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Abstract

Control of cooling and heating processes is essential in many industrial and biological processes. In
fact, the time evolution of an observable quantity may differ according to the previous history of the
system. For example, a system that is being subject to cooling and then, at a given time t,, for which
the instantaneous temperatureis T'(¢,,) = T, is suddenly put in contact with a temperature source
at T, may continue cooling down temporarily or, on the contrary, undergo a temperature rebound.
According to current knowledge, there can be only one ‘spurious’ and small peak /low. However,
our results prove that, under certain conditions, more than one extremum may appear. Specifically,
we have observed regions with two extrema and a critical point with three extrema. We have also
detected cases where extraordinarily large extrema are observed, as large as the order of magnitude
of the stationary value of the variable of interest. We show this by studying the thermal evolution ofa
low density set of macroscopic particles that do not preserve kinetic energy upon collision, i.e. a
granular gas. We describe the mechanism that signals in this system the emergence of these complex
and large memory effects, and explain why similar observations can be expected in a variety of
systems.

1. Introduction

Experimental observations reveal that the response to an excitation of complex condensed matter systems may
depend on the entire system’s history, and not just on the instantaneous value of the state variables [ 1-8]. This is
usually called memory effect. Memory effects signal the breakdown of the thermodynamic (or hydrodynamic or
macroscopic, depending on the physical context) description. Some typical memory effects include shape
memory in polymers [4], aging and rejuvenation in spin glasses [9], active matter [ 10], and polymers [11], and
the counterintuitive Mpemba effect [12—14].

One of the most relevant memory effects related to thermal processes was originally observed by Kovacs and
collaborators [1] in a polymer system, which was subject to quenching to alow temperature T} from an
equilibrium state at temperature Ty > T. After along enough waiting time t,,, but still relaxing towards
equilibrium at T}, the temperature was suddenly increased back to an intermediate value Ty, T} < Ty < T, such
that the instantaneous value of the volume V(¢ = t,,) equalled the equilibrium value V; corresponding to T;.
Subsequently, the volume V(¢) did not remain flat but followed a nonmonotonic evolution. This nonmonotonic
behavior, denominated later as Kovacs hump, consists in reaching one maximum before returning to its
equilibrium value V.

We have described above the typical cooling procedure, but also a heating protocol can be considered
(I < T < T), for which V(t) exhibits a single minimum at ¢ > t,,. Quite recently, Kovacs-like memory effects
have been thoroughly investigated in glassy systems [15, 16], granular fluids [17, 18], active matter [19], and
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disordered mechanical systems [20]. The memory effect is typically quite small: the maximum deviation of V(¢)
from the stationary value ), is several orders of magnitude smaller than V}; [1, 15, 17-19].

One of the main aims of our work is to show that the actual memory effects landscape is in general far more
complex than expected. First, we show that several extrema—instead of only one—may appear in a single
heating/cooling protocol a la Kovacs, contrary to what has been previously observed [15-20]. Second, very large
memory humps, of the order of magnitude of the stationary value of the quantity of interest, can be observed. To
the best of our knowledge, both features have not yet been reported in the literature. It must be noted that humps
much larger than those predicted by linear response theory have recently been found in a nonlinear active matter
model [19], but the relative deviation from the steady state is still of a few hundredths therein.

Our results are found in a granular fluid but the mechanism presented for these features is quite general.
Thus, giant and complex memory effects—not necessarily of the Kovacs-type—may be expected to appear in
many natural and artificial systems. These memory effects have obviously important implications in problems
like, for instance, system stabilization.

2. Description of the system and theoretical solution

We consider a collection of identical solid spheres at low particle density so that collisions are always
instantaneous and binary but inelastic, i.e. energy is not conserved and we deal with a granular gas [21, 22]. In
this case, particles have homogeneous mass density and we employ the rough hard sphere collisional model with
constant coefficients of normal and tangential restitution, o and 3, respectively, which is quite realistic for a
variety of materials at low particle density [23].

Let us discuss first why the granular gas of rough spheres is a good candidate for eventually finding complex
memory effects. Memory effects appear always in complex systems that consist of many structural units, for
which a continuum description seems in principle appropriate. Within this kind of description, the
instantaneous value of the complete set of macroscopic variables completely characterizes the system’s time
evolution [24]. However, there are states that cannot be completely described only with the system macroscopic
variables, and it is precisely for these states where a memory effect can be observed. As a matter of fact, this kind
of distinct states for which the macroscopic description fails are theoretically very well understood in the context
of the kinetic theory of gases [24].

Furthermore, the granular gas of rough spheres can have extremely long relaxation times before it falls into a
state where the macroscopic description is valid [25, 26], giving room to the emergence of eventual long lasting
memory effects. And, most importantly, in this kind of system there are always two intrinsic, independent, and
potentially large temperature scales—the translational and rotational granular temperatures—with a highly
nonlinear coupling. All these facts open new spaces in the search of novel important features in complex
memory effects, including eventually multiple extrema.

To keep things simple, we consider the granular gas to be in a spatially homogeneous state at all times. The
translational velocities are denoted by v, while the angular (or rotational) velocities are denoted by w. The
system is thermalized by a stochastic but homogeneous volume force [27, 28] characterized by a noise intensity
X(z) (see appendix A).

The kinetic description of our system starts from the corresponding Boltzmann—Fokker—Planck equation
for the granular gas under this kind of forcing [26] (see appendix A). The exact solution to this kinetic equation
can be formally expressed by means of an expansion around a Maxwellian distribution with variances T,
(translational temperature) and T, (rotational temperature) in the translational and angular velocities,
respectively. The total granular temperature is given by T'= (T; + T;) /2, which is proportional to the mean
kinetic (translational plus rotational) energy per particle. By adopting a dimensionless time scale 7, proportional
to the number of collisions per particle (see appendix A), the evolution equations for the temperatures can be
written as

Olno 2
n—(T) = —[p0(7) = poa (1) — (M1, (1)

or 3

0l
YD ) = 7. @
or
Above, § = T, /T, is the temperature ratio and
Tnoise 1+ 0 %

E — — 3
( T 2 ) ©)

is a dimensionless measure of the noise intensity, where T;,,;s. = m (3 Xé / 4T no?)s withn being the particle
density, and m and o being the mass and diameter of a sphere, respectively. The reduced collisional moments (i,
and (19, (see appendix A for more reference) are functionals of the whole velocity distribution and therefore the
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Figure 1. [llustration of the protocols considered in this work. The granular gas is prepared in an initial state (7 = 0) for which all the
energy is concentrated in the translational degrees of freedom, as described in the text. In a first stage, 0 < 7 < 7, the granular gas
freely cools. Then, at the waiting time 7 = 7,,, the noise intensity is suddenly increased from zero to a value such that the instantaneous
temperature T(7,,) coincides with the corresponding steady temperature T,. The curves shown for 7 > 7,, correspond to the so-called
normal Kovacs response. Time 7 measures the average number of collisions per particle. Note that, in order to visualize the Kovacs
effect, the relative deviations of T(7) from T, in the response curves have been magnified by a factor r = 5 for all the protocols, except
for the transition one, for which r = 100. All the curves correspond to normal and tangential restitution coefficients « = 0.8 and

[ = 0, respectively.

above system of equations is not closed. In order to solve it, we use the first Sonine approximation, which refers to
the first nontrivial truncation of the aforementioned exact infinite expansion [25]. For this, together with
equations (1) and (2), we need to incorporate the evolution equations for the fourth-order cumulants and the
initial values of 7, 6, and these cumulants (see appendix A).

We generate a common initial state for all the temperature evolution curves we subsequently analyze. At an
arbitrary time, which we choose to be the time origin 7 = 0, and over an arbitrary previous microscopic state, we
apply an instantaneous thermal pulse to the granular gas. In this way, the rotational modes (T,) of the granular
gas are quenched, whereas the translational modes (T) are subject to a large heating. As a result, most of the
initial kinetic energy is in the translational modes, so that the total initial temperature is T(0) = T,(0)/2 and the
temperature ratio is #(0) = 0. Moreover, all the fourth-order cumulants vanish because the initial distribution
that results from the heat pulse is a bi-variate (T}, T;) Maxwellian. By this procedure, the system forgets all the
previous thermal history of the system, assuring always the same nonequilibrium initial state.

From the initial state we have just characterized, the granular gas is left to cool freely, due to the intrinsically
inelastic particle collisions [21], for a waiting time 7,. At T = T7,,, we suddenly apply the stochastic force, with an
intensity such that the corresponding steady temperature T, to be reached equals the instantaneous temperature
value at the moment of turning the noise on, i.e. Ty = T'(7,). If T(7 > 7,,) further departs from T, thena
Kovacs-like memory effect is observed. What we call protocol is the thermal procedure that we have just described.
Depending on the waiting time 7, for turning the stochastic heating on, the system spans different classes of
temperature evolution curves. This is depicted and explained in figure 1. For the sake of simplicity, we
investigate the two limiting cases in figure 1;i.e. 7,, = 0 (heating protocol, HP) and 7;,, — oo (cooling
protocol, CP).

In the CP, since the system is left cooling down for along time, the system is already in the homogeneous
cooling state (HCS) [21] at 7. In the HCS, the temperature T(#) is the only relevant variable and decays in time
following Haff’s law [21], whereas the temperature ratio and the fourth-order cumulants are time independent,
and their values depend only on the parameters avand 3[25]. Therefore, the conditions for this protocol at 7,
are y(1,) = v, [(1 + 6 /(1 + Oucs)]?> 0(Ty) = Bucs, and the fourth-order cumulants at 7 = 7,, also equal
their HCS values.

In the HP, the initial conditions for the Kovacs experiment are different. Since we turn on the stochastic
force right after the thermal pulse, the initial conditions are those of a bi-variate Maxwellian. Therefore, we have
that y(7,,) = 7, (1 + 0,),0(t,,) = 0,and, in addition, all the cumulants vanish at 7 = 7,,.
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Figure 2. Large Kovacs humps in the granular gas. Panel (A) shows two examples of macroscopic Kovacs humps for a granular gas
with @ = 0.7. The upper curve corresponds to the CP (with 5 = 0.9) whereas the lower curve corresponds to the HP (with

B = —0.8), as measured in MD simulations. Panel (B) shows the time evolution of the corresponding rotational-to-translational
temperature ratio @ = T,/T,. The simulation results show an almost perfect agreement with our theoretical predictions (lines).

3. Results and discussion

Two data sets from molecular dynamics (MD) simulations (see appendix B) of the granular gas for both the HP
and the CP, together with their corresponding theoretical predictions, are represented in figure 2(A), which
clearly shows the appearance of very large memory effects. The temperature humps displayed here, of
approximately 100% for the CP and 10% for the HP, are larger by at least two orders of magnitude than
previously observed memory effects in athermal systems, which at most range from a few thousandths to a few
hundredths of the stationary value of the relevant variable [17, 19]. The theoretical curves displayed in

figure 2(A) have been obtained by means of a bi-variate Maxwellian approximation, in which all the cuamulants
are assumed to be zero (see appendix A). Thus, the essential property driving the giant memory effect here is the
existence of two independent temperature scales, translational and rotational, i.e. the breakdown of
equipartition as given by the fact that § = 1. This is further illustrated in figure 2(B), which shows §(7) for the
same cases as in figure 2(A). Again, the agreement between theory and simulation is excellent, even at the level of
the two contributions to the total temperature. Note that the relaxation time in the CP case is much longer than
in the HP one.

Let us denote the earliest minimum and maximum in the temperature evolution as T}, and T, respectively.
Wealsodefine H,, = T, /Tyy — 1 < 0, Hyy = Ty /Ty — 1 > 0, accordingly. In figure 3 we present contour
plots highlighting the regions with large | H,,,| (HP normal response, CP anomalous response) and H,, (HP
anomalous response, CP normal response). We also plot the transition line Hy; = |H,,| from normal to
anomalous response. Huge Kovacs humps appear, especially in the normal region for the CP, in which the size of
reported humps can be as large as 100%, relative to the steady temperature.

In order to characterize and quantify complexity in the thermal response we define the parameter S,

min(|H,|, Hu)

S = H, S
B X, Hon)

(C))
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Figure 3. Contour plots of large extrema in the Kovacs response. Large minima (H,,|) are represented by bluish contours and large
maxima (H),) by reddish contours. Dashed lines indicate the H); = |H,,| transition curves, for which the predominant extremum
changes sign, from maximum to minimum and vice versa. Above and below these curves we find Hy > |H,,| (Hy < |[H|) and
Hy < Hy (Hy > |H,|) behaviors, respectively, in the HP (CP). (A) Heating protocol (HP). (B) Cooling protocol (CP).

where H) (equal to either H,, or H,) is the magnitude of the earliest extremum. Note that S = 0 if thereis only
one extremum. Thus, S = 0 is the signature of the emergence of more complex response, i.e. with more than
one extremum, in the normal-to-anomalous transition. In the transition region, | S| attains its maximum value,
|S| = 1, when both extrema are of the same size and neither dominates. The sign of S € [—1, 1]isequal to that
of the earliest extremum, providing further information on the detailed structure of the response.

Figure 4 represents S as a function of the coefficients of restitution a, (3, by solving the system of
equations (1) and (2). Panels (A), (C), and (D) correspond to the HP, whereas panels (B) and (E) correspond to
the CP. We have highlighted in blue (red) regions with S < 0 (S > 0), whereas all points with ‘simple’ memory
behavior, i.e. S = 0, remain white. The complex regions are thin but still occupy noticeable sections of the
parameter space, especially taking into account that they fall into ranges of experimental values of c and 3
commonly present in a variety of materials [23]. In figure 4(A) (HP), we clearly observe two zones rich in
complex memory effects. In panel (C), the first complex zone is zoomed in. This region is attached to the smooth
limit, 3 ~ —1,and only displays S > 0 for high inelasticities, upto o = 1/ J2.In panel (D), the second
complex region is zoomed in. Within this region, which is close to the quasielastic limit o ~ 1, the system
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Figure 4. Kovacs complexity (S) phase diagrams. Density plot of S versus the a, 5 complete space parameter: (A) for the HP; (B) for
the CP. (C), (D) Insets of complex memory regions next to the smooth and the quasielastic limits, respectively, for the HP. (E) Inset of
the complex memory region next to the quasielastic limit for the CP. In the HP, as seen in panels (A) and (D), three different types of
transition exist: S < 0 (bluish, 3 < —0.65), S > 0 (reddish, 3 > —0.65), and the intermediate mechanism (S ~ 0) for § ~ —0.65,
as depicted below in figure 5(B). However, in the CP, see panels (B) and (E), onlya S > 0-type transition has been observed.

displaysboth § > 0and S < 0 behavior. In figure 4(B) (CP), only one complex Kovacs region next to the
quasielastic limit, inside which § > 0, has been identified. Panel (E) shows a close-up thereof.

Itis important to mention that we have found that all the details of the complex regions emerge in the
theoretical solution only when the cumulants are taken into account. This indicates that the temperatures T,and
T, do not explain in full detail by themselves the complexity of memory effects found in the rough granular gas.
Let us also point out that we have found for the HP a critical narrow region with a discontinuous transition from
S > 0to S < 0,whichissignaled in panel (D) in figure 4 and represented in time evolution curves in figure 5.

In this critical region, the system displays several different mechanisms for the transition from complex to
simple—only one extremum—behavior. The latter can be either the normal behavior of molecular systems
[1,9, 15] (also present in nonequilibrium systems) or the anomalous behavior exclusive of nonequilibrium
systems [17, 19]. This is appropriately tagged in panels (A) and (B) of figure 4, in which we have labeled the
corresponding normal and anomalous regions. In the narrow critical region, S discontinuously jumps from
(small) negative to positive values and three consecutive temperature extrema appear before stabilization in the
stationary value is attained. Otherwise, S has a well-defined sign and the transition from complex to simple is
continuous.

Figure 5 displays the evolution curves of the temperature for the three different Kovacs transitions that we
have found, in all cases depicted here for the HP: the S > 0 transition in panel (A), the S & 0 transition in panel
(B) (in its inset we show the three consecutive humps), and finally the S < 0 case in panel (C). All theoretical
curves are compared against the numerical solution of the kinetic equation, obtained by means of the direct
simulation Monte Carlo (DSMC) method (see appendix B). The agreement is in general excellent, which once
more shows the accuracy of our theoretical approach. Although the size of the humps in the transition regions
appear smaller than those in figure 2(A) with simple memory behavior, yet they are of the same order of
magnitude as those previously reported in the smooth granular gas [17].
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Figure 5. Mechanisms for the transition from normal to anomalous in the HP. There are three of these mechanisms, which are shown
here by DSMC simulations (symbols) and our theoretical approach (lines). Specifically, through (A) S > 0at3 = 0,(B) S~ 0
(actually a triple Kovacs hump transition mechanism; see inset, where the line joining the simulation points is a guide to the eye) at

[ = —0.65,and (C) S < 0at3 = —0.8.Inorder to assist in locating these transitions in the parameter plane (v, [3), their positions
have been annotated in figure 4(D).

4. Conclusions

Our work puts forward a general mechanism for the emergence of significantly large memory effects. Enormous
humps can be expected if the time evolution of the system under scrutiny is controlled by at least two
independent and comparable in magnitude physical variables (here the translational and rotational
temperatures) but with only one (here the total temperature) being relevant for the macroscopic or
hydrodynamic description. In addition, complex Kovacs response, with more than one extremum, can be
expected if the time evolution of the system depends on several additional relevant variables. Here, these
additional variables are the fourth-order cumulants, whose sometimes nonmonotonic relaxation [25] probably
enhances memory effect complexity.

So far, and despite the large number of previous works on analogous phenomena, only one extremum in the
Kovacs response has been reported. In thermal systems, in which the usual fluctuation-dissipation theorem
holds and the stationary (equilibrium) distribution has the canonical shape, this is consistent with linear
response results that predict normal behavior with only one maximum [16]. In athermal systems, the Kovacs
response also includes anomalous behavior, but once more only one extremum has been observed [17, 19].
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Therefore, an interesting prospect is elucidating whether or not the nonlinear theoretical framework developed
in [19] allows for complex response with more than one extremum.

Memory effects of the size and complexity we have observed here can potentially be present in other
athermal or molecular systems. Several variables of comparable magnitude must be coupled in their time
evolution in nonlinear form, even if only a subset thereof is relevant in the macroscopic description. This may be
relevant, for instance, in active matter systems, where nonlinear effects are important in general [19, 29]. We
think our results are also especially significant for future experimental work, since we expect these large memory
effects to be measurable in granular dynamics experiments; a thermally homogeneous system may be achieved
by means of homogeneous turbulent air fluidization [28].
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Appendix A. Theory

The stochastic force (F*™) has the form of a white noise: (E"*(¢)) = 0, (F'"(¢) F}”"(t') y =1 mzxé 06 (t — ),
where indexes i, j refer to particles, listhe 3 x 3 unit matrix, and Xé is the white noise intensity. In
homogeneous states, the Boltzmann—Fokker—Planck equation characterizing the evolution of a granular gas
submitted to the stochastic external force F¥" is written as [25]

2
[at - %vﬁ )f(v, w; 1) = J[v, wlf (D)]. (Aa.D

Above, f (v, w; t)isthe velocity distribution function (vand w being the translational and angular velocities,
respectively) and J [v, w| f]is the collision integral in the (inelastic) Boltzmann equation for rough spheres,
which accounts for the collision rules [25]

c-u=—-a0c-u, oxu=-00xu (A.2)
Here, the primes denote postcollisional values, & is the unit collision vector joining the centers of the two
colliding spheres (from the center of particle 1 to the center of particle2) and u = v; — v, — %& X (W) + ws)
is the relative velocity of the spheres at their contact point. The coefficient of normal restitution « takes values
between 0 (completely inelastic collision) and 1 (completely elastic collision), while the coefficient of tangential
restitution 3 takes values between —1 (completely smooth collision, unchanged angular velocities) and 1
(completely rough collision) [24].

Given any one-particle function A (v, w), its average is defined as (A (t)) = n~! f dv f dw AV, w)f (v, w; t),
where the number density is givenby n = f dv f dw f (v, w; t). The basic physical properties are the translational
(T), rotational (T}), and total (T) granular temperatures, i.e.

", T I T .+ T, _ 1+ 6

T , A3
3 3 2 "2 &.3)

where I'is the moment of inertia. We have introduced the temperature ratio § = T, /T;, which is relevant for the
analysis that follows and whose steady-state value is independent of the driving amplitude Xé- The evolution
equations for T}, T, and T are

T —mxy=—&T, 0T =—ET, (A.4)

2
mxo

o,T — = —(T. (A.5)
The equations for T,and T, have been obtained by multiplying both sides of equation (A.1) by the translational
and rotational kinetic energies, respectively, and integrating over all particle velocity values. The parameters &,
and &, are

m
3nT;

& =— fdvfdw vJlv, w|fl, (A.6)
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§=—— dvfdw wY v, wlfl, (A.7)

3nT,
respectively. In general, neither £, nor £, does have a definite sign, whereas the cooling rate,

ET+ET _&+60

C="7 116

(A.8)

is always positive because energy is dissipated in collisions.
To proceed further, it is convenient to go to dimensionless variables. Time is measured in a scale 7,

r= % f YA, v = dno?JTT 0 Jm, (A.9)
0

which is roughly the accumulated number of collisions per particle, because 1/(t) is the collision frequency.
Dimensionless velocities are introduced as

v w
=Y _ wn=-——2 (A.10)
N2T(t) /m V2T () /1
areduced velocity distribution function as
3/2
o(c, w; T) = l[w] f v, w;t), (A.11)
n ml
and the dimensionless collision kernel as
2[4 T.() T?
le, wlo ()] = [ *)(q Ttv, wlf 1. (A.12)
nv(t) ml

In dimensionless variables, the evolution equations for the temperatures can be written as equations (1) and
(2)in the main text. Therein, there appear the reduced collisional moments p,, = #(2%) and p1, = ug);, where

,ugq)(T) = —fdc fdw cPwi(c - wy Jlc, wlp(7)]. (A.13)

Note that, aside from the nondimensionalizing factors, the production rates £, and £, are basically identical to j1,9
and f49,, respectively. These are functionals of the whole distribution function and thus the evolution equations
for the temperatures are not closed.

In order to close the dynamical equations, a formally exact expansion in orthogonal polynomials can be
performed [25]. For isotropic states, we can expand the velocity distribution around the Maxwellian

bp (e, w) = T3¢ w?

o(c, w; T) = ¢, (c, W)Z Z Z a](,'f)(T)\Dgi)(c, w), (A.14)
j=0 k=0 ¢=0

where \Ilg-"p)(c w) are certain products of Laguerre and Legendre polynomials. By normalization,

al) =1, aY = afY = 0, and the lowest nontrivial coefficients are those associated with moments of degree
four, namely

4 4
) _ 4 ) _ 4
a5 = c 1, ay = w 1, A.15
20 15< ) 02 15< ) ( )

4 8 1
0) _ 2,2 1) _ 2 2,2
ay, = cw?) — 1, agy = C-W)) — —(cw , A.16
11 5 ( ) 0 = 73 [<( %) 3 { >] ( )
which we call the fourth-order cumulants henceforth.

A.1. Maxwellian approximation

The simplest description is obtained by substituting the Maxwellian velocity distribution into the collision
integrals (A.13). Equivalently, one may consider that all the nontrivial cumulant vanish in this approach, which
yields

oy =1—ar+ ST s —ea+ o, (A17)
: 1+ r)?
1+
Hopm = —?1( n K)ﬁz) R+r1'A-0-6010+ P (A.18)

where k = 41 /mo? is the dimensionless moment of inertia. Insertion of equation (A.17) into the evolution
equations (1) and (2) in the main text gives rise to the Maxwellian approximation.
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A.2. First Sonine approximation
A more elaborate approximation can be done by incorporating the lowest order cumulants, which we defined in
equations (A.15) and (A.16), as the first corrections to the Maxwellian.

A closed set of six coupled differential equations can be obtained for 8(7), ¥(7), asg(7), asy (1), a{(7), and
a{¥ (7). To do so, explicit—yet not exact—expressions for the collision integrals u;’; with p + g + 2r = 2and
4 are derived in terms of 6 and those lowest order cumulants. These rather involved expressions can be found in
the Supplemental Material of [25], and are thus omitted here. The resulting set of six differential equations can
be numerically solved with appropriate initial conditions for each physical situation, as discussed in the main
text. In this way, we obtain the time evolution of the temperatures in the so-called first Sonine approximation, to
which we refer throughout this work.

Appendix B. Computer simulations

We use in this work data sets obtained from computer simulations from two independent and different
methods: direct simulation Monte Carlo (DSMC) method, which obtains an exact numerical solution of the
relevant kinetic equation (in our case equation (A.1)) and molecular dynamics (MD) simulation, which solves
particles trajectories. A detailed description of the DSMC method may be found elsewhere [30]. In our DSMC
simulations, and in order to reduce statistical noise in the temperature time evolution curves, we have used an
average of 100 statistical replicas of a system with 2 x 10° particles. In the MD case, we have simulated 1000
inelastic hard spheres at a density no® = 0.01 and averaged over 500 trajectories.
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