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Abstract
Control of cooling and heating processes is essential inmany industrial and biological processes. In
fact, the time evolution of an observable quantitymay differ according to the previous history of the
system. For example, a system that is being subject to cooling and then, at a given time tw for which
the instantaneous temperature is =( )T t Tw st, is suddenly put in contact with a temperature source
atTst may continue cooling down temporarily or, on the contrary, undergo a temperature rebound.
According to current knowledge, there can be only one ‘spurious’ and small peak/low.However,
our results prove that, under certain conditions,more than one extremummay appear. Specifically,
we have observed regions with two extrema and a critical point with three extrema.We have also
detected cases where extraordinarily large extrema are observed, as large as the order ofmagnitude
of the stationary value of the variable of interest.We show this by studying the thermal evolution of a
low density set ofmacroscopic particles that do not preserve kinetic energy upon collision, i.e. a
granular gas.We describe themechanism that signals in this system the emergence of these complex
and largememory effects, and explain why similar observations can be expected in a variety of
systems.

1. Introduction

Experimental observations reveal that the response to an excitation of complex condensedmatter systemsmay
depend on the entire system’s history, and not just on the instantaneous value of the state variables [1–8]. This is
usually calledmemory effect.Memory effects signal the breakdown of the thermodynamic (or hydrodynamic or
macroscopic, depending on the physical context) description. Some typicalmemory effects include shape
memory in polymers [4], aging and rejuvenation in spin glasses [9], activematter [10], and polymers [11], and
the counterintuitiveMpemba effect [12–14].

One of themost relevantmemory effects related to thermal processes was originally observed byKovacs and
collaborators [1] in a polymer system, whichwas subject to quenching to a low temperatureT1 from an
equilibrium state at temperatureT0>T1. After a long enoughwaiting time tw, but still relaxing towards
equilibrium atT1, the temperaturewas suddenly increased back to an intermediate value < <T T T T,st 1 st 0, such
that the instantaneous value of the volume  =( )t tw equalled the equilibrium value st corresponding toTst.
Subsequently, the volume ( )t did not remain flat but followed a nonmonotonic evolution. This nonmonotonic
behavior, denominated later asKovacs hump, consists in reaching onemaximumbefore returning to its
equilibrium value st.

We have described above the typical cooling procedure, but also a heating protocol can be considered
( < <T T T0 st 1), for which ( )t exhibits a singleminimumat t>tw. Quite recently, Kovacs-likememory effects
have been thoroughly investigated in glassy systems [15, 16], granular fluids [17, 18], activematter [19], and
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disorderedmechanical systems [20]. Thememory effect is typically quite small: themaximumdeviation of ( )t
from the stationary value st is several orders ofmagnitude smaller than st [1, 15, 17–19].

One of themain aims of ourwork is to show that the actualmemory effects landscape is in general farmore
complex than expected. First, we show that several extrema—instead of only one—may appear in a single
heating/cooling protocol à laKovacs, contrary towhat has been previously observed [15–20]. Second, very large
memory humps, of the order ofmagnitude of the stationary value of the quantity of interest, can be observed. To
the best of our knowledge, both features have not yet been reported in the literature. Itmust be noted that humps
much larger than those predicted by linear response theory have recently been found in a nonlinear activematter
model [19], but the relative deviation from the steady state is still of a few hundredths therein.

Our results are found in a granularfluid but themechanism presented for these features is quite general.
Thus, giant and complexmemory effects—not necessarily of the Kovacs-type—may be expected to appear in
many natural and artificial systems. Thesememory effects have obviously important implications in problems
like, for instance, system stabilization.

2.Description of the system and theoretical solution

Weconsider a collection of identical solid spheres at lowparticle density so that collisions are always
instantaneous and binary but inelastic, i.e. energy is not conserved andwe deal with a granular gas [21, 22]. In
this case, particles have homogeneousmass density andwe employ the rough hard sphere collisionalmodel with
constant coefficients of normal and tangential restitution,α andβ, respectively, which is quite realistic for a
variety ofmaterials at low particle density [23].

Let us discuss first why the granular gas of rough spheres is a good candidate for eventually finding complex
memory effects.Memory effects appear always in complex systems that consist ofmany structural units, for
which a continuumdescription seems in principle appropriate.Within this kind of description, the
instantaneous value of the complete set ofmacroscopic variables completely characterizes the system’s time
evolution [24]. However, there are states that cannot be completely described onlywith the systemmacroscopic
variables, and it is precisely for these states where amemory effect can be observed. As amatter of fact, this kind
of distinct states for which themacroscopic description fails are theoretically verywell understood in the context
of the kinetic theory of gases [24].

Furthermore, the granular gas of rough spheres can have extremely long relaxation times before it falls into a
state where themacroscopic description is valid [25, 26], giving room to the emergence of eventual long lasting
memory effects. And,most importantly, in this kind of system there are always two intrinsic, independent, and
potentially large temperature scales—the translational and rotational granular temperatures—with a highly
nonlinear coupling. All these facts open new spaces in the search of novel important features in complex
memory effects, including eventuallymultiple extrema.

To keep things simple, we consider the granular gas to be in a spatially homogeneous state at all times. The
translational velocities are denoted by v, while the angular (or rotational) velocities are denoted by w. The
system is thermalized by a stochastic but homogeneous volume force [27, 28] characterized by a noise intensity
c0

2 (see appendix A).
The kinetic description of our system starts from the corresponding Boltzmann–Fokker–Planck equation

for the granular gas under this kind of forcing [26] (see appendix A). The exact solution to this kinetic equation
can be formally expressed bymeans of an expansion around aMaxwellian distributionwith variancesTt
(translational temperature) andTr (rotational temperature) in the translational and angular velocities,
respectively. The total granular temperature is given by = +( )T T T 2t r , which is proportional to themean
kinetic (translational plus rotational) energy per particle. By adopting a dimensionless time scale τ, proportional
to the number of collisions per particle (see appendix A), the evolution equations for the temperatures can be
written as

q t
t

m t m t g t
¶

¶
= - -

( ) [ ( ) ( ) ( )] ( )ln 2

3
, 120 02

g t
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m t g t
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Above, q º T Tr t is the temperature ratio and
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2
3noise
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2

is a dimensionlessmeasure of the noise intensity, where c p sº ( )T m n3 4noise 0
2 2 2

3 with n being the particle
density, andm andσ being themass and diameter of a sphere, respectively. The reduced collisionalmomentsμ20

andμ02 (see appendix A formore reference) are functionals of thewhole velocity distribution and therefore the
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above systemof equations is not closed. In order to solve it, we use the first Sonine approximation, which refers to
thefirst nontrivial truncation of the aforementioned exact infinite expansion [25]. For this, togetherwith
equations (1) and (2), we need to incorporate the evolution equations for the fourth-order cumulants and the
initial values of γ, θ, and these cumulants (see appendix A).

We generate a common initial state for all the temperature evolution curves we subsequently analyze. At an
arbitrary time, whichwe choose to be the time origin τ=0, and over an arbitrary previousmicroscopic state, we
apply an instantaneous thermal pulse to the granular gas. In this way, the rotationalmodes (Tr) of the granular
gas are quenched, whereas the translationalmodes (Tt) are subject to a large heating. As a result,most of the
initial kinetic energy is in the translationalmodes, so that the total initial temperature isT(0)=Tt(0)/2 and the
temperature ratio is θ(0)=0.Moreover, all the fourth-order cumulants vanish because the initial distribution
that results from the heat pulse is a bi-variate (Tr,Tt)Maxwellian. By this procedure, the system forgets all the
previous thermal history of the system, assuring always the same nonequilibrium initial state.

From the initial state we have just characterized, the granular gas is left to cool freely, due to the intrinsically
inelastic particle collisions [21], for a waiting time tw. At τ=τw, we suddenly apply the stochastic force, with an
intensity such that the corresponding steady temperatureTst to be reached equals the instantaneous temperature
value at themoment of turning the noise on, i.e. t= ( )T T wst . IfT(τ>τw) further departs fromTst, then a
Kovacs-likememory effect is observed.Whatwe call protocol is the thermal procedure thatwe have just described.
Depending on thewaiting time τw for turning the stochastic heating on, the system spans different classes of
temperature evolution curves. This is depicted and explained infigure 1. For the sake of simplicity, we
investigate the two limiting cases infigure 1; i.e. τw=0 (heating protocol, HP) and t  ¥w (cooling
protocol, CP).

In theCP, since the system is left cooling down for a long time, the system is already in the homogeneous
cooling state (HCS) [21] at τw. In theHCS, the temperatureT(t) is the only relevant variable and decays in time
followingHaff’s law [21], whereas the temperature ratio and the fourth-order cumulants are time independent,
and their values depend only on the parametersα andβ [25]. Therefore, the conditions for this protocol at τw
are g t g q q= + +( ) [( ) ( )]1 1w st st HCS

3
2 , θ(τw)=θHCS, and the fourth-order cumulants at τ=τw also equal

theirHCS values.
In theHP, the initial conditions for theKovacs experiment are different. Sincewe turn on the stochastic

force right after the thermal pulse, the initial conditions are those of a bi-variateMaxwellian. Therefore, we have
that g t g q= +( ) ( )1w st st

3
2 , θ(τw)=0, and, in addition, all the cumulants vanish at τ=τw.

Figure 1. Illustration of the protocols considered in this work. The granular gas is prepared in an initial state (τ=0) for which all the
energy is concentrated in the translational degrees of freedom, as described in the text. In a first stage, 0<τ<τw, the granular gas
freely cools. Then, at the waiting time τ=τw, the noise intensity is suddenly increased from zero to a value such that the instantaneous
temperatureT(τw) coincides with the corresponding steady temperatureTst. The curves shown for τ>τw correspond to the so-called
normalKovacs response. Time τmeasures the average number of collisions per particle. Note that, in order to visualize theKovacs
effect, the relative deviations ofT(τ) fromTst in the response curves have beenmagnified by a factor r=5 for all the protocols, except
for the transition one, forwhich r=100. All the curves correspond to normal and tangential restitution coefficientsα=0.8 and
β=0, respectively.
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3. Results and discussion

Twodata sets frommolecular dynamics (MD) simulations (see appendix B) of the granular gas for both theHP
and theCP, togetherwith their corresponding theoretical predictions, are represented infigure 2(A), which
clearly shows the appearance of very largememory effects. The temperature humps displayed here, of
approximately 100% for theCP and 10% for theHP, are larger by at least two orders ofmagnitude than
previously observedmemory effects in athermal systems, which atmost range from a few thousandths to a few
hundredths of the stationary value of the relevant variable [17, 19]. The theoretical curves displayed in
figure 2(A) have been obtained bymeans of a bi-variateMaxwellian approximation, inwhich all the cumulants
are assumed to be zero (see appendix A). Thus, the essential property driving the giantmemory effect here is the
existence of two independent temperature scales, translational and rotational, i.e. the breakdown of
equipartition as given by the fact that q ¹ 1. This is further illustrated infigure 2(B), which shows θ(τ) for the
same cases as in figure 2(A). Again, the agreement between theory and simulation is excellent, even at the level of
the two contributions to the total temperature. Note that the relaxation time in theCP case ismuch longer than
in theHPone.

Let us denote the earliestminimumandmaximum in the temperature evolution asTm andTM, respectively.
We also define º - <T T 1 0m m st , º - >T T 1 0M M st , accordingly. Infigure 3we present contour
plots highlighting the regionswith large ∣ ∣m (HPnormal response, CP anomalous response) andM (HP
anomalous response, CP normal response).We also plot the transition line = ∣ ∣M m fromnormal to
anomalous response.HugeKovacs humps appear, especially in the normal region for theCP, inwhich the size of
reported humps can be as large as 100%, relative to the steady temperature.

In order to characterize and quantify complexity in the thermal responsewe define the parameter  ,

 
 

 
= ( ) (∣ ∣ )

(∣ ∣ )
( )sgn

min ,

max ,
, 4m M

m M
1

Figure 2. Large Kovacs humps in the granular gas. Panel (A) shows two examples ofmacroscopic Kovacs humps for a granular gas
withα=0.7. The upper curve corresponds to theCP (withβ=0.9)whereas the lower curve corresponds to theHP (with
β=−0.8), asmeasured inMD simulations. Panel (B) shows the time evolution of the corresponding rotational-to-translational
temperature ratio θ=Tr/Tt. The simulation results show an almost perfect agreement with our theoretical predictions (lines).
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where1 (equal to eitherm orM ) is themagnitude of the earliest extremum.Note that  = 0 if there is only
one extremum. Thus,  ¹ 0 is the signature of the emergence ofmore complex response, i.e. withmore than
one extremum, in the normal-to-anomalous transition. In the transition region, ∣ ∣attains itsmaximumvalue,
 =∣ ∣ 1, when both extrema are of the same size and neither dominates. The sign of  Î -[ ]1, 1 is equal to that
of the earliest extremum, providing further information on the detailed structure of the response.

Figure 4 represents  as a function of the coefficients of restitutionα,β, by solving the systemof
equations (1) and (2). Panels (A), (C), and (D) correspond to theHP,whereas panels (B) and (E) correspond to
theCP.Wehave highlighted in blue (red) regionswith  < 0 ( > 0), whereas all points with ‘simple’memory
behavior, i.e.  = 0, remainwhite. The complex regions are thin but still occupy noticeable sections of the
parameter space, especially taking into account that they fall into ranges of experimental values ofα andβ
commonly present in a variety ofmaterials [23]. Infigure 4(A) (HP), we clearly observe two zones rich in
complexmemory effects. In panel (C), thefirst complex zone is zoomed in. This region is attached to the smooth
limit,β∼−1, and only displays  > 0 for high inelasticities, up to a = 1 2 . In panel (D), the second
complex region is zoomed in.Within this region, which is close to the quasielastic limitα∼1, the system

Figure 3.Contour plots of large extrema in theKovacs response. Largeminima (∣ ∣m ) are represented by bluish contours and large
maxima (M ) by reddish contours. Dashed lines indicate the  = ∣ ∣M m transition curves, forwhich the predominant extremum
changes sign, frommaximum tominimumand vice versa. Above and below these curves we find  > ∣ ∣M m ( < ∣ ∣M m ) and
 <M m ( > ∣ ∣M m ) behaviors, respectively, in theHP (CP). (A)Heating protocol (HP). (B)Cooling protocol (CP).
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displays both  > 0 and  < 0 behavior. Infigure 4(B) (CP), only one complex Kovacs region next to the
quasielastic limit, insidewhich  > 0, has been identified. Panel (E) shows a close-up thereof.

It is important tomention that we have found that all the details of the complex regions emerge in the
theoretical solution onlywhen the cumulants are taken into account. This indicates that the temperaturesTt and
Tr do not explain in full detail by themselves the complexity ofmemory effects found in the rough granular gas.
Let us also point out that we have found for theHP a critical narrow regionwith a discontinuous transition from
 > 0 to  < 0, which is signaled in panel (D) infigure 4 and represented in time evolution curves infigure 5.

In this critical region, the systemdisplays several differentmechanisms for the transition from complex to
simple—only one extremum—behavior. The latter can be either the normal behavior ofmolecular systems
[1, 9, 15] (also present in nonequilibrium systems) or the anomalous behavior exclusive of nonequilibrium
systems [17, 19]. This is appropriately tagged in panels (A) and (B) offigure 4, inwhichwe have labeled the
corresponding normal and anomalous regions. In the narrow critical region,  discontinuously jumps from
(small)negative to positive values and three consecutive temperature extrema appear before stabilization in the
stationary value is attained. Otherwise,  has awell-defined sign and the transition from complex to simple is
continuous.

Figure 5 displays the evolution curves of the temperature for the three different Kovacs transitions that we
have found, in all cases depicted here for theHP: the  > 0 transition in panel (A), the  » 0 transition in panel
(B) (in its inset we show the three consecutive humps), andfinally the  < 0 case in panel (C). All theoretical
curves are compared against the numerical solution of the kinetic equation, obtained bymeans of the direct
simulationMonteCarlo (DSMC)method (see appendix B). The agreement is in general excellent, which once
more shows the accuracy of our theoretical approach. Although the size of the humps in the transition regions
appear smaller than those infigure 2(A)with simplememory behavior, yet they are of the same order of
magnitude as those previously reported in the smooth granular gas [17].

Figure 4.Kovacs complexity ( ) phase diagrams.Density plot of  versus the a b, complete space parameter: (A) for theHP; (B) for
the CP. (C), (D) Insets of complexmemory regions next to the smooth and the quasielastic limits, respectively, for theHP. (E) Inset of
the complexmemory region next to the quasielastic limit for the CP. In theHP, as seen in panels (A) and (D), three different types of
transition exist:  < 0 (bluish,β<−0.65),  > 0 (reddish,β>−0.65), and the intermediatemechanism ( » 0) forβ≈−0.65,
as depicted below infigure 5(B). However, in the CP, see panels (B) and (E), only a  > 0-type transition has been observed.
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4. Conclusions

Ourwork puts forward a generalmechanism for the emergence of significantly largememory effects.Enormous
humps can be expected if the time evolution of the systemunder scrutiny is controlled by at least two
independent and comparable inmagnitude physical variables (here the translational and rotational
temperatures) but with only one (here the total temperature) being relevant for themacroscopic or
hydrodynamic description. In addition, complex Kovacs response, withmore than one extremum, can be
expected if the time evolution of the systemdepends on several additional relevant variables. Here, these
additional variables are the fourth-order cumulants, whose sometimes nonmonotonic relaxation [25] probably
enhancesmemory effect complexity.

So far, and despite the large number of previous works on analogous phenomena, only one extremum in the
Kovacs response has been reported. In thermal systems, in which the usualfluctuation-dissipation theorem
holds and the stationary (equilibrium) distribution has the canonical shape, this is consistent with linear
response results that predict normal behavior with only onemaximum [16]. In athermal systems, the Kovacs
response also includes anomalous behavior, but oncemore only one extremumhas been observed [17, 19].

Figure 5.Mechanisms for the transition fromnormal to anomalous in theHP. There are three of thesemechanisms, which are shown
here byDSMC simulations (symbols) and our theoretical approach (lines). Specifically, through (A)  > 0 atβ=0, (B)  » 0
(actually a triple Kovacs hump transitionmechanism; see inset, where the line joining the simulation points is a guide to the eye) at
β=−0.65, and (C)  < 0 atβ=−0.8. In order to assist in locating these transitions in the parameter plane (α,β), their positions
have been annotated infigure 4(D).
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Therefore, an interesting prospect is elucidatingwhether or not the nonlinear theoretical framework developed
in [19] allows for complex responsewithmore than one extremum.

Memory effects of the size and complexity we have observed here can potentially be present in other
athermal ormolecular systems. Several variables of comparablemagnitudemust be coupled in their time
evolution in nonlinear form, even if only a subset thereof is relevant in themacroscopic description. Thismay be
relevant, for instance, in activematter systems, where nonlinear effects are important in general [19, 29].We
think our results are also especially significant for future experimental work, sincewe expect these largememory
effects to bemeasurable in granular dynamics experiments; a thermally homogeneous systemmay be achieved
bymeans of homogeneous turbulent airfluidization [28].
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AppendixA. Theory

The stochastic force (Fwn) has the formof awhite noise: I c d d= = -¢ ¢⟨ ( )⟩ ⟨ ( ) ( )⟩ ( )F t t t m t tF F0,i i j ij
wn wn wn 2

0
2 ,

where indexes i j, refer to particles, I is the 3×3 unitmatrix, and c0
2 is thewhite noise intensity. In

homogeneous states, the Boltzmann–Fokker–Planck equation characterizing the evolution of a granular gas
submitted to the stochastic external force Fwn is written as [25]

w w
c

¶ -  =
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ ( ) [ ∣ ( )] ( )f t J f tv v

2
, ; , . A.1t v

0
2

2

Above, w( )f tv, ; is the velocity distribution function (v andω being the translational and angular velocities,
respectively) and w[ ∣ ]J fv, is the collision integral in the (inelastic)Boltzmann equation for rough spheres,
which accounts for the collision rules [25]

s s s sa b¢ = - ´ ¢ = - ´   · · ( )u u u u, . A.2

Here, the primes denote postcollisional values, s is the unit collision vector joining the centers of the two
colliding spheres (from the center of particle 1 to the center of particle 2) and s w w= - - ´ +s ( )u v v1 2 2 1 2

is the relative velocity of the spheres at their contact point. The coefficient of normal restitutionα takes values
between 0 (completely inelastic collision) and 1 (completely elastic collision), while the coefficient of tangential
restitutionβ takes values between−1 (completely smooth collision, unchanged angular velocities) and 1
(completely rough collision) [24].

Given anyone-particle function w( )A v, , its average is definedas ò ò w w wá ñ = -( ) ( ) ( )A t n A f tv v vd d , , ;1 ,

where thenumberdensity is givenby ò ò w w= ( )n f tv vd d , ; . Thebasic physical properties are the translational
(Tt), rotational (Tr), and total (T)granular temperatures, i.e.

w
q

= á ñ = á ñ =
+

=
+ ( )T

m
v T

I
T

T T
T

3
,

3
,

2

1

2
, A.3t r

t r
t

2 2

where I is themoment of inertia.We have introduced the temperature ratio q º T Tr t , which is relevant for the
analysis that follows andwhose steady-state value is independent of the driving amplitude c0

2. The evolution
equations forTt,Tr, andT are

c x x¶ - = - ¶ = - ( )T m T T T, , A.4t t t t t r r r0
2

c
z¶ - = - ( )T

m
T

2
. A.5t

0
2

The equations forTt andTr have been obtained bymultiplying both sides of equation (A.1) by the translational
and rotational kinetic energies, respectively, and integrating over all particle velocity values. The parameters ξt
and ξr are

ò ò w wx = - [ ∣ ] ( )m

nT
v J fv v

3
d d , , A.6t

t

2
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ò ò w wx w= - [ ∣ ] ( )I

nT
J fv v

3
d d , , A.7r

r

2

respectively. In general, neither ξt nor ξr does have a definite sign, whereas the cooling rate,

z
x x x x q

q
=

+
=

+
+

( )
T T

T2 1
, A.8t t r r t r

is always positive because energy is dissipated in collisions.
To proceed further, it is convenient to go to dimensionless variables. Time ismeasured in a scale τ,

òt n n s p= ¢ ¢ =( ) ( ) ( ) ( )t t t n T t m
1

2
d , 4 , A.9

t

t
0

2

which is roughly the accumulated number of collisions per particle, because ν(t) is the collision frequency.
Dimensionless velocities are introduced as

w
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, A.10
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a reduced velocity distribution function as
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mI
f tc w v, ;

1 4
, ; , A.11t r

3 2

and the dimensionless collision kernel as

 wf t
n
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In dimensionless variables, the evolution equations for the temperatures can bewritten as equations (1) and
(2) in themain text. Therein, there appear the reduced collisionalmoments m mº ( )

20 20
0 and m mº ( )

02 02
0 , where

ò òm t f tº -( ) ( · ) [ ∣ ( )] ( )( ) c wc w c w c wd d , . A.13pq
r p q r

Note that, aside from the nondimensionalizing factors, the production rates ξt and ξr are basically identical toμ20
andμ02, respectively. These are functionals of thewhole distribution function and thus the evolution equations
for the temperatures are not closed.

In order to close the dynamical equations, a formally exact expansion in orthogonal polynomials can be
performed [25]. For isotropic states, we can expand the velocity distribution around theMaxwellian
f p= - - -( )c w, eM

c w3 2 2
,

å å åf t f t= Y
=

¥

=

¥

=

¥

( ) ( ) ( ) ( ) ( )
ℓ

ℓ ℓ( ) ( )c w ac w c w, ; , , , A.14M
j k

jk jk
0 0 0

where Y ( )ℓ( ) c w,jk are certain products of Laguerre and Legendre polynomials. By normalization,

= = =( ) ( ) ( )a a a1, 000
0

10
0

01
0 , and the lowest nontrivial coefficients are those associatedwithmoments of degree

four, namely

= á ñ - = á ñ - ( )( ) ( )a c a w
4

15
1,

4

15
1, A.1520

0 4
02
0 4

= á ñ - = ñ - á
⎡
⎣⎢

⎤
⎦⎥( · ) ( )( ) ( )a c w a c wc w

4

9
1,

8

15

1

3
, A.1611

0 2 2
00
1 2 2 2

whichwe call the fourth-order cumulants henceforth.

A.1.Maxwellian approximation
The simplest description is obtained by substituting theMaxwellian velocity distribution into the collision
integrals (A.13). Equivalently, onemay consider that all the nontrivial cumulant vanish in this approach, which
yields

m a
k b

k
k b q b= - +

+
+

+ - - +
( )

( )
[ ( ) ( )] ( )1

1

1
2 1 1 , A.17M20,

2
2

m
k b

k
k b q b=

+
+

+ - - +- -( )
( )

[ ( ) ( )] ( )1

1
2 1 1 , A.18M02, 2

1 1

where k sº I m4 2 is the dimensionlessmoment of inertia. Insertion of equation (A.17) into the evolution
equations (1) and (2) in themain text gives rise to theMaxwellian approximation.
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A.2. First Sonine approximation
Amore elaborate approximation can be done by incorporating the lowest order cumulants, whichwe defined in
equations (A.15) and (A.16), as the first corrections to theMaxwellian.

A closed set of six coupled differential equations can be obtained for θ(τ), γ(τ), a20
(0)(τ), a02

(0)(τ), a11
(0)(τ), and

t( )( )a00
1 . To do so, explicit—yet not exact—expressions for the collision integrals m( )

pq
r with + + =p q r2 2 and

4 are derived in terms of θ and those lowest order cumulants. These rather involved expressions can be found in
the SupplementalMaterial of [25], and are thus omitted here. The resulting set of six differential equations can
be numerically solvedwith appropriate initial conditions for each physical situation, as discussed in themain
text. In this way, we obtain the time evolution of the temperatures in the so-called first Sonine approximation, to
whichwe refer throughout this work.

Appendix B. Computer simulations

Weuse in this work data sets obtained from computer simulations from two independent and different
methods: direct simulationMonte Carlo (DSMC)method, which obtains an exact numerical solution of the
relevant kinetic equation (in our case equation (A.1)) andmolecular dynamics (MD) simulation, which solves
particles trajectories. A detailed description of theDSMCmethodmay be found elsewhere [30]. In ourDSMC
simulations, and in order to reduce statistical noise in the temperature time evolution curves, we have used an
average of 100 statistical replicas of a systemwith 2×106 particles. In theMDcase, we have simulated 1000
inelastic hard spheres at a density s =n 0.013 and averaged over 500 trajectories.
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