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Via Don Carlo Gnocchi, 3 00166, Roma, Italy

Luca Guerrini

Department of Management, Polytechnic University of Marche
Piazza Martelli 8

60121, Ancona (AN), Italy

(Communicated by Xiaoying Han)

Abstract. In this article we consider a model introduced by Ucar in order

to simply describe chaotic behaviour with a one dimensional ODE containing

a constant delay. We study the bifurcation problem of the equilibria and we
obtain an approximation of the periodic orbits generated by the Hopf bifur-

cation. Moreover, we propose and analyse a more general model containing

distributed time delay. Finally, we propose some ideas for further study. All
the theoretical results are supported and illustrated by numerical simulations.

1. Introduction. In [18] the author introduced a simple model to describe chaotic
behaviour. The proposed system is unidimensional, contains time delay and presents
a simple nonlinear cubic term:

.
x(t) = δx(t− τ)− ε [x(t− τ)]

3
, (1)

where δ and ε are positive parameters and τ is a time delay. By means of some
numerical experiments the author illustrates in [18] the rich behaviour of the system
(see also [19]).

The model has attracted the interest of researchers (see for example [1] in which
a fractional order version of the system is considered).
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The rigorous mathematical analysis of the model has been carried out in [8],
where the authors applied the normal form theory and the center manifold theo-
rem to investigate the stability and direction of the bifurcating periodic orbits for
equation (1), providing also numerical examples to support the theoretical analysis.

Other rigorous results have been obtained in [2], where, using critical curves
approach, the authors study the problem of bifurcation with respect to the time
delay parameter. Furthermore, a model with two different constant delays has been
proposed and partially analysed in [3] (see also [9, 10, 11] for other models with
delays).

In this paper we reconsider the Hopf bifurcation analysis (see section 2 below)
obtaining slightly different results with respect to those proved in [8]. Moreover,
using a different approach, namely applying the perturbation method known as the
Lindstedt expansion (see e.g. [17]), we perfom a detailed analysis of the problem of
approximation of the bifurcating periodic solutions (see Section 3).

Next, we introduce a generalised version of the model by considering distributed
time delay for which stability and bifurcation analysis is carried out in Section 4.
We will highlight that distributed delays appear to regularise the dynamics, in fact
only fixed points or periodic orbits are in the attractor of the system.

In Section 5 we provide several numerical simulations to illustrate the theoretical
results. Finally, Section 6 is devoted to state some conclusive remarks and propose
further studies about this topic.

2. Stability and Hopf bifurcation analysis for the model with constant
delay. In this section, local stability of the equilibrium points is investigated. Equa-
tion (1) possesses three equilibrium points x∗, which are obtained solving the equal-
ity:

δx∗ − εx3
∗ = 0.

In other words, x∗ = 0,±
√
δ/ε.

The linearisation of equation (1) at x∗ is given by

ẋ = a [x(t− τ)− x∗] ,

where

a = δ − 3εx2
∗.

We have a = δ if x∗ = 0 and a = −2δ if x∗ = ±
√
δ/ε, and the associated charac-

teristic equation is

λ− ae−λτ = 0. (2)

Obviously, when τ = 0, the equilibria x∗ = ±
√
δ/ε are locally asymptotically stable,

while the equilibrium x∗ = 0 is unstable.
As τ increases, the stability properties may change if (2) possesses zero or a pair

of purely imaginary eigenvalues. It is straightforward that the case λ = 0 cannot
occur.

Lemma 1. Eq. (2) possesses a pair of purely imaginary roots λ = ±iω∗ at the
critical value τ = τ∗, where ω∗ = δ and τ∗ = 3π/ (2δ) if x∗ = 0, and ω∗ = 2δ and

τ∗ = π/ (4δ) if x∗ = ±
√
δ/ε.

Proof. Suppose that λ = iω (with ω > 0) is a root of (2). Then, ω satisfies
iω = ae−iωτ . Separating the real and imaginary parts of the equality,

ω = −a sinωτ, 0 = a cosωτ. (3)
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Eliminating τ from (3),

ω2 = a2, i.e. ω = |a| .
Notice that, if x∗ = 0, then (3) becomes

ω = −δ sinωτ, 0 = cosωτ.

Since ω > 0, we must have sinωτ < 0. Thus, ωτ = 3π/2.

On the other hand, if x∗ = ±
√
δ/ε, then equations in (3) take the form

ω = 2δ sinωτ, 0 = cosωτ.

Since sinωτ > 0 we obtain that ωτ = π/2. Notice that λ = iω∗ is a simple root of
(2). Indeed, if it were a multiple root, then 1+aτ∗e

iω∗τ∗ = 0, i.e. 1+aτ∗ cosω∗τ∗ = 0
and −aτ∗ sinω∗τ∗ = 0. From (3) we obtain a contradiction.

We now analyse the direction of the bifurcation.

Theorem 2. Let τ∗ be defined as in the previous Lemma.

1. The equilibrium x∗ = 0 of (1) is unstable for all τ ≥ 0.

2. The equilibria x∗ = ±
√
δ/ε of (1) are locally asymptotically stable for τ ∈

[0, τ∗) and unstable for τ > τ∗. Furthermore, (1) undergoes a Hopf bifurcation
at x∗ when τ = τ∗.

Proof. For simplicity we set λ(τ) = α(τ) + iω(τ), that is a root of (2) satisfying
α(τ∗) = 0 and ω(τ∗) = ω∗. Differentiating the characteristic equation (2) with
respect τ , we obtain

dλ

dτ
= − λ2

1 + τλ
,

and, consequently,

sign

{
d (Reλ)

dτ

∣∣∣∣
τ=τ∗

}
= sign

{
ω2
∗

1 + τ2
∗ω

2
∗

}
.

Thus, we conclude that
d (Reλ)

dτ

∣∣∣∣
τ=τ∗

> 0.

The previous inequality implies that the roots λ = ±iω∗ of the characteristic equa-
tion (2) near τ∗ crosses the imaginary axis from the left to the right as τ continuously
varies from a number less than τ∗ to one greater than τ∗.

Remark 3. As previously observed in the literature, the critical value of the pa-
rameter chosen for the bifurcation analysis only depends on δ and it is independent
of ε.

2.1. Numerical simulations. For simplicity we set

P− := −
√
δ

ε
, P+ :=

√
δ

ε
,

We fix the values of the parameters as follows

ε = δ = 1,

from which we obtain that

P− = −1, P+ = 1, τ∗ ≈ 0.785398.
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In the first numerical experiment (see figure 1) we fix τ = 0.7 < τ∗ and solutions
starting in the positive semiaxes converge to P+, while the ones starting in the
negative semiaxes converge to P−.
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Figure 1. The solution starting on the left hand side of O con-
verges to P− = −1, while that starting on the right hand side of O
converges to P+ = 1.

In the second numerical experiment (see figure 2) we fix τ = 0.8 > τ∗, all the
fixed points are unstable, two stable limit cycles appear around P− and P+.
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Figure 2. The solution starting on the left hand side of O con-
verges to a limit cycle around P−, while that starting on the right
hand side of O converges to a limit cycle around P+.

If we increase the value of τ we observe a more complex behaviour. In figure 3 we
represent the solution when τ = 1.72, where the dynamical behaviour of solutions
appear to be chaotic.

3. Approximating expressions of the bifurcating periodic solutions. In
this section we consider the problem of approximating the periodic orbits generated
by the Hopf Bifurcation. For this purpose we use the perturbation method known
as the Lindstedt expansion. Thanks to the approximated periodic solutions we will
be able to determine the direction of the Hopf bifurcation and the period of the
bifurcating periodic solution. Our main result is the following:

Theorem 4. The Hopf bifurcation of Eq. (1) at the equilibrium point x∗ = ±
√
δ/ε

when τ = τ∗ is supercritical and the bifurcating periodic solutions exist for τ > τ∗.
In addition, its period increases as τ increases.

Proof. We split the proof into two parts.
Step 1.Construction of the approximation
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Figure 3. The solution x(t) and the graph of (x(t), x′(t)) for δ =
ε = 1 and τ = 1.72. The attractor appears to be chaotic.

First of all we consider the change of variable z = x− x∗ in equation (1), where

x∗ = ±
√
δ/ε. Then we take the Taylor expansion of the resulting equation at z = 0:

ż = a1z(t− τ) + a2z(t− τ)2 + a3z(t− τ)3 + · · · , (4)

where

a1 = −2εx2
∗, a2 = −6εx∗, a3 = −6ε.

To apply Poincaré-Lindstedt perturbation method we stretch time with the trans-
formation s = ω(η)t, where η is a small positive number so that solutions which are
2π/ω periodic in t become 2π periodic in s. Hence, (4) can be rewritten as follows:

ω
dz(s)

ds
= a1z (s− ωτ) + a2z (s− ωτ)

2
+ a3z (s− ωτ)

3
+ · · · . (5)

Next, we expand the solution of (5) in power series of η:

z(s) = z0(s)η + z1(s)η2 + z2(s)η3 + · · · , (6)

and we solve it for the unknown functions zj(s) recursively, i.e., in the order
z0(s), z1(s),...
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Moreover, we expand the frequency ω and the delay τ in powers of η in a similar
way

ω = ω (η) = ω0 + ω1η + ω2η
2 + · · · , τ = τ (η) = T0 + T1η + T2η

2 + · · · , (7)

where

T0 = τ∗ = π/ (4δ) , and ω0 = ω∗ = 2δ.

From (6) and (7), we obtain the following expression for z (s− ωτ):

z (s− ωτ) = z0(s− ωτ)η + z1(s− ωτ)η2 + z2(s− ωτ)η3 + · · · (8)

In details, the expression of zj(s− ωτ) is

zj(s− ωτ) = zj(s− ω0T0)

− z′j(s− ω0T0)
[
(ω1T0 + ω0T1)η + (ω2T0 + ω1T1 + ω0T2)η2 + · · ·

]
+

1

2
z′′j (s− ω0T0) [(ω1T0 + ω0T1)η + · · · ]2 − · · · ,

with the prime denoting differentiation with respect to s. Plugging (6), (7) and (8)
into (5), and matching the coefficients of the various terms involving powers of η
(till the third order) we obtain the following equations:

O (η) : ω0
dz0(s)

ds
= a1z0 (s− ω0T0) , (9)

O
(
η2
)

: ω0
dz1(s)

ds
+ ω1

dz0(s)

ds
= −a1z

′
0(s− ω0T0)(ω1T0 + ω0T1)

+ a1z1(s− ω0T0) + a2z
2
0(s− ω0τ0), (10)

O
(
η3
)

: ω0
dz2(s)

ds
+ ω1

dz1(s)

ds
+ ω2

dz0(s)

ds

= −a1z
′
0(s− ω0T0)(ω2T0 + ω1T1 + ω0T2)

+ 2a2z0(s− ω0T0)z1(s− ω0T0) +
1

2
a1z
′′
0 (s− ω0T0)(ω1T0 + ω0T1)2

+ a1z2(s− ω0T0)− a1z
′
1(s− ω0T0)(ω1T0 + ω0T1) + a3z0(s− ω0T0)3. (11)

The general solution of equation (9) is

z0(s) = A0 sin s+B0 cos s, (12)

where A0 and B0 are constants to be determined. Substituting (12) into (9), we
derive that A0 and B0 are arbitrary. Without loss of generality, we suppose that
the initial conditions are z0(0) = 0 and z′0(0) = 1. As a result, (12) becomes

z0(s) = sin s. (13)

Next, we look for a solution of equation (10) of the following form

z1(s) = A1 sin s+B1 cos s+ C1 sin 2s+D1 cos 2s+ E1, (14)

where coefficients A1, B1, C1, D1 and E1 are constant. Replacing the expression of
z0(s) from (13) and that of z1(s) from (14) into (10), recalling ω0T0 = π/2, and
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based on trigonometric functions properties, we obtain

ω0 (A1 cos s−B1 sin s+ 2C1 cos 2s− 2D1 sin 2s) + ω1 cos s

= −a1(ω1T0 + ω0T1) sin s

+ a1 (−A1 cos s+B1 sin s− C1 sin 2s−D1 cos 2s+ E1) +
a2

2
+
a2

2
cos 2s.

Equating the coefficients of the resonant terms sin s, cos s, sin 2s and cos 2s, and
recalling that ω0 = −a1, yield

ω1 = T1 = 0, C1 = − a2

5a1
, D1 =

a2

10a1
, E1 = − a2

2a1
, (15)

with A1 and B1 arbitrary. Letting, for simplicity, A1 = B1 = 0, it follows that (14)
reduces to

z1(s) = C1 sin 2s+D1 cos 2s+ E1, (16)

where C1, D1 and E1 are given in (15). Since ω1 = T1 = 0, we have that (11) can
be rewritten as

ω0
dz2(s)

ds
+ ω2

dz0(s)

ds
= −a1z

′
0(s− ω0T0)(ω2T0 + ω0T2) + a1z2(s− ω0T0)

+ 2a2z0(s− ω0T0)z1(s− ω0T0) + a3z0(s− ω0T0)3. (17)

Let

z2(s) = A2 sin s+B2 cos s+C2 sin 2s+D2 cos 2s+E2 sin 3s+ F2 cos 3s+G2 (18)

be solution of (17), with A2, B2, C2, D2, E2, F2 and G2 constants. Using (13),(16)
and (18) in (17), after trigonometric simplifications have been performed, by com-
paring the coefficients of the terms sin s, cos s, sin 2s, cos 2s, sin 3s and cos 2s, we
obtain the following expressions

ω2 =
a2

2

a1
= −18ε2 and τ2 = −πa

2
2

2a3
1

=
9π

4εx4
∗
. (19)

Summing up all the above analysis, the bifurcated periodic solution of (1) has the
approximated form

z(s) =

√
τ − T0

T2
z0(s) +

τ − T0

T2
z1(s) + · · · , (20)

where z0(s), z1(s) are given in (13) and (16) respectively, and τ ≈ T0 + T2η
2, ω ≈

ω0 + ω2η
2.

Step 2. Analysis of the bifurcation
The parameters τ2 and ω2 determine the direction of the Hopf bifurcation and the

period of the bifurcating periodic solution, respectively. Since ω2 < 0 and τ2 > 0,
we obtain the thesis of our theorem.

3.1. Numerical simulations. Let us fix the parameters as in the previous section:

ε = δ = 1.

We choose τ = 0.8 > τ∗, in figure 4 we represent the numerical solution in red
together with its approximation (in blue). We observe that the periods are the
same, while the amplitude of the approximated solution is lower than that of the
numerical solution. This, of course, is due to the missing terms zi with i ≥ 2.
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Figure 4. The numerical solution (in red) together with its ap-
proximation (in blue) given by (20).

4. Model with distributed delays. In the last decades, the effects of distributed
delay in complex system have attracted the interests of many researchers (see for
example [13], [5])

For this reason, we consider interesting to modify equation (1) by introducing a
distributed delay as follows

.
x(t) = δ

t∫
−∞

x(r)g(t− r)dr − ε

 t∫
−∞

x(r)g(t− r)dr

3

, (21)

where g(·) is a gamma distribution of the kind:

g(u) =
(m
T

)m um−1e−
m
T u

(m− 1)!
, (22)

with m a positive integer that determines the shape of the weighting function, and
T ≥ 0 a parameter associated with the mean time delay of the distribution.

For m = 1 this is simply an exponential distribution (also called a weak delay
kernel); for m = 2 it is known as strong delay kernel. Notice that as T → 0 the
distribution function approaches the Dirac distribution, and, thus, one recovers the
discrete delay case.

We set z(t) = x(t) − x∗, where x∗ is a stable equilibrium point of equation (1),

i.e. x∗ = ±
√
δ/ε.

The linearised equation of (21) at the origin takes the form

.
z(t) = −2δ

t∫
−∞

z(r)g(t− r)dr. (23)

In equation (23), we make the ansatz that z(t) = ceλt, c ∈ R, λ ∈ C, to obtain the
associated characteristic equation

λ+ 2δ

t∫
−∞

e−λ(t−r)g(t− r)dr = 0. (24)
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By mathematical induction we have

t∫
−∞

e−λ(t−r)g(t− r)dr =

+∞∫
0

e−λvg(v)dv

=
(m
T

)m 1

(m− 1)!

+∞∫
0

vm−1e−(m
T +λ)vdv =

(
1 +

λT

m

)−m
.

As a consequence, the characteristic equation (24) becomes

λ

(
1 +

λT

m

)m
+ 2δ = 0. (25)

Since λ = 0 is not a solution of this equation, the only possibility for the stability
of z∗ = 0 to change is that λ crosses the imaginary axis.
Equation (25) is a polynomial equation of degree n = m + 1 which possesses the
form

λn + a1λ
n−1 + · · ·+ an−1λ+ an = 0, (26)

where coefficients ak are real constants. Then, the Routh-Hurwitz theorem provides
the necessary and sufficient conditions for all the roots of the polynomial equation
(26) to have negative real parts. To apply this theorem, we first construct the n×n
Routh-Hurwitz matrix 

a1 1 0 0 · · · 0
a3 a2 a1 1 · · · 0
a5 a4 a3 a2 · · · 0
...

...
...

... · · ·
...

0 0 0 0 · · · an

 ,
where ak = 0 for k > n. The Routh-Hurwitz criterion states that all roots of
equation (26) are negative or have negative real part if and only if all the principal
minors ∆k (k = 0, 1, 2, ..., n) of the Routh-Hurwitz matrix are positive.

When n = 2, that is m = 1, we have

λ2 + a1λ+ a2 = 0,

and the criteria simplify to

a1 > 0, and a2 > 0.

For n = 3, that is m = 2, the characteristic polynomial is

λ3 + a1λ
2 + a2λ+ a3 = 0,

and the criteria become

a1 > 0, a3 > 0, and a1a2 > a3.

Finally, for n = 4, that is m = 3, we have the polynomial

λ4 + a1λ
3 + a2λ

2 + a3λ+ a4 = 0,

and the criteria are

a1 > 0, a3 > 0, a4 > 0 and a1a2a3 > a2
3 + a2

1a4.

Notice that a direct consequence of the Routh-Hurwitz theorem is that all the
coefficients are positive, ak > 0 (k = 1, 2, ..., n).



2648 TOMÁS CARABALLO, RENATO COLUCCI AND LUCA GUERRINI

In order to analytically consider local stability of our equilibrium we will consider
several special cases separately.

4.1. Case m = 1. Equation (25) reduces to a second order algebraic equation in
λ, λ2 + a1λ + a2 = 0, where a1 = 1/T and a2 = 2δ/T. Due to the Routh-Hurwitz
criterion we have the following result.

Proposition 5. The equilibrium points x∗ = ±
√
δ/ε of (21)are locally asymptoti-

cally stable for all T > 0.

4.2. Case m = 2. Equation (25) takes the form of a third order algebraic equation
in λ,

λ3 + a1λ
2 + a2λ+ a3 = 0, (27)

where

a1 = a1(T ) = 4/T, a2 = a2(T ) = 4/T 2 a3 = a3(T ) = 8δ/T 2.

The Routh-Hurwitz criterion implies that the equilibria x∗ = ±
√
δ/ε are locally

asymptotically stable if a1a2 − a3 = 8T (2− δT ) > 0, i.e. T < 2/δ, and unstable
if T > 2/δ. The curve T = T∗ = 2/δ divides the parameter space into stable
and unstable parts. To check the possibility of the emergency of a limit cycle at
T = T∗, we apply the Hopf bifurcation theorem. According to it, one can establish
the existence of a cyclic solution if the characteristic equation (27) possesses a pair
of purely imaginary roots and the real parts of these roots change signs with a
bifurcation parameter.

At the critical value T = T∗, the characteristic equation (27) can be written as
λ3 + a1(T∗)λ

2 + a2(T∗)λ+ a1(T∗)a2(T∗) = 0, which factorises as

[λ+ a1(T∗)]
[
λ2 + a2(T∗)

]
= 0.

Hence, we have a pair of purely imaginary roots λ1,2 = ±
√
a2(T∗)i = ±ω∗i, with

ω∗ = δ, and a real root λ3 = −a1 = −2δ. Next, we choose the delay T as the
bifurcation parameter and consider the roots of the characteristic equation (27) as
continuous functions of T. Plugging λ = λ(T ) into (25), with m = 2, and differen-
tiating it with respect to T implies

dλ

dT
= − 2λ2

2 + 3Tλ
. (28)

Notice the rootof (27), λ = ω∗i, is simple. Next, replacing λ = ω∗i into (28), and
rationalizing the right hand side conduced us to

Re

[
dλ

dT

]
λ=ω∗i

=
4ω2
∗

4 + 9T 2ω2
∗
> 0.

As a result, the real parts of the complex roots change from being negative to
positive and, therefore, there is a loss of stability on the partition curve. The above
analysis can be summarised as follows.

Theorem 6. Let T∗ = 2/δ. The equilibrium points x∗ = ±
√
δ/ε of (21) are locally

asymptotically stable for T < T∗ and unstable for T > T∗. System (21) undergoes a
Hopf bifurcation at x∗ when T = T∗.
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4.3. Case m = 3. Equation (25) becomes a fourth order algebraic equation in λ,

λ4 + a1λ
3 + a2λ

2 + a3λ+ a4 = 0, (29)

where

a1 = a1(T ) = 9/T, a2 = a2(T ) = 27/T 2, a3 = a3(T ) = 27/T 3,

and a4 = a4(T ) = 54δ/T 3.

By the Routh-Hurwitz criterion, the equilibria x∗ = ±
√
δ/ε are locally asymptot-

ically stable if a1a2a3 − a2
3 + a2

1a4 > 0. A direct calculation shows this holds when
T < T∗ = 4/ (3δ) . At the critical value T = T∗, i.e. when

a1a2a3 − a2
3 + a2

1a4 = 0,

the characteristic equation (29) factorises as[
a1(T∗)λ

2 + a3(T∗)
] [
a1(T∗)λ

2 + a2
1(T∗)λ+ a1(T∗)a2(T∗)− a3(T∗)

]
= 0.

Its solutions are λ1,2 = ±
√
−a3(T∗)/a1(T∗) = ±

(
3/T 2
∗
)
i, which are purely imagi-

nary, and λ3,4 = 3δ
(
−9±

√
15i
)
/8, whose real parts are negative. Proceeding as

for m = 1, we derive that
dλ

dT
= − 3λ2

3 + 4Tλ
,

and hence

Re

[
dλ

dT

]
λ=ω∗i

=
9ω2
∗

9 + 16T 2ω2
∗
> 0.

Consequently, the dynamical system generates cyclic behaviour when the local sta-
bility is violated. We summarise the previous discussion in the following theorem.

Theorem 7. Let T∗ = 4/ (3δ) . The equilibrium points x∗ = ±
√
δ/ε of (21) are

locally asymptotically stable for T < T∗ and unstable for T > T∗. System (21)
undergoes a Hopf bifurcation at x∗ when T = T∗.

5. Numerical simulations for the model with distributed delay. In order
to numerically analyse the stability switch and global behaviour of the equilibrium
x∗, we apply the linear chain trick technique (see [12]) which allows to replace an
equation with the gamma distributed delay kernel (22) by an equivalent system of
(m+ 1) ordinary differential equations.

5.1. Case m = 1. Equation (21) becomes

.
x(t) = δ

t∫
−∞

x(r)

(
1

T

)
e−

1
T udr − ε

 t∫
−∞

x(r)

(
1

T

)
e−

1
T udr

3

. (30)

Introducing the new variable

y(t) =

t∫
−∞

x(r)

(
1

T

)
e−

1
T (t−r)dr,

we rewrite equation (30) as a two dimensional system of ODEs:
.
x(t) = δy(t)− εy(t)3,

ẏ(t) =
1

T
[x(t)− y(t)] .
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We consider the following values of the parameters for the simulations:

δ = 1, ε = 1, T = 30.

The fixed points are P+ = (1, 1), O = (0, 0) and P− = (−1,−1). From the result of
the previous sections, the fixed points P± remain locally asymptotically stable for
all T ≥ 0 (see figure 5).

100 200 300 400 500

-1

1

2

3

4

100 200 300 400 500

-4

-3

-2

-1

1

Figure 5. For m = 1, the fixed points P± are locally asymptoti-
cally stable for all T ≥ 0.

5.2. Case m = 2. Equation (21) becomes

.
x(t) = δ

t∫
−∞

x(r)

(
2

T

)
(t− r)e− 2

T (t−r)dr − ε

 t∫
−∞

x(r)

(
2

T

)2

(t− r)e− 2
T (t−r)dr

3

.

(31)
Introducing the new variables

y(t) =

t∫
−∞

x(r)

(
2

T

)2

(t− r)e− 2
T (t−r)dr,

z(t) =

t∫
−∞

x(r)

(
2

T

)
e−

2
T (t−r)dr,

we rewrite equation (31) as a three dimensional system of ODEs:

.
x(t) = δy(t)− εy(t)3,

ẏ(t) =
2

T
[z(t)− y(t)] ,

ż(t) =
2

T
[x(t)− z(t)] .

In this case we have shown that for T < T∗ the fixed point P± are locally asymptot-
ically stable while for T = T∗ a Hopf bifurcation occurs at P± giving rise to stable
limit cycles.

We consider the following values of the parameters:

δ = 2, ε = 1,

from which we obtain the following numerical values for the fixed points P± and for
the critical value of T :

T∗ = 1, P± = ±(
√

2,
√

2,
√

2).
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In a first simulation we have set T = 0.9 < T∗ for which the fixed points P± are
locally asymptotically stable (see figure 6).

20 40 60 80 100

0.5
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2.0

20 40 60 80 100
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-1.0

-0.5

Figure 6. For m=2 and T = 0.9 < T∗ the fixed points P± are
locally asymptotically stable.

Then we fix T = 2 > T∗, in this case the fixed points are unstable and a stable
limit cycle appears (see figure 7). We observe that for bigger values of T the
dynamics is qualitatively the same.

50 100 150 200

-3

-2

-1

1

2

3

Figure 7. For m=2 and T = 2 > T∗ the fixed points P± are
unstable and a stable limit cycle appears.

5.3. Case m = 3. Equation (21) becomes
.
x(t)

= δ

t∫
−∞

x(r)

(
3

T

)3
(t− r)2e−

3
T (t−r)

2
dr − ε

 t∫
−∞

x(r)

(
3

T

)3
(t− r)2e−

3
T (t−r)

2
dr

3

.

(32)

Introducing the new variables

y(t) =

t∫
−∞

x(r)

(
3

T

)3
(t− r)2e−

3
T (t−r)

2
,

z(t) =

t∫
−∞

x(r)

(
3

T

)2

(t− r)e− 3
T (t−r)dr,
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w(t) =

t∫
−∞

x(r)

(
3

T

)
e−

3
T (t−r)dr,

we rewrite equation (32) as

.
x(t) = δy(t)− εy(t)3,

ẏ(t) =
3

T
[z(t)− y(t)] ,

ż(t) =
3

T
[w(t)− z(t)] ,

ẇ(t) =
3

T
[x(t)− w(t)] .

We fix again
δ = 2, ε = 1,

and, therefore,

T∗ =
2

3
, P± = ±(

√
2,
√

2,
√

2).

We start with the value T = 0.6 < T∗ for which the fixed points are locally stable
(see figure 8). For T = 0.7 > T∗ the fixed point P± are unstable and a stable limit

50 100 150 200

0.5

1.0

1.5

50 100 150 200

-1.5

-1.0

-0.5

Figure 8. For m = 3 and T = 0.6 < T∗ the fixed points P± are
locally asymptotically stabel

cycle appears (see figure 9). Again, as in the case with m = 2, the dynamics is
qualitatively the same as T > T∗ increases.
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0.5

1.0

1.5

2.0

Figure 9. For m = 3 and T = 0.7 > T∗ the fixed points P± are
unstable and a stable limit cycle appears.
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6. Conclusive remarks. In this work we have considered the model introduced
by Ucar in [18] with both constant and distributed delays. We have observed that
the dynamics in the distributed delay case is more regular, in the sense that, as the
delay parameter T is increased we have only two qualitatively different dynamical
behaviour:

• the fixed points P± are locally asymptotically stable when the value of the
parameter T is below a critical value;

• the fixed points P± are unstable and two stable limit cycle appears when the
value of the parameter T is above a critical value.

To have a more complex dynamical behaviour we should consider more general
cases. We have performed several numerical simulations to detect a more complex
behaviour such as multi-periodic solutions and chaotic behaviour. For this purpose
we have considered both constant and distributed delay within the same system.

6.1. Mixed system case 1. We consider the following equation containing a con-
stant delay in the linear term and a distributed delay in the nonlinear one:

.
x(t) = δx(t− τ)−

 t∫
−∞

x(r)g(t− r)dr

3

, (33)

where g(·) is a gamma distribution as in the previous cases. Using again the linear
chain trick technique we obtain the following system for m = 1:{

ẋ = δx(t− τ)− ε[y(t)]3,
ẏ = 1

T [x(t)− y(t)].
(34)

We consider the following values for the parameters

δ = 1, ε = 1.

Numerical simulations reveal a complex behaviour, possibly chaotic. As an example,
in figure 10 we have represented the case T = 2 and τ = 5.
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Figure 10. The solution of sytem (34) for T = 2 and τ = 5.
Numerical simulations suggest the evidence of a chaotic behaviour.
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6.2. Mixed system case 2. In this second case we consider distributed delay in
the linear term and constant delay in the nonlinear one:

.
x(t) = δ

t∫
−∞

x(r)g(t− r)dr − ε [x(t− τ)]
3
, (35)

Using again the linear chain trick technique we obtain the following system for
m = 1: {

ẋ = δy(t)− ε[x(t− τ)]3,
ẏ = 1

T [x(t)− y(t)].
(36)

In this case we set δ = ε = 1 and

T = 1.6, τ = 1.14.

Now, the dynamics appears more interesting. In figure 11 below we represent the
solution where a possibly chaotic attractor appears. We note the similarity of
attractor with the famous Lorenz attractor.
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Figure 11. The solution of sytem (36) for T = 1.6 and τ = 1.14.
Numerical simulations suggest the evidence of a chaotic behaviour,
this is supported by the presence of a strange attractor similar to
the famous Lorenz attractor.

For the above simulations we consider interesting for further investigation the study
of both mixed system, in particular the analysis of all possible bifurcation should
be performed in the future.

Moreover, in the previous simulations we have only considered the case m = 1
( as done for example in [6],[7]), while in many cases (see for example [16, 15, 14])
the values of m may change the qualitative behaviour of the system. In any case,
the mixed delay case (both constant and distributed) is able to recover the complex
behaviour observed in the constant delay case. Of course it is interesting to wonder
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wether the mixed delay case or the purely constant delay case share the same
bifurcation cases or not. A more detailed analysis is needed to answer this question.
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