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Abstract. Taking as input a time-varying sequence of two-dimensional 
(2D) binary images, we develop an algorithm for computing a spatiotem-
poral 0–barcode encoding lifetime of connected components on the image 
sequence over time. This information may not coincide with the one pro-
vided by the 0–barcode encoding the 0–persistent homology, since the 
latter does not respect the principle that it is not possible to move back-
wards in time. A cell complex K is computed from the given sequence, 
being the cells of K classified as spatial or temporal depending on whether 
they connect two consecutive frames or not. A spatiotemporal path is 
defined as a sequence of edges of K forming a path such that two edges 
of the path cannot connect the same two consecutive frames. In our 
algorithm, for each vertex v ∈ K, a spatiotemporal path from v to the 
“oldest” spatiotemporally-connected vertex is computed and the corre-
sponding spatiotemporal 0–bar is added to the spatiotemporal 0–barcode.

Keywords: Persistent homology · Barcodes · Spatiotemporal data · 
Digital image sequence analysis

1 Introduction

Persistent homology [3,5,12] and zigzag persistence [2] provides information
about lifetime of homology classes along a filtration of cell complexes. Such
a filtration might be determined by time in a set of spatiotemporal data. Our
general aim is to compute the “spatiotemporal” topological information of such
filtration, taking into account that it is not possible to move backwards in time
(which is not obvious if we use the known algorithms for computing (zigzag)
persistent homology).

In the context of mobile sensor networks, [4] is devoted to a problem related
with the one posed here: can a moving intruder avoid being detected by the
sensors? If the answer is yes, the path that describes the intruder over time is
called an evasion path. In the study of evasion paths in [4], the region covered
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by sensors at time t is encoded using Rips complex. A single cell complex SR
is computed by stacking the Rips complexes R(t) for all times t. Theorem 7
of [4] proves that there is no evasion path in a given mobile sensor network
under a “homological” criterion. Using zig-zag persistent homology, an equivalent
condition is provided in [1]. Nevertheless, no general necessary and sufficient
condition for the existence of an evasion path is given. The problem is how to
capture in the cell complex SR, the idea that an intruder cannot move backwards
in time. In [6], the authors analyze time-varying coverage properties in dynamic
sensor networks by means of zigzag persistent homology. Coverage holes are
tracked in the network by using representative cycles of 1–homology classes.

In this paper, we are concerned with the treatment of time-varying sequences
of 2D binary images and the tracking of connected components over time inspired
by persistent homology methods.

An overview of the main tools used in this paper: basics of persistent homol-
ogy and AT-models are given in Sect. 2. We state the problem of computing
the “correct” topological information of spatiotemporal data encoded in a sin-
gle cell complex in Sect. 3, through two simple examples. Our method to solve
the problem in dimension 0 is then introduced in Sect. 4. Cell complexes encod-
ing spatiotemporal information of time-varying sequences of 2D binary images
is given in Sect. 5. We conclude in Sect. 6 and describe possible directions for
future work.

2 Persistent Homology Through AT-models

Roughly speaking, a cell complex K is a general topological structure by which
a space is decomposed into basic elements (cells) of different dimensions that are
glued together by their boundaries (see the definition of CW-complex in [10]). If
the cells in K are p–dimensional cubes (vertices, edges, square faces, cubes, ...)
then K is a cubical complex. The dimension of a cell σ ∈ K is denoted by dim(σ).
A cell μ ∈ K is a p–face of a cell σ ∈ K if μ lies in the boundary of σ and
p = dim(μ) < dim(σ).

A p–chain is a formal sum of p–cells in K. Since we work with coefficients
that are either 0 or 1, we can think of a p–chain as a set of p–cells, namely those
with coefficients equals to 1. In set notation, the sum of two p–chains is their
symmetric difference. The p–chains together with the addition operation form a
group denoted as Cp(K). Besides, the set {Cp(K)}p is denoted by C(K). A set
of homomorphism {fp : Cp(K) → Cp(K ′)}p is called a chain map and denoted
by f : C(K) → C(K ′). Given two p–cells σ ∈ K and σ′ ∈ K ′, we say that
σ′ ∈ f(σ) if σ′ belongs to the p–chain fp(σ) (in set notation). The boundary map
∂ : C(K) → C(K) is defined on a p–cell σ as the sum of its (p − 1)–faces. This
way, for a p–chain, c =

∑
i∈I σi, the boundary of c is the sum of the boundaries

of its cells, ∂pc =
∑

i∈I ∂pσi.
A filtration of K is an increasing sequence of cell complexes: ∅ = K0 ⊂

K1 ⊂ · · · ⊂ Kn = K. The partial ordering given by such a filtration can be
extended to a total ordering of the cells of K: {σ1, . . . , σm}, satisfying that for



each i, 1 ≤ i ≤ m, the faces of σi lies in the set {σ1, . . . , σi}. Then, the map
index : K → Z is defined by index(σi) := i.

Informally, the p–th persistent homology groups [3,12] can be seen as a col-
lection of p–homology classes (representing connected components when p = 0,
holes when p = 1, cavities when p = 2, ...) that are born at or before we go
from Ki−1 to Ki and die after we go from Ki to Ki+1. A p–barcode [7] is a
graphical representation of the p–th persistent homology groups as a collection
of horizontal line segments (bars) in a plane. Axis corresponds to the indices of
the cells in K. For example, if a p–homology class was born at time i (i.e. when
σi is added) and died at time j (1 ≤ i < j ≤ m), then a bar with endpoints (i, i)
and (j, i) is added to the p–barcode.

In [8] the authors establish a correspondence between the incremental algo-
rithm for computing AT-models [9] and the one for computing persistent homol-
ogy. The first approach provides a rich algebraic information encoded by a chain
homotopy operator φ, that “connects” any p–cell to the corresponding surviving
cell.

An AT-model for a cell complex K is a quintuple (f, g, φ,K,H), where:

– K is the cell complex.
– H ⊆ K describes the homology of K, in the sense that it contains a distinct

p–cell for each p–homology class of a basis, for all p. The cells in H are called
surviving cells. The set of all the surviving p–cells together with the addition
operation form the group Cp(H) for all p.

– g : C(H) → C(K) is a chain map that maps each p–cell h in H to one
representative cycle gp(h) of the corresponding homology class [gp(h)].

– f : C(K) → C(H) is a chain map that maps each p–cell in K to a sum of
surviving cells, satisfying that if a, b ∈ Cp(K) are two homologous p–cycles
then fp(a) = fp(b).

– φ : C(K) → C(K) is a chain homotopy (see [11]). Intuitively, for a p–cell
σ, φp(σ) returns the (p + 1)–cells needed to be contracted to “bring” σ to a
surviving p–cell contained in fp(σ).

In the case of a 0–cell v ∈ K, φ0(v) will provide a path in K (a sequence of edges
of K connecting a sequence of different vertices) from the vertex v to the oldest
(i.e., with lowest index) vertex in the same connected component.

3 Stating the Problem

Our general goal is to compute spatiotemporal p–barcodes for a time-varying
sequence of nD binary images in the sense that they can represent evolution
of homology classes over time. In this paper, we focus our effort in computing
spatiotemporal 0–barcodes for time-varying sequences of 2D binary images.

In order to give some intuition about the problem we want to state, let us
consider the simple examples given in Fig. 1, in which two sequences of a few
4–connected pixels appearing, moving and disappearing over time, are shown.



(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 1. Pixels appearing, moving and disappearing over time.

To encode the spatiotemporal information of the two sequences, we construct
associated cell complexes by replacing each pixel by a vertex and adding an edge
between two vertices if:

– The corresponding pixels are 4–connected (in the same frame).
– The vertices correspond to the same pixel at different times.

The resulting cell complexes K and K ′ are shown in Fig. 2.

(a) Cell complex K. (b) Cell complex K′.

Fig. 2. Cell complexes K and K′ obtained, respectively, from the sequence showed in
Fig. 1(a)–(d) and (e)–(h).

Now, to compute 0–persistent homology on these two cell complexes K and
K ′, we should select an appropriate filtration. Since we want to capture the
variation of homology classes over time, we first classify the cells of K and K ′

in spatial and temporal:

– All vertices are spatial (since vertices represent pixels).
– An edge is spatial if its endpoints represent pixels of the same frame.
– If an edge is not spatial then it is temporal.

Therefore, we have the following spatial subcomplexes of K: T1 = {1}, T2 =
{2, 3, 4, 5, 6, 7}, T4 = {9, 10, 11, 12, 13, 14}, T6 = {18}. And the following sets



of temporal cells: T3 = {8}, T5 = {15, 16, 17}, T7 = {19}, where num-
bers correspond to the labels of the cells showed in Fig. 2(a). The filtration
∅ = K0 ⊂ K1 ⊂ · · · ⊂ K7 = K is obtained by interleaving the temporal
cells after the correspondent spatial subcomplexes. That is, Ki = Ki−1 ∪ Ti,
i = 1, . . . , 7.

Besides, the filtration on K ′ coincides with the filtration on K, where num-
bers now correspond to the labels of the cells showed in Fig. 2(b).

If we compute 0–persistent homology of K and K ′ using the above filtrations,
we will obtain, in both cases, that a connected component (0–homology class)
is born when cell 1 is added and survives until the end. So, in both cases, a bar
with endpoints (1, 1) and (19, 1) is added to the 0–barcode.

However, we can observe that Fig. 1(a)–(d) cannot represent a connected
component that is moving from the very beginning until the end while Fig. 1(e)–
(h) can. So we wonder if we could modify the 0–barcode of the first sequence
(Fig. 1(a)–(d)) so that it codifies the connected components that can survive
along time. The idea is to replace the bar with endpoints (1, 1) and (19, 1) by
respective bars from (1, 1) to (13, 1) and from (3, 3) to (19, 3), what will be
formally described in next section.

4 Our Method

In this section, our aim is to design an algorithm to compute the spatiotemporal
0–barcode of a cell complex K encoding spatiotemporal data.

Suppose that K is composed by a stack of (spatial) complexes and a set of
(temporal) cells such that each temporal cell connects two (consecutive) spatial
complexes. Hence, our starting point is a (spatiotemporal) filtration of K, that
is, a filtration ∅ = K0 ⊂ K1 ⊂ · · · ⊂ Kn = K such that, for all i, 1 ≤ i ≤ n, the
set Ti = Ki \ Ki−1 is:

– a set of spatial cells if i = 1 or i is even;
– a set of temporal cells if i > 1 is odd.

A spatiotemporal path c in K is a path in K such that #(c ∩ Ti) ≤ 1, for any
i odd, 1 < i ≤ n. That is, there are not two temporal edges connecting the same
consecutive spatial complexes, which follows from the idea that it is not possible
to move backwards in time. Two vertices are spatiotemporally-connected if there
is a spatiotemporal path between them.

Algorithm 1 extends the incremental algorithm for computing AT-models
given in [9]. The eleven last lines of Algorithm 1 are original in this paper.

Although Algorithm 1 follows the same idea behind the algorithm given in [9]
(by which, for each cell σ, φ(σ) “connects” the cell σ to a surviving cell), the
computation of the map φ′ is new in this paper.

In Algorithm 1, we compute a path φ′(v) from v to a surviving cell and, if
φ′(v) is not spatiotemporal, we break it in pieces that are spatiotemporal paths.
Then, a spatiotemporal path φ′(v) is obtained from each vertex v ∈ K to the



Algorithm 1. Spatiotemporal 0–barcode.
1 Input: An ordering of the cells of K extending the partial ordering imposed by

a spatiotemporal filtration.
2 Output: An AT-model for K and a spatiotemporal 0–barcode B.
3 H := ∅.
4 for i = 1 to m do
5 f(σi) := 0, φ(σi) := 0, φ′(σi) := 0.

6 for i = 1 to m do
7 if f∂(σi) = 0 then
8 f(σi) := σi, g(σi) := σi + φ∂(σi), H := H ∪ {σi}.
9 if dim(σi) = 0 then

10 Add to B a point at (i, i).

11 if f∂(σi) �= 0 then
12 Let σj ∈ f∂(σi) s t. j = max{index(μ) : μ ∈ f∂(σi)}
13 H := H \ {σj}
14 foreach x ∈ K s.t. σj ∈ f(x) do
15 f(x) := f(x) + f∂(σi), φ(x) := φ(x) + σi + φ∂(σi).

16 if dim(σi) = 1 then
17 Let v, w, v′, w′ ∈ K s.t. ∂(σi) = v + w, v′ = ∂φ′(v) + v,

w′ = ∂φ′(w) + w and index(v′) < index(w′).
18 Add to B the bar with endpoints {(index(v′), index(v′)),

(i, index(v′))} and the bar with endpoints {(index(w′), index(w′)),
(i, index(w′))}.

19 if v ∈ T� and w, w′ ∈ T�′ for some �, �′, s.t. 1 ≤ � ≤ �′ ≤ n then
20 foreach x ∈ K, x �= w, w′ s.t. ∂φ′(x) + x = w′ do
21 φ′(x) := φ′(x) + φ′(w) + σi + φ′(v).

22 φ′(w′) := φ′(w) + σi + φ′(v);
23 φ′(w) := σi + φ′(v).

“oldest” spatiotemporally-connected vertex. Regarding the spatiotemporal 0–
barcode, at time i, we elongate a bar only if dim(σi) = 1 and the connected
component that represents the bar is spatiotemporally connected to some of
the endpoints of the edge σi. Otherwise, we do not elongate the bar. This is
different from classical barcodes in which, for example, the bar corresponding
to a connected component that appear in time i and does not merge to other
connected component later, is elongated until the very end.

Proposition 1. If v is a vertex in K then, φ′(v) is a spatiotemporal path.

Proof. Let us prove the proposition by construction. At the beginning of the
algorithm, φ′(v) = 0 for every vertex v ∈ K. Suppose the algorithm is running
and we are in step i, 1 ≤ i ≤ m. Suppose that σi is an edge of K. Then,
∂(σi) = v +w being v and w two vertices of K. Besides, by induction, φ′(v) and



φ′(w) are spatiotemporal paths. Then, ∂φ′(v) + v = v′ and ∂φ′(w) + w = w′ for
some vertices v′ ∈ T� and w′ ∈ T�′ being 1 ≤ �, �′ ≤ n.

We can assume that index(v′) < index(w′). The case index(v′) = index(w′)
can only occur when v′ = w′, what means that f∂(σi) = 0 (a 1-cycle is being
closed) and neither B nor φ′ are modified in this case.

Now, let cw = σ + φ′(v), cw′ = φ′(w) + σ + φ′(v) and cx = φ′(x) + φ′(w) +
σ + φ′(v), for any x ∈ K such that ∂φ′(x) + x = w′. Then, ∂(cw) = w + v′,
∂(cw′) = w′ + v′ and ∂(cx) = x + v′. We have to consider the following cases:

– If σi is spatial, then σi, v, w ∈ Tj for some j, 1 ≤ j ≤ n. We have to consider
the following cases:

• If �′ < j then φ′ is not updated.
• If �′ = j then φ′(x) ⊆ Tj for any x ∈ K s.t. ∂φ′(x)+x = w′ and, therefore,

cw, cw′ and cx are spatiotemporal paths.
– If σi is temporal, then v ∈ Tj and w ∈ Tj′ for some j 
= j′, 1 ≤ j, j′ ≤ n.

• If j < j′. We consider two cases:
∗ If �′ = j′ then φ′(x) ⊆ Tj′ for any x ∈ K s.t. ∂φ′(x) + x = w′ and,

therefore, cw, cw′ and cx are spatiotemporal paths.
∗ If �′ < j′ then φ′ is not updated.

• If j′ < j then φ′ is not updated. �

Fig. 3. Top: Three simple examples of stacked cubical complexes (t being the tempo-
ral dimension). Middle: The associated spatiotemporal barcodes obtained by applying
Algorithm1. Bottom: The spatiotemporal paths of the longest-lived 0–homology classes
(in blue) (Color figure online).



5 Spatiotemporal Representation of Image Sequences

In this section, we explain how to compute a spatiotemporal filtration represent-
ing a time-varying sequence of 2D binary images, inspired by the stack complexes
described in [1,4].

Consider Z
2 as the set of points with integer coordinates in 2D space R

2.
A 2D binary image is a set I = (Z2, 8, 4, B), where B ⊂ Z

2 is the foreground,
Bc = Z

2\B the background, and (8, 4) is the adjacency relation for the foreground
and background, respectively. A point p ∈ Z

2 can be interpreted as a unit closed
square (called pixel) in R

2 centered at p with edges parallel to the coordinate
axes. The set of pixels centered at the points of B together with their faces
(edges and vertices) constitute a cubical complex denoted by Q(I). A p–cell in
I can be identified by its barycentric coordinates (xσ, yσ) ∈ R

2.
Following the construction given in [4], a cubical complex in which consecu-

tive images are stacked to include a third, temporal dimension, is defined.

Definition 1. Consider a sequence of 2D binary images S = {I1, . . . , In} and
the associated (2D) cubical complexes Q(I1), . . . , Q(In). The stacked (3D) cubical
complex SQ[S] is obtained as follows. Let Q(Ii) × {i}, 1 ≤ i ≤ n, be the cubical
complex obtained by adding a third coordinate i to the barycentric coordinates of
the cells of Q(I). Initially, SQ[S] = n

i=1(Q(Ii) × {i}). Now, if a p-cell σ with
barycentric coordinates (xσ, yσ) belongs to Q(Ii)∩Q(Ii+1) for some i, 1 ≤ i < n,
add to SQ[S] the (p + 1)–cell τ = σ × [i, i + 1]. This way, the barycentric coor-
dinates of τ are (xσ, yσ, i + 1

2 ).

Fig. 4. A sequence S of two 2D images, the associated 3D cubical complexes SQ[S]
and DQ[S] and the corresponding spatiotemporal 0–barcodes.

Since each cell σ ∈ SQ[S] can be identified by its barycentric coordinates
(xσ, yσ, tσ) ∈ R

3, then σ is spatial if, for some i ∈ Z, tσ = i; and it is temporal



otherwise. For example, a cube τ ∈ SQ[S] is always temporal, and with respect
to its faces we find: 6 spatial vertices; 8 spatial and 4 temporal edges; and 2
spatial and 4 temporal squares.

Let us denote by Q(Ii, Ii+1) the set of temporal cells with faces in Q(Ii) and
Q(Ii+1). The spatiotemporal filtration ∅ ⊂ SQ0 ⊂ SQ1 ⊂ · · · ⊂ SQn = SQ[S]
is given by: SQi = Q(I1), if i = 1; SQi = SQi−1 ∪ Q(Ij+1), if i = 2j and j > 0;
and SQi = SQi−1 ∪ Q(Ij , Ij+1), if i = 2j + 1 and j > 0.

Figure 3 shows three simple examples of stacked cubical complexes. The asso-
ciated spatiotemporal 0–barcodes are computed using Algorithm 1. From left to
right, the first and second spatiotemporal 0–barcodes have only one long bar,
while third one has two. Notice that in this last case, the classical 0–barcode
would produce only one long bar.

Observe that we could construct the 3D cubical complex DQ[S], just con-
sidering every pixel centered at point (x, y, t) as a voxel (unit cube with faces
parallel to the coordinate planes) centered at point (x, y, t). We have the follow-
ing result:

Proposition 2. Given a sequence of 2D binary images S = {I1, . . . , In}, the
3D cubical complexes SQ[S] and DQ[S] are homotopy equivalent.

Proof. In our approach, to construct the 3D cubical complex SQ[S], we build a
cube only when two pixels in same spatial locations (i.e., with identical barycen-
tric coordinates) belong to two consecutive frames; the other approach is to con-
sider pixels as voxels (cubes) to directly obtain a 3D cubical complex DQ[S] (see
Fig. 4). To prove that SQ[S] and DQ[S] are homotopy equivalent, we describe
how to collapse one complex, DQ[S], to the other one, SQ[S]. For this aim, we
first apply the translation τ(x, y, t) = (x, y, t + 1/2) to cells in DQ[S]. Consider
a pixel (square cell) σ ∈ SQ[S] centered at (xσ, yσ, tσ) that belongs to a cube c
centered at (xσ, yσ, tσ + 1/2) in SQ[S]. Let cσ be the voxel in DQ[S] centered
at (xσ, yσ, tσ). Then clearly τ(cσ) = c ∈ SQ[S]. Now, the idea is to successively
collapse all the cells that are in τ(DQ[S]) but not in SQ[S]. First, if σ does not
belong to any cube in SQ[S] centered at (x, y, t) with t = tσ +1/2, then collapse
the square face centered at (xσ, yσ, tσ + 1) in DQ[S]. Similarly if an edge e of σ
centered at (xe, ye, tσ) does not belong to any cube in SQ[S] centered at (x, y, t)
with t = tσ + 1/2, then collapse the edge centered at (xe, ye, tσ + 1). Finally, if a
vertex v of σ with coordinates (xv, yv, tσ) does not belong to any cube in SQ[I]

Fig. 5. A sequences of collapses starting from the complex DQ[S] and ending at the
complex SQ[S]. First, 4 square faces collapse, then 12 edges collapse and finally, 9
vertices collapse.



centered at (x, y, t) with t = tσ + 1/2, then collapse the vertex with coordinates
(xv, yv, tσ + 1). See Fig. 5. �

In this paper, we use the construction SQ[S] instead of DQ[S] because we
considered that, in SQ[S], the notion of spatial and temporal cells is more intu-
itive.

6 Conclusions and Future Work

In this paper, we have computed a modified 0–barcode for a temporal sequence
of 2D binary images respecting the time nature of the data. This is part of an
ongoing project to define and compute spatiotemporal p–barcodes for sequences
of nD binary images.
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