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Abstract. We build upon the work developed in [4] in which we pre-
sented a method to “locally repair” the cubical complex Q(I) associated
to a 3D binary image I, to obtain a “well-composed” polyhedral complex
P (I), homotopy equivalent to Q(I). There, we developed a new codifica-
tion system for P (I), called ExtendedCubeMap (ECM) representation,
that encodes: (1) the (geometric) information of the cells of P (I) (i.e.,
which cells are presented and where), under the form of a 3D grayscale
image gP ; (2) the boundary face relations between the cells of P (I),
under the form of a set BP of structuring elements.

In this paper, we simplify ECM representations, proving that geomet-
ric and topological information of cells can be encoded using just a 3D
binary image, without the need of using colors or sets of structuring
elements. We also outline a possible application in which well-composed
polyhedral complexes can be useful.

Keywords: 3D binary image · Well-composedness · 3D cubical com-
plex · 3D polyhedral complex

1 Introduction

Consider Z
3 as the set of points with integer coordinates. in 3D space R

3. A
3D binary digital image is a set I = (Z3, 26, 6, B) (or I = (Z3, B), for short),
where B ⊂ Z

3 is the foreground, Bc = Z
3\B the background, and (26, 6) is

the adjacency relation for the foreground and background, respectively. A 3D
binary image I is well-composed [9] if the boundary surface of its continuous
analog is a 2D manifold. 3D well-composed images enjoy important topologi-
cal and geometrical properties in such a way that several algorithms used in
computer vision, computer graphics and image processing are simpler. Unfortu-
nately natural and synthetic images are not a priori well-composed. There are
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several “repairing” methods for turning them into well-composed images (see,
for example, [8,10,12,13]).

In [11], the authors extended the notion of “digital well-composedness” to
nD sets. In [1], they proved that the digital well-composedness implies the equiv-
alence of connectivities of the level set components in nD. They proposed and
proved a self-dual discrete (non-local) interpolation method, based on a sub-
part of a quasi-linear algorithm that computes the morphological tree of shapes,
whose result is always a digitally well-composed function. Besides, it is proven
in [2] that the only local self-dual well-composed interpolation of a 2D image is
obtained by the median operator.

In this paper, we first recall, in Sect. 2, a method to “locally repair” the
cubical complex Q(I) associated to a 3D binary image I, obtaining a “well-
composed” polyhedral complex P (I), homotopy equivalent to Q(I), encoded
using an ExtendedCubeMap (ECM) representation. A possible application of
ECM representations is also sketched. In Sect. 3, we prove that the coordinates
of the points in an ECM representation that encode the cells of Q(I) contain all
the information of the cells. This result is extended to P (I) in Sect. 4. Therefore
there is no need of using colors or sets of structuring elements to encode P (I).
The paper ends up with a section of conclusions and future work.

2 ECM Representations

The notion of well-composedness is extended in [4,14] to 3D complete polyhedral
complexes K embedded in R

3. This way, K is well-composed if the boundary
surface of K is a 2D manifold.

In [4], we presented a method to “locally repair” the 3D complete cubical
complex Q(I) (embedded in R

3) associated to a voxel-based representation of a
given image I, to obtain a well-composed polyhedral complex P (I) homotopy
equivalent to Q(I). Our main motivation was that of (co)homology computa-
tions on the cell complex representing a 3D binary image I [3,6]. We could take
advantage of a well-composed-like representation since such computations could
be performed only on the boundary surface of P (I). A new codification system
called ExtendedCubeMap (ECM) representation, for P (I) were also developed
in [4], encoding: (1) the (geometric) information of the cells of P (I), under the
form of a 3D grayscale image gP ; and (2) the boundary face relations between
the cells of P (I), under the form of a set BP of structuring elements that can
be stored as indexes in a look-up table. A naive demo implemented in Matlab
for computing ECM representations can be downloaded in [5].

In this paper, we improve such codification system, showing that the geomet-
ric and topological information of the cells of P (I) can be encoded using just
a 3D binary image J = (Z3, B). Geometric information of each cell σ can be
obtained by examining the coordinates of the point p in B that encodes σ (no
color is needed). Faces of such cell σ can be computed by examining the points
in a neighborhood of p in B (no look-up table is needed). As far as we know,
this is the first time that a family of polyhedral complexes more general than
cubical ones are stored using binary images.



2.1 Towards Applications: 3D Printing

3D CAD modeling and recent 3D printing deal mainly with 3D meshes. Typically,
the physical objects are modeled in standard STL format where the objects
are discretized as finite meshes (encoded as a 3D polyhedral complexes). The
interplay between abstract representations and the physical objects natural raise
a question about the meshes that can be practically constructed (i.e. printed).
Possible obstacles are complexes which boundary surfaces are not combinatorial
manifolds. Example of such a configuration are two cubes touching in a vertex
or in an edge. Tools that detect, and fix such configurations are a first step
towards an automatic tool to check if an abstract representation is realizable as
a physical object and/or to change it so that the physical object is more robust
(taking into account that non-manifold parts will break immediately).

Although most of the meshes for 3D printing are simplicial, others are cubi-
cal1. This way, a “manifoldization technique” could be as follows: (1) Start with
any cubical mesh (i.e., cubical complex) modeling a physical object. (2) Make a
“manifold version” of it by computing a well-composed polyhedral complex P (I)
homotopy equivalent to Q(I), to obtain a more robust version of the physical
object. (3) Encode P (I) in a valid format for the 3D printing. The codification
of P (I) in a 3D binary format presented in this paper, could help in this last
step.

3 3D Cubical Complexes

3D digital images are usually represented by unit closed cubes in R
3 with square

faces parallel to the coordinate planes, centered at points in Z
3 (also called

voxels). In this paper, voxels are rescaled with factor 4, so we consider
size−4 cubes centered at points 4Z3.

A set of voxels together with all their faces (cells) constitute a combinatorial
structure called cubical complex, denoted by Q. The 0−faces of a given voxel
c are its 8 corners (vertices), its 1−faces are its 12 edges, its 2−faces are its 6
square faces and, finally, its 3−face is the voxel itself.

Let Q be a cubical complex composed by a set of voxels (size−4 cubes)
together with all their faces. Let J = (Z3, B) be a 3D binary image. We say that
J encodes Q if: (1) For any σ in Q, rσ (the barycenter of σ) is in B. And (2), for
any p ∈ B, p is the barycenter of a cell σ in Q. Then, a point p ∈ 2Z3 encodes:

– A vertex iff p ∈ E0 = {(4i + 2, 4j + 2, 4k + 2)}i,j,k∈Z.
– An edge iff p ∈ E1 = {(4i + 2, 4j + 2, 4k), (4i, 4j + 2, 4k + 2), (4i + 2, 4j, 4k +

2)}i,j,k∈Z.
– A square face iff p ∈ E2 = {(4i+2, 4j, 4k),(4i, 4j+2, 4k), (4i, 4j, 4k+2)}i,j,k∈Z.
– A voxel iff p ∈ E3 = 4Z3.

1 http://www.shapeways.com/blog/archives/17972-shapeways-launches-svx-voxel-
file-format-for-3d-printing.html.

http://www.shapeways.com/blog/archives/17972-shapeways-launches-svx-voxel-file-format-for-3d-printing.html
http://www.shapeways.com/blog/archives/17972-shapeways-launches-svx-voxel-file-format-for-3d-printing.html


Fig. 1. (a) A voxel c. (b) Set of points encoding c. Color illustrates the type of coor-
dinate of the point, which provides the dimension of the encoded cell: blue for 0−cells
(i.e. points in E0), red for 1−cells (i.e. points in E1), green for 2−cells (i.e. points in E2)
and black for 3−cells (i.e. points in E3) (Color figure online).

Now, given a point p ∈ B encoding a cell σ ∈ Q, our aim is to find the
points in B encoding the faces of σ. First, recall that: N �

6 = {(±�, 0, 0), (0,±�, 0),
(0, 0,±�)}; N �

12 = {(0,±�,±�), (±�, 0,±�), (±�,±�, 0)}; N �
8 = {(±�,±�,±�)};

and for any N ⊆ R
3 and p ∈ R

3, N(p) denotes the set {p + q, q ∈ N}.

Proposition 1. Let σ be an �−cell of Q encoded by p = rσ. Then, the set of
k−faces of σ, for 0 ≤ k < �, is: (1) N2

6 (p) ∩ Ek if k = � − 1; (2) N2
12(p) ∩ Ek if

k = � − 2; (3) N2
8 (p) ∩ Ek if k = � − 3.

Proof. Let � = 2. First, p = rσ ∈ E2 so, assume that rσ = (4i + 2, 4j, 4k) for
some i, j, k ∈ Z

3. Then, the barycenters of the 1−faces of σ are {(4i + 2, 4j ±
2, 4k), (4i + 2, 4j, 4k ± 2)}. Second, N2

6 (p) = {(4i, 4j, 4k), (4i + 4, 4j, 4k), (4i +
2, 4j ±2, 4k), (4i+2, 4j, 4k ±2)}. Finally, N2

6 (p)∩E1 = {(4i+2, 4j ±2, 4k), (4i+
2, 4j, 4k ± 2)}. The other cases can be proven in a similar way. ��
See Fig. 1 in which a voxel c (on the right) is encoded by a set of points (on the
left). Colors are used to distinguish dimension of cells encoded but, it follows
from Proposition 1 that J can be stored as a binary image.

Remark 1. From now on, a cell in a 3D cubical complex (later, in the 3D poly-
hedral complex) will be sometimes identified with the point in Z

3 encoding such
cell.

4 Encoding Specific Polyhedral Complexes
Using Binary Images

A 3D polyhedral complex K [7] is a combinatorial structure by which a space
is decomposed into vertices (0−cells), edges (1−cells), polygons (2−cells) and
polyhedra (3−cells) that are glued together by their boundaries (faces) such
that the non-empty intersection of any two cells of K is also a cell of K. An
�−cell σ ∈ K is a face of an �′−cell σ′ ∈ K if σ lies in the boundary of σ′ and
� ≤ �′. A cell μ is maximal if it is not a face of any other cell σ ∈ K. A 3D
polyhedral complex is complete if all its maximal cells have dimension 3. It is
well-composed if its boundary surface is a 2D manifold. In [4] we developed a
procedure to get as output a 3D complete well-composed polyhedral complex
that is homotopy equivalent to the standard cubical complex representing an



input 3D binary image. This type of 3D polyhedral complex will be called well-
composed polyhedral complex over a picture and denoted by P . Besides, we say
that a 3D binary image J = (B,Z3) encodes P if B is the union of all the points
encoding the polyhedra of P (together with all their faces). In this section,
we show how to compute J and prove that J contains all the geometric and
topological information of P .

We recall below the set S of 27 types of polyhedra used in [4] to construct P .
For v, w ∈ E0, the edge with endpoints v and w (denoted by e(v, w)) is a size−4
edge. The size−2 cube centered at v with faces parallel to the coordinate planes
is denoted by c(v) being s(v) a square face of c(v). Finally, k(v, w) will denote
the pyramid with apex w and base the square face s(v) whose barycenter lies on
e(v, w). Finally, t(v, w) denotes a triangle face of k(v, w).

Definition 1. The set S consists of:

(a) The voxel c centered at a point in 4Z3. See Fig. 1a.
(b) The size−2 cube c(v) centered at a point v ∈ 2Z3. See Table 1b.1
(c) The pyramid k(v, w), where v, w ∈ E0. See Table 1c.1
(d) The polyhedra {p�(v, v1, v2, v3)}�=1,2,3,4, where v, v1, v2, v3 ∈ E0 are distinct

points forming a size−4 square s, being v adjacent to v1 and v2:
• p1(v, v1, v2, v3) is determined by the the edges e(v1, v3), e(v2, v3), and the

triangles t(v, v1), t(v, v2), whose barycenters lie inside s. See Table 1d.1
• p2(v, v1, v2, v3) is determined by the edge e(v2, v3), the triangles t(v, v2),

t(v1, v3), and the square face s(v+v1
2 ), whose barycenters lie inside the

square s. See Table 1e.1
• p3(v, v1, v2, v3) is determined by the four triangles t(v, v1), t(v, v2), t(v3,

v1) and t(v3, v2) whose barycenters lie inside s. See Table 1f.1
• p4(v, v1, v2, v3) is determined by the square faces s(v+v1

2 ), s(v1+v3
2 ),

and the triangles t(v, v2), t(v2, v3), whose barycenters lie inside s. See
Table 1g.1

(e) The 22 hexahedra {h�(v1, . . . v8)}�=1,...,22, where {v1, . . . , v8} ⊂ E0 are the
vertices of a voxel c, are determined by a set of vertices {x1, . . . x8}. Each
vertex xi is either vi or the vertex wi of c(vi), that lies inside c. Observe that
h1(v1, . . . v8) (when x� = v� for � = 1, . . . , 8) is the voxel c itself. Similarly,
h22(v1, . . . v8) (when x� = w� for � = 1, . . . , 8) is the size−2 cube c(v1+···+v8

8 )
being v1+···+v8

8 ∈ 4Z3. All the other possible vertex combinations lead to the
20 hexahedra showed in Fig. 2

Although some of the 2−faces of the polyhedra {p�(v, v1, v2, v3)}�=1,2,3,4, are
not planar (hence they are not polygons), P is always a CW-complex.

Notice that all the coordinates used in the representation of a cubical complex
were even coordinates. Now, odd coordinates will also be needed. We denote:

– O0 = {(2i + 1, 2j + 1, 2k + 1)}i,j,k∈Z

– O1 = {(2i, 2j + 1, 2k + 1), (2i + 1, 2j, 2k + 1), (2i + 1, 2j + 1, 2k)}i,j,k∈Z

– O2 = {(2i, 2j, 2k + 1), (2i, 2j + 1, 2k), (2i + 1, 2j, 2k)}i,j,k∈Z.



Fig. 2. List of 20 out of 22 types of hexahedra described in Definition 1e.

Now, from the ECM representation, (in fact, from the image gP ), we induce
the coordinates of the points that codify the dimension, position and type of cell
of any of the 27 different types of polyhedra in S and all their faces.

Proposition 2. Given a 3D binary image J = (B,Z3) encoding a well-
composed polyhedral complex over a picture P , for a point p ∈ B we have that:

– If p ∈ E0 then p is a vertex if N1
6 (p)∩B = ∅; otherwise, it is the cube described

in Definition 1b.
– If p ∈ E1 then p is an edge if N1

6 (p)∩B = ∅; otherwise, it is either the pyramid
described in Definition 1c or the cube described in Definition 1b.

– If p ∈ E2 then p is a square face if N1
6 (p) ∩ B = ∅; otherwise, it is one of the

polyhedra described in Definition 1d.



– If p ∈ E3 then p is one of the 22 hexahedra listed in Definition 1e.
– If p ∈ O�, � = 0, 1, 2 then p is an �−cell.

Proof. Any vertex v ∈ P (i.e., v ∈ B) satisfies that either v ∈ E0 or v ∈ O0. See
the blue voxels in Fig. 1, second column of Table 1 and Fig. 3.

(a) A voxel c and its faces are encoded by their baricenters. This way, c ∈ E3 has
square faces in E2, edges in E1 and vertices in E0. See Fig. 1b and Table 1a.1.

(b) A size−2 cube c(v) centered at a point v ∈ E0 and its faces are encoded by
their baricenters. This way, c(v) ∈ E0 has square faces in O1, edges in O1

and vertices in O0. See Table 1b.2.
(c) The 3−cell k(v, w) is encoded by p = r(e(v,w)) ∈ E1. Without loss of general-

ity, suppose that p = (4i, 4j + 2, 4k + 2) for some i, j, k ∈ Z. Then, the four
triangle faces of k(v, w) are {(4i, 4j+2±1, 4k+2), (4i, 4j+2, 4k+2±1)} ⊂ O2

(see green voxels in Table 1c.2). The four edges of k(v, w) incident to w are
{(4i, 4j + 2 ± 1, 4k + 2 ± 1)} ⊂ O1.

(d) The 3−cell p�(v, v1, v2, v3), � = 1, 2, 3, 4, where v, v1, v2, v3 ∈ E0, form a
size−4 square face s, being v adjacent to v1, v2. Without loss of generality,
suppose that v = (i − 2, j − 2, k + 2), v1 = (i + 2, j − 2, k + 2), v2 =
(i − 2, j + 2, k + 2), and v3 = (i + 2, j + 2, k + 2). This way, p�(v, v1, v2, v3) is
encoded by rs = (4i, 4j, 4k +2) ∈ E2. the two quadrangles of p�(v, v1, v2, v3),
� = 1, 2, 3, 4, are {(4i, 4j, 4k + 2 ± 1)} ⊂ O2;
• The two triangle faces of p1(v, v1, v2, v3) are {(4i − 1, 4j, 4k + 2), (4i, 4j −

1, 4k+2)} ⊂ O2; the non-(size-4) edges incident to v2 are {(4i−1, 4j, 4k+
2 ± 1)} and the ones incident to v3 are {(4i, 4j − 1, 4k + 2 ± 1)} ⊂ O1.
See Table 1d.2.

• The two triangle faces of p2(v, v1, v2, v3) are {(4i±1, 4j, 4k+2)} ⊂ O2; the
non-(size-4) edges incident to v2 or v3 are {(4i ± 1, 4j, 4k + 2 ± 1)} ⊂ O1.
See Table 1e.2.

• The four triangles of p3(v, v1, v2, v3) are {(4i±1, 4j, 4k+2), (4i, 4j±1, 4k+
2)} ⊂ O2; the eight edges incident to v1 or v2 are {(4i ± 1, 4j, 4k + 2 ±
1), (4i, 4j ± 1, 4k + 2 ± 1)} ⊂ O1. See Table 1f.2.

• The two triangles of p4(v, v1, v2, v3) are {(4i−1, 4j, 4k+2), (4i, 4j+1, 4k+
2)} ⊂ O2; the four edges incident to v2 are {(4i−1, 4j, 4k+2±1), (4i, 4j+
1, 4k + 2 ± 1)} ⊂ O1. See Table 1g.2.

(e) The 3−cell h�(v1, . . . v8), � = 1, . . . , 22, where vertices v1, . . . v8 ∈ E0 form a
voxel c, is encoded by p = v1+···+v8

2 ∈ E3, (i.e., the barycenter of c). Let p =
(4i, 4j, 4k) for some i, j, k ∈ Z

3. Then, the vertices v�, � = 1, . . . , 8, are {(4i±
2, 4j±2, 4k±2)}; and the vertices w�, � = 1, . . . , 8, are {(4i±1, 4j±1, 4k±1)},
such that, for example, if v� = (4i+2, 4j − 2, 4k +2) then w� = (4i+1, 4j −
1, 4k + 1). The non-square quadrangle {x�1 , x�2 , x�3 , x�4} of h�(v1, . . . v8), is
encoded by the barycenter of the square face {w�1 , w�2 , w�3 , w�4}, which is
in O2. Finally, a triangle t(v�i

, v�j
) is encoded by re(w�i

,w�j
) ∈ O1. ��

Now, given a cell b ∈ B, our aim is to directly compute the boundary faces of b
without making use of any of the structuring elements listed in [4]. In that paper,
boundary relations were obtained by running over a fixed set of 121 structuring
elements (see Fig. 4) and looking for the ones that fitted around the point.



Table 1. First column: 7 out of 27 polyhedra used in the paper. Second column: their
ECM representation. Third column: the proposed codification, where J is the 3D binary
image encoding a polyhedral complex P .

Polyhedron ECM rep. Codification proposed in the paper

a.1) Voxel c a.2) a.3) 1 is at position (i, j, k) ∈ 4 3 in J

⎛
⎜⎜⎜⎜⎝

10101
00000
10101
00000
10101

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

00000
00000
00000
00000
00000

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

10101
00000
10101
00000
10101

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

00000
00000
00000
00000
00000

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

10101
00000
10101
00000
10101

⎞
⎟⎟⎟⎟⎠

b.1) c(v) b.2) b.3) 1 is at position (i, j, k) ∈ 2 3 in J

⎛
⎝

111
111
111

⎞
⎠

⎛
⎝

111
111
111

⎞
⎠

⎛
⎝

111
111
111

⎞
⎠

c.1) k(v, w) c.2) c.3) 1 is at position (i, j, k) ∈ E1 in J

⎛
⎝

1100
1100
1100

⎞
⎠

⎛
⎝

1100
1101
1100

⎞
⎠

⎛
⎝

1100
1100
1100

⎞
⎠

d.1) p1(· · ·) d.2) d.3) 1 is at position (x, y, z) ∈ E2 in J

⎛
⎜⎜⎜⎜⎝

0 0
1 1 0 0
1 1 0 0

0 0 0 0 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

0 1
1 1 0 0
1 1 0 1

0 0 0 0 0
1 0 1 0 1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

0 0
1 1 0 0
1 1 0 0

0 0 0 0 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎠

e.1) p2(· · ·) e.2) e.3) 1 is at position (x, y, z) ∈ E2 in J

⎛
⎜⎜⎝

1 1 1
1 1 1

0 0 0 0 0
0 0 0 0 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

1 1 1
1 1 1

0 0 0 0 0
1 0 1 0 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

1 1 1
1 1 1

0 0 0 0 0
0 0 0 0 0

⎞
⎟⎟⎠

f.1) p3(· · ·) f.2) f.3) 1 is at position (x, y, z) ∈ E2 in J

⎛
⎜⎜⎜⎜⎝

0 0
1 1 0 0
1 1 1

0 0 1 1
0 0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

0 1
1 1 0 0
1 1 1

0 0 1 1
1 0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

0 0
1 1 0 0
1 1 1

0 0 1 1
0 0

⎞
⎟⎟⎟⎟⎠

g.1) p4(· · ·) g.2) g.3) 1 is at position (x, y, z) ∈ E2 in J

⎛
⎜⎜⎝

1 1 1
1 1 1

0 0 1 1
0 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

1 1 1
1 1 1

0 0 1 1
1 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

1 1 1
1 1 1

0 0 1 1
0 0

⎞
⎟⎟⎠



Fig. 3. Digital images encoding the 20 hexahedra showed in Fig. 2.

Proposition 3. Let p ∈ B be an �−cell of P , � = 1, . . . , 3. Then the (� −
1)−faces of p can be obtained by the following process. For each q ∈ N1

6 (p):

(1) if q ∈ B ∩ O�−1, then q is an (� − 1)−face of p.
(2) if q /∈ B, then
(2.1) if q′ = p + 2(q − p) ∈ B ∩ E�−1, then q′ is an (� − 1)−face of p;
(2.2) else, if there exists q′′ ∈ B ∩N1

8 (q)∩E�−1 or q′′ ∈ B ∩N1
12(q)∩E�−1, then

q′′ is an (� − 1)−face of p.

Proof. The cell p ∈ B corresponds to a specific polyhedron or face of a polyhe-
dron described in Definition 1, depending on the type of coordinates of p and
on whether or not there are points of B around p (Proposition 2). For each of
them, one of the structuring elements of Fig. 4 (modulo reflection and 90 degree
rotation) provides its boundary faces. Hence, the proof consists in a case veri-
fication to set the equivalence between the known structuring element and the
points satisfying either (1) and/or (2.1) and/or (2.2).



Fig. 4. Set of structuring elements (modulo reflections and 90 degree rotations) for
computing boundary face relations used in [4]: 3 structuring elements for the boundary
of a 1−cell (first row); 5 structuring elements for the boundary of a 2−cell (second
row); 8 structuring elements for the boundary of a 3−cell (third and fourth rows).

– For p ∈ E�.
• If N1

6 (p)∩B = ∅, then one of the structuring elements in Fig. 4(a,d,i) fits
around p [4] and the points in N2

6 (p) ∩ E�−1 are the (� − 1)−faces of p.
These points are obtained by applying (2.1).

• Else,
∗ If p ∈ E0, p is a size−2 cube, and hence, structuring element in Fig. 4j

fits around p, whose points are obtained by step (1).
∗ If p ∈ E1, then p is either a size−2 cube or a pyramid k(v, w), so one

of the structuring elements in Fig. 4(j,n) fits around p, whose points
are obtained by applying (1).

∗ If p ∈ E2, then p = p�(v, v1, v2, v3), � = 1, 2, 3, 4, or p is a size-2 cube,
so one of the structuring elements in Fig. 4(j,o,p) fits around p, whose
points are obtained by applying (1).

∗ If p ∈ E3, then p is one of {h�(v1, . . . v8)}�=2,...,22 and hence, one of
the structuring elements in Fig. 4(j,k,l,m) fits around p, whose points
are obtained by applying (1) and (2.1).

– For p ∈ O�:
• If p ∈ O0, then p is a vertex of P and the proposition does not apply.
• If p ∈ O1, then p is an edge of either a cube c(v) or a pyramid k(v, w). In

the first case, the structuring element in Fig. 4b applies, that is obtained
by (1). In the second case, the structuring element in Fig. 4c fits around
p. Then, step (1) in the proposition provides one of the 1−faces and step
(2.2) provides (unambiguously) the other one.
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Fig. 5. On top, a naive example of a 3D polyhedral complex Pex over a picture (where
vertex v0 has coordinates (2, 2, 2)) and its codification J (proposed in this paper) on
the right. Color illustrates the dimension of the cell. Matrices on bottom: the binary
image J seen as a set of binary matrices.

• If p ∈ O2, then p is one of the 2−cells on the boundary of the polyhedra
in Definition 1(b,c,d):

∗ If p ∈ {(2i+1, 4j+2, 4k+2), (4i+2, 2j+1, 4k+2), (4i+2, 4j+2, 2k+
1)}, then p is a square face of a size−2 cube and, structuring element
in Fig. 4e fits around p, whose points are obtained by applying (1).

∗ If p ∈ {(4i + 2, 4j, 2k + 1), (4i, 4j + 2, 2k + 1), (2i + 1, 4j + 2, 4k), (2i +
1, 4j, 4k + 2), (4i + 2, 2j + 1, 4k), (4i, 2j + 1, 4k + 2)}i,j,k∈Z, then p
is either a triangular face of a pyramid k(v, w) or a square face of a
size−2 cube. In the first case, structuring element in Fig. 4f fits around
p and in the second case, the one in Fig. 4e. Both cases are obtained
by applying (1).

∗ If p ∈ {(4i, 4j, 2k + 1), (2i + 1, 4j, 4k), (4i, 2j + 1, 4k)}i,j,k∈Z, then p
is a quadrangular face of some polyhedron from Definition 1d. The



Table 2. Boundary-face representation of Pex (see Fig. 5): E can be seen as a binary
22 × 54 matrix, F as a binary 54 × 48 matrix and C as a binary 48 × 15 matrix.

List V = {v } of vertices, where v = (i, j, k) represents
a vertex in Pex.
{(2, 2, 2), (6, 2, 2), (2, 6, 2), (6, 6, 2), (5, 5, 5),
(7, 5, 5), (5, 7, 5), (7, 7, 5), (2, 2, 6), (6, 2, 6),
(2, 6, 6), (10, 6, 6), (6, 10, 6), (10, 10, 6), (5, 5, 7),
(7, 5, 7), (5, 7, 7), (7, 7, 7), (6, 6, 10), (10, 6, 10),
(6, 10, 10), (10, 10, 10)}

List E = {e } of edges, where e = (i, j) represents
an edge in Pex with endpoints vi, vj ∈ V .
{(1, 2), (1, 3), (1, 9), (2, 4), (2, 10),
(3, 4), (3, 11), (4, 5), (4, 6), (4, 7),
(4, 8), (5, 6), (5, 7), (5, 10), (5, 11),
(5, 15), (6, 8), (6, 10), (6, 12), (6, 16),
(7, 8), (7, 11), (7, 13), (7, 17), (8, 12),
(8, 13), (8, 18), (9, 10), (9, 11), (10, 15)
(10, 16), (11, 15), (11, 17), (12, 14), (12, 16),
(12, 18), (12, 20), (13, 14), (13, 17), (13, 18),
(13, 21), (14, 22), (15, 16), (15, 17), (15, 19),
(16, 18), (16, 19), (17, 18), (17, 19), (18, 19),
(19, 20), (19, 21), (20, 22), (21, 22)}

List F = {f } of faces, where f = (i1, . . . , in) represents
a 2-cell in Pex bounded by edges ei1 , . . . , ein ∈ E.
{(1, 2, 4, 6), (1, 3, 5, 28), (2, 3, 7, 29), (4, 5, 8, 14), (4, 5, 9, 18),
(6, 7, 8, 15), (6, 7, 10, 22), (14, 15, 28, 29), (28, 29, 30, 32), (8, 10, 13),
(10, 11, 21), (8, 9, 12), (9, 11, 17), (12, 14, 18), (14, 16, 30),
(18, 20, 31), (30, 31, 43), (15, 16, 32), (13, 15, 22), (22, 24, 33),
(32, 33, 44), (17, 19, 25), (19, 20, 35), (25, 27, 36), (35, 36, 46),
(21, 23, 26), (23, 24, 39), (26, 27, 40), (39, 40, 48), (46, 47, 50),
(48, 49, 50), (43, 45, 47), (44, 45, 49), (34, 37, 42, 53), (38, 41, 42, 54),
(51, 52, 53, 54), (25, 26, 34, 38), (34, 36, 38, 40), (35, 37, 47, 51), (36, 37, 50, 51),
(39, 41, 49, 52), (40, 41, 50, 52), (12, 13, 17, 21), (12, 16, 20, 43), (21, 24, 27, 48),
(43, 44, 46, 48), (17, 20, 27, 46), (13, 16, 24, 44)}

List G = {g } of polyhedra, where g = (i1, . . . , in) ∈ G represents
a polyhedron in Pex bounded by faces fi1 , . . . , fin ∈ F .
{(1, 2, 3, 4, 6, 8), (34, 35, 36, 38, 40, 42), (43, 44, 45, 46, 47, 48),
(4, 5, 12, 14), (6, 7, 10, 19), (8, 9, 15, 18), (24, 28, 37, 38),
(25, 30, 39, 40), (29, 31, 41, 42), (10, 11, 12, 13, 43)
(14, 15, 16, 17, 44), (18, 19, 20, 21, 48), (22, 23, 24, 25, 47),
(26, 27, 28, 29, 45), (30, 31, 32, 33, 46)}



structuring elements that provide the faces in the different cases are
those in Fig. 4(e,g,h). For the one in Fig. 4e, step (1) applies; in the
other two cases, step (1) and (2.2) apply.

For each case, there are no other points q ∈ O�−1 or q′, q′′ ∈ E�−1 that could be
returned by the proposed steps. This can be deduced from the type of coordinates
of p and its neighbors. ��

In Fig. 5, a small example of a well-composed polyhedral complex over a
picture is shown together with its codification under the form of a 3D binary
digital image J . In fact, J can be given as a 3D binary matrix of size 9 × 9 × 9,
which are the nine 2D binary matrices shown on the bottom of Fig. 5. To give
a naive comparison with our codification, we show in Table 2 the boundary-face
representation of P . We can see that in our codification we just need to store a
9 × 9 × 9 binary matrix plus the coordinates of vertex v0. On the other hand,
to store the boundary-face representation of P , we need to store the coordinates
of all the vertices of P (list V ) plus the three incidence matrices E, F and G of
size 22 × 54, 54 × 48, 48 × 15, respectively.

5 Conclusions

Given a well-composed polyhedral complex P over a picture (see Sect. 4), we
have proved that geometric and topological information of the cells of P can be
encoded by just using a 3D binary image. This way, the type of 3D coordinates
codifying each cell, together with the information encoded at some neighbor
points provide both the geometry and the boundary faces of each cell without
the need of using a set of structuring elements. More specifically, this means a
more efficient treatment of the ECM representation developed in [4] to codify
well-composed polyhedral complexes that are homotopy equivalent to the stan-
dard cubical complex representing a (non-necessarily well-composed) 3D binary
image.

Acknowledgments. We would like to thank Pawel Dlotko for fruitful discussions
about possible applications of ECM representations and to the reviewers for their
valuable suggestions.
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