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Abstract—Robots navigating in a social way should use some
knowledge about common motion patterns of people in the
environment. Moreover, it is known that people move intend-
ing to reach certain points of interest, and machine learning
techniques have been widely used for acquiring this knowledge
by observation. Learning algorithms such as Growing Hidden
Markov Models (GHMMs) usually assume that points of interest
are located at the end of human trajectories, but complete
trajectories cannot always be observed by a mobile robot due
to occlusions and people going out of sensor range. This paper
extends GHMMs to deal with partial observed trajectories where
people’s goals are not known a priori. A novel technique based
on hypothesis testing is also used to discover the points of
interest (goals) in the environment. The approach is validated
by predicting people’s motion in three different datasets.

I. INTRODUCTION

Nowadays, robots working in environments populated with
people are becoming commonplace. In order to show a more
social behavior, classic navigation algorithms need to propose
new objective cost functions. For instance, path planning algo-
rithms should drive robot avoiding common people trajectories
not to disturb them, or conversely, along those trajectories
to search for someone [1], [2]. All these social navigation
algorithms require the ability to predict human movements in
the environment.

Human motion patterns depend typically on spatial vari-
ables: people move between doors and corridors following
common trajectories, places of interest such as coffee ma-
chines are common goals, etc. Machine learning techniques
can be used to infer these models from observed people
trajectories.

Some approaches [3], [4] use occupancy grid maps that
consider dynamic objects and represent the probability of
people appearance and disappearance for each cell. In [3],
a multi-layer framework for social navigation is introduced.
Each layer has a purpose: one is used to determine the
accessible area of the environment; another one is used to
represent rates of people appearing; and the last one represents
a place-dependent reliability of the person detector on board
the robot. Authors in [5] present a system of multi-probability
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grids for social mapping. Motion probability grids represent
the potential motion of a human moving to a particular target
grid cell.

Agent-based and velocity-space reasoning are also typically
used as in [6], where each pedestrian is modeled as an agent
using statistical inference techniques. Thus, the robot is able
to learn individual motion parameters for every agent in the
scene, providing a solution for a collision-free robot naviga-
tion. In [7], clustering techniques are applied over pedestrian
motion data to extract information about the use of the space
and people’s typical behavior. Then, this is used by a robot to
predict likely behaviors in certain places and offer services to
idle people at a shopping center. In [8], the authors describe
a behavior cognition model to represent the spatial effects in
the relations between people and also between people and the
environment.

Motion patterns and people intentions are affected by points
of interest in the environment, and thus, the problem of
estimating such points is also considered in the literature [9].
These points may not have discriminative appearance and
shape, but they affect the behavior of people in the scene,
attracting them (e.g., vending machines) or repelling them
(e.g., grass lawns).

Hidden Markov Models (HMMs) were one of the first
machine learning techniques used to estimate typical motion
patterns [10]. In particular, we focus in this paper on Growing
Hidden Markov Models (GHMMs) [11], which can learn the
spatial structure of trajectories in a specific environment by
building an Instantaneous Topological Map (ITM) that can be
viewed as a dynamic occupancy grid map. First, a learning
phase trains an HMM that is iteratively fed with observed
trajectories; then, a prediction phase takes new trajectories
and determines the probability distribution of next positions
in a time horizon, as well as the probability distribution of
future goals. GHMMs can work in an online fashion, training
the model at the same time that predictions are computed.
Moreover, not only the parameters of the HMM are trained,
but also the ITM and HMM structures evolve with new
observations.

One of the main issues with current GHMM implementa-
tions is the need for complete person trajectories (including
actual starting and ending/goal points) in the training phase.
The GHMM training algorithm does not apply any special
reasoning about where the points of interest are located,
since it is assumed that goals are the final points of the
trajectories. Tracking complete trajectories can be achieved



when the whole environment is observable at once (e.g., using
a zenithal camera [12]), but tracking people based on sensors
on board a mobile robot could lead to a poor learning due
to occlusions that interrupt the observed trajectories. In this
paper, we propose an extension of GHMMs designed to be
used with on-board robot sensors. A first contribution is a
novel learning phase that uses partial trajectories where it
cannot be determined whether individuals have reached their
final goals or not (they may go out of the sensor range
or get occluded). We also contribute with a new hypothesis
testing method to estimate potential points of interest in
the environment (goal points of trajectories). Finally, a more
accurate modeling of the sensors has been included, since the
observation function associated with each topological node is
dynamically updated during the learning phase.

Experimental results are provided for two public datasets
with zenithal cameras, and a dataset recorded using a robot in
an indoor office-like environment. A couple of metrics have
been used to evaluate the quality of the prediction of people’s
motion with our model.

The remainder of the paper is as follows: Section II sum-
marizes the concepts related to GHMMs; Section III describes
a new improved version of the original ITM algorithm; Sec-
tion IV presents the hypothesis testing approach for discov-
ering goals of trajectories; Section V explains how to train
the HMM and make future predictions; Section VI provides
experimental results; and Section VII discusses conclusions
and future work.

II. GROWING HIDDEN MARKOV MODELS

In a GHMM, there is a discrete representation of the space,
which is divided into regions. Transitions are only allowed
between neighboring regions. The learning process consists of
estimating the best space discretization, and identifying neigh-
boring regions and transition probabilities from observed data.
First, a topological map is built with the ITM algorithm [13];
then, an HMM is built from the ITM, and its transition (and
prior) probabilities are trained with the incremental Baum-
Welch technique [14]. Moreover, in GHMMs (contrary to
HMMs) the number of discrete states and transitions are not
constant, i.e, the structure of the model changes as more input
observations are processed.

The general steps of the complete algorithm for learning a
GHMM are summarized in the following subsections. Further
details about how to train a GHMM and make predictions with
it can be seen in [11].

A. Updating the topological map

A topological map is a discrete representation of the space in
the form of a graph where nodes represent regions (each node
has associated the centroid of the region) and edges connect
nodes related to adjacent regions. The ITM algorithm [13]
updates iteratively a topological map given the observed data.
Each observation Ot consists of a 2D position Op of a detected
person at a given time step t; and a trajectory O1:T is a
sequence of observations of the same person along T time

steps. As new observations arrive, nodes and edges may be
created (or moved) or deleted in the topological map.

B. Updating the HMM structure

A GHMM consists of an ITM and an underlying HMM,
where the states and transitions of the HMM correspond to the
nodes and edges of the ITM (each edge corresponds to two
transitions, since the ITM graph is undirected but the HMM
graph is directed). During the ITM update, nodes and edges
may be added or deleted, and those changes in the topological
map must be translated to the HMM structure. Thus, for each
new node in the ITM, a new state is added in the HMM with
a default prior probability and a self-transition probability;
for each removed node, the corresponding state is removed.
Moreover, for each new edge in the ITM, two transitions
are added in the HMM with default probabilities; for each
removed edge, the corresponding transitions are removed.
Then, all priors and transition probabilities are normalized.

It is assumed that people move intending to reach a partic-
ular goal. Thus, each node i in the ITM (or HMM state) con-
tains 4-dimensional spatial information (xi, yi, g

x
i , g

y
i ), where

(xi, yi) is the centroid ci of the current region and (gxi , g
y
i )

is the intended goal related to that node. Also, for every
node/state i, an associated Gaussian distribution G(ci,Σ) is
stored representing the likelihood of observations for that state
P (Op|i). The covariance Σ is considered to be fixed and the
same for all nodes.

C. Updating the HMM probabilities

In a GHMM, the prior and transition probabilities of the
states in the HMM are learnt from data (the observed people
trajectories). This step to update the unknown parameters
of the HMM can take place once per complete observed
trajectory O1:T , after all the discrete observations Ot contained
in the trajectory have been processed to update the ITM and
the HMM structures. An incremental version of the Baum-
Welch algorithm [14] is used to re-estimate the probabilities
of the HMM. Moreover, as the observations do not have
information about the goals of the people, before this update,
each observation Ot of a complete observed trajectory O1:T

is extended by assigning as goal coordinates the last position
of the trajectory OT .

D. Predicting motion

Once the underlying HMM is learnt, that model can be
used to filter and predict future positions of people by using
inference. Given an initial estimation of the person position,
after every new observation of the person position, the current
belief on the person position and his/her goal are re-estimated
by applying Bayes recursion. Predictions can be performed by
propagating this estimation a number of time steps ahead into
the future.

III. IMPROVED INSTANTANEOUS TOPOLOGICAL MAP

One of the main assumptions in the original GHMM is
that the goals of people are given by the last positions of



the observed trajectories, and hence, complete trajectories
between origins and goals are required. Here we modify
the ITM to include information about the flux of people,
which will allow us to automatically discover goals (points
of interest) considering only partial (incomplete) observed
trajectories. This novel procedure to build the ITM is described
in Algorithm 1.

At each node i, a tuple (in, iin, iout, is) is stored. in
represents the number of different people that are observed
in that node, while iin is the number of people that appear at
that node and iout the number of people that disappear. We
say that a person appears at the node where it is registered
the first observation for that person. On the other hand, we
say that a person disappears at the node where the algorithm
gets the last observation for that person. The last observation
is determined if there are no more observations of that person
after a tout period. Finally, is is the mean time that the people
detected stand at that particular node.

In addition, instead of using a fixed Gaussian as likelihood
function P (Op|i), we extend the ITM to store and update a
specific covariance matrix for each node, so the observation
model can adapt to the characteristics of the different parts
of the scenario. The centroids are also updated in a different
manner as in the original ITM [13], and each centroid is
computed as the mean of its associated observations.

A. Gaussian distribution adaptation

Each node i stores a bivariate Gaussian G(ci,Σi) as its
observation likelihood P (Op|i), with:

Σi =

[
σ2
x ρσxσy

ρσxσy σ2
y

]
i

For each new observed position Op = (x, y), Algorithm 1
updates the parameters of the Gaussian distribution as follows:

c′i = ci = (cx, cy)i

ci = (cx +
x− cx
in

, cy +
y − cy
in

)

ρ = ρ+
(x− cx)(y − cy)− ρ

in

sx = sx + (x− c′x)(x− cx)

sy = sy + (y − c′y)(y − cy)

σx =

√
sx

in − 1

σy =

√
sy

in − 1

where sx and sy are initialized to 0 at the first iteration.
Basically, the Gaussian of each node comes from computing
the average and standard deviation of all observed positions
at that node.

Algorithm 1 Improved ITM Algorithm
Require: Person identifier id, observed position Op, insertion

threshold τ , timeout tout.
1: Matching: Find the nearest node j and the second-nearest

node k with respect to the observed position Op in terms
of Euclidean distance.

2: Edge adaptation: (i) Create an edge connecting j and k
if it does not already exist. (ii) For each node m in the
neighborhood of j (neighbors are those 1-hop-connected),
check if the centroid of k lies inside the Thales sphere
through the centroids of j and m. If that is the case,
remove the edge connecting j and m. When deleting an
edge, check m for emanating edges; if there are none,
remove that node as well.

3: Node adaptation: If Op lies outside the Thales sphere
through the centroids of j and k, and outside a sphere
around the centroid of j with a given radius τ , create a
new node i with in = 0, iin = 0, iout = 0, is = 0.
Connect nodes i and j. If the centroids of j and k are
closer than 0.5∗τ , remove k. Select a node r to be adapted
as r = i if i was created, and r = j otherwise.

4: Gaussian distribution adaptation: Adapt the centroid
and covariance matrix associated with node r according
to the method explained in Section III-A.

5: In/out people adaptation: rn = rn + 1. If it is the first
time observing the person id, then rin = rin + 1, and
set to 0 a time counter associated with id. When the time
counter is greater than tout, rout = rout + 1 and remove
the time counter.

6: Standing time adaptation: When the person abandons
the node, update rs = rs + ∆t−rs

rn
, with ∆t the total time

the person was observed at the same node.

IV. DISCOVERING GOALS

When there are partial observed trajectories, people’s start-
ing points and goals are not known a priori, so a procedure to
discover them is needed. It cannot be assumed that a person
who disappears at a node has arrived to his/her goal. He/she
could be out of the range of the sensors or occluded. In the
same way, a person that appears at a node is not necessarily a
new person, because he or she could just be back after being
out of range or occluded.

If people are detected and tracked with the sensors on board
a mobile robot, it could be assumed that the number of people
appearing/disappearing at actual entry/goal points (e.g., doors)
should be significantly higher in the long term than the number
of people appearing/disappearing at false entry/goal points
produced by occlusions or losses of tracking. Moreover, goals
are not only areas where people exit the environment; goals
can also be considered as points of interest where people spend
more time than normal, for instance, standing in front of a
coffee machine. Therefore, it can be assumed that the time
spent in this type of goals should be significantly higher in
the long term than the average time in other nodes.



In order to determine the significance level of each node to
be considered a goal point, three hypothesis tests (t-tests) are
applied. Nodes with a p-value less than a threshold parameter
in one or more of the hypothesis tests are considered goal
points (entry points are also considered as goals, since they
may be exit points for other people in the future). The p-values
for all the nodes are re-calculated after each iteration of the
ITM algorithm. Thus, existent goals could be also removed.

A. Discovering entry/exit points

For each node i, the mean of the relative frequency of people
appearing µin = iin

in
is computed. The associated standard

deviation is computed too:

σin =

√
iin(1− µin)2 + (in − iin)µ2

in

in − 1

Then, the next hypothesis test is formulated to check
whether the node is an entry point:

• H0: µin is less than or equal to pin
• H1: µin is greater than pin
The value pin is a parameter of the algorithm. The idea is

that the relative frequency of people appearing at an entry node
should be clearly higher than that of a node where people pass
by (with pin ≈ 0.5). The hypothesis test to determine whether
a node is an exit point is analogous to the one used for entry
points, but using iout instead of iin.

B. Discovering standing points

During the tracking process, each node i stores and updates
its average standing time is, i.e, the average time people stand
in the area corresponding to that node. Its associated standard
deviation is also calculated. Thus, the next hypothesis test can
be formulated to check whether a node i is a standing point:

• H0: is is less than or equal to Ts seconds.
• H1: is is greater than Ts seconds.

The value of Ts seconds is a parameter of the algorithm.

V. HMM LEARNING AND PREDICTION

Once the ITM and the goal points have been updated,
the underlying HMM can also be updated accordingly. The
(hidden) states in the HMM are all the possible combinations
(n, p), where n is a node of the ITM and p is a discovered
goal. Therefore, the number of states in the HMM is N ∗G,
where N is the number of nodes in the topological map and
G is the number of discovered goals.

The transition probability to go from a state S = (n, p) to
a state S′ = (m, q) is zero if S 6= S′ and there is no edge
connecting n and m in the ITM. Therefore, the number of
possible non-zero transitions in the HMM are (2E + N)G2,
where E is the number of edges in the ITM.

A. Updating the HMM structure
The HMM structure is updated following the next rules:
• For each new node n in the ITM, create all possible states

(n, p), where p is contained in the list of discovered goals.
Assign a default initial prior probability to each created
state and initiate all the associated transition probabilities
to a default value if there exists the corresponding edge
in the ITM.

• For each removed node n in the ITM, remove all the
states (n, p) and assign a zero value to all the associated
prior and transition probabilities.

• For each new goal p, create all possible states (n, p),
where n is one of the nodes in the ITM. Assign a default
initial prior probability to each new state and initiate all
the associated transition probabilities with a default initial
value if there exists the corresponding edge in the ITM.

• For each removed goal p, remove all the states (n, p)
and assign a zero value to all the associated prior and
transition probabilities.

• For each new edge (n,m) in the ITM, assign a default
initial value to all possible associated transition probabil-
ities.

• For each removed edge (n,m) in the ITM, assign a zero
value to all the associated transition probabilities.

All the probabilities will be normalized in the next step.

B. Updating the HMM probabilities
After each partial observed trajectory, the HMM state prior

and transition probabilities can be re-estimated following the
incremental Baum-Welch algorithm, as it is done in [11].
However, we consider observations with information about the
position and velocity of the person Ot = (Op, Ov). The obser-
vation probability for a given state P (Ot = (x, y, vx, vy)|St =
(n, p)), which is needed to calculate the forward and backward
probabilities in the Baum-Welch algorithm, can be defined as:

P ((x, y, vx, vy)|(n, p)) = P (vx, vy|x, y, n, p)P (x, y|n, p)

The second probability does not depend on the goal p, and
is given by the Gaussian distribution corresponding to node n
in the ITM (see Section III-A):

P (x, y|n, p) = P (x, y|n) = G(cn,Σn)

For the first probability we assume that the velocity vector
of the person should point to the goal of the trajectory. In
this sense, a Gaussian bivariate distribution G(µv,Σv) is used,
where:

µv = (
px − x√

(px − x)2 + (py − y)2
,

py − y√
(px − x)2 + (py − y)2

)

Σv =

[
σ
′2
x 0

0 σ
′2
y

]
Note that (px, py) is the position of the goal point p, while

σ′x and σ′y are estimated depending on the distance to the goal.



C. Prediction of people motion and trajectory goals

In the HMM, a belief over the state at each time step is
maintained. After a partial observed trajectory, that belief is
re-estimated (η is a normalizing constant):

P (St|O1:t) =
1

η
P (Ot|St)

∑
St−1

P (St|St−1)P (St−1|O1:t−1)

The belief over the current area (node) where the person is
located can also be defined:

P (nt|O1:t) =
1

η

∑
p

P (St = (n, p)|O1:t)

Similarly, the belief over the distribution of possible goals
would be:

P (pt|O1:t) =
1

η

∑
n

P (St = (n, p)|O1:t)

Then, predictions over the future positions of the people in
the scenario can be performed by propagating the estimation
H time steps ahead into the future:

P (St+H |O1:t) =
∑

St+H−1

P (St+H |St+H−1)P (St+H−1|O1:t)

and computing again the beliefs over the current area and
possible goal of the observed trajectory.

VI. EXPERIMENTAL RESULTS

We implemented our approach in C++ under the Robot
Operating System (ROS) framework, and we run experiments
with three different datasets: two of them public (Edinburgh
Informatics Forum Pedestrian Dataset [12] and the BIWI
Walking Pedestrian Dataset [15]); and another one gathered
by the TERESA robot [16] at the Pablo de Olavide University.

A. Edinburgh Informatics Forum Pedestrian Dataset

This dataset consists of people walking through the Infor-
matics Forum, the main building of the School of Informatics
at the University of Edinburgh, recorded at 9 fps. The dataset
is composed by the images and the people’s positions with
unique ids, allowing easy person tracking and goal detection
for trajectories.

In order to train our models, we used 2,000 trajectories
obtaining a topological map of 375 nodes, 962 edges and 9
discovered goals, which is shown at Fig. 1. The associated
HMM contains 3,375 states and 159,219 non-zero transition
probabilities.

B. BIWI Walking Pedestrian Dataset

This dataset was recorded from the top of the ETH main
building (Zurich) at 2.5 frames per second. As before, the
dataset provides people’s positions with unique ids, allowing
easy trajectory computation. We used 160 trajectories to train
an ITM of 223 nodes, 517 edges and 5 discovered goals. The
HMM contains 1,115 states and 26,965 non-zero transitions.

Fig. 1. Topological map (blue) and discovered goals (red) for the Edinburgh
dataset.

(a) Coffee machine area

(b) Coffee machine area scheme

Fig. 2. Coffee machine area at UPO.

C. Pablo de Olavide University

The coffee machine area in the building 45 of the Pablo
de Olavide University (UPO) (Fig. 2a) is an area of 4.30
× 11.80 meters with an entry point from two corridors and
several points of interest: three coffee and snack machines,
three toilette doors, a water font and a rest area with chairs
and bar-style tables.

In this experiment, a robot [16] was static in front of the
toilette doors as shown in Fig. 2b. Only an onboard laser-



Fig. 3. Topological map (blue) and discovered goals (red) for the coffee
machine area at UPO.

scanner was used for person detection and tracking based
on [17] and a Kalman filtering for temporal tracking and
velocity estimation. A total of 20 trajectories were recorded
in a dataset and used to train our models, generating an ITM
with 37 nodes, 151 edges and 5 discovered goals (Fig. 3). The
discovered goals correspond to (1) the entry point, (2) the
water font, (3) the man’s toilette door, (4) the coffee/snack
machines and, (5) the rest area. The related HMM contains
185 states and 2,725 non-zero transition probabilities.

D. Validation results

The objective of this section is to provide a quantitative
criteria to assess the accuracy of the predictions based on the
models learnt previously. The two first datasets were used for
this. They incorporate the final goal of every person, which
was used as ground-truth to evaluate predictions. Nonetheless,
this information was not used to build the ITM nor the HMM.

A subset of the trajectories were not used in the training
phase and are used here to evaluate the prediction phase.
Particularly, 200 trajectories for Edinburgh and 159 for BIWI.
Two are the main factors we can evaluate with these test
datasets: (1) how accurately the method discovers the position
of the different goals in the models and (2) the accuracy of
the goal prediction during a person trajectory.

Regarding the automatic goal discovery rate, in the BIWI
dataset, the 58% of the total goals were automatically detected
in the training phase. Moreover, the 64% of the total goals
were detected for the Edinburgh dataset. Even though the
computed models fail for unusual patterns, they are able to
represent the main and more repeated trajectories. Larger
datasets would probably achieve a better goal discovery rate.

Regarding trajectories with ground-truth (actual goals), we
want to evaluate how accurately our approach predicts the
person’s goal based on his/her trajectory. For this purpose,
people’s trajectories were divided into segments of 25%,
50%, 75% and 100% of their length. The predictions of our

algorithm were evaluated at these points and compared to
the ground-truth. Two metrics were computed to assess this
prediction phase:
• Metric 1:

∑
g∈G P (g|O1:t)kg

• Metric 2:
∑

g∈G P (g|O1:t)dg

where:
• G is the set of possible goals.
• P (g|O1:t) is the probability of goal g to be the goal of

the trajectory O1:T based on the belief at time t.
• kg is 1 if g is the actual goal of the trajectory O1:T , 0

otherwise.
• dg is the Euclidean distance of the centroid of g to the

centroid of the goal of O1:T .
Metric 1 evaluates how accurately the approach predicts

the correct goal (regarding the ground-truth), providing the
probability of sampling the right goal conditioned to all the
previous observations. The closer to 1 the result of Metric 1 is,
the better. Metric 2 tries to assess the accuracy of the position
of the predicted goals, that means, if the predicted goal is close
or far from the actual goal. We use the Euclidean distance in
meters for Metric 2, and the smaller the value, the better.

Tables I and II show the outcome of these metrics for our
experiments. The tables depict average values and standard
deviations of each metric after running all the test trajectories.
It can be seen how the prediction is clearly improved with the
length of the trajectories for the Edinburgh dataset, while the
prediction in the BIWI dataset is very good for all cases. It
can also be seen how the standard deviations of the metrics
also decrease with the length of the segment, as expected.

In addition, a hypothesis test (t-test) was run for Metric
1, contrasting the obtained average values with the uniform
distribution:
• H0: The average value of Metric 1 is less than or equal

to 1/9 in the case of the Edinburgh dataset or 1/5 in the
case of the BIWI dataset.

• H1: The average value of Metric 1 is greater than 1/9 in
the case of the Edinburgh dataset or 1/5 in the case of
the BIWI dataset.

The p-values are shown in the last column of Tables I and II.
It can be seen how the value is very small (insignificant) for
all the cases.

Metric 1 Metric 2
Trajectory mean σ mean σ p-value

25% 0.4774 0.4259 3.4465 3.6886 < 2.2 ∗ 10−16

50% 0.5857 0.4264 2.3300 2.9505 < 2.2 ∗ 10−16

75% 0.8381 0.3223 0.8850 2.2087 < 2.2 ∗ 10−16

100% 0.9937 0.0511 0.0647 0.5335 < 2.2 ∗ 10−16

TABLE I
EDINBURGH DATASET EXPERIMENTS.

VII. CONCLUSIONS

This paper has presented a system for person trajectory
prediction. The system extends GHMMs to deal with partial



Metric 1 Metric 2
Trajectory mean σ mean σ p-value

25% 0.8983 0.2351 1.1276 2.8390 < 2.2 ∗ 10−16

50% 0.9247 0.2112 0.7643 2.6173 < 2.2 ∗ 10−16

75% 0.9425 0.1898 0.7641 3.0416 < 2.2 ∗ 10−16

100% 0.9802 0.1095 0.3381 1.8972 < 2.2 ∗ 10−16

TABLE II
BIWI DATASET EXPERIMENTS.

observed trajectories when training the model and making pre-
dictions. Indeed, partial trajectories are usual when only local
sensing on board a robot is used for person detection and track-
ing. Thus, this approach makes GHMMs more robust against
occlusions and miss-detections. Moreover, partial trajectories
may not include final people’s goals, which are automatically
detected by the system. Those goal points are typically points
of interest in the environment (vending machines, doors, etc.),
and are considered within the model, since they affect the
people motion.

The method has been benchmarked using different public
datasets, showing the results that a good number of goals
are automatically detected. The results also showed that goal
prediction based on person trajectory is consistent, and more
accurate as the partial trajectories get closer to the complete
one. Besides, the method has been evaluated qualitatively
using data from a robot in an indoor scenario.

As future work, the model will be integrated with the person
tracker itself, so it can be used in the prediction phase, leading
to more robust trackers. Furthermore, this model for people
motion will be the base for human-aware path planning and
task planning under uncertainties in missions involving human
and robots.
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