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Abstract

Persistent homology studies the evolution of k-dimensional holes along
a nested sequence of simplicial complexes (called a filtration). The set of
bars (i.e. intervals) representing birth and death times of k-dimensional
holes along such sequence is called the persistence barcode. k-Dimensional
holes with short lifetimes are informally considered to be “topological
noise”, and those with long lifetimes are considered to be “topological
features” associated to the filtration. Persistent entropy is defined as the
Shannon entropy of the persistence barcode of a given filtration. In this
paper we present new important properties of persistent entropy of Čech
and Vietoris-Rips filtrations. Among the properties, we put a focus on
the stability theorem that allows to use persistent entropy for comparing
persistence barcodes. Later, we derive a simple method for separating
topological noise from features in Vietoris-Rips filtrations.

Keywords: Persistent homology, persistence barcodes, Shannon en-
tropy, Čech and Vietoris-Rips complexes, topological noise, topological
feature

1 Introduction

Topology is the branch of mathematics that studies shapes and maps among
them. From the algebraic definition of topology a new set of algorithms have

∗Authors are partially supported by Spanish Government under grant MTM2015-67072-P
(MINECO/FEDER, UE).
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Figure 1: From left to right: RNA secondary suboptimal structures within
different bacteria.

been derived. These algorithms are identified with “computational topology”
or often pointed out as Topological Data Analysis (TDA) and are used for
investigating high-dimensional data in a quantitative manner.

Persistent homology appears as a fundamental tool in Topological Data
Analysis. It studies the evolution of k-dimensional holes along a sequence F
of simplicial complexes. The persistence barcode B(F ) of F is the collection of
bars (i.e. intervals) representing birth and death times of k-dimensional holes
along such sequence. In B(F ), k-dimensional holes with short lifetimes are in-
formally considered to be “topological noise”, and those with long lifetimes are
“topological features” of the given data.

Persistent homology based techniques are nowadays widely used for analyz-
ing high dimensional data-set and they are good tools for shaping these data-set
and for understanding the meaning of the shapes. Persistent homology reveals
the global structure of a data-set and it is a powerful tool for dealing with high
dimensional data-set without performing dimensionality reduction. There are
several techniques for building a topological space from the data. The main
approach is to complete the data to a collection of combinatorial objects, i.e.
simplices. A nested collection of simplices forms a simplicial complex. Simplicial
complexes can be obtained from graphs and point cloud data (PCD) [1, 2]. For
example, PCD can be completed to simplicial complexes by using the Vietoris-
Rips filtration, which is a sequence of simplicial complexes built on a metric
space, providing in this way a topological structure to an otherwise disconnected
set of points. It is widely used in TDA because it encodes useful information
about the topology of the underlying metric space. Let us take a look at Fig. 1, it
represents a collection of RNA secondary sub-optimal structures within different
bacteria. All the shapes are characterized by several circular substructures, each
of them is obtained by linking different nucleotides. Each substructure encodes
functional properties of the bacteria. Mamuye et al. [3] used Vietoris-Rips com-
plexes and persistent homology for certifying that there are different species but
characterized with the same RNA sub-optimal secondary structure, thus these
species are functionally equivalent. The mathematical details of Vietoris-Rips
filtration are given in Section 2 of this paper.

Nevertheless, Vietoris-Rips based analysis suffers of the selection of the pa-
rameter ε. Generally speaking, for different ε, different topological features can
be observed. For example, in [4], several applications of Vietoris-Rips based
analysis to biological problems have been reported and examples of different ε
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with different meaning were found. In order to select the best ε, some statistics
have been provided what is known as “ persistence landscape” [5]. Landscape
is a powerful tool for statistically assessing the global shape of the data over
different ε. Technically speaking, a landscape is a piecewise linear function that
basically maps a point within a persistent diagram (or barcode) to a point in
which the x-coordinate is the average parameter value over which the feature
exists, and the y-coordinate is the half-life of the feature. Landscape analysis
allows to identify topological features. In Section 6, we present the notion of
persistent entropy, as an alternative approach to landscape. The main difference
between landscape and our method is that the former uses the average of ε, while
the latter works directly on fixed ε. More concretely, persistent entropy (which is
the Shannon entropy of the persistence barcode) is a tool formally defined in [6]
and used to measure similarities between two persistence barcodes. A precursor
of this definition was given in [7] to measure how different the bars of a barcode
are in length. In [8], persistent entropy is used for addressing the comparison
between discrete piecewise linear functions. In Section 11, several properties of
the persistent entropy of Vietoris-rips filtrations are presented. For example,
the exact formula of maximum and minimum persistent entropy is given for
a persistence barcode, fixing the number of bars and the maximum and min-
imum length. These results are important later in Section 15 for differentiate
topological features from noise.

In general, “very” long living bars (long lifetime) are considered topologi-
cal features since they are stable to “small” changes in the filtration. In [9] a
methodology is presented for deriving confidence sets for persistence diagrams
to separate topological noise from topological features. The authors focused
on simple, synthetic examples as proof of concept. Their methods have a sim-
ple visualization: one only needs to add a band around the diagonal of the
persistence diagram. Points in the band are consistent with being noise. The
first three methods in that paper were based on the distance function to the
data. They started with a sample from a distribution P supported on a topo-
logical space C. The bottleneck distance was used as a metric on the space of
persistence diagrams. The last method in that paper used density estimation.
The advantage of the former was that it is more directly connected to the raw
data. The advantage of the latter was that it is less fragile; that is, it is more
robust to noise and outliers. In Section 15 in this paper, we derive a simple
method for separating topological features from noise of a given filtration using
the mentioned persistent entropy measurement. Moreover, we claim it is very
easy (and fast) to compute, and easy to adapt depending on the application. A
preliminary version of this technique was also presented in [10].

2 Background

This section provides a short recapitulation of the basic concepts needed as a
basis for the presented method for separating topological noise from features.

Informally, a topological space is a set of points each of them equipped with
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the notion of neighboring. A simplicial complex is a kind of topological space
constructed by the union of k-dimensional simple pieces in such a way that
the common intersection of two pieces are lower-dimensional pieces of the same
kind. More concretely, K is composed by a set K0 of 0-simplices (also called
vertices V , that can be thought as points in Rd); and, for each k ≥ 1, a set Kk

of k-simplices σ = {v0, v1, . . . , vk}, where vi ∈ V for all i ∈ {0, . . . , k}, satisfying
that:

• each k-simplex has k + 1 faces obtained by removing one of its vertices;

• if a simplex is in K, then all its faces must be in K.

The underlying topological space of K is the union of the geometric realization
of its simplices: points for 0-simplices, line segments for 1-simplices, filled tri-
angles for 2-simplices, filled tetrahedra for 3-simplices and their k-dimensional
counterparts for k-simplices. We only consider finite simplicial complexes with
finite dimension, i.e., there exists an integer m (called the dimension of K) such
that for k > m, Kk = ∅ and, for 0 ≤ k ≤ m, Kk is a finite set.

Two classical examples of simplicial complexes are Čech complexes and
Vietoris-Rips complexes (see [11, Chapter III]). Let V be a (finite) PCD in
Rd. The Čech complex of V and r denoted by ČV (r) is the simplicial complex
whose simplices are formed as follows. For each subset S of points in V , form
a closed ball of radius r around each point in S, and include S as a simplex of
ČV (r) if there is a common point contained in all of the balls in S. This structure
satisfies the definition of abstract simplicial complex. The Vietoris-Rips com-
plex denoted as VRV (r) is essentially the same as the Čech complex. Instead of
checking if there is a common point contained in the intersection of the (r)-ball
around v for all v in S, we may just check pairs adding S as a simplex of ČV (r) if
all the balls have pairwise intersections. We have ČV (r) ⊆ VRV (r) ⊆ ČV (

√
2r).

See Fig.2. In practice, Vietoris-Rips complexess are more often used since they
are easier to compute than Čech omplexes.

Homology is an algebraic machinery used for describing topological spaces.
The k-Betti number βk(K) represents the rank of the k-dimensional homology
group Hk(K) of a given simplicial complex K. Informally, β0(K) is the number
of connected components of K, β1(K) counts the number of tunnels, β2(K) can
be thought as the number of voids of K and, in general, βk(K) can be thought
as the number of k-dimensional holes of K. More precisely, homology groups
are defined from an algebraic structure called chain complex composed by a set
of groups {Ck(K)}k, where each Ck(K) is the group of k-chains generated by all
the k-simplices of K, and a set of homomorphisms {∂k : Ck(K)→ Ck−1(K)}k,
called boundary operators, describing the boundaries of k-chains. A k-chain a
such that ∂k(a) = 0 is a k-cycle. It is a k-boundary if there exists a (k+1)-chain
b such that ∂k+1(b) = a. This way, the k-dimensional homology group Hk(K) is
the group of k-cycles modulo the group of k-boundaries. The k-th Betti number
βk(K) is the rank of Hk(K). See [12] and [13] for an introduction to algebraic
topology.
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Figure 2: [11, p. 72] Nine points with pairwise intersections among the disks
indicated by straight edges connecting their centers, for a fixed time ε. The
Čech complex ČV (ε) fills nine of the ten possible triangles as well as the two
tetrahedra. The Vietoris-Rips complex VRV (ε) fills the ten triangles and the
two tetrahedra.

Persistent homology is a method for computing k-dimensional holes of a
given topological space at different spatial resolutions. The key idea is as follows.

• First, the space must be represented as a simplicial complex K and a
distance function must be defined on the space.

• Second, a filtration of K, referred above as different spatial resolutions, is
computed. More concretely, a filtration F of K is a collection of simplicial
complexes F={K(t) | t ∈ R} of K such that K(t) ⊂ Ks for t < s and
there exists tmax ∈ R such that Ktmax

= K. The filtration time (or
filter value) of a simplex σ ∈ K is the smallest t such that σ ∈ K(t).
For example, let V be a PCD in Rd and let r, r′ ∈ R. Then, there is
a natural inclusions ČV (r) ⊆ČV (r′) and VRV (r) ⊆ VRV (r′) whenever
r ≤ r′. The simplicial complexes ČV (r) together with the inclusion maps
define a filtered simplicial complex ČV called Čech filtration. Similarly,
the simplicial complexes VRV (r) together with the inclusion maps define
a filtered simplicial complex VRV called Vietoris-Rips filtration.

• Then, persistent homology describes how the homology of a given simpli-
cial complex K changes along filtration F = {K(t) | t ∈ R}. If the same
topological feature (i.e., k-dimensional hole) is detected along a large num-
ber of subsets in the filtration, then it is likely to represent a true feature of
the underlying space, rather than artifacts of sampling, noise, or particular
choice of parameters. More concretely, a bar in the k-dimensional persis-
tence barcode, with endpoints [tstart, tend), corresponds to a k-dimensional
hole that appears at filtration time tstart and remains until filtration time
tend. The set of bars [tstart, tend) representing birth and death times of
homology classes is called the persistence barcode B(F ) of the filtration F .
Analogously, the set of points (tstart, tend) ∈ R2 is called the persistence
diagram dgm(F ) of the filtration F .
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For more details and a more formal description we refer to [11].
Classically, the bottleneck distance (see [11, page 229]) is used to compare

the persistence diagrams of two different filtrations. Concretely, let dgm(F ) =
{a1, . . . , ak} and dgm(F ′) = {a′1, . . . , a′k′} be, respectively, the persistence dia-
gram dgm(F ) and dgm(F ′) of the two filtrations F and F ′, then

db(dgm(F ), dgm(F ′)) = inf
γ
{sup
v
{||v − γ(v)||∞}}

is the bottleneck distance between dgm(F ) and dgm(F ′) where, for points a =
(x, y) and γ(a) = (x′, y′) in R2, ||a − γ(a)||∞ = max{|x − x′|, |y − y′|} and
γ : dgm(F )→ dgm(F ′) is a bijection that can associate a point off the diagonal
with another point on or off the diagonal. Here, diagonal is the set of points
{(x, x)} ⊂ R2.

Remark 3 Since simplicial complexes considered in this paper are finite then
for given filtrations F and F ′, we have that:

• dgm(F ) is a finite set of points in R2.

• db(dgm(F ), dgm(F ′)) = minγ{maxa{||a− γ(a)||∞}}.

In the following theorem, it is state that low-distortion correspondences be-
tween two PCDs, V and W , in Rd give rise to small distance in the bottleneck
distance of the persistence diagrams of the Čech filtrations ČV and ČW and the
Vietoris-Rips filtrations VRV and VRW .

Theorem 4 Persistence stability for Čech and Vietoris-Rips complexes
[14, Th. 5.2.] Let V and W be two sets of points in Rd then, for either FV = ČV
and FW = ČW or FV = VRV and FW = VRW , we have that:

db(dgm(FV ), dgm(FW )) ≤ 2dGH(V,W ),

where 2dGH(V,W ) = infc{supv,v′ |d(v, v′)−d(c(v), c(v′))|}} for c : V →W being
surjective.

Remark 5 Since PCDs considered in this paper are finite, then

2dGH(V,W ) = min
c
{max
p,p′
|d(p, p′)− d(c(p), c(p′))|}}.

6 Persistent entropy

In order to measure how much the construction of a filtration is ordered, a
new entropy measure, the so-called persistent entropy, were defined in [6]. A
precursor of this definition was given in [7] to measure how different the bars of
a barcode were in length. In [8], persistent entropy was used for addressing the
comparison between discrete piece-wise linear functions.
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Definition 7 Given a filtration F = {K(t) | t ∈ R} and the corresponding per-
sistence diagram dgm(F ) = {ai = (xi, yi) | 1 ≤ i ≤ n} (being xi < yi for all
i), let L = {`i = yi − xi | 1 ≤ i ≤ n}. The persistent entropy E(F ) of F is
calculated as follows:

E(F ) = −
n∑
i=1

pi log(pi) where pi = `i
SL

, `i = yi − xi, and SL =

n∑
i=1

`i.

Sometimes, persistent entropy E(F ) will also be denoted by E(L).

Note that the maximum persistent entropy would correspond to the situation
in which all the bars in the associated persistence barcode are of equal length
(i.e., `i = `j for all 1 ≤ i, j ≤ n). Conversely, the value of the persistent entropy
decreases as more bars of different lengths are present in the persistence barcode.
More concretely, if E(F ) has n points, the possible values of E(F ) lie in the
interval [0, log(n)].

The following result supports the idea that persistent entropy can differen-
tiate long from short bars as we will see in Section 15.

Theorem 8 [10] Given a filtration F and the corresponding persistence dia-
gram dgm(F ) = {ai = (xi, yi) | 1 ≤ i ≤ n}, let L = {`i = yi − xi | 1 ≤ i ≤ n}.
For a fixed integer i, 1 ≤ i ≤ n, let

L′ = {`′1, . . . , `′i, `i+1, . . . , `n}

where `′j = Pi

eE(Ri)
for 1 ≤ j ≤ i, Ri = {`i+1, . . . `n} and Pi =

∑n
j=i+1 `j. Then

E(L) ≤ E(L′).

Observe that we can also write `′j =
∏n
j=i+1 `

`j/Pi

j . This last expression will
be very useful in the proof of Th. 17 in Section 15.
Proof. Let us prove that E(L′) is the maximum of all the possible persistent
entropies associated to barcodes with n bars, such that the list of lengths of
the last n− i bars of any of such lists is Ri. Let M = {x1, . . . , xi, `i+1, . . . , `n}
(where xj > 0 for 1 ≤ j ≤ i) be any of such lists.

Let Sx =
∑i
j=1 xj . Then, the persistent entropy associated to M is:

E(M) = −
i∑

j=1

xj
Sx + Pi

log

(
xj

Sx + Pi

)
−

n∑
j=i+1

`j
Sx + Pi

log

(
`j

Sx + Pi

)

= −
i∑

j=1

xj
Sx + Pi

log

(
xj

Sx + Pi

)
− PiE(Ri)

Sx + Pi
− Pi
Sx + Pi

log

(
Pi

Sx + Pi

)
.

In order to find out the maximum of E(M) with respect to the unknown vari-
ables xk, 1 ≤ k ≤ i, we compute the partial derivative of E(M) with respect to
those variables:

∂E(M)

∂xk
=

1

(Sx + Pi)2

PiE(Ri) + Pi log

(
Pi
xk

)
+
∑
j 6=k

xj log

(
xj
xk

) .
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Finally,
{
xk = Pi

eE(Ri)
| 1 ≤ k ≤ i

}
is the solution of

{
∂E(M)
∂xk

= 0 | 1 ≤ k ≤ i
}

. 2

The following result establishes a relation between bottleneck distance and
persistent entropy.

Proposition 9 Let F and F ′ be two filtrations. For all ε > 0, there exists δ > 0
such that if db(dgm(F ), dgm(F ′)) < δ then |E(F )− E(F ′)| < ε.

Proof. The proof is similar to the one given in [8] to demonstrate that per-
sistent entropy associated to piece-wise linear functions is stable.
Fixed ε > 0, we have to find δ > 0 such that if db(dgm(F ), dgm(F ′)) < δ then
|E(F )− E(F ′)| < ε.
First, since h(x) = −x log x is a continuous function in [0, 1] (redefining h(0)
as 0), for ε′ = ε

n > 0, there exists δ′ ∈ (0, 1] such that if |x − x′| ≤ δ′ then
|h(x)− h′(x)| ≤ ε′.
Take δ = SL′δ

′

4n and suppose db(dgm(F ), dgm(F ′)) < δ.
By Remark 3, dgm(F ) and dgm(F ′) are both finite and there exists a bijection
γ̄ : dgm(F )→ dgm(F ′) such that db(dgm(F ), dgm(F ′)) = maxa{||a− γ̄(a)||∞}.
Let dgm(F ) = {a1, . . . , an} (where some of the ai can possibly be on the diag-
onal). Let ai = (xi, yi) and γ̄(ai) = (x′i, y

′
i). Then,

||ai − γ̄(ai)||∞ = max{|xi − x′i|, |yi − y′i|} ≤ δ for all i.

Let `i = yi − xi and `′i = y′i − x′i. Then,

|`i − `′i| = |xi − yi − (x′i − y′i)| ≤ |xi − x′i|+ |yi − y′i| ≤ 2δ for all i.

Besides,

|SL − SL′ | =

∣∣∣∣∣
n∑
i=1

`i −
n∑
i=1

`′i

∣∣∣∣∣ ≤
n∑
i=1

|`i − `′i| ≤ 2δn.

Without lost of generality, assume SL ≥ SL′ . Then SL ≤ SL′ + 2δn.

Let pi = `i
SL

and p′i =
`′i
SL′

. Then

pi − p′i =
`i
SL
− `′i
SL′

=
SL′`i − SL`′i

SLSL′
≤ `i − `′i

SL′
≤ 2δ

SL′
=

δ′

2n
≤ δ′;

p′i − pi ≤
(SL′ + 2δn)`′i − SL′`i

SLSL′
≤ `′i − `i

SL′
+

2δn`′i
SL′SL′

≤ 2δn

SL′

(
1 +

`′i
SL′

)
≤ δ′.

Therefore,

|E(F )− E(F ′)| =

∣∣∣∣∣
n∑
i=1

pi log pi −
n∑
i=1

p′i log p′i

∣∣∣∣∣ ≤
n∑
i=1

|pi log pi − p′i log p′i| ≤ ε,

which concludes the proof. 2 The result above is used now to prove that
persistent entropy is a stable measure for Čech and Vietoris-Rips filtrations.
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Theorem 10 Persistent entropy stability theorem for Čech and Vietoris-
Rips filtrations. Let V and W be two PCDs in Rd. Then, for every ε > 0
there exists δ > 0 such that:

If 2dGH(V,W ) ≤ δ then |E(FV )− E(FW )| < ε,

where either FV = ČV and FW = ČW or FV = VRV and FW = VRW .

Proof. First, by Prop. 9 we have that fixed ε > 0, there exists δ > 0 such
that if db(dgm(FV ), dgm(FW )) < δ then |E(FV )− E(FW )| < ε.
Second, by Th. 4 we have that db(dgm(FV ), dgm(FW )) ≤ 2dGH(V,W ).
Therefore, if 2dGH(V,W ) < δ then |E(FV )− E(FW )| < ε. 2

11 Properties of the persistent entropy of Vietoris-
Rips filtrations

Since Vietoris-Rips filtration are widely used in practice, we focus now our
effort in the study of properties of the persistent entropy of this special kind of
filtrations.

The first thing we have to take into account is that, in practice, one will
never construct the filtration up to the end and will stop at a certain time T .
Then, VRV = {VRV (t) | t ≤ T}. To decide when to stop, we use the following
result.

Proposition 12 Let V = {v1, . . . , vm} be a PCD in Rd. Let

T =
mini maxj d(vi, vj)

2
.

Then, β0(VRV (T )) = 1 and βk(VRV (T )) = 0 for k > 0.

Proof. First, notice that there exists a vertex v such that maxj d(v, vj) = 2T .
That is, d(v, vj) ≤ 2T for 1 ≤ j ≤ m. Then, v is connected to vj by an edge in
VRV (T ), for 1 ≤ j ≤ m. In particular, β0(VRV (T )) = 1.
Now, observe that if σ = {v0, v1, . . . , vk} is a k-simplex in VRV (T ) and v 6∈ σ,
then σ ∪ {v} = {v, v0, v1, . . . , vk} is a (k + 1)-simplex in VRV (T ) and ∂k+1(σ ∪
{v}) = σ + ∂k(σ) ∪ {v}.
Let c =

∑
i∈I σi be a cycle in Ck(VRV (T )). Let J = {j | j ∈ I and v is not a

vertex of σj}. Let b =
∑
j∈J σj ∪ {v}. Then

∂k+1(b) =
∑
j∈J

σj + ∂k(σj) ∪ {v} =
∑
j∈J

σj +
∑
i∈I\J

σi = c.

Therefore, c is a boundary. Then βk(VRV (T )) = 0 for k > 0. 2

From now on, given a PCD V = {v1, . . . , vm} in Rd, we construct

VRV = {VRV (t) | t ≤ T} for T =
mini maxj d(vi,vj)

2 .
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By Prop. 12, the biggest bar in the persistence barcode in dimension 0 was
born at time t = 0 and survives until the end (i.e., time t = T ) and the smallest
bar was born at time t = 0 and survives until t = r = mini,j d(vi, vj). Fixed
the number of bars in the persistence barcode and the maximum and minimum
lengths of the bars, T and r, the following result shows the lengths of the rest of
the bars that provide the minimum persistent entropy. This result will be very
useful in the next section to detect topological features.

Theorem 13 Let L = {`1, . . . , `n} such that `1 = T , `i ≥ `i+1 for 1 ≤ i < n
and `n = r. Let M = {T, Q. . ., T, r, n−Q. . . , r}. Then

E(L) ≥ E(M) for Q =
[
αn(α−1−log(α))

(α−1)2

]
being α = r

T .

Proof. First, fixed n, T and r, Let pi = li
SL

. Since the entropy is a concave
function in

Ω =

{
(p1, p2, . . . pn) |

n∑
i=1

pi = 1,
1

(n− 1) + α
< pi < p1 <

1

(n− 1)α+ 1

}
,

being α = r
T , the minimum is attained at an extremal point of Ω. Let

P = (p1, i. . ., p1, αp1, n−i. . . , αp1), with 1 < i < n,

be an extremal point. Since
n∑
i=1

pi = 1, then p1 = 1
i+α(n−i) and the entropy of

P is:

E(P ) = log(αn) + log(1 +
i(1− α)

αn
)−

log( 1
α )

1 + (ni − 1)α
.

Consider t = i
n ∈ (0, 1), then:

E(P ) = E(t) =
α(1− t) log( 1

α )

α(1− t) + t

The derivative of E(t) is null for:

t0 =
α log( 1

α )− α(1− α)

(1− α)2

So the minimum entropy is attained for

Q = [nt0] =

[
n
α log( 1

α )− α(1− α)

(1− α)2

]
.

Taking in account that p1 = T , the barcode with l1 = T and ln = r with
minimum entropy is M = {T, Q. . ., T, r, n−Q. . . , r}. 2

In the following proposition, we establish the maximum entropy we can reach
for n bars fixing the the maximum and minimum lengths of the bars.
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Proposition 14 Fixed n, T and r, Let L = {`1, . . . , `n} such that `1 = T ,
`i ≥ `i+1 for 1 ≤ i < n and `n = r. Let

M ′ = {T, b, n−2. . . , b, r}, where b = Tαα/(1+α) and α = r
T .

Then E(L) ≤ E(M ′).

Proof. First, reorder the list L = {`2, . . . , `n, `1} and then neutralize the bars
`j for 2 ≤ j ≤ n − 1. By Th. 8, the new values that provide the maximum
entropy are:

`′j = TT/(r+T )rr/(r+T ) = T 1/(α+1)rα/(α+1) = Tαα/(α+1).

2

Th. 13 and Prop. 14 confirm that the possible values of the persistent
entropy B(F ) of a filtration F associated to a PCD V is highly influenced by
the number n of bars in B(F ) and the rate between the minimum and maximum
persistence entropy that we can reach with n bars. This rate is also influenced
by the minimum distance r between two points in the PCD and the radius 2T of
V . Now, given a persistence barcode L with n bars, maximum length of the bars
equal to T and minimum length equal to r, the relative entropy E(L)/E(M ′),
being M ′ the possible maximum entropy with same data n, r and T , allows us
to compare two persistence barcodes with different numbers of bars. Finally,
observe that the value of Q in Th. 13 gives us a quantity of the maximum
number of topological features we can find fixing the length of the persistence
barcode and the maximum and minimum length of the bars.

15 Separating topological features from noise

Let us start now with a PCD V = {v1, . . . , vm} in Rd from a distribution
P supported on a topological space C. Suppose the Vietoris-Rips filtration

VRV is computed from V (being T =
mini maxj d(vi,vj)

2 ), and the persistence
barcode B(VRV ) is computed from VRV . The following are the steps of our
proposed method, based on persistent entropy, to separate topological noise
from topological features in the persistence barcode B(VRV ), estimating, in
this way, the topology of C.

Procedure 16 Computing topological features from the persistent barcode of
the Vietoris-Rips filtration of a given PCD in Rd.

Input: A PCD V = {v1, . . . , vm} in Rd, its Vietoris-Rips filtration VRV =
{VRV (t) | t ≤ T} and its associated persistence barcode B(VRV ) = {[xi, yi)
| 1 ≤ i ≤ n}.

1. Sort the lengths of the bars in B(VRV ) in decreasing order, except for
the longest bar (whose length is equal to T ) to obtain L = {`1, . . . , `n}
such that `n = T ≥ `1 and `i ≤ `j ≤ `n−1 = r = mini,j d(vi, vj) for
1 ≤ i < j < n− 1.
Initially, L′0 := L and n′ := n.
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2. For i = 1 to i = n′ − 2 do:

a. Compute the persistent entropy E(L′i) for L′i = {`′1, . . . , `′i, `i+1, . . . ,

`n′}, being `′j =
P ′i

eE(R′
i
)

for 1 ≤ j ≤ i as in Th. 8.

b. Compute

C =
SL′i−1

SL′i
=
P ′i−1 + (i− 1)

P ′i−1

e
E(R′

i−1
)

P ′i + i
P ′i

eE(R′
i
)

and Q =

[
αn′(α− 1− log(α))

(α− 1)2

]
being α = r

T .

while C ≥ 1.

3. If Q < i, then the bars [xj , yj) with i < j < n − 1 represent noise in the
pesistence barcode. Redefine L′0 := L′0 \ {`i+1, . . . , `n′−2} and n′ := i + 2.
Go to step 2.
Else, the bars of B(V RV ) with lengths in the set {T, `1, . . . , `i} represent
topological features of VRV .

• Output: The bars of B(V RV ) that represent topological features of VRV .

The following result guarantees the end of the while-loop in Proc. 16.

Theorem 17 Fixed n′ in Proc. 16, there always exists a value i, 1 ≤ i ≤ n′−2,

such that C =
SL′

i−1

SL′
i

< 1 except when T = r (which corresponds to a uniform

distribution and, in this case, Q = n′).

Proof. Observe that L′n′−2 = {b, n
′−2· · · b, r, T} for b as in Prop. 14.

First, if SL′0 < SL′
n′−2

then:

SL′0
SL′

n′−2

=
SL′0
SL′1
· · ·

SL′i−1

SL′i
· · ·

SL′
n′−3

SL′
n′−2

< 1.

Then, there exists i, 1 ≤ i ≤ n′ − 2, such that
SL′

i−1

SL′
i

< 1.

Second, if SL′0 ≥ SL′
n′−2

, since SL′
n′−2

= (n′ − 2)b + r + T then there exists i,

1 ≤ i ≤ n′ − 2, such that `j ≥ b for j ≤ i and `j < b for i < j ≤ n′ − 2. Then,
it is enough to prove that SL′i < SL′

n′−2
. By Th. 8, we have that:

SL′i =

i∑
j=1

`′i + P ′i = i

n′∏
j=i+1

`
`j/P

′
i

j + P ′i = i

n′−2∏
j=i+1

`
`j/P

′
i

j TT/P
′
i rr/P

′
i + P ′i .

Observe that P ′i < (n′ − i − 2)b + r + T , since `j < b for i < j ≤ n′ − 2. Now,
let us prove that

n−2∏
j=i+1

`
`j/P

′
i

j TT/P
′
i rr/P

′
i < b,

12



which, taking the log of both sides, is equivalent to prove that:

n′−2∑
j=i+1

`j
P ′i

log(`j) +
T

P ′i
log(T ) +

r

P ′i
log(r) <

T

T + r
log(T ) +

r

T + r
log(r).

Replacing P ′i by
∑n′−2
j=i+1 `j + r + T and simplifying, we have to prove that

n′−2∑
j=i+1

`j log(`j) <
T log(T ) + r log(r)

T + r

n′−2∑
j=i+1

`j .

Since, for i + 1 ≤ j ≤ n′ − 2, `j < b, then log(`j) <
T log(T )+r log(r)

T+r which
concludes the proof. 2

Observe that, in Proc. 16, for 1 ≤ i ≤ n′, E(L′i) is the entropy of the barcode
obtained by replacing the first i bars of L′i by i bars that maximize the entropy.
Observe that E(L′i) ≤ E(L′j) for 1 ≤ i < j ≤ n′ by Th. 8. Then, the idea
of the algorithm is to successively neutralize bars (using Th. 8) except for the
longest and the shortest ones that are intrinsic in the nature of the filtration.

We do it until C =
SL′

i−1

SL′
i

is less than 1. What we measure with C is the

change of the probability associated to the long bar [0, T ) which, in step i, is

p
(i)
n = T

SL′
i

. Observe that if a long bar is neutralize at step i, then p
(i−1)
n ≤ p(i)n ,

since neutralization in this case means to shorten the bar `i which produces an
increase of the probability of the longest bar. On the other hand, if a short

bar is neutralize at step i, then p
(i−1)
n > p

(i)
n , since neutralization in this case

means to elongate the bar `i. In this last case, all the bars from `i+1 to `n′−2
are considered noise and removed from L′0. We remove noise successively until
the maximum number of topological features (computed as Q using Th. 13) is
reached. Then, the algorithm ends.

Observe that this method is different from the one presented in [10]. In that
paper, in order to appreciate the influence of the current length `i in the initial
persistent entropy E(L), we divided E(L′i)−E(L′i−1) by log(n)−E(L) to obtain

Hrel(i). Then, we compare Hrel(i) with i
n since Hrel(i) is affected by the total

number of lengths and the number of lengths we are replacing. Nevertheless, the
threshold i

n was taken based on experimentation. In this paper, the constants
C and Q and the thresholds C < 1 are founded on the mathematical results
Th. 13, Prop. 14 and Th. 17.

We have applied our methodology to three different scenarios. First, we
take 30 data points sampled from a circle of radius 1 (see Fig. 3.Left). This
example has been taken from paper [9]. Vietoris-Rips complex for t = 0.25
can be deduced from the picture shown in Fig. 3.Middle which consists of
two connected components and zero loops. Looking at Vietoris-Rips complex
for t = 0.4 (see Fig. 3.Right), we assist at the birth and death of topological
features: at t = 0.4, one of the connected components has died (was merged
with the other one), and a loop appears; this loop will die at t = 1, when
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Figure 3: Left: 30 data points sampled from a circle of radius 1. Middle: Balls
of radius 0.25 centered at the sample points. Right: Balls of radius 0.4 centered
at the sample points.

Figure 4: Barcodes (separated by dimension) computed from the Vietoris-Rips
filtration associated to a point cloud lying on a 3D torus. Left: lifetimes of
connected components. Middle: lifetimes of tunnels. Right: lifetimes of voids.

the union of the pink balls representing the distance function becomes simply
connected. In Table 1.Top, we have applied our method to the bars that make up
the persistence barcode (without differentiating dimension). This way, only the
bars with length 1 (that corresponds to the connected component that survives
until the end) and 0.6 (that correspond to the loop that appears at t = 0.4
and disappears at t = 1) are considered topological features. Later, in Table
1.Bottom, we have applied our method to the bars that make up the persistence
0-barcode (i.e., the lifetime of the connected components along the filtration).
This way, the bars with length 1 and 0.35 (that corresponds to the connected
components that dies just before the loop is created) are considered topological
features.

Second, consider now a set V of 400 points sampled from a 3D torus. The
barcodes (separated by dimension) computed from the Vietoris-Rips filtration
associated to V are showed in Fig. 4. We have applied our method to the
0-barcode (lifetime of connected components along the V-R filtration) and the
1-barcode (lifetime of loops along the V-R filtration). See Table 2. The bar of
length 1.9 in the tables corresponds to the connected component that survives
until the end. The bars of length 1.531 correspond to the two tunnels of the
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Iteration n′ Q E(L′)/E(M ′) α
1 30 5 0.93451 0.05

`i `′i C E(L′i)/E(M ′) Feature?
1. 0.0412134 1.06692 0.944278 yes
0.6 0.0409925 1.0259 0.945869 yes
0.35 0.0409923 1.00065 0.945870 yes
0.225 0.0409921 1.00071 0.945872 yes
0.225 0.0409835 0.995049 0.945934 yes
0.2 0.0409741 0.99457 0.946002 no
0.2 0.0409637 0.994018 0.946077 no
. . . . . . . . . . . . . . .

Iteration n′ Q E(L′)/E(M ′) α
2 6 1 0.917626 0.05

`i `′i C E(L′i)/E(M ′) Feature?
1. 0.2165 1.03422 0.918784 yes
0.6 0.213219 0.900062 0.927951 yes
0.35 0.20185 0.806752 0.960854 no
0.225 0.18911 0.746703 1. no
. . . . . . . . . . . . . . .

Table 1: Results of our method applied to the barcode obtained from the PCD
showed in Fig. 3 consisting of 30 data points sampled from a circle of radius 1.
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Figure 5: Left: A PCD V in R3 composed by 139 points. Right, from top to
bottom: 0-, 1- and 2-dimensional persistence barcode of V RV .

3D torus. In Table 2.Bottom we show the results of our method applied to
all the bars of the persistence barcode without separating by dimensions. We
can see in this case that we obtain as topological features the length of the bar
representing the connected component, the ones representing the two tunnels
and the one representing the void. In Table 2.Top (resp. Table 2.Middle), we
show the results of our method applied to the bars of the 0-dimensional (resp.
1-dimensional) persistence barcode. Observe that the results are consistent with
the ones obtained in Table 2.Bottom.

Finally, consider a PCD V of 76 points in R3. The barcodes (separated
by dimension) computed from the Vietoris-Rips filtration associated to V are
showed in Fig. 5.Right. In Table 3.Top, we have applied our method to the
0-barcode and in Table 3.Bottom, the method is applied to all the bars of the
barcode without differentiating by dimension. We can see that in both cases we
obtain 5 topological features. The idea is that, compared to the longest bars in
the 0-barcode, the bars in the 1- and 2-barcodes are considered noise: The two
tunnels and the one representing the void. This example shows that, since bars
in higher dimensions than 0 are noise, the results obtained with our method are
independent on applying it on the whole set of bars of the persistence barcode
or separating the bars by dimension.

18 Conclusions and future work

Vietoris-Rips complexes are a fundamental tool in topological data analysis,
they allow to build a topological space from higher dimensional data-set embed-
ded in a metric space [15]. The resulting complex is then studied by persistent
homology. In order to provide a summary of the information provided by per-
sistent homology new statistics have been defined. Among the statistics, we put
our focus on a Shannon-like entropy that is known as persistent entropy. Persis-
tent entropy records how much is ordered the construction of a topological space.
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Iteration n′ Q E(L′)/E(M ′) α
1 400 47 0.993675 0.0521053
2 286 34 0.995459 0.0521053
3 154 19 0.993659 0.0521053
4 40 5 0.977194 0.0521053

`i `′i C E(L′i)/E(M ′) Feature?
1.9 0.0270463 0.997193 0.977234 yes

0.396 0.0270402 0.996476 0.977294 no
0.387 0.0270339 0.996296 0.977357 no
. . . . . . . . . . . . . . .

Iteration n′ Q E(L′)/E(M ′) α
1 177 5 0.893511 0.00587851
2 50 2 0.904135 0.00587851
3 6 1 0.796461 0.00587851

`i `′i C E(L′i)/E(M ′) Feature?
1.531 0.264348 1.22428 0.822957 yes
1.531 0.242872 0.791795 0.875366 yes
0.27 0.221058 0.751341 0.933577 no
0.261 0.198549 0.703848 1. no
. . . . . . . . . . . . . . .

Iteration n′ Q E(L′)/E(M ′) α
1 578 47 0.969019 0.00473684
2 429 9 0.988556 0.00473684
3 306 7 0.989757 0.00473684
4 179 4 0.985682 0.00473684
5 43 1 0.95329 0.00473684

`i `′i C E(L′i)/E(M ′) Feature?
1.9 0.0268932 1.05166 0.961183 yes

1.531 0.0259429 1.05987 0.970746 yes
1.531 0.0253107 1.04887 0.977304 yes
1.234 0.0253068 0.996996 0.977345 yes
0.396 0.025301 0.99627 0.977407 no
0.387 0.0252948 0.996079 0.977471 no
. . . . . . . . . . . . . . .

Table 2: Results of our method applied to the persistence barcodes of the
Vietoris-Rips filtration obtained from 400 points sampled from a 3D torus. In
the table on the top, only bars in the 0-dimensional pesistence barcode are
taken into account. In the table on the middle, only bars in the 1-dimensional
pesistence barcode are considered. In the table on the bottom, the bars of
persistence barcodes of dimension 0, 1 and 2 are considered altogether.
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Iteration n′ Q E(L′)/E(M ′) α
1 76 9 0.857307 0.05

`i `′i C E(L′i)/E(M ′) Feature?
42.4484 0.023405 1.06815 0.869108 yes
31.8363 0.0219565 1.08028 0.883896 yes
31.8363 0.0202248 1.09583 0.902912 yes
31.8363 0.0181347 1.11616 0.928160 yes
31.8363 0.0181326 0.997812 0.928187 yes
4.24484 0.0181304 0.997733 0.928215 no
4.24484 0.0181281 0.99765 0.928244 no

. . . . . . . . . . . . . . .

Iteration n′ Q E(L′)/E(M ′) α
1 98 12 0.870766 0.05
2 30 4 0.852821 0.05

`i `′i C E(L′i)/E(M ′) Feature?
42.4484 0.023405 1.06815 0.861170 yes
31.8363 0.0219565 1.08028 0.8725486 yes
31.8363 0.0202248 1.09583 0.888921 yes
31.8363 0.0181347 1.11616 0.914344 yes
31.8363 0.0181326 0.997812 0.916294 yes
4.24484 0.0181304 0.997733 0.918325 no
4.24484 0.0181281 0.99765 0.920440 no

. . . . . . . . . . . . . . .

Table 3: Results of our method applied to the PCD showed in Fig. 5.
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In this paper, we discuss several properties of the persistent entropy when it is
computed on the persistence barcode of a given Vietoris-Rips filtration. The
first property demonstrates the relations between persistent entropy and the
bottleneck distance, that is a well known measures for comparing persistence
barcodes. This is a preliminary results for assuring that persistent entropy is a
stable measure for dealing with Vietoris-Rips complexes. Moreover, the compu-
tation of persistent entropy is less computational expensive with respect to the
bottleneck distance. Because the construction of Vietoris-Rips depends on the
choice of the upper bound of a parameter, we identify a new quantity that can
be used for and we hope this can be a signpost by the reader when he/she starts
to investigate the construction of the Vietoris-Rips complexes. By introduc-
ing this quantity we are able to define a new methodology based on persistent
entropy for identifying which are true topological features and which must be
considered noisy topological features. We apply the methodology on a couple
of examples. Briefly, the method is an iterative algorithm that at the i-th step
replaces the first i bars by the same number of bars but with the length that
maximizes the entropy. This way we “neutralize” the effect of such i bars and
we can deduce if the bar at position i is a topological feature or not.
As future works we are planning to extend the properties to the Witness com-
plexes, that are roughly speaking a way for computing the Vietoris-Rips com-
plexes from very large data-set. This will allow us to use our method for studying
biological data as well as RNA data for differentiating healthy cells from un-
healthy cells [16, 17]. We argue the method will let to highlight the topological
features that are formed by the most relevant genes associated to pathologies.
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