
A formalization of membrane systems with dynamically
evolving structures

Rudolf Freunda, Ignacio Pérez-Hurtadob, Agustín Riscos-Núñezb and Sergey Verlanc

aFaculty of Informatics, Vienna University of Technology, Favoritenstr. 9, 1040 Vienna, Austria;
bDepartment of Computer Science and Artificial Intelligence, University of Sevilla, Avda. Reina Mercedes
s/n, 41012, Sevilla, Spain; cDépartement Informatique, Université Paris Est, 61, av. Général de Gaulle,

94010 Créteil, France

This article introduces a general formalism/framework flexible enough to cover descriptions of different
variants of P systems having a dynamic membrane structure. Our framework can be useful for the
precise definition of new variants of P systems with a dynamic structure and for the comparison of
existing definitions as well as for their extension. We give a detailed definition of the formalism and we
present some examples of how to translate several existing variants of P systems with a dynamic
structure.

Keywords: P systems; dynamic structure; formal definition

2000 AMS Subject Classification: 68Q05

1. Introduction

The goal of this article is to define a formal framework that captures the essential properties
of P systems with a dynamic structure (i.e. their structure can change during the computation,
e.g. by dissolving, moving or generating membranes or cells). This framework can be seen as a
kind of meta-language that permits to describe a P system and its evolution. Our main goal is to
provide a simple tool for the analysis of different models of P systems with a dynamic structure.
There are numerous possible applications of the results of such an analysis, for example, the
comparison and the extension of existing models and the creation of new models of P systems
with a dynamic structure.

There are other approaches having a general point of view rather than focusing on a specific
model of P systems, mainly related to research lines involving the development of simulation
software. For example, kernel P systems [8] can be seen as an intersection (or merging) of several
models, bringing together enough ingredients to ensure a high computing power, but trying to keep

the model as simple as possible in order to allow for automatic reasoning and model-checking
tools to be applied on this setup. Another significant example is P-Lingua [7,14], a software
framework that includes a definition language for P systems (also called P-Lingua) and a library
(pLinguaCore) that is able to parse P-Lingua files and simulate P system computations. It is
important to remark that P-Lingua covers many models of P systems, but distinguishes between
them by including model-specific instructions for the parser to handle syntactical ingredients such
as charges, labels and structure of membranes. Moreover, the behaviour of the P systems (seman-
tics) is reproduced by implemented simulation algorithms in pLinguaCore. Thus, pLinguaCore
includes one or more simulation algorithms for each supported P system model in the language.
This software framework has been successfully used to simulate, for example, P systems with
active membranes and division rules [7], tissue-like P systems [9] and models of real ecosystems
by means of probabilistic P systems [2].

The article is organized as follows. Section 2 recalls some standard notions that will be used
throughout the article. Section 3 gives the definition of the framework and presents the related
algorithms. Section 5 presents a taxonomy that permits to define shortcuts for the commonly used
cases. Section 6 gives examples of the translation of several well-known types of P systems with
a dynamic structure. Finally, the perspectives of the presented approach are discussed.

This article is an extended version of [4].

2. Preliminaries

We assume that the reader is familiar with standard definitions in formal language theory (e.g. we
refer to [12] for all details).

2.1 P systems

Membrane computing considers classes of computing models abstracting from the structure and
functioning of a living cell or a group of cells. These computational devices consist of a com-
partmentalized structure, in which multisets of objects can be placed, as well as a set of rules
that determine the evolution of the system along a computation, acting over objects and/or mem-
branes. Generically, we call the obtained devices P systems (in the case of a tree structure) and
tissue P systems (in the case of a graph structure). There are many defined classes of (tissue) P
systems and most of them are equivalent to Turing machines, hence computationally complete/
universal [11].

There exist a large number of classes (or models) of P systems in the literature, containing
different syntactical/semantical ingredients (we refer to the handbook of Păun et al. [11] for an
overview); for example, symport/antiport P systems restrict themselves to using only communi-
cation rules. Another classical model is given by P systems with active membranes, where the
membranes have electrical charges associated with them, and such charges play an important role
in the application of rules. This article tries to cover most of the existing classes of (tissue) P sys-
tems, in particular, those that allow changes on their membrane structure during the computation
(e.g. by creation, division or dissolution of compartments).

Informally, a definition of a P system consists of

• a description of the initial structure (indicating the graph relation between the compartments
and any additional information such as labels and charges),

• a list of the initial multisets of objects placed in each compartment at the beginning of the
computation and

• a set of rules, acting over objects and/or over the structure.

A computation of a P system � can be defined as a sequence of transitions between
configurations, eventually ending in some halting configuration. To give a more precise description
of the semantics, we define the following four notions (functions):

• Applicable(�, C, δ) – the set of multisets of rules of � applicable in the configuration C,
according to the derivation mode δ.

• Apply(�, C, R) – the configuration obtained by the (parallel) application of the multiset of rules
R to the configuration C.

• Halt(�, C, δ) – a predicate that yields true if C is a halting configuration of the system �

evolving in the derivation mode δ. Usually, the halting condition is that no rule can be applied
anymore, but one could define more sophisticated conditions.

• Result(�, C) – a function giving the result of the computation of the P system �, when the
halting configuration C has been reached. Generally, this is an integer function; however, it is
possible to generalize it, allowing, for example, Boolean or vector functions.

The transition of a P system � according to the derivation mode δ (e.g. the maximally parallel
mode) is defined as follows: we pass from a configuration C to C′ (written as C ⇒δ C ′) if and
only if

C ′ = Apply(�, C, R), for some R ∈ Applicable(�, C, δ).

In general, the result of the computation of a P system is interpreted as the union of the results
of all possible computations (in the same way as the language generated by a grammar is defined,
in formal language theory, as gathering the results of all possible derivations).

The precise definition of the above four functions depends on the selected model of P systems.
The goal of this article is to provide a concrete variant of P systems (hence with concrete definitions
of these functions), called a formal framework, such that most of the existing models of P systems
could be obtained by a restriction (eventually using a simple encoding) of this formal framework
with respect to different parameters.

For a comprehensive presentation of the standard notions of P systems, interested readers can
refer to the books of Păun [10] and Păun et al. [11] (see also references listed on the web page [13]).

2.2 Graph transformations

There exist several ways to define a graph transformation. We will define a graph transducer using
the formalism from [3]. This formalism defines the graph transformation as a graph-controlled
graph rewriting grammar with appearance checking using the following operations:

• I(x): creation of a new node labelled by x;
• D(x): deletion of a node labelled by x (only possible if the node is isolated, which means no

edges are ending in or leaving from this node);
• C(x, y): change the label of the node labelled by x to y;
• I(l1, λ, l2; l′1, a, l′2): insert an edge labelled by a between two nodes labelled by l1 and l2; after

the insertion, nodes are relabelled to l′1 and l′2, respectively;
• D(l1, a, l2; l′1, λ, l′2): delete the edge labelled by a between two nodes labelled by l1 and l2; after

the deletion, nodes are relabelled to l′1 and l′2, respectively;
• C(l1, a, l2; l′1, a′, l′2): rename to a′ the label of the edge labelled by a between two nodes labelled

by l1 and l2. After this operation, nodes are relabelled to l′1 and l′2, respectively.

It was proved in [3] that the above formalism is computationally complete.
In what follows, we use some particular graph transducers whose definitions are as follows:

• DELETE(x): C(x, x′), D(x′, a, y; x′, λ, y) and D(y, a, x′; y, λ, x′) (looping over a and y), D(x′)
Node x is deleted, together with all existing edges from x to any node y and from any node
y to x.

• INSERT(x): I(x)
• INSERT-EDGE(x, y): I(x, λ, y; x, a, y)
• DELETE-EDGE(x, y): D(x, a, y; x, λ, y)

3. Definition of the framework

This article extends the approach used in [5] for P systems with a static structure. We recall
that the framework for static P systems is mainly composed of five ingredients: the definition
of the configuration of the system, the definition of rules, the definition of the applicabil-
ity and of the application of a rule/multiset of rules, the derivation (transition) mode and
the halting condition. A configuration is a list of multisets corresponding to the contents
of membranes of a P system and rules generalize most kinds of rules used in the P sys-
tem area. Based on this general form of rules, the applicability and application of a (group
of) rule(s) are defined using an algorithm. This permits to compute the set of all applica-
ble multisets of rules for a concrete configuration C (Applicable(�, C)). Then, this set is
restricted according to the derivation mode δ (Applicable(�, C, δ)). For the transition, one of
the multisets from this last set is non-deterministically chosen and applied, yielding a new con-
figuration. The result of the computation is collected when the system halts according to the
halting condition, which corresponds to a predicate that depends on the configuration and the
set of rules.

In the case of P systems with a dynamic structure, the first three ingredients are to be changed
in order to accommodate the fact that the structure of the system can change. Informally, a
configuration contains a list of triples (i, h, w), where i is the unique identifier of a cell/membrane,
h is its label and w is its contents. A configuration also contains the description of the structure of
the system, which is given by a binary relation ρ on cell identifiers.

We assume that the set of rules is fixed (does not change in time). Rule actions are expressed
in terms of ‘virtual’ cells (membranes). These virtual cells are identified by labels. The process of
the application of rules first makes a correspondence between the current configuration and the
virtual cells described in a rule; that is, it tries to ‘match’ the constraints of virtual cells (labels,
relation, contents, etc.) against the current configuration. When a subset of cells from the current
configuration (say I) matches the constraints of a rule, we say that a rule can be instantiated by
the instance I. The instantiation of r by I is the couple (r, I), denoted by r〈I〉, and it can then
be treated as a rule that could be applied as in the static case. The rules also contain additional
ingredients that permit to modify the structure (the relation ρ).

Instances of rules can further be used to compute the applicable set of multisets of rules and
we provide an algorithm for this purpose. The derivation modes and halting conditions can easily
be applied to this set exactly as in the static case.

3.1 Formal definition of a configuration

We start by defining a configuration of a P system. Since we deal with P systems with a dynamic
structure, it should be taken into account that the number of cells (membranes) is not fixed (it
may even be unbounded), and hence a list of variable length will be used.

Definition 3.1 A basic configuration C (of size n) over an alphabet of objects O is a finite list
(i1, w1) · · · (in, wn), with ij ∈ N and wj ∈ O∗, for 1 ≤ j ≤ n, such that all the numbers appearing
in the first components of the pairs are different from each other.

• We denote the size of C by size(C).
• The set of all possible basic configurations of any size n > 0 is denoted by C.

Definition 3.2 Each element (ij, wj), 1 ≤ j ≤ n, of a basic configuration is called a cell:

• the first component (ij) is called the id of the cell and
• the second component (wj) corresponds to the contents of the cell.

Remark 1 (Finiteness) If not stated otherwise, we suppose that all multisets of a basic configu-
ration are finite. If needed, for example, for the representation of the environment, the definitions
that follow can be adapted to infinite multisets by adding corresponding constraints to the rule
definition, in a similar way as done in [5].

Remark 2 (Identification) In what follows, the id’s that will be used are natural numbers corre-
sponding to the position of each cell in the list. However, if needed, one could define any special
function id : C → N, provided that this function is injective (i.e. different cells from the basic
configuration C must get different id’s).

Definition 3.3 Given a P system having an alphabet of objects O and a set of mem-
brane labels Lab, a configuration C is a couple (L, ρ), where L is a list of ‘labelled cells’
(i1, l1, w1) · · · (in, ln, wn), with the id ij ∈ N, the label lj ∈ Lab and the contents wj ∈ O∗, for
1 ≤ j ≤ n, such that all the cell id’s are different from each other. The second component
ρ ⊆ N × N is a relation that represents the connections between cells (it can be seen as a graph
where the nodes are the cell id’s).

The set of all possible configurations is denoted by C.

Note that in a configuration each cell has an id that is unique and a label that is not necessarily
unique. Note also that multisets of objects are represented (as usual in membrane computing)
as strings.

The interpretation of relation ρ may differ depending on the selected P system model, but its
goal is to capture how cells (or membranes) are organized in the ‘membrane structure’. In cell-like
P systems, this corresponds to the parent relation, while in tissue P systems this corresponds to
the communication graph of the system.

3.2 Formal definition of a rule

Now, we give the definition of a rule. As mentioned in the introduction, this definition is an
abstract formalization that tries to cover most of the existing types of rules used in the membrane
computing literature.

For the sake of simplicity, along the description of the rule, we avoid using variables for the id’s
of the cells to which the rule is going to be applied. We use instead a set of k virtual cells (where
k is the length of Labels(r)) having Nk = {1, . . . , k} as their id’s. Such id’s will be conveniently
instantiated when applying the rule to a particular configuration, as will be explained later. We
also use Ck to denote the set of basic configurations where only {1, . . . , k} are allowed as cell id’s.

Definition 3.4 A rule r is a formal construct having the following 11 components:

A. Checking
(1) Labels(r) = (l1, . . . , lk) ∈ Labk is a list of cell labels that introduces k virtual cells.
(2) ρ(r) ⊆ Nk × Nk is a relation on the virtual cells (e.g. indicating parent relation).
(3) Perm(r) ⊆ Ck defines the permitting conditions.
(4) For(r) ⊆ Ck defines the forbidding conditions.
B. Modification of existing configuration/structure
(5) Rewrite(r) = U → V , with U, V ∈ Ck , is a general rewriting rule over basic configurations.
(6) Label-Rename(r) ∈ (Nk × Lab)∗ allows us to specify new labels for the cells whose index

(or id) appears in the list (same index cannot appear more than once in the list).
(7) Delete(r) ∈ N

∗
k gives the indexes of virtual cells to be deleted.

(8) Delete-and-Move(r) ∈ (Nk × Nk)
∗ is a list of couples of indexes. Each pair (i, j) appearing

in this component indicates that the virtual cell i should be deleted/dissolved and its contents
should be moved to the virtual cell j.

C. Creation of new structures
(9) Generate(r) ∈ (N′ × Lab × O∗)∗ is a list of triples consisting of a (primed) index, a label

and a multiset (e.g. (j′, h, u)). This component introduces new cells to be created by the
application of the rule.

(10) Generate-and-Copy(r) ∈ (N′ × Lab × N × (O∗ × O∗))∗ is a list of quadruplets consisting
of a (primed) index, a label, an index and a rewriting rule over multisets of objects, where
each tuple (j′, h, i, u → v) means that a new cell should be created, having a new id j′ and
the label h, by first copying every object inside cell i and then applying the rewriting rule to
the contents of the new cell.

D. Structure transformation
(11) Change-Relation(r) is a graph transducer that updates the relation ρ. This transducer should

be recursive and it can only add and remove edges (no node creation/removal is allowed).

Before moving to the concept of applicability, let us define some auxiliary notions related to
the way rules can be instantiated (replacing virtual id’s by existing ones).

In what follows, given a vector v ∈ N
k , its length is denoted by |v|, and v|k represents the kth

component of v.
Given a vector of indexes i = (i1, . . . , in) ∈ N

n and a basic configuration C ∈ C, C =
(j1, w1) · · · (jk , wk), such that 1 ≤ j1, . . . jk ≤ n, we define the instantiation of C by i, denoted
C〈i〉, as follows:

C〈i〉 = (i|j1 , w1), . . . , (i|jk , wk).

In the above formula, we allow that {j1, . . . jk} �= {1, . . . , k}. In particular, some of the id’s may
be greater than size(C) (but always within the range [1 · · · n]). We also remark that size(C) ≤ |i|.

It is clear that if C is defined in terms of virtual id’s, then C〈i〉 permits to replace these virtual
id’s by the corresponding values from i (a virtual id k is replaced by i|k , which is ik).

For a rule r as defined above and for a vector i such that |Labels(r)| ≤ |i|, we obtain the
instantiation of r by i, denoted by r〈i〉, by replacing all virtual id’s k by i|k in all components
involving virtual id’s (i.e. in all of them except in Labels(r) and in Generate(r)).

3.3 Applicability of a multiset of rules

Now, we define the applicability of a multiset of rules. First, we define the set of vectors eligible
for instantiation for a rule r in a configuration C.

In what follows, lab(x) denotes the label of the cell whose id is x.

We denote by Cm and Cρ the first and the second components of the configuration C, respectively.
We also denote by C̄m ∈ C the projection of Cm erasing the labels (yielding a basic configuration).

Definition 3.5 We say that a vector of indexes i = (i1, . . . , ik) ∈ N
k is eligible for instantiation

for a rule r in a configuration C = (L, ρ) if it verifies the following three properties:

• all indexes ij appearing in i are different from each other;
• i is consistent with Labels(r) = (l1, . . . , lk), that is, 1 ≤ ij ≤ size(C) and lab(ij) = lj, for every

1 ≤ j ≤ k; and
• i is consistent with the relation ρ, that is, (j, m) ∈ ρ(r) ⇒ (ij, im) ∈ Cρ .

We denote by IC(r) the set of all vectors eligible for instantiation for a rule r in a configuration C.

For a multiset of rules R and a configuration C, we define the set of multisets of instantiated
rules from R that are applicable to C (denoted by Applicable(R, C)), as follows.

Let R = {r1, . . . , rn} (the rules are not necessarily different) and let IC(ri) = {vi,1, . . . , viki},
1 ≤ i ≤ n. Consider an arbitrary selection of one instantiation vector, vi,ji , for each ri, 1 ≤ i ≤ n.
The multiset {(r1, v1,j1), . . . , (rn, vn,jn)} belongs to Applicable(R, C) if

• ∀P ∈ Perm(ri) ∪ DPerm(ri), P〈vi,ji〉 ⊆ C̄m, for every 1 ≤ i ≤ n, where DPerm(r) = {(i, u) :
∃(j′, h, i, u → v) ∈ Generate-and-Copy(r)};

• ∀Q ∈ For(ri), Q〈vi,ji〉 �⊆ C̄m, for every 1 ≤ i ≤ n;
• ⋃n

i=1 Bound(ri〈vi,ji〉) ⊆ C̄m, where Bound(r) denotes the left-hand side of the rewriting rule in
the component Rewrite(r);

• ∀i, k, s if ((s, l1) ∈ Label-Rename(ri〈vi,ji〉) ∧ (s, l2) ∈ Label-Rename(rk〈vk,jk 〉)), then l1 = l2;
and

• the consecutive application of graph transducers Change-Relation(ri) and Change-Relation(rj)

yields the same result regardless of the order of the application, 1 ≤ i, j ≤ n.

For a P system � having a set of rules R, we define

Applicable(�, C) =
⋃

Applicable(R,C)�=∅
Applicable(R, C),

where R are multisets (of rules) over R. Note that this is a finite union, since the size of the eligible
multisets for which Applicable(R, C) is not empty is bounded.

Following [5], it is possible to define now the derivation modes as a restriction of this set.
However, it should be noted that in the case of the present framework, the definition of the
derivation modes can be extended by adding new types of restrictions based on instantiation
vectors. Details are discussed in Section 4.

3.4 Application of a multiset of rules

Now, we are ready to define how the application of a multiset of rules is performed.
Before giving the algorithm, we remark that a rule is composed of three parts: the rewriting of

objects and the label change (R), the membrane deletion (D) and the membrane creation (G). The
order of the application of these parts is extremely important, for example, doing the rewriting
before the membrane creation permits to copy the result of the rewriting to the new membranes.
In this article, we consider that the application order is RGD, that is, rewriting, creation and
then deletion. This order corresponds to the actual state of art in the area of P systems with active
membranes. Other orders are also possible, and this can be an interesting topic for further research.

Let C = ({(i1, l1, w1) . . . (in, ln, wn)}, ρ) be the current configuration and let RI =
{(r1, v1), . . . , (rn, vn)} ∈ Applicable(R, C) be a multiset of pairs (rule,instantiation vector). We
now define Apply(RI, C) ∈ C, which is the configuration obtained as the result of applying the
rules from RI to C.

The algorithm for the computation of Apply(RI, C) is the sequence consisting of the following
steps:

(1) (rewriting application): L1 = {(i1, l1, w′
1) . . . (in, ln, w′

n)}, where

w′
j = wj −

⋃
(rk ,vk)∈RI

Uk|j +
⋃

(rk ,vk)∈RI

Vk|j,

for each j = 1 · · · n, where (Uk → Vk) = Rewrite(rk〈vk〉) and Uk|j (resp., Vk|j) denotes the
multiset associated with the cell from Uk (resp., from Vk) whose id is j or the empty multiset
if none of the cells has j as id.

(2) (label change): L2 = {(i1, l′1, w′
1) · · · (in, l′n, w′

n)}, where

l′j =
{

es, if ∃(rk , vk) ∈ RI such that (j, es) ∈ Label-Rename(rk〈vk〉)
lj, otherwise.

(3) (membrane creation): (m1 · · · mt+s are new id’s). We define the lists of newly created cells Lc

and L′
c:

Lc(rk) = (m1, h1, u1) · · · (mt , ht , ut), (rk , vk) ∈ RI and

Generate(rk) = {(1′, h1, u1) · · · (t′, ht , ut)}.
Lc = Lc(r1) · · · · · Lc(rn).

L′
c(rk) = (mt+1, e1, w′

n1
− u1 + v1) · · · (mt+s, es, w′

ns
− us + vs), where

(rk , vk) ∈ RI and

Generate-and-Copy(r) = {(1′, e1, n1, u1 → v1) . . . (s′, es, ns, us → vs)},
(ij, l′j, w′

j) ∈ L2, 1 ≤ j ≤ n.

L′
c = L′

c(r1) · · · · · L′
c(rn).

We also consider a graph transducer CREATE-NODES that creates nodes m1, . . . , mt+s.
We put L3 = L2 · Lc · L′

c (this is the Cm part of the result of the application of RI).
(4) (membrane deletion):

Consider a vector p = (p1, . . . , pn), where pj = p(ij) is defined as follows:

p(ij) =

⎧⎪⎨
⎪⎩

∗, if ∃(rk , vk) ∈ RI s.t. ij ∈ Delete(rk〈vk〉),
e, if ∃(rk , vk) ∈ RI s.t. (ij, e) ∈ Delete-and-Move(rk〈vk〉),
ij, otherwise.

The first two cases correspond to those id’s ij for which the corresponding cells should be
deleted. Note that in the second case the contents of cell ij are supposed to be moved to cell
e, but such a cell may also be deleted. We remark that for any pk such that pk �= ik , there is
a value z ∈ N ∪ {∗} such that there is a sequence x1, . . . , xm with x1 = pk , xj = p(xj−1) for
2 ≤ j ≤ m, and xm = z, with either z = ∗ or p(z) = z. We denote this by z = last(ij). The
above affirmation follows from the fact that the Delete-and-Move relation (considered as a

parent relation) induces a forest on the id’s of the cells that should be deleted. The roots of
the obtained trees are given by the function last and they will collect the objects from all the
cells in the tree (except those having p(ij) = ∗, whose contents are lost).

Next, we describe how the contents are moved:
L4 = {(i1, l′1, w′′

1) · · · (in, l′n, w′′
n)} where (ij, l′j, w′

j) ∈ L3, 1 ≤ j ≤ n, and

w′′
j = w′

j +
⋃

last(ik)=ij

w′
k .

The deletion of cells induces changes to the relation ρ. We collect these modifications as
a graph transducer DELETE-NODES that will be run after the Change-Relation transducer.
This transducer deletes all vertexes ij such that pj �= ij as well as all edges that are incoming
to these deleted nodes.

We also remove the corresponding cells from L4:
L5 = (i1, l′1, w′′

1) . . . (in1 , l′n1
, w′′

n1
) where (ij, l′j, w′′

j) ∈ L4 and pj = ij.
(5) (relation change) The new relation C ′

ρ is computed by running the graph transduc-
ers CREATE-NODES, Change-Relation(rk〈vk〉) and DELETE-NODES for all (rk , vk) ∈
RI on Cρ .

The output of the algorithm is the configuration Apply(RI, C) = (L5, C ′
ρ).

4. Derivation modes

As was pointed out in [5], the computation of Applicable(�, C, δ) can be dissociated from the
corresponding P system by considering the function Applicable(�, C) that gives the set of all
multisets of rules of � that can be applied together in the configuration C. Then, the result of
Applicable(�, C, δ) is obtained by a fixed restriction of Applicable(�, C), called derivation mode.
For example, the maximally parallel derivation mode (max) traditionally used in the P system
area can be defined by the following restriction:

Applicable(�, C, max) = {R ∈ Applicable(�, C) |� ∃R′ ∈ Applicable(�, C) : R′ ⊃ R}.
This restriction imposes that all multisets of rules present in Applicable(�, C, max) are not

extensible.
In the case of the framework presented in this article, the set Applicable contains a multiset of

pairs (rule,instance). Hence, it is possible to use the instance information for additional types of
restrictions. For example, we can consider the following derivation mode 1max:

Applicable(�, C, 1 max) = {R ∈ Applicable(�, C, max) | ∀r, � ∃(r, v) ∈ R,

with v|j = 1 for some j ∈ N}.
The above condition further restricts a maximally parallel set of rules by disallowing those sets

whose rules involve cell x with id(x) = 1.
Such conditions can be further extended by allowing to restrict rules involving cells with some

properties on the id or the labels of the cells they involve, as well as on the structure relation
between corresponding cells. As an example, we could define a derivation mode that disallows
for a group of rules to use cells having a particular label and that are not in the relation ρ:

Applicable(�, C, 2h) = {R ∈ Applicable(�, C) | ∀r1, r2 � ∃(r1, v1), (r2, v2) ∈ R,

∃j, k ∈ N with (j, k) �∈ Cρ and lab(v1|j) = lab(v2|k) = h}.

5. Taxonomy

In order to simplify the notation, instead of using a long tuple bringing everything together, we
consider several variants of rule notation, adapted for the following specific types of rules:

Simple rewriting rule (R-rule). An R-rule is defined by the following components:

r = (Labels(r), ρ(r), Rewrite(r))

Simple rewriting rule with label rename (LR-rule). An LR-rule is defined by the following
components:

r = (Labels(r), ρ(r), Rewrite(r), Label-Rename(r))

Simple creation rule (C-rule). A C-rule is defined by the following components:

r = (Labels(r), ρ(r), Generate(r), Generate-and-Copy(r),

Change-Relation(r))

Simple creation rule with label rename (CL-rule). A CL-rule is defined by the following
components:

r = (Labels(r), ρ(r), Label-Rename(r), Generate(r),

Generate-and-Copy(r), Change-Relation(r))

Simple dissolution rule (D-rule). A D-rule is defined by the following components:

r = (Labels(r), ρ(r), Delete(r), Delete-and-Move(r),

Change-Relation(r))

In the case of the parent relation (tree case), we can simplify the rules and omit ρ(r) by
supposing that Labels(r) is of size 2. In this case, we implicitly assume that (1, 2) ∈ ρ(r). The
type of corresponding rules with the parent relation will additionally contain the letter P (e.g.
PC-rule).

In a more general way, we can also consider combined types of rules, merging the corresponding
components: L – label rename, R – rewriting, O – permitting and forbidding condition check, C
– membrane creation, D – membrane deletion and E – change-relation (and, e.g. get RD rules).

In the case of the parent relation (for cell-like P systems), rules r having a non-empty
Delete-and-Move(r) component can be simplified by reducing their Change-Relation(r) com-
ponent.

In the above case, we assume that Change-Relation(r) contains the transducer MOVE-
CONNECTIONS described below. This transducer adds the following edges to ρ : {(ax, by) |
(x, y) ∈ Cρ and ax, by �= ∗}, where (ax, by) is defined as follows (im is the id of the mth membrane):

(ax, by) =
{

(last(x), y), (x, y) ∈ ρ and px �= ix,

(y, last(x)), (y, x) ∈ ρ and px �= ix.

The above transformations correspond to the deletion of cells and to the movement of their
contents according to the Delete-and-Move relation.

6. Some examples

6.1 Active membranes

Let us start with the example of traditional active membrane rules (e.g. see Section 11.2 of the
handbook of Păun et al. [11]).

Polarization can be treated in two ways – as a special object inside a membrane or like a special
label; we consider here the latter case; that is, the couple (label, polarization) will be a new type
of label.

Note that there is no distinction for polarizationless active membranes (according to Section 11.4
of the handbook of Păun et al. [11]), since in our case the label is a couple 〈e, h〉.

Thus, a rule r : [a → v]e
h will be treated as r : [a → v]〈e,h〉 and it can be translated as the

following PR-rule:

r : Labels(r) = (〈e, h〉),
Rewrite(r) = {(1, a → v)}.

In the following, we indicate e instead of 〈e, h〉.
A rule a[]e1 → [b]e2 can be translated as the following group of PLR-rules (∀p ∈ Lab):

r : Labels(r) = (e1, p),

Rewrite(r) = (2, a) → (1, b),

Label-Rename(r) = {(1, e2)}.
A rule [a]e1 → []e2 b can be translated as the following group of PLR-rules (∀p ∈ Lab):

r : Labels(r) = (e1, p),

Rewrite(r) = (1, a) → (2, b),

Label-Rename(r) = {(1, e2)}.
A rule [a]e → b can be translated as the following group of PD-rules (∀p ∈ Lab):

r : Labels(r) = (e, p),

Rewrite(r) = (1, a) → (1, b),

Delete-and-Move(r) = {(1, 2)}.
A rule [a]e1 → [b]e2 [c]e3 can be translated as the following group of PCLR-rules (∀p ∈ Lab):

r : Labels(r) = (e1, p),

Rewrite(r) = (1, a) → (1, b),

Label-Rename(r) = {(1, e2)},
Generate-and-Copy(r) = {(1′, e3, 1, b → c)},

Change-Relation(r) = INSERT-EDGE(1′, 2).

6.2 Creation rules

Creation rules (e.g. see Section 12.6 of the handbook of Păun et al. [11]) yield the creation of a new
membrane inside the region where the rule is applied. The object triggering the rule is consumed,

and there is no replication of objects. The new membrane will contain only the multiset specified
in the rule.

A rule [a → [u]h1]h2 can be translated as the following PCR-rule:

r : Labels(r) = (h2),

Rewrite(r) = (1, a) → (1, λ),

Generate(r) = {(1′, h1, u)},
Change-Relation(r) = INSERT-EDGE(1′, 1).

6.3 Strong division

A rule [[]h1 . . . []hk []hk+1 . . . []hn]h → [[]h1 . . . []hk]h[[]hk+1 . . . []hn]h can be defined as the following
C-rule:

r : Labels(r) = (h1, . . . , hn, h),

ρ(r) = {(i, n + 1) | 1 ≤ i ≤ n},
Rewrite(r) = ∅

Generate(r) = {(1′, h, λ)},
Generate-and-Copy(r) = ∅,

Change-Relation(r) = DELETE-EDGE(i, n + 1), and

= INSERT-EDGE(i, 1′), for k + 1 ≤ i ≤ n.

6.4 Division based on polarizations

Consider a rule of type []h → [+]h1[−]h2[0]h3 that regroups all membranes with the same
polarization in three new membranes. This can be simulated with the following CL-rule:

r : Labels(r) = (h),

ρ(r) = ∅,

Label-Rename(r) = (1, h1),

Generate(r) = {(1′, h2, λ), (2′, h3, λ)},
Generate-and-Copy(r) = ∅,

Change-Relation(r) = DELETE-EDGE(k, 1), and INSERT-EDGE(k, 1′),

for all k such that lab(k) = 〈l, −〉
DELETE-EDGE(k, 1), and INSERT-EDGE(k, 2′),

for all k such that lab(k) = 〈l, 0〉.

6.5 Kernel P systems

In this section, we would like to consider kernel P systems defined in [8]. This model corresponds
to P systems with a dynamic structure (with a configuration from C) having the following types
of rules:

(1) Rewriting and communication rule: x → y, where x is a multiset, while the right-hand side,
y, has the form y = (a1, t1) · · · (ah, th), with tj being the indexes of the target cells. This rule
rewrites x to y and moves the objects to the corresponding cells.

(2) Input–output rule: this is a form of symport/antiport rule: (x/y). This rule exchanges multisets
x and y being in two different cells.

(3) Structure change rules:
(a) Membrane division rule: []li → []li1 . . . []lih , the cell li will be replaced by h cells obtained

from li, that is, the contents of the cells will coincide with that of li; their labels are
li1 , . . . , lih , respectively; all the links of li are inherited by each of the newly created cells.

(b) Membrane dissolution rule: []li → λ; the cell li will be destroyed together with its links.
(c) Link creation rule: []li ; []lj → []li − []lj ; the current compartment, li, is linked to lj, and if

more than one lj exists, then one of them will be non-deterministically picked up.
(d) Link destruction rule: []li − []lj → []li ; []lj ; this is the opposite of link creation and means

that compartments li, lj are disconnected.

In [8], rules also contain a guard g that corresponds to a union of the permitting and forbidding
conditions.

We can represent the above rules in the formal framework as follows.
The rewriting rule corresponds to the RO-rule:

r : Labels(r) = (l, l1, . . . , lh),

ρ(r) = {(1, j) | 1 ≤ j ≤ h},
Perm(r) ∪ For(r) = g,

Rewrite(r) = {(1, x) → (1, a1) · · · (h, ah)}.

The input–output rule can be translated in a similar way.
The membrane division rule corresponds to the CDO-rule:

r : Labels(r) = (li),

ρ(r) = ∅,

Perm(r) ∪ For(r) = g,

Generate-and-Copy(r) = {(j′, lij , 1, ∅)}, 1 ≤ j ≤ h,

Delete(r) = {1},
Change-Relation(r) = INSERT-EDGE(j′, x),

for all x such that (1, x) ∈ Cρ , 1 ≤ j ≤ h.

The membrane dissolution rule corresponds to the DO-rule:

r : Labels(r) = (li),

ρ(r) = ∅,

Perm(r) ∪ For(r) = g,

Delete(r) = {1},
Change-Relation(r) = ∅.

The link creation rule corresponds to the OE-rule:

r : Labels(r) = (li, lj),

ρ(r) = ∅,

Perm(r) ∪ For(r) = cg,

Change-Relation(r) = INSERT-EDGE(1, 2).

The link destruction rule corresponds to the following OE-rule:

r : Labels(r) = (li, lj),

ρ(r) = {(1, 2)},
Perm(r) ∪ For(r) = cg,

Change-Relation(r) = DELETE-EDGE(1, 2).

7. Conclusions

In this article, we have presented a framework for P systems with a dynamic structure. The obtained
meta-language has a precise semantics centred on two notions: (1) the evolution of the objects
and membrane labels and (2) the evolution of the membrane structure (creation and deletion of
nodes and edges). As a consequence, it permits to easily describe different features of existing P
systems with a dynamic structure, which permits to provide an interesting tool for the comparison
of different variants of P systems. Moreover, the translation to the framework allows for a deeper
understanding of the corresponding P system and provides ways to extend its definition by new
features. We remark that in the case of the systems with a static structure, a similar approach using
the framework from [5] permitted to define new variants of P systems and to better express some
existing ones [1,6].

The introduced model works with an arbitrary (binary) relation between membranes, so it
remains open to consider relations different from the parent relation widely used in P systems.
As an interesting candidate, we suggest the brother/sister relation on a tree. Another possible
extension could be to address the generalization of the framework to an arbitrary n-ary relation.
In this case, the relation ρ induces a hypergraph, so the components changing the structure of ρ

have to be adapted to work on hypergraphs.
Finally, a challenging direction for the development of the framework is to consider that for a

multiset of rules the order of the application of Change-Relation produces different results. This
implies that the order of rules is important, and as a consequence, the set Applicable(�, C, δ) will
contain vectors (or lists) of rules. This idea has not yet been considered in the framework of P
systems and we think that it can lead to interesting results.

Acknowledgements

The work of the second and the third authors was supported by Project TIN2009-13192 of the Ministerio de Ciencia e
Innovación of Spain, cofinanced by FEDER funds and Project of Excellence with Investigador de Reconocida Valía, from
Junta de Andalucía, grant P08 – TIC 04200.

References

[1] A. Alhazov, M. Oswald, R. Freund, and S. Verlan, Partial halting and minimal parallelism based on arbitrary rule
partitions, Fund. Inform. 91(1) (2009), pp. 17–34.

[2] M. Cardona, M.A. Colomer, A. Margalida, I. Pérez-Hurtado, M.J. Pérez-Jiménez, and D. Sanuy, A P system based
model of an ecosystem of some scavenger birds, Lect. Notes Comput. Sci. 5957 (2010), pp. 182–195.

[3] R. Freund and B. Haberstroh, Attributed elementary programmed graph grammars, Lect. Notes Comput. Sci. 570
(1991), pp. 75–84.

[4] R. Freund, I. Pérez-Hurtado, A. Riscos-Núñez, and S. Verlan, A formal framework for P systems with dynamic
structure, in Tenth Brainstorming Week on Membrane Computing Sevilla, January 30–February 3, 2012, Vol. I,
M.A. Martínez-del-Amor, Gh. Păun, I. Pérez-Hurtado, and F.J. Romero-Campero, eds., Fénix Editora, Sevilla,
2012, pp. 111–122.

[5] R. Freund and S. Verlan, A formal framework for static (Tissue) P systems, Lect. Notes Comput. Sci. 4860 (2007),
pp. 271–284.

[6] R. Freund and S. Verlan, (Tissue) P systems working in the k-restricted minimally or maximally parallel transition
mode, Nat. Comput. 10(2) (2011), pp. 821–833.

[7] M. García-Quismondo, R. Gutiérrez-Escudero, I. Pérez-Hurtado, M.J. Pérez-Jiménez, and A. Riscos-Núñez, An
overview of P-Lingua 2.0, Lect. Notes Comput. Sci. 5957 (2010), pp. 264–288.

[8] M. Gheorghe, F. Ipate, and C. Dragomir, A kernel P system, in Tenth Brainstorming Week on Membrane Computing
Sevilla, January 30–February 3, 2012,Vol. I, M.A. Martínez-del-Amor, Gh. Păun, I. Pérez-Hurtado, and F.J. Romero-
Campero, eds., Fénix Editora, Sevilla, 2012, pp. 153–170.

[9] M.A. Martínez-del-Amor, I. Pérez-Hurtado, M.J. Pérez-Jiménez, and A. Riscos-Núñez. A P-lingua based simulator
for tissue P systems, J. Log. Algebr. Program. 79 (2010), pp. 374–382.

[10] Gh. Păun, Membrane Computing. An Introduction, Springer-Verlag, Berlin, 2002.
[11] Gh. Păun, G. Rozenberg, and A. Salomaa (eds.), The Oxford Handbook Of Membrane Computing, Oxford University

Press, New York, 2010.
[12] G. Rozenberg and A. Salomaa (eds.), Handbook of Formal Languages, Springer-Verlag, New York, 1997.
[13] The Membrane Computing Web Page: http://ppage.psystems.eu.
[14] The P-Lingua web page: http://www.p-lingua.org.

http://ppage.psystems.eu
http://www.p-lingua.org

	Introduction
	Preliminaries
	P systems
	Graph transformations

	Definition of the framework
	Formal definition of a configuration
	Formal definition of a rule
	Applicability of a multiset of rules
	Application of a multiset of rules

	Derivation modes
	Taxonomy
	Some examples
	Active membranes
	Creation rules
	Strong division
	Division based on polarizations
	Kernel P systems

	Conclusions

