, CH(CH3)), 21.2 (MeXyl), 10.1 (MeCp*), -1.1 (CH(CH3), 
1JCH ~130 Hz).  

 

II. PROPOSED MECHANISM FOR THE H 2-CATALYZED 

ISOMERIZATION BETWEEN SPECIES 3-M + AND 8-M+. 

 

Scheme S2. Proposed mechanism for the H2-catalyzed isomerization between species 3-

M+ and 8-M+. 
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III. NMR SPECTRA: 

 

Figure S1. 1H NMR spectrum (300 MHz, CDCl3, 25 ºC) of the aminopyridine precursor 

1, employed in this work. 

Figure S2. 13C{1H} NMR spectrum (75 MHz, CDCl3, 25 ºC) of the aminopyridine 

precursor 1, employed in this work. 
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Figure S3. 1H NMR spectrum (400 MHz, CD2Cl2, 25 ºC) of 2-Ir . 

 

 

 

Figure S4. 13C{1H} NMR spectrum (125 MHz, C6D6, 25 ºC) of 2-Ir . 
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Figure S5. 1H NMR spectrum (400 MHz, CD2Cl2, 25 ºC) of 2-Rh. 

 

 

Figure S6. 13C{1H} NMR spectrum (75 MHz, C6D6, 25 ºC) of 2-Rh. 

 

Rh

Cl

N
N

2-Rh



S8 
 

 

Figure S7. 1H NMR spectrum (400 MHz, CD2Cl2, 25 ºC) of [3-Ir]BAr F. 

 

 

Figure S8. 13C{1H} NMR spectrum (100 MHz, CD2Cl2, 25 ºC) of [3-Ir]BAr F. 
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Figure S9. 1H NMR spectrum (500 MHz, CD2Cl2, 25 ºC) of [3-Rh]BAr F. 

 

 

Figure S10. 13C{1H} NMR spectrum (125 MHz, CD2Cl2, 25 ºC) of [3-Rh]BAr F. 
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Figure S11. 1H NMR spectrum (400 MHz, CD2Cl2, 25 ºC) of [4-Ir]BAr F. 

 

 

Figure S12. 13C{1H} NMR spectrum (100 MHz, CD2Cl2, 25 ºC) of [4-Ir]BAr F. 
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Figure S13. 1H NMR spectrum (400 MHz, CD2Cl2, 25 ºC) of [4-Rh]BAr F. 

 

 

 

 

Figure S14. 13C{1H} NMR spectrum (100 MHz, CD2Cl2, 25 ºC) of [4-Rh]BAr F. 
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Figure S15. 1H NMR spectrum (400 MHz, CD2Cl2, -40 ºC) of [5-Ir]BAr F. 

 

 

 

Figure S16. 13C{1H} NMR spectrum (400 MHz, CD2Cl2, -40 ºC) of [5-Ir]BAr F. 
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Figure S17. 1H NMR spectrum (400 MHz, CD2Cl2, 25 ºC) of [6-Ir]BAr F. 

 

 

Figure S18. 13C{1H} NMR spectrum (400 MHz, CD2Cl2, 25 ºC) of [6-Ir]BAr F. 
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Figure S19. Selected regions of the 1H-1H COSY NMR spectrum (left) and 1H-1H 

NOESY NMR spectrum (right) of [6-Ir]BAr F. (400 MHz, CD2Cl2, 25 ºC). 
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Figure S20. 1H NMR spectrum (400 MHz, CD2Cl2, 25 ºC) of [7-Ir]BAr F. 

 

 

Figure S21. 13C{1H} NMR spectrum (400 MHz, CD2Cl2, 25 ºC) of [7-Ir]BAr F. 
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Figure S22. 31P{1H} NMR spectrum (400 MHz, CD2Cl2, 25 ºC) of [7-Ir]BAr F. 

 

 

Figure S23. 1H NMR spectrum (400 MHz, CD2Cl2, 25 ºC) of the crude of the reaction 

of [3-Rh]BAr F with ethylene. Signals attributed to [5-Rh]BAr F. are integrated. 
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Figure S24. Selected region of the 1H NMR spectrum (400 MHz, CD2Cl2, 25 ºC) of the 

crude of the reaction of [3-Rh]BAr F.with ethylene. Signals attributed to [5-Rh]BAr F 

are integrated. 

 

 

 

Figure S25. Selected region of the 1H NMR spectrum (400 MHz, CD2Cl2, 25 ºC) of the 

crude of the reaction of [3-Rh]BAr F with ethylene. Signals attributed to [5-Rh]BAr F 

are integrated. 
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Figure S26. 13C{1H} NMR spectrum (125 MHz, CD2Cl2, 25 ºC) of the crude of the 

reaction of [3-Rh]BAr F with ethylene. 

 

 

 

 

Figure S27. 1H NMR spectrum (400 MHz, CD2Cl2, 25 ºC) of [8-Ir]BAr F. 
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Figure S28. 13C{1H} NMR spectrum (400 MHz, CD2Cl2, 25 ºC) of [8-Ir]BAr F. 

 

 

 

Figure S29. 1H NMR spectrum (400 MHz, CD2Cl2, 25 ºC) of [9-Ir]BAr F. 
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Figure S30. 13C{1H} NMR spectrum (400 MHz, CD2Cl2, 25 ºC) of [9-Ir]BAr F. 
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Figure S31. 1H NMR spectrum (400 MHz, CD2Cl2, 25 ºC) of [8-Rh]BAr F. 
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Figure S32. Selected regions of the 1H-1H COSY NMR spectrum (left) and 1H-1H 

NOESY NMR spectrum (right) of [8-Rh]BAr F. (400 MHz, CD2Cl2, 25 ºC). 

 

 

Figure S33. 13C{1H} NMR spectrum (400 MHz, CD2Cl2, 25 ºC) of [8-Rh]BAr F.. 
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Figure S34. 1H NMR spectrum (400 MHz, CD2Cl2, 25 ºC) of a hydride intermediate in 

the reaction of [3-Ir]BAr F with excess of dihydrogen. 
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IV. X-RAY STRUCTURE ANALYSIS: 

 

Crystals of suitable size for X-ray diffraction analysis were coated with dry 

perfluoropolyether and mounted on glass fibers and fixed in a cold nitrogen stream (T = 

100 K) to the goniometer head. Data collection was performed on a Bruker-Nonius 

X8Apex-II CCD diffractometer, using monochromatic radiation λ(Mo Kα) = 0.71073 Å, 

by means of ω and φ scans with a width of 0.50 degree. The data were reduced 

(SAINT)1 and corrected for absorption effects by the multi-scan method (SADABS)2. 

The structures were solved by direct methods (SIR-2002)3 and refined against all F2 

data by full-matrix least-squares techniques (SHELXTL-6.12)4 minimizing w[Fo
2-Fc

2]2. 

All the non-hydrogen atoms were refined anisotropically, while C-H hydrogen atoms 

were placed in geometrically calculated positions using a riding model. The N-H 

hydrogen atoms were localized by difference Fourier maps and refined fixing their bond 

lengths at the end of the refinement. Some geometric restraints (SADI and DFIX 

commands), the ADP restraint SIMU and the rigid bond restraint DELU were used to 

make the geometric and ADP values of the disordered atoms (-CF3 groups in BAr F 

anions) more reasonable. A search for solvent accessible voids in the crystal structures 

[5-Rh]BAr F and [7-Ir]BAr F using PLATON,5 showed a potential solvent volume, 

impossible to model even with the most severe restraints. The corresponding CIF data 

represent SQUEEZE6 treated structures, with the undefined solvent excluded from the 

structural model. The SQUEEZE results were appended to the CIF.  

CCDC 1572330 (2-Ir ), 1572331 (2-Rh), 1572332 ([3-Ir]BAr F), 1572333 ([4-

Ir]BAr F), 1572334 ([4-Rh]BAr F), 1572335 ([5-Rh]BAr F), 1572336 ([6-Ir]BAr F), 

1572337 ([7-Ir]BAr F), 1572338 ([8-Ir]BAr F), 1572339 ([8-Rh]BAr F). 
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X-Ray data for 2-Ir 

 

 

 

 

Figure S35. ORTEP view of molecular structure of complex 2-Ir  with thermal 

ellipsoids drawn at the 30% level. The hydrogen atoms are omitted by clarity. 

 

 

 

Table S1. Selected bond lengths [Å] and angles [°] for 2-Ir  

Bond Distances (Å) 

Ir(1)–N(1) 2.175(2) Ir(1)–C(21) 2.141(3) 

Ir(1)–N(2) 2.092(2) Ir(1)–C(22) 2.138(3) 

Ir(1)–Cl(1) 2.3940(7) Ir(1)–C(23) 2.167(3) 

Ir(1)–C(20) 2.180(3) Ir(1)–C(24) 2.190(3) 

Bond Angles (º) 

N(1)-Ir(1)-Cl(1) 84.92(7) C(1)-N(2)-Ir(1) 97.91(17) 

N(2)-Ir(1)-Cl(1) 85.98(7) C(1)-N(1)-Ir(1) 93.66(16) 

N(2)-Ir(1)-N(1) 61.10(9) N(2)-C(1)-N(1) 106.5(2) 
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Table S2. Crystal data and structure refinement for 2-Ir . 

 

Empirical formula  C29H32ClIrN2 

Formula weight  636.22 

Temperature  173(2) K 

Wavelength  0.71073 Å 

Crystal system  Monoclinic 

Space group  P 21/c 

Unit cell dimensions a = 14.4731(7) Å α= 90°. 

 b = 7.9759(3) Å β= 91.1950(10)°. 

 c = 22.2870(11) Å γ = 90°. 

Volume 2572.2(2) Å3 

Z 4 

Density (calculated) 1.643 Mg/m3 

Absorption coefficient 5.314 mm-1 

F(000) 1256 

Crystal size 0.15 x 0.10 x 0.08 mm3 

Theta range for data collection 2.28 to 25.25°. 

Index ranges -17<=h<=17, -9<=k<=9, -26<=l<=26 

Reflections collected 26382 

Independent reflections 4485 [R(int) = 0.0326] 

Completeness to theta = 25.25° 99.1 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.6558 and 0.5328 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 4485 / 0 / 305 

Goodness-of-fit on F2 1.041 

Final R indices [I>2sigma(I)] R1 = 0.0189, wR2 = 0.0476 

R indices (all data) R1 = 0.0239, wR2 = 0.0490 

Largest diff. peak and hole 1.414 and -1.116 e.Å-3 
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X-Ray data for 2-Rh 

 

 

 

 

Figure S36. ORTEP view of molecular structure of complex 2-Rh with thermal ellipsoids 

drawn at the 30% level. The hydrogen atoms are omitted by clarity. 

 

 

 

Table S3. Selected bond lengths [Å] and angles [°] for 2-Rh 

Bond distances (Å) 

Rh(1)−N(1) 2.1114(19) Rh(1)−C(21) 2.130(2) 

Rh(1)−N(2) 2.1705(19) Rh(1)−C(22) 2.147(2) 

Rh(1)−Cl(1) 2.4057(6) Rh(1)−C(23) 2.128(2) 

Rh(1)−C(20) 2.166(2) Rh(1)−C(24) 2.178(2) 

Angles (º) 

N(1)-Rh(1)-Cl(1) 87.64(5) C(1)-N(2)-Rh(1) 93.33(13) 

N(2)-Rh(1)-Cl(1) 91.87(5) C(1)-N(1)-Rh(1) 96.67(14) 

N(1)-Rh(1)-N(2) 61.66(7) N(1)-C(1)-N(2) 107.64(18) 
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Table S4. Crystal data and structure refinement for 2-Rh. 

 

Empirical formula  C30H34Cl3N2Rh 

                  [C29H32ClN2Rh, CH2Cl2] 

Formula weight  631.85 

Temperature  173(2) K 

Wavelength  0.71073 Å 

Crystal system  Orthorhombic 

Space group  P 21 21 21 

Unit cell dimensions a = 7.4168(3) Å α= 90°. 

 b = 14.4271(6) Å β= 90°. 

 c = 26.7421(11) Å γ = 90°. 

Volume 2861.5(2) Å3 

Z 4 

Density (calculated) 1.467 Mg/m3 

Absorption coefficient 0.899 mm-1 

F(000) 1296 

Crystal size 0.48 x 0.14 x 0.12 mm3 

Theta range for data collection 2.08 to 25.25°. 

Index ranges -8<=h<=8, -15<=k<=17, -15<=l<=32 

Reflections collected 16202 

Independent reflections 4934 [R(int) = 0.0183] 

Completeness to theta = 25.25° 98.9 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.8978 and 0.8602 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 4934 / 54 / 350 

Goodness-of-fit on F2 1.074 

Final R indices [I>2sigma(I)] R1 = 0.0205, wR2 = 0.0491 

R indices (all data) R1 = 0.0214, wR2 = 0.0495 

Absolute structure parameter 0.02(2) 

Largest diff. peak and hole 0.453 and -0.277 e.Å-3 
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X-Ray data for [3-Ir]BAr F 

 

 

 

 

Figure S37. ORTEP view of molecular structure of complex [3-Ir]BAr F with thermal 

ellipsoids drawn at the 30% level. The hydrogen atoms are omitted by clarity. 

 

 

Table S5. Selected bond lengths [Å] and angles [°] for [3-Ir]BAr F. 

Bond Distances (Å) 

Ir(1)–N(1) 2.109(6) Ir(1)–C(22) 2.158(7) 

Ir(1)–N(2) 1.972(6) Ir(1)–C(23) 2.176(7) 

Ir(1)–C(20) 2.133(8) Ir(1)–C(24) 2.194(7) 

Ir(1)–C(21) 2.155(7)   

Bond Angles (º) 

N(2)-Ir(1)-N(1) 64.3(2) C(1)-N(1)-Ir(1) 93.2(4) 

C(1)-N(2)-Ir(1) 98.2(4) N(1)-C(1)-N(2) 104.3(6) 
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Table S6. Crystal data and structure refinement for [3-Ir]BAr F. 

 

Empirical formula  C67H58BF24IrN2 

                         [C29H32IrN2, C32H12BF24, C6H14] 

Formula weight  1550.16 

Temperature  173(2) K 

Wavelength  0.71073 Å 

Crystal system  Monoclinic 

Space group  P 21/n 

Unit cell dimensions a = 16.2879(12) Å α= 90°. 

 b = 19.0510(13) Å β= 91.720(2)°. 

 c = 21.0781(12) Å γ = 90°. 

Volume 6537.6(8) Å3 

Z 4 

Density (calculated) 1.575 Mg/m3 

Absorption coefficient 2.153 mm-1 

F(000) 3088 

Crystal size 0.40 x 0.20 x 0.20 mm3 

Theta range for data collection 2.14 to 25.25°. 

Index ranges -15<=h<=19, -22<=k<=22, -25<=l<=25 

Reflections collected 63628 

Independent reflections 11705 [R(int) = 0.0981] 

Completeness to theta = 25.25° 98.8 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.6507 and 0.6017 

Refinement method Full-matrix-block least-squares on F2 

Data / restraints / parameters 11705 / 386 / 865 

Goodness-of-fit on F2 1.037 

Final R indices [I>2sigma(I)] R1 = 0.0534, wR2 = 0.1319 

R indices (all data) R1 = 0.0949, wR2 = 0.1447 

Largest diff. peak and hole 2.015 and -1.143 e.Å-3 
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X-Ray data for [4-Ir]BAr F 

 

 

 

 

Figure S38. ORTEP view of molecular structure of complex [4-Ir]BAr F with thermal 

ellipsoids drawn at the 30% level. The hydrogen atoms are omitted by clarity. 

 

 

Table S7. Selected bond lengths [Å] and angles [°] for [4-Ir]BAr F. 

Bond Distances (Å) 

Ir(1)–N(1) 2.137(7) Ir(1)–C(21) 2.163(6) 

Ir(1)–N(2) 2.089(6) Ir(1)–C(22) 2.232(7) 

Ir(1)–C(30) 1.874(8) Ir(1)–C(23) 2.259(8) 

O(1)–C(30) 1.145(9) Ir(1)–C(24) 2.216(10) 

Ir(1)–C(20) 2.181(7)   

Bond Angles (º) 

C(30)-Ir(1)-N(1) 94.2(3) C(1)-N(1)-Ir(1) 94.3(5) 

C(30)-Ir(1)-N(2) 94.5(3) C(1)-N(2)-Ir(1) 96.3(5) 

N(2)-Ir(1)-N(1) 62.0(2) N(1)-C(1)-N(2) 107.1(8) 
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Table S8. Crystal data and structure refinement for [4-Ir]BAr F. 

 

Empirical formula  C62H44BF24IrN2O 

Formula weight  1492.00 

Temperature  173(2) K 

Wavelength  0.71073 Å 

Crystal system  Monoclinic 

Space group  C c 

Unit cell dimensions a = 21.926(4) Å α= 90°. 

 b = 12.715(3) Å β= 96.81(3)°. 

 c = 21.804(4) Å γ = 90°. 

Volume 6036(2) Å3 

Z 4 

Density (calculated) 1.642 Mg/m3 

Absorption coefficient 2.330 mm-1 

F(000) 2944 

Crystal size 0.45 x 0.25 x 0.20 mm3 

Theta range for data collection 1.85 to 25.25°. 

Index ranges -21<=h<=26, -15<=k<=15, -26<=l<=26 

Reflections collected 42088 

Independent reflections 9974 [R(int) = 0.0333] 

Completeness to theta = 25.25° 100.0 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.6280 and 0.5024 

Refinement method Full-matrix-block least-squares on F2 

Data / restraints / parameters 9974 / 266 / 827 

Goodness-of-fit on F2 1.040 

Final R indices [I>2sigma(I)] R1 = 0.0333, wR2 = 0.0871 

R indices (all data) R1 = 0.0352, wR2 = 0.0882 

Absolute structure parameter 0.019(6) 

Largest diff. peak and hole 1.530 and -0.739 e.Å-3 
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X-Ray data for [4-Rh]BAr F 

 

 

 

 

Figure S39. ORTEP view of molecular structure of complex [4-Rh]BAr F with thermal 

ellipsoids drawn at the 30% level. The hydrogen atoms are omitted by clarity. 

 

 

Table S9. Selected bond lengths (Å) and angles (º) for [4-Rh]BAr F. 

Bond distances (Å) 

Rh(1)−N(2) 2.152(3) Rh(1)−C(22) 2.235(5) 

Rh(1)−C(21) 1.908(5) Rh(1)−C(23) 2.251(5) 

O(2)−C(21) 1.115(6) Rh(1)−C(24) 2.157(4) 

Rh(1)−C(20) 2.026(4) Rh(1)−C(25) 2.262(4) 

O(1)−C(20) 1.200(5) Rh(1)−C(26) 2.333(5) 

Angles (º) 

C(21)-Rh(1)-N(2) 94.55(17) N(1)-C(20)-Rh(1) 111.9(3) 

C(21)-Rh(1)-C(20) 88.9(2) C(1)-N(2)-Rh(1) 112.5(3) 

C(20)-Rh(1)-N(2) 79.13(15) N(2)-C(1)-N(1) 115.0(4) 
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Table S10. Crystal data and structure refinement for [4-Rh]BAr F. 

 

Empirical formula  C64H46BCl2F24N2O2Rh 

                               [C32H12BF24, C31H32N2O2Rh, CH2Cl2] 

Formula weight  1515.65 

Temperature  173(2) K 

Wavelength  0.71073 Å 

Crystal system  Monoclinic 

Space group  P 21/c 

Unit cell dimensions a = 20.3592(8) Å α= 90°. 

 b = 16.6299(6) Å β= 108.0170(10)°. 

 c = 19.9031(9) Å γ = 90°. 

Volume 6408.2(4) Å3 

Z 4 

Density (calculated) 1.571 Mg/m3 

Absorption coefficient 0.465 mm-1 

F(000) 3040 

Crystal size 0.30 x 0.20 x 0.15 mm3 

Theta range for data collection 1.63 to 25.25°. 

Index ranges -23<=h<=24, -13<=k<=19, -23<=l<=23 

Reflections collected 91910 

Independent reflections 11592 [R(int) = 0.0532] 

Completeness to theta = 25.25° 100.0 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.9328 and 0.8941 

Refinement method Full-matrix-block least-squares on F2 

Data / restraints / parameters 11592 / 441 / 946 

Goodness-of-fit on F2 1.106 

Final R indices [I>2sigma(I)] R1 = 0.0616, wR2 = 0.1768 

R indices (all data) R1 = 0.0823, wR2 = 0.1881 

Largest diff. peak and hole 2.070 and -1.016 e.Å-3 
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X-Ray data for [5-Rh]BAr F 

 

 

 

Figure S40. ORTEP view of molecular structure of complex [5-Rh]BAr F with thermal 

ellipsoids drawn at the 30% level. The hydrogen atoms are omitted by clarity. 

 

 

 

Table S11. Selected bond lengths (Å) and angles (º) for [5-Rh]BAr F. 

Bond distances (Å) 

Rh(1)−C(30) 2.009(7) Rh(1)−C(21) 2.153(9) 

Rh(1)−H(31C) 1.9373 Rh(1)−C(22) 2.123(8) 

Rh(1)−N(2) 2.153(5) Rh(1)−C(23) 2.179(6) 

N(1)−C(30) 1.431(8) Rh(1)−C(24) 2.259(6) 

Rh(1)−C(20) 2.188(7)   

Angles (º) 

C(30)-Rh(1)-N(2) 78.2(3) C(7)-N(1)-C(30) 118.3(5) 

C(30)-Rh(1)-H(31C) 63.9 N(1)-C(7)-N(2) 114.5(5) 

N(2)-Rh(1)-H(31C) 88.5 N(1)-C(30)-Rh(1) 111.5(4) 

C(7)-N(2)-Rh(1) 112.3(4) C(31)-H(31C)-Rh(1) 103.15 
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Table S12. Crystal data and structure refinement for [5-Rh]BAr F. 

 

Empirical formula  C127H98B2Cl2F48N4Rh2 

                                    [2(C31H36N2Rh), 2(C32H12BF24), CH2Cl2] 

Formula weight  2890.43 

Temperature  173(2) K 

Wavelength  0.71073 Å 

Crystal system  Triclinic 

Space group  P 1� 

Unit cell dimensions a = 12.6275(7) Å α= 81.802(2)°. 

 b = 14.4679(9) Å β= 82.011(2)°. 

 c = 19.0388(12) Å γ = 88.103(2)°. 

Volume 3409.0(4) Å3 

Z 1 

Density (calculated) 1.408 Mg/m3 

Absorption coefficient 0.394 mm-1 

F(000) 1454 

Crystal size 0.20 x 0.10 x 0.10 mm3 

Theta range for data collection 1.09 to 25.25°. 

Index ranges -15<=h<=15, -16<=k<=17, -22<=l<=22 

Reflections collected 61753 

Independent reflections 12273 [R(int) = 0.0619] 

Completeness to theta = 25.25° 99.3 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.961 and 0.954 

Refinement method Full-matrix-block least-squares on F2 

Data / restraints / parameters 12273 / 405 / 973 

Goodness-of-fit on F2 1.058 

Final R indices [I>2sigma(I)] R1 = 0.0641, wR2 = 0.1467 

R indices (all data) R1 = 0.1200, wR2 = 0.2189 

Largest diff. peak and hole 2.245 and -0.765 e.Å-3 
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X-Ray data for [6-Ir]BAr F 

 

 

 

 

Figure S41. ORTEP view of molecular structure of complex [6-Ir]BAr F with thermal 

ellipsoids drawn at the 30% level. The hydrogen atoms are omitted by clarity. 

 

 

Table S13. Selected bond lengths [Å] and angles [°] for [6-Ir]BAr F. 

Bond Distances (Å) 

Ir(1)–C(20) 1.911(12) Ir(1)–C(23) 2.340(11) 

Ir(1)–N(1) 2.113(8) Ir(1)–C(24) 2.280(13) 

Ir(1)–H(1Ir) 1.6070 Ir(1)–C(25) 2.161(12) 

N(2)–C(20) 1.345(14) Ir(1)–C(26) 2.226(10) 

Ir(1)–C(22) 2.284(11)   

Bond Angles (º) 

C(20)-Ir(1)-N(1) 78.4(4) C(20)-N(2)-C(1) 115.5(10) 

C(20)-Ir(1)-H(1Ir) 89.1 N(1)-C(1)-N(2) 116.2(10) 

N(1)-Ir(1)-H(1Ir) 87.0 N(2)-C(20)-Ir(1) 118.8(8) 

C(1)-N(1)-Ir(1) 111.1(7)   
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Table S14. Crystal data and structure refinement for [6-Ir]BAr F. 

 

Empirical formula  C63H48BF24IrN2 

                   [C32H12BF24, C31H36IrN2] 

Formula weight  1492.04 

Temperature  173(2) K 

Wavelength  0.71073 Å 

Crystal system  Monoclinic 

Space group  C c 

Unit cell dimensions a = 19.8075(10) Å α= 90°. 

 b = 20.1986(9) Å β= 98.691(2)°. 

 c = 16.7605(8) Å γ = 90°. 

Volume 6628.6(5) Å3 

Z 4 

Density (calculated) 1.495 Mg/m3 

Absorption coefficient 2.120 mm-1 

F(000) 2952 

Crystal size 0.40 x 0.40 x 0.20 mm3 

Theta range for data collection 1.80 to 25.25°. 

Index ranges -22<=h<=23, -23<=k<=24, -20<=l<=20 

Reflections collected 32258 

Independent reflections 9610 [R(int) = 0.0331] 

Completeness to theta = 25.25° 98.7 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.6544 and 0.4543 

Refinement method Full-matrix-block least-squares on F2 

Data / restraints / parameters 9610 / 464 / 936 

Goodness-of-fit on F2 1.094 

Final R indices [I>2sigma(I)] R1 = 0.0606, wR2 = 0.1594 

R indices (all data) R1 = 0.0659, wR2 = 0.1640 

Absolute structure parameter 0.046(12) 

Largest diff. peak and hole 1.894 and -1.769 e.Å-3 
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X-Ray data for [7-Ir]BAr F 

 

 

 

Figure S42. ORTEP view of molecular structure of complex [7-Ir]BAr F with thermal 

ellipsoids drawn at the 30% level. The hydrogen atoms are omitted by clarity. 

 

 

Table S15. Selected bond lengths [Å] and angles [°] for [7-Ir]BAr F 

Bond Distances (Å) 

Ir(1)–C(21) 2.140(4) Ir(1)–C(23) 2.246(5) 

Ir(1)–P(1) 2.2854(13) Ir(1)–C(24) 2.278(4) 

Ir(1)–P(2) 2.2734(12) Ir(1)–C(25) 2.281(4) 

C(20)–C(21) 1.534(6) Ir(1)–C(26) 2.236(5) 

Ir(1)–C(22) 2.267(5)   

Bond Angles (º) 

P(1)-Ir(1)-P(2) 96.22(5) Ir(1)-C(21)-C(20) 117.6(3) 

P(1)-Ir(1)-C(21) 83.23(13) C(21)-C(20)-N(2) 112.0(4) 

C(21)-Ir(1)-P(2) 89.86(13)   
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Table S16.  Crystal data and structure refinement for [7-Ir]BAr F. 

 

Empirical formula  C69H66BF24IrN2P2 

                      [C32H12BF24, C37H54IrN2P2] 

Formula weight  1644.19 

Temperature  213(2) K 

Wavelength  0.71073 Å 

Crystal system  Triclinic 

Space group  P 1� 

Unit cell dimensions a = 12.9657(5) Å α= 73.5760(10)°. 

 b = 16.5362(7) Å β= 72.1220(10)°. 

 c = 18.6342(7) Å γ = 84.342(2)°. 

Volume 3646.9(2) Å3 

Z 2 

Density (calculated) 1.497 Mg/m3 

Absorption coefficient 1.976 mm-1 

F(000) 1644 

Crystal size 0.30 x 0.20 x 0.20 mm3 

Theta range for data collection 1.19 to 25.25°. 

Index ranges -15<=h<=15, -19<=k<=19, -22<=l<=20 

Reflections collected 70290 

Independent reflections 13174 [R(int) = 0.0384] 

Completeness to theta = 25.25° 99.7 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.6933 and 0.5886 

Refinement method Full-matrix-block least-squares on F2 

Data / restraints / parameters 13174 / 279 / 946 

Goodness-of-fit on F2 1.111 

Final R indices [I>2sigma(I)] R1 = 0.0370, wR2 = 0.1065 

R indices (all data) R1 = 0.0413, wR2 = 0.1096 

Largest diff. peak and hole 1.508 and -0.688 e.Å-3 
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X-Ray data for [8-Ir]BAr F 

 

 

 

 

Figure S43. ORTEP view of molecular structure of complex [8-Ir]BAr F with thermal 

ellipsoids drawn at the 30% level. The hydrogen atoms are omitted by clarity. 

 

 

Table S17. Selected bond lengths [Å] and angles [°] for [8-Ir]BAr F 

Bond Distances (Å) 

Ir(1)–N(1) 2.086(3) C(10)–C(11) 1.378(6) 

Ir(1)–C(6) 2.387(4) C(6)–C(11) 1.423(6) 

Ir(1)–C(7) 2.252(4) Ir(1)–C(20) 2.170(3) 

Ir(1)–C(12) 2.118(4) Ir(1)–C(21) 2.153(4) 

C(6)–C(7) 1.449(5) Ir(1)–C(22) 2.202(3) 

C(7)–C(12) 1.449(6) Ir(1)–C(23) 2.225(4) 

C(7)–C(8) 1.423(6) Ir(1)–C(24) 2.187(4) 

C(8)–C(9) 1.355(7) Ir(1)–H(2N) 2.891 

C(9)–C(10) 1.408(6)   

Bond Angles (º) 

N(1)-Ir(1)-C(6) 62.04(12) N(1)-Ir(1)-C(12) 80.11(14) 

C(7)-Ir(1)-C(6) 36.27(13) N(1)-C(5)-C(6) 108.5(3) 

C(12)-Ir(1)-C(7) 38.59(16) N(1)-C(1)-N(2) 115.1(3) 
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Table S18. Crystal data and structure refinement for [8-Ir]BAr F. 

 

Empirical formula  C61H44BF24IrN2 

                 [C32H12BF24, C29H32IrN2] 

Formula weight  1463.99 

Temperature  173(2) K 

Wavelength  0.71073 Å 

Crystal system  Triclinic 

Space group  P -1 

Unit cell dimensions a = 12.2362(6) Å α= 91.3100(10)°. 

 b = 13.0883(6) Å β= 90.8470(10)°. 

 c = 18.4287(8) Å γ = 93.2790(10)°. 

Volume 2945.4(2) Å3 

Z 2 

Density (calculated) 1.651 Mg/m3 

Absorption coefficient 2.384 mm-1 

F(000) 1444 

Crystal size 0.50 x 0.30 x 0.20 mm3 

Theta range for data collection 1.89 to 25.25°. 

Index ranges -14<=h<=14, -15<=k<=15, -20<=l<=22 

Reflections collected 54111 

Independent reflections 10558 [R(int) = 0.0357] 

Completeness to theta = 25.25° 99.0 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.6211 and 0.4279 

Refinement method Full-matrix-block least-squares on F2 

Data / restraints / parameters 10558 / 265 / 811 

Goodness-of-fit on F2 1.070 

Final R indices [I>2sigma(I)] R1 = 0.0289, wR2 = 0.0776 

R indices (all data) R1 = 0.0323, wR2 = 0.0790 

Largest diff. peak and hole 1.455 and -0.681 e.Å-3 
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X-Ray data for [8-Rh]BAr F 

 

 

 

 

Figure S44. ORTEP view of molecular structure of complex [8-Rh]BAr F with thermal 

ellipsoids drawn at the 30% level. The hydrogen atoms are omitted by clarity. 

 

 

Table S19. Selected bond lengths (Å) and angles (º) for [8-Rh]BAr F. 

Bond distances (Å) 

Rh(1)−N(1) 2.101(3) C(10)−C(11) 1.372(7) 

Rh(1)−C(6) 2.379(4) C(6)−C(11) 1.428(7) 

Rh(1)−C(7) 2.237(4) Rh(1)−C(20) 2.176(4) 

Rh(1)−C(12) 2.124(5) Rh(1)−C(21) 2.155(4) 

C(6)−C(7) 1.441(6) Rh(1)−C(22) 2.191(4) 

C(7)−C(12) 1.437(7) Rh(1)−C(23) 2.218(4) 

C(7)−C(8) 1.432(7) Rh(1)−C(24) 2.174(4) 

C(8)−C(9) 1.350(8) Rh(1)−H(2N) 2.987 

C(9)−C(10) 1.406(8)   

Angles (º) 

N(1)-Rh(1)-C(6) 62.43(14) N(1)-Rh(1)-C(12) 81.00(17) 

C(7)-Rh(1)-C(6) 36.21(16) N(1)-C(5)-C(6) 110.3(4) 

C(12)-Rh(1)-C(7) 38.37(19) N(1)-C(1)-N(2) 115.4(4) 
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Table S20. Crystal data and structure refinement for [8-Rh]BAr F. 

 

Empirical formula  C61H44BF24N2Rh 

                    [C32H12BF24, C29H32N2Rh] 

Formula weight  1374.70 

Temperature  173(2) K 

Wavelength  0.71073 Å 

Crystal system  Triclinic 

Space group  P 1� 

Unit cell dimensions a = 12.2207(3) Å α= 91.176(2)°. 

 b = 13.0773(4) Å β= 90.924(2)°. 

 c = 18.3938(5) Å γ = 93.482(2)°. 

Volume 2933.09(14) Å3 

Z 2 

Density (calculated) 1.557 Mg/m3 

Absorption coefficient 0.409 mm-1 

F(000) 1380 

Crystal size 0.50 x 0.30 x 0.20 mm3 

Theta range for data collection 1.56 to 25.25°. 

Index ranges -14<=h<=14, -15<=k<=15, -22<=l<=21 

Reflections collected 65306 

Independent reflections 10620 [R(int) = 0.0297] 

Completeness to theta = 25.25° 99.8 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.9226 and 0.8626 

Refinement method Full-matrix-block least-squares on F2 

Data / restraints / parameters 10620 / 265 / 811 

Goodness-of-fit on F2 1.057 

Final R indices [I>2sigma(I)] R1 = 0.0518, wR2 = 0.1465 

R indices (all data) R1 = 0.0573, wR2 = 0.1520 

Largest diff. peak and hole 1.912 and -0.698 e.Å-3 
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V. COMPUTATIONAL DETAILS 

 

 

Figure S45. DFT optimized geometries of relevant intermediates and transition states of 

the calculated ethylidene route to complex 6-Ir +. 

 

 

 

 

 

Figure S46. Energy profile for the ethylidene route to complex 6-Ir +. 
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Figure S47. Energy profile including the initial steps of the migratory insertion path. 
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