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1 Introduction and preliminaries

This work is connected with the Parameter Free Paris-Friedman’s Conjecture:

L∆−
n+1 ⇐⇒ I∆−

n+1

The relationships among the schemas of induction, minimalization and collection for
formulas in the classes of the Arithmetical Hierarchy (Σn, Πn) has been studied by
J. Paris and L. A. Kirby. The parameter free versions of these schemas have been
studied by R. Kaye, J. Paris and C. Dimitracopoulos.

The aim of this paper is to study the quantifier complexity of L∆−
n+1 and some

relations between this theory and the class of the Πn+1 true sentences. We prove that
the following hold (see below for notation):

(a) L∆−
n+1 is Σn+2-axiomatized but is not Πn+2-axiomatizable.

(b) L∆−
n+1 is not finitely axiomatizable.

(c) L∆−
1 |=⇒ I∆0. For n ≥ 1, IΣn⇐⇒‖ L∆−

n+1.

(d) Let T be an extension of I∆0 such that ThΠ2(T ) =⇒ L∆−
1 and T + exp is

consistent. Then ThΠ1(T + exp) = ThΠ1(N ).
(e) For n ≥ 1, ThΠn+1 (N ) is (up to equivalence) the unique theory Πn+1-axio-

matized that is an extension of L∆−
n+1.

Part (e) is proved in [5] for IΠ−
n+1. Since, IΠ−

n+1 is a proper extension of L∆−
n+1,

the property given in (e) improves that result. Properties (a) – (c) and weak versions
of (d) and (e) are also true for I∆−

n+1.
Now we give the notation and the main results that we use through this paper.
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We work in the usual first-order language of Arithmetic, L = {0, 1, + , · , <}.
We denote by N the standard model of L whose universe is the set of the natural
numbers, ω, and the usual interpretation for nonlogical symbols of L. Bounded quan-
tifiers, denoted by (∀x ≤ t)ϕ(x) and (∃x ≤ t)ϕ(x), are, respectively, the formulas
∀x [x ≤ t→ ϕ(x)] and ∃x [x ≤ t ∧ ϕ(x)] (where x does not occur in t). The arithmetic
hierarchy is the following classes of formulas of L: ∆0 = Σ0 = Π0 is the class of all
bounded formulas,

Σn+1 = {∃	xϕ(	x ) : ϕ(	x ) ∈ Πn} and Πn+1 = {∀	xϕ(	x ) : ϕ(	x ) ∈ Σn}.
By P− we denote a finite set of Π1 axioms such that if A � P−, then A is the

nonnegative part of a commutative discretely ordered ring (see [4] for details). Let
ϕ(x,	v ) be a formula of L. The induction axiom and the least number principle axiom
for ϕ(x,	v ) with respect to x are, respectively, the formulas

Iϕ,x(	v )≡ϕ(0, 	v ) ∧ ∀x [ϕ(x,	v )→ ϕ(x+ 1, 	v )]→ ∀xϕ(x,	v ),
Lϕ,x(	v )≡∃xϕ(x,	v )→ ∃x [ϕ(x,	v ) ∧ (∀y < x)¬ϕ(y,	v )].

Let ϕ(x, y, 	v ) be a formula of L. The collection axiom for ϕ with respect to x, y is
the formula Bϕ,x,y(z, 	v ) ≡ (∀x ≤ z)∃y ϕ(x, y, 	v ) → ∃u(∀x ≤ z)(∃y ≤ u)ϕ(x, y, 	v ).
As usual, we write Iϕ instead of Iϕ,x and similarly we use Lϕ and Bϕ. The axiom
schemas IΓ, LΓ and BΓ, where Γ is a class of formulas of L, are defined as follows:

IΓ ≡ P− + {Iϕ : ϕ ∈ Γ}, LΓ ≡ P− + {Lϕ : ϕ ∈ Γ}, BΓ ≡ I∆0 + {Bϕ : ϕ ∈ Γ}.
Now we consider schemas for parameter free formulas. Let Γ be a class of formulas.
We write ϕ(x1, . . . , xn) ∈ Γ− if ϕ ∈ Γ and x1, . . . , xn are all the variables that occurs
free in ϕ. Schemas IΓ− and LΓ− are defined in a similar way. The schema BΓ− is
defined by BΓ− = I∆0 + {B−

ϕ,x,y : ϕ(x, y) ∈ Γ−}, where

B−
ϕ,x,y ≡ ∀x∃y ϕ(x, y)→ ∀z∃u(∀x ≤ z)(∃y ≤ u)ϕ(x, y).

One of the basic functions used to describe metamathematical properties in the
language of arithmetic, such as truth predicates, is the exponential function. We will
denote by E(x, y, z) a ∆0-formula which defines the exponential in the standard model,
I∆0 proves that it verifies the elementary properties of the exponential function and
IΣ1 proves that it is total (see [2] for details). We will usually write xy = z instead
of E(x, y, z) and will denote by exp the Π2 sentence ∀x∀y∃z E(x, y, z).

Let T , T ′ be theories. In the following we shall write

T =⇒ T ′ if T is an extension of T ′;
T =⇒| T ′ if T is not an extension of T ′;
T ⇐⇒‖ T ′ if T =⇒| T ′ and T ′ =⇒| T ;
T ⇐⇒ T ′ if T and T ′ are equivalent;
T |=⇒ T ′ if T is a proper extension of T ′.

Let T be a theory and let Γ be a class of formulas. We denote by ThΓ(T ) the class of
the sentences of Γ which are provable in T , that is, ThΓ(T ) = {ϕ ∈ Γ ∩ Sent : T � ϕ}.
We say that T is Γ-axiomatizable if T ⇐⇒ ThΓ(T ). If A is a model we denote by
Th(A) the theory of A, that is, Th(A) = {ϕ ∈ Sent : A � ϕ}. We write ThΓ(A)
instead of ThΓ(Th(A)).



The collection axioms show how we can deal with bounded and unbounded quan-
tifiers. The relationships among the axiom schemas of induction, least number prin-
ciple and collection for the class of formulas Σn and Πn were studied by J. Paris
and L. Kirby (see [2] and [4]). The parameter free versions of these schemas were
studied by R. Kaye, J. Paris and C. Dimitracopoulos (see [3] and [5]). We now
give some results on these theories.

T h e o r e m 1.1.
(a) IΠ−

1 |=⇒ L∆−
0 ⇐⇒ I∆−

0 ⇐⇒ I∆0.
(b) For all n ∈ ω,
(1) IΣn+1 |=⇒ BΣn+1 |=⇒ BΣ−

n+1 |=⇒ IΣn

⇓ ⇑
IΠ−

n+2 |=⇒ IΣ−
n+1 ⇐⇒ LΠ−

n+1 |=⇒ IΠ−
n+1 ⇐⇒ LΣ−

n+1

(2) BΣn+1⇐⇒‖ IΠ−
n+2⇐⇒‖ IΣn+1;

(3) IΣ−
n+1⇐⇒‖ BΣn+1⇐⇒‖ IΠ−

n+1⇐⇒‖ BΣ−
n+1.

Let A � P− and n ∈ ω. Then Kn(A) is the substructure of A whose universe is
the set {b ∈ A : b is Σn-definable in A}.

T h e o r e m 1.2.

(a) If A � IΣ−
n is nonstandard, then Kn+1(A) � IΣn and Kn+1(A) ≺n+1 A.

(b) Let A � IΣn+1 such that Kn+1(A) is nonstandard. Then Kn+1(A) � BΣn+1.

Let us also introduce the following scheme: BsΓ− = I∆0+{Bϕ,x,y : ϕ(x, y) ∈ Γ−}.
From [5, Proposition 1.7] we have

L e m m a 1.3. IΣ−
n+1 =⇒ Bs Σ−

n+1 ⇐⇒ Bs Π−
n =⇒ BΣ−

n+1.
Now we introduce the axiom schemas for ∆n+1 formulas.

I∆n+1 = P− + {∀x [ϕ(x,	v )↔ ψ(x,	v )]→ Iϕ,x(	v ) : ϕ ∈ Σn+1, ψ ∈ Πn+1},
L∆n+1 = P− + {∀x [ϕ(x,	v )↔ ψ(x,	v )]→ Lϕ,x(	v ) : ϕ ∈ Σn+1, ψ ∈ Πn+1},
B∆n+1 = I∆0 + {∀x∀y [ϕ(x, y, 	v )↔ ψ(x, y, 	v )]→ Bϕ,x,y(z, 	v ) :

ϕ ∈ Σn+1, ψ ∈ Πn+1}.
The parameter free schemas, I∆−

n+1 and L∆−
n+1, are defined similarly. It is easy to

see that BΣn+1 ⇐⇒ B∆n+1. We have the following result.
T h e o r e m 1.4. For all n ∈ ω, BΣn+1 ⇐⇒ L∆n+1 =⇒ I∆n+1 |=⇒ IΣn.
R. O. Gandy (see [2]) proved that BΣn+1 ⇐⇒ L∆n+1. For I∆n+1 |=⇒ IΣn

see Corollary 4.5(a). The uniform version of the above fragments for ∆n+1 formulas
are the following theories

UB∆n+1 = I∆0 + {∀x∀	v [∃y ϕ(x, y, 	v )↔ ∀wψ(x, w,	v )]→ ∀z∀	v Bϕ,x,y(z, 	v ) :
ϕ ∈ Πn, ψ ∈ Σn},

UI∆n+1 = P− + {∀x∀	v [ϕ(x,	v )↔ ψ(x,	v )]→ ∀	v Iϕ,x(	v ) : ϕ ∈ Σn+1, ψ ∈ Πn+1},
UL∆n+1 = P− + {∀x∀	v [ϕ(x,	v )↔ ψ(x,	v )]→ ∀	v Lϕ,x(	v ) : ϕ ∈ Σn+1, ψ ∈ Πn+1}.

Theses schemas were introduced by R. Kaye in [3]. It holds the following result
(see [3]).



T h e o r e m 1.5.

IΠ−
n+1 |=⇒ L∆−

n+1 =⇒ I∆−
n+1

⇑ ⇑
UB∆n+1 ⇐⇒ BΣ−

n+1 ⇐⇒ UL∆n+1 =⇒ UI∆n+1

⇑ ⇑ ⇑
BΣn+1 ⇐⇒ L∆n+1 =⇒ I∆n+1

We also have

(a) For n > 0, UI∆n+1 |=⇒ I∆−
n+1. (b) For n > 0, L∆−

n+1 =⇒| UI∆n+1.

(c) I∆−
n+1 =⇒| UL∆n+1.

In a preprint, H. Friedman claimed (about 1985) that L∆n+1 and I∆n+1 are
equivalent (see [2, p. 398]). In [1] this equivalence appears as an open problem (Prob-
lem 34) and it is credited to J. Paris. We have the following open problems.

· The Paris-Friedman’s Conjecture: L∆n+1 ⇐⇒ I∆n+1.
· The Parameter Free Paris-Friedman’s Conjecture: L∆−

n+1 ⇐⇒ I∆−
n+1.

· The Uniform Paris-Friedman’s Conjecture: UL∆n+1 ⇐⇒ UI∆n+1.

The remainder of this paper is organized as follows. In Section 2 we study the quan-
tifier complexity and finite axiomatizability of L∆−

n+1. In Section 3 we study the
relationship between L∆−

n+1 and the Πn+1-theory of N . Section 4 is devoted to ob-
tain for I∆−

n+1 similar results to those obtained for L∆−
n+1. Finally, we close this

paper with some open problems.

2 Quantifier complexity of L∆−
n+1

First we prove some properties that will be useful in the following.
L e m m a 2.1.

(a) Let T be a consistent theory such that ThΠn+1(N ) ⊆ ThΠn+1(T ). Then we have
ThΠn+1 (N ) = ThΠn+1(T ).
(b) ThΠn+1(N ) |=⇒ IΠ−

n+1.

P r o o f . The crucial fact for the proof is that for all model A,

(∗) A � ThΠn+1 (N ) iff N ≺n+1 A.

(a). Let T be a theory such that ThΠn+1(N ) ⊆ ThΠn+1(T ), let ϕ ∈ ThΠn+1(T )
and let A � T . Then A � ThΠn+1(N ). Hence, by (∗), N ≺n+1 A. Since A � ϕ, from
this follows that N � ϕ, that is, ϕ ∈ ThΠn+1(N ).

(b). Since IΠ−
n+1 has a recursive set of Σn+2 axioms and ThΠn+1 (N ) is a Π0

n+1-
complete set, the result follows from (∗). ✷

The following result is essentially Proposition 1.9 of [5].
L e m m a 2.2. Let A be a model in which every element is Σn+1-definable. Then

(a) A � BΣn+1 iff A � BΣ−
n+1; (b) A � L∆n+1 iff A � L∆−

n+1.



P r o p o s i t i o n 2.3. Let T be a consistent extension of IΣn+1. The following
conditions are equivalent:

(a) ThΠn+1(T ) = ThΠn+1(N ).
(b) ThΠn+1(T ) =⇒ IΠ−

n+1.
(c) ThΠn+1(T ) =⇒ L∆−

n+1.

(d) ThΠn+2(T ) =⇒ L∆−
n+1.

P r o o f . The implication (a)⇒ (b) follows from Lemma 2.1(b). The implication
(b)⇒ (c) follows from IΠ−

n+1 ⇐⇒ LΣ−
n+1 =⇒ L∆−

n+1. The implication (c)⇒ (d) is
trivial. To prove the implication (d)⇒ (a) by way of contradiction suppose that
ThΠn+1 (T ) �= ThΠn+1(N ). Then, by Lemma 2.1(a), there exists a nonstandard
model A of T such that A � ThΠn+1(N ). Let ϕ(x) ∈ Σn such that N � ∀xϕ(x)
and A � ∃x¬ϕ(x). Then Kn+1(A) is nonstandard. So, by Theorem 1.2(b) and Theo-
rem 1.4, Kn+1(A) � L∆n+1. Since every element of Kn+1(A) is Σn+1-definable, then,
by Lemma 2.2,

(∗∗) Kn+1(A) � L∆−
n+1.

Since A � IΣn+1, by Theorem 1.2(a),Kn+1(A) ≺n+1 A. Thus, Kn+1(A) � ThΠn+2 (T ).
So, from (d) and (∗∗) we get the desired contradiction. ✷

T h e o r e m 2.4. (a) L∆−
n+1 is Σn+2-axiomatized but is not Πn+2-axiomatizable.

(b) L∆−
n+1 is not finitely axiomatizable.

P r o o f .
(a). It is clear that L∆−

n+1 is Σn+2-axiomatized. We also have that IΣn+1 =⇒
L∆−

n+1 and, by Proposition 2.3, ThΠn+2(IΣn+1) =⇒| L∆−
n+1. Hence, L∆−

n+1 is not
Πn+2-axiomatizable.

(b). Suppose that L∆−
n+1 is finitely axiomatizable. Since ThΠn+1 (N ) =⇒ L∆−

n+1,
then there exists a recursively axiomatized consistent extension T of IΣn+1 such that
ThΠn+2 (T ) =⇒ L∆−

n+1. Then, by Proposition 2.3(a), ThΠn+1(T ) = ThΠn+1 (N ).
But ThΠn+1 (T ) is recursively enumerable, and ThΠn+1(N ) is Π0

n+1-complete, which
provides the desired contradiction. ✷

3 L∆−
n+1 and Πn+1 true sentences

In the following we answer the following questions.
Let T be a theory such that T =⇒ L∆−

n+1.

· Suppose T is Πn+1-axiomatized. Does it hold that T ⇐⇒ ThΠn+1(N ) ?
· Suppose T is Πn+2-axiomatized. Does it hold that ThΠn+1(T ) = ThΠn+1(N ) ?

First we discuss the case n = 0 and then we analyse the case n > 0.
L e m m a 3.1. Let A � I∆0. Then K0(A) is cofinal in K1(A).
P r o o f . Let a ∈ K1(A) and let ψ(x, y) ∈ ∆0 such that

A � ∃y ψ(a, y) ∧ ∃!x ∃y ψ(x, y).

Since K1(A) ≺1 A, there exists b ∈ K1(A) such that K1(A) � ψ(a, b). So, (where J is
Cantor’s pairing function) K1(A) � ∃z(∃x ≤ z)(∃y ≤ z) [z = J(x, y) ∧ ψ(x, y)]. This
formula is also true in A. Let θ(z) ∈ ∆0 be (∃x ≤ z)(∃y ≤ z) [z = J(x, y) ∧ ψ(x, y)].
So, there is c ∈ A such that A � θ(c) ∧ (∀z < c)¬θ(z). So, c ∈ K0(A) and a ≤ c. ✷



T h e o r e m 3.2. Let T be an extension of I∆0 such that (i) T + exp is consistent
and (ii) ThΠ2(T ) =⇒ L∆−

1 . Then ThΠ1(T + exp) = ThΠ1(N ).
P r o o f . By way of contradiction suppose that the theorem’s conclusion is false.

Then, by (i) and Lemma 2.1, there exists ϕ(x) ∈ ∆0 such that N � ∀x¬ϕ(x) and
T + exp � ∀x¬ϕ(x). Let A � T + exp + ∃xϕ(x). It is clear that A and K1(A) are
nonstandard, and K1(A) � ThΠ2(T + exp + ∃xϕ(x)). We also have

C l a i m . K1(A) � L∆−
1 .

P r o o f . Every element of K1(A) is Σ1-definable in K1(A). So, by Lemma 2.2 and
Theorem 1.4, it is enough to see that K1(A) � BΣ1. Let a, d ∈ K1(A) nonstandard.
Since K1(A) � I∆0 + exp, we have that

(∗) K1(A) � (∀u ≤ d+ 1)(∃w ≤ d)∃x [(∀z < x)¬V0(w, 〈z〉, 2(z+2)a

)
∧V0(w, 〈x〉, 2(x+2)a

) ∧ u = (x)0],

where V0(v1, v2, v3) ∈ ∆0 is a truth definition for ∆0 formulas whose properties are
provable in I∆0+exp (see [2] for details). [This follows from the proof of Lemma 3.1.
Let u ∈ K1(A) such that u ≤ d+ 1 and let ∃y ψ(x, y) ∈ Σ1 be a formula that defines
u in A. Let w ∈ ω be the Gödel number of (∃x ≤ z)(∃y ≤ z) [z = J(x, y) ∧ ψ(x, y)].
Since d is nonstandard, w ≤ d and satisfies (∗).] Now suppose that K1(A) � BΣ1.
Then there exists c ∈ K1(A) such that

K1(A) � (∀u ≤ d+ 1)(∃w ≤ d)(∃x < c)[(∀z < x)¬V0(w, 〈z〉, 2(z+2)a

)
∧V0(w, 〈x〉, 2(x+2)a

) ∧ u = (x)0].

This gives an injective ∆0-map from (≤ d + 1) to (≤ d). Since K1(A) � I∆0 + exp,
this contradicts the Pigeon-hole principle for (coded) ∆0-functions in I∆0 + exp
(see [2]). ✷ Claim

Since K1(A) � ThΠn+2 (T ), the claim and (ii) provide the desired contradiction. ✷

R e m a r k 3.3. We have that for all A � IΠ−
1 , K1(A) � I∆0 + exp (see [5, Theo-

rem 2.9]). So, with a proof similar to the one given for Theorem 3.2, we have
C l a i m 3.3.1. If T is a consistent theory such that ThΠ2(T ) =⇒ IΠ−

1 , then
ThΠ1(T ) = ThΠ1(N ).

This improves Theorem 3.2 for IΠ−
1 .

C o r o l l a r y 3.4.

(a) I∆0 =⇒| L∆−
1 , hence, L∆−

1 |=⇒ I∆0. (b) If n > 0, then IΣn⇐⇒‖ L∆−
n+1.

(c) If n > 0, then L∆−
n+1 =⇒| UI∆n+1 |=⇒ I∆−

n+1 =⇒| IΣn.

P r o o f .
(a). Let us consider I∆0 + exp. By Theorem 3.2, ThΠ1(I∆0 + exp) =⇒| L∆−

1 .
Since I∆0 is Π1-axiomatized, this proves (a).

(b). Since IΣn is Πn+2-axiomatizable, from Proposition 2.3 for T = IΣn+1 follows
IΣn =⇒| L∆−

n+1. If n > 0, then IΠ−
n+1 =⇒| IΣn and IΠ−

n+1 =⇒ L∆−
n+1. Hence,

L∆−
n+1 =⇒| IΣn.
(c). The assertion I∆−

n+1 =⇒| IΣn follows from (b) and L∆−
n+1 =⇒ I∆−

n+1. The
assertionUI∆n+1 |=⇒ I∆−

n+1 follows fromUI∆n+1 =⇒ IΣn+I∆−
n+1 and the above

property. Finally, L∆−
n+1 =⇒| UI∆n+1 follows from (b), since UI∆n+1 =⇒ IΣn. ✷



C o r o l l a r y 3.5. Let T be a consistent Π2-axiomatized extension of I∆0 such
that T � exp. Then the following conditions are equivalent:

(a) ThΠ1(T ) = ThΠ1(N ); (b) T =⇒ IΠ−
1 ; (c) T =⇒ L∆−

1 .

R e m a r k 3.6. Now we generalize Proposition 2.3 and Theorem 3.2 to extensions
of IΣ−

n for n ≥ 1. In the following let A � IΣ−
n with n ≥ 1. We first characterize a

subset of Kn+1(A) that plays the same role with respect of Kn+1(A) that K0(A) plays
with respect to K1(A).

D e f i n i t i o n (McAloon). We say that a ∈ A is Πn-minimal in A if there is
ϕ(x) ∈ Π−

n such that A � ϕ(a) ∧ (∀x < a)¬ϕ(x). Let

Mn(A) = {a ∈ A : a is Πn-minimal in A}.
C l a i m 3.6.1. (a)Mn(A) ⊆ Kn+1(A). (b)Mn(A) is cofinal in Kn+1(A).
P r o o f .
(i). By Lemma 1.3, if ϕ(x) ∈ Π−

n , then the formula ϕ(x) ∧ (∀y < x)¬ϕ(y) is
∆n+1 in IΣ−

n . So, (i) holds.
(ii). Let a ∈ Kn+1(A) and let ψ(x, y) ∈ Π−

n such that

A � ∃y ψ(a, y) ∧ ∃!x ∃y ψ(x, y), that is, ∃y ψ(x, y) defines a in A.

Since Kn+1(A) ≺n+1 A, Kn+1(A) � ∃y ψ(a, y). Let b ∈ A such thatKn+1(A) � ψ(a, b).
Then Kn+1(A) � ∃z(∀x, y ≤ z) [z = J(x, y) → ψ(x, y)]. So, from Kn+1(A) ≺n+1 A
follows that A � ψ(a, b) and A � ∃z(∀x, y ≤ z) [z = J(x, y)→ ψ(x, y)]. Let θ(z) ∈ Π−

n

be the formula (∀x, y ≤ z) [z = J(x, y)→ ψ(x, y)]. By Theorem 1.1, A � LΠ−
n . Then

there is c ∈ A such that A � θ(c) ∧ (∀z < c)¬θ(z). Hence, c ∈Mn(A) and a ≤ c. ✷

Now we establish the promised result:
T h e o r e m 3.7. Let n ≥ 1 and let T be a consistent theory. Then the following

conditions are equivalent:
(a) ThΠn+1(T ) = ThΠn+1(N ).
(b) ThΠn+1(T ) =⇒ IΠ−

n+1.
(c) ThΠn+1(T ) =⇒ L∆−

n+1.

(d) ThΠn+2(T ) =⇒ L∆−
n+1.

P r o o f . It is enough to prove that (d) implies (a). By way of contradiction
suppose that (a) is false. Since T is consistent, by Lemma 2.1, there exists ϕ(x) ∈ Π−

n

such that N � ∀x¬ϕ(x) and T � ∀x¬ϕ(x). Let A � T + ∃xϕ(x). It is clear that A
is nonstandard. We also have

C l a i m 3.7.1. Kn+1(A) is nonstandard.
P r o o f . First observe that for every c ∈ A

(∗) if A � ϕ(c), then c is nonstandard.

Since A � ∃xϕ(x) and A � IΣ−
n , then there exists a ∈ A such that

A � ϕ(a) ∧ (∀z < a)¬ϕ(z).

So, a ∈ Mn(A). Then, by Claim 3.6.1(i), a ∈ Kn+1(A). Hence, by (∗), Kn+1(A) is
nonstandard. ✷ Claim

Since Kn+1(A) ≺n+1 A, then Kn+1(A) � ThΠn+2(T + ∃xϕ(x)). Since

ThΠn+2(T ) =⇒ L∆−
n+1 =⇒ IΣ−

n ,

then Kn+1(A) � IΣn. So, it is enough to prove the following



C l a i m 3.7.2. Kn+1(A) � L∆−
n+1.

P r o o f . Since every element of Kn+1(A) is Σn+1-definable, it is enough to see
that Kn+1(A) � BΣn+1. Let d ∈ Kn+1(A) nonstandard. Since Kn+1(A) � IΣn and
n ≥ 1 we have that

(∗∗) Kn+1(A) � (∀u ≤ d+ 1)(∃w ≤ d)∃x [(∀z < x)¬SatΠn(w(ż))
∧ SatΠn(w(ẋ)) ∧ u = (x)0],

where SatΠn(v) ∈ Πn is a truth definition for Πn formulas whose properties are
provable in IΣ1 (see [2] or [4] for details). [This follows from the proof of Claim
3.6.1(ii). Let u ∈ Kn+1(A) such that u ≤ d+1 and let ∃y ψ(x, y) ∈ Σn+1 be a formula
that defines u in A. Let w ∈ ω be the Gödel number of the formula

(∀x, y ≤ z) [z = J(x, y)→ ψ(x, y)].

Since d is nonstandard, then w ≤ d and satisfies (∗∗).] Now suppose that Kn+1(A) �
BΣn+1. Then there is c ∈ Kn+1(A) such that

Kn+1(A) � (∀u ≤ d+ 1)(∃w ≤ d)(∃x < c) [(∀z < x)¬SatΠn(w(ż))
∧ SatΠn(w(ẋ)) ∧ u = (x)0].

From this we obtain an injective Σ0(Σn)-map from (≤ d+1) to (≤ d). This contradicts
the Pigeon-hole principle for coded Σ0(Σn)-maps. ✷ Claim

Since A � ThΠn+2(T ), from Claim 3.7.2 and (d) we obtain the desired contra-
diction. ✷

An immediate consequence of Theorem 3.7 is
T h e o r e m 3.8. If n ≥ 1, then ThΠn+1(N ) is (up to equivalence) the unique

Πn+1-axiomatized theory that is an extension of L∆−
n+1. ✷

4 The theory I∆−
n+1

Here we shall see that the properties proved above for L∆−
n+1 (or weak versions of

them) are also true for I∆−
n+1. In the following we will use results of K. McAloon [7]

and H. Lessan [6] whose proofs lean upon the Arithmetized Completeness Theorem.
Let A be a model of PA (Peano Arithmetic). The standard system of A, denoted by

SSy(A), is the collection of subsets of ω which are definable in A, that is, X ∈ SSy(A)
if there exist a formula ϕ(x, v) and b ∈ A such that X = {k ∈ ω : A � ϕ(k, b)}. Let T
be a theory and let Γ be a class of formulas. We say that T is coded in A (denoted by
T ∈ SSy(A)) if {�ψ� : ψ is an axiom of T} ∈ SSy(A). We say that T is Γ-definable
in N if there is ϕ(x) ∈ Γ with {�ψ� : ψ is an axiom of T} = {k ∈ ω : N � ϕ(k)}.

We have the following results.
T h e o r e m 4.1 (McAloon). Let T be an extension of PA and let A � T such

that T ∈ SSy(A). Then for every n ∈ ω there exists B � ThΠn+2(T ) such that

(a) B is an n-elementary final extension of A, A ≺en B;
(b) there exist ϕ(x,	v ) ∈ ∆n+1(B) and b ∈ B such that ω = {c ∈ B : B � ϕ(c, b)}.

T h e o r e m 4.2 (McAloon). Let T be an extension of PA consistent with
ThΠn(N ) and Σn+1-definable in N . Then there are a nonstandard model A of
ThΠn+2 (T ) + ThΠn(N ) and ϕ(x) ∈ ∆−

n+1(A) such that ω = {a ∈ A : A � ϕ(a)}.



T h e o r e m 4.3 (Lessan). Let A � PA and let X ⊆ ω nonrecursive. Then for
every k ≥ 1 there exists B � ThΠk(A) + PA such that X ∈ SSy(B).

Now we get a weak version of Theorem 3.7 for I∆n+1.
P r o p o s i t i o n 4.4. Let T be a consistent extension of PA such that (i) T is

recursively axiomatized, or (ii) there exists Γ ⊆ Πk such that T ⇐⇒ PA + Γ. Then
for all n ∈ ω, ThΠn+2(T ) =⇒| I∆n+1.

P r o o f . First we assume (i). Let A � T be nonstandard. Since T is recursively
axiomatized, T is coded in A. Then, by Theorem 4.1, there exists B � ThΠn+2(T )
such that B � I∆n+1, as required.

Now we assume (ii). Let Γ ⊆ Πk be such that T ⇐⇒ PA + Γ and let A � T .
By Theorem 4.3, there exists B � PA + ThΠk(A) such that T ∈ SSy(B). So, by
Theorem 4.1, there exists C � ThΠn+2(T ) such that C � I∆n+1, as required. ✷

C o r o l l a r y 4.5. For all n ∈ ω, (a) I∆n+1 |=⇒ IΣn, (b) ThΠn+2(N ) =⇒| I∆n+1.
P r o o f . Since IΣn is Πn+2-axiomatizable, the assertion (a) follows from Propo-

sition 5.4(i), and (b) is a consequence of Proposition 4.4(ii). ✷

Now we consider the theory I∆−
n+1. From Theorem 4.2 we get

C o r o l l a r y 4.6.

(a) Let T be an extension of PA consistent with ThΠn(N ) and Σn+1-definable in N .
Then ThΠn+2(T ) =⇒| I∆−

n+1.

(b) ThΠn+2(PA) =⇒| I∆−
n+1.

We now study the quantifier complexity of I∆−
n+1.

T h e o r e m 4.7. For all n ∈ ω we have: (a) I∆−
n+1 is Σn+2-axiomatized but is not

Πn+2-axiomatizable. (b) I∆−
n+1 is not finitely axiomatizable.

P r o o f . It is clear that I∆−
n+1 is Σn+2-axiomatized and then from Corollary

4.6(b) we get (a). For (b) let us assume that I∆−
n+1 is finitely axiomatizable. Since

ThΠn+1 (N ) =⇒ I∆−
n+1, then there exists a recursively axiomatized, and so in N

Σ1-definable, extension T of PA such that ThΠn+2 (T ) =⇒ I∆−
n+1. This contradicts

Corollary 4.6(a), which proves (b). ✷

C o r o l l a r y 4.8. (a) I∆−
1 |=⇒ I∆0. (b) For all n > 0, IΣn⇐⇒‖ I∆−

n+1.
P r o o f . Assertion (a) follows from Corollary 4.6(a). Since IΣn is Πn+2-axiom-

atizable, by Corollary 4.6(b), IΣn =⇒| I∆−
n+1. Since L∆−

n+1 =⇒ I∆−
n+1, by Corol-

lary 3.4(b) we get that I∆−
n+1 =⇒| IΣn. This proves (b). ✷

In [5] it is proved that BΣ−
n+1 is neither Σn+2- nor Πn+2-axiomatizable. By

Theorem 1.5, this is also true forUL∆n+1. Now we prove thatUI∆n+1 also satisfies
this property.

C o r o l l a r y 4.9. UI∆n+1 is not Πn+2-axiomatizable, and for n > 0, UI∆n+1 is
not Σn+2-axiomatizable.

P r o o f . SinceUI∆n+1 =⇒ I∆−
n+1, from Corollary 4.6(b) it follows thatUI∆n+1

is not Πn+2-axiomatizable. Let us suppose that n > 0.
C l a i m 4.9.1. Let T be a Σn+2-axiomatizable theory such that N � T . Then

T =⇒| IΣn.



P r o o f . Let A � Th(N ) and let a ∈ A nonstandard. Then Kn(A, a) ≺n A and
N ≺ A. So, N ≺n+1 Kn(A, a). Hence, Kn(A, a) � ThΣn+2 (N ) and so, Kn(A, a) � T .
On the other hand, Kn(A, a) � IΣn, as required. ✷ Claim

Since UI∆n+1 =⇒ IΣn, by the claim it follows that UI∆n+1 is not Σn+2-axiom-
atizable. ✷

5 Remarks and open questions

In [5] the following question appears as an open problem:
P r o b l e m 5.1. Bs Σ−

n+1 ⇐⇒ BΣ−
n+1.

The results proved in Theorem 3.2 and Theorem 3.7 seems to suggest that
UI∆n+1 + exp =⇒| L∆−

n+1.
P r o b l e m 5.2. Can we obtain this property from the above refered results ?
In Theorem 3.2 we have proved a weak version of Theorem 3.8 for n = 0. The

following question ask if the exponential function can be eliminated in Theorem 3.2.
P r o b l e m 5.3. Is ThΠ1(N ) (up to equivalence) the unique Π1-axiomatized theory

that is an extension of L∆−
1 ? In [3] it is proved that this is true for IΠ−

1 (see Claim
3.3.1).

Since I∆−
n+1 is Σn+2-axiomatized, from Corollary 4.9 we have that for n > 0,

UI∆n+1 |=⇒ I∆−
n+1. Let us consider the following question:

P r o b l e m 5.4. (a) UI∆1 |=⇒ I∆−
1 ? (b) Is UI∆1 a Σ2-axiomatizable theory ?

In this paper we have studied properties for L∆−
n+1 and I∆−

n+1. But in some
cases we have only proved that I∆−

n+1 satisfies a weak version of the property that
satisfies L∆−

n+1. Let us consider the following question.
P r o b l e m 5.5. Are the Theorems 3.2 and 3.7 true for I∆−

n+1 ?
It is easy to see that K0(A) is a substructure of A, and if K0(A) is nonstandard,

then K0(A) � IE0, where E0 is the class of open formulas of L.
Let us consider the following question.
P r o b l e m 5.6. K0(A) � P− ? In other words, K0(A) � ∀x(∀y ≤ x)∃z [x = y+z] ?
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