Some Resultson LA™ |

Alejandro Fernindez Margarit and F. Félix Lara Martin?

Departamento Ciencias de la Computacién e Inteligencia Artificial,
Facultad de Matematicas, Universidad de Sevilla, 41012 Sevilla, Spain?)

Abstract. We study the quantifier complexity and the relative strength of some fragments of
arithmetic axiomatized by induction and minimization schemes for A, 1-formulas.

Mathematics Subject Classification: 03F30, 03H15.

Ke wor(l:ls: Induction principles, Least number principle, Fragments of Peano Arithmetic, A,
+1-Tormula.

1 Introduction and preliminaries

This work is connected with the Parameter Free Paris-Friedman’s Conjecture:

LA, n+1

The relationships among the schemas of induction, minimalization and collection for
formulas in the classes of the Arithmetical Hierarchy (X,,, II,,) has been studied by
J. Paris and L. A. KirBY. The parameter free versions of these schemas have been
studied by R. KAYE, J. PARIS and C. DIMITRACOPOULOS.

The aim of this paper is to study the quantifier complexity of LA, ,, and some
relations between this theory and the class of the II,, 11 true sentences. We prove that
the following hold (see below for notation):

— IA

(a) LA, is ¥, 2-axiomatized but is not II,, yo-axiomatizable.

(b) LA, is not finitely axiomatizable.

(c) LAT == 1A¢. Forn> 1,18, LA, ;.

(d) Let T be an extension of IAg such that Thy,(7T) = LA] and T + exp is
consistent. Then Thyy, (T + exp) = Thyy, (V).

(e) For n > 1, Thy, ,(N) is (up to equivalence) the unique theory II,;-axio-
matized that is an extension of LA, .
Part (e) is proved in [5] for ITI, ,,. Since, ITI ; is a proper extension of LA |,
the property given in (e) improves that result. Properties (a) — (¢) and weak versions
of (d) and (e) are also true for TA ;.

Now we give the notation and the main results that we use through this paper.
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We work in the usual first-order language of Arithmetic, £ = {0,1, +, -, <}.
We denote by N the standard model of £ whose universe is the set of the natural
numbers, w, and the usual interpretation for nonlogical symbols of £. Bounded quan-
tifiers, denoted by (Va < t)p(x) and (3 < t) p(x), are, respectively, the formulas
Vo [z <t— ¢(x)] and Jz [z < t A p(z)] (where x does not occur in t). The arithmetic
hierarchy is the following classes of formulas of £L: Ay = X = Il is the class of all
bounded formulas,

Yot1 ={FT(Z) : (@) €I, } and 11 = {VZ(Z) : o(Z) € X, }.
By P~ we denote a finite set of II; axioms such that if 2 F P~ then 2 is the
nonnegative part of a commutative discretely ordered ring (see [4] for details). Let

o(x,7) be a formula of L. The induction aziom and the least number principle aziom
for p(x, ) with respect to x are, respectively, the formulas

Lo o(7) =9(0,7) AV [p(, T) = p(z+1,7)] = Vo p(z, 7),

Ly o(0) =3z ¢(z,7) — Fx[p(z,7) A (Vy < z)—e(y, 7).
Let ¢(z,y,7) be a formula of £. The collection axziom for ¢ with respect to x, y is
the formula By, ,(2,7) = (Vo < 2)3ye(z,y,v) — Ju(Vr < 2)Fy < u) ¢(z,y,v).
As usual, we write I, instead of I, , and similarly we use L, and B,. The axiom
schemas IT', LT and BT, where I is a class of formulas of £, are defined as follows:

IT=P +{l,:pel}, LT =P 4+ {L,:pel}, B[ = IAg+{B,:p T}

Now we consider schemas for parameter free formulas. Let I" be a class of formulas.

We write ¢(x1,...,2,) €7 if p €T and x4, ..., x, are all the variables that occurs
free in . Schemas IT~ and LT~ are defined in a similar way. The schema BT~ is
defined by BT~ =T1A¢+{B_, , : ¢(z,y) € T~ }, where

B, .y = Vedyp(z,y) — VzFu(Ve < 2)(3y < u) o(x,y).

One of the basic functions used to describe metamathematical properties in the
language of arithmetic, such as truth predicates, is the exponential function. We will
denote by E(z, y, 2) a Ag-formula which defines the exponential in the standard model,
I Ap proves that it verifies the elementary properties of the exponential function and
I3, proves that it is total (see [2] for details). We will usually write z¥ = z instead
of E(z,y, 2) and will denote by exp the Iy sentence VaVy3z E(z,y, 2).

Let T, T" be theories. In the following we shall write

T = T’ if T is an extension of T’;

T == T’ if T is not an extension of T”;
T T T T and T' == T;

T < T’ if T and T’ are equivalent;

T = T' if T is a proper extension of T".

Let T be a theory and let T" be a class of formulas. We denote by Thr(T) the class of
the sentences of I which are provable in T, that is, Thp(T) = {¢ € T' N Sent : T ¢}.
We say that T is I'-axiomatizable if T <= Thp(T'). If % is a model we denote by
Th(2) the theory of 2, that is, Th(A) = { € Sent : A F ¢}. We write Thr(2)
instead of Thr(Th()).



The collection axioms show how we can deal with bounded and unbounded quan-
tifiers. The relationships among the axiom schemas of induction, least number prin-
ciple and collection for the class of formulas ¥, and II,, were studied by J. PARIS
and L. KIRBY (see [2] and [4]). The parameter free versions of these schemas were
studied by R. KAYE, J. PARIS and C. DIMITRACOPOULOS (see [3] and [5]). We now
give some results on these theories.

Theorem 1.1.
(a) ITI] = LA <= IA; <= 1IA,.
(b) For alln € w,
(1) IYhn = Binn = Bzr_z—i-l = I,
U f
L, = I3, — LIL,, = I, < LX
(2) BX,11 ¢H:>’ IHr_L—i-Q ¢H:>’ | DI
(3) Izr_z—i-l <:H:> BXni1 <:H:> IHr_L—i-l <:H:> Bzr_z—i-l'

Let 2 FE P~ and n € w. Then K,(2) is the substructure of 2 whose universe is
the set {b € A : b is ¥,-definable in A}.

Theorem 1.2.
(a) If AEIX, is nonstandard, then Kpi1(A) F I3, and Kpp1(A) <pp1 A
(b) Let AEIX, 1 such that K, 1 () is nonstandard. Then K11 (A) E B, 41.

Let us also introduce the following scheme: B;I'™ = IA¢g+{By 2.y : ¢(z,y) € T~}
From [5, Proposition 1.7] we have

Lemma13. 1%, , = Bs¥ ;< B:Il;, = BX .
Now we introduce the axiom schemas for A, ;1 formulas.

IAp 1 =P~ +{Vz[p(z, V) < (2,0)] = Lpo(V) : ¢ € Enga, ¥ € nya},
LAp1 =P~ +{Vz[p(z,7) < (2,0)] = Lp (V) : ¢ € Znjr, ¥ € Ilnga
B A =1 A0 + {VaVy [o(z, 5, 7) © (@4, 7)] = Buny (5,7
©EXnt1, Y Epiqt.
The parameter free schemas, IA,,; and LA, are defined similarly. It is easy to
see that BX,, 11 <= B A, ;. We have the following result.

Theorem 1.4. Foralln €w, BY, 11 <= LA, 11 = IA,; =1%,.

R. O. GANDY (see [2]) proved that BY, 11 <= LA, 1. For IA,; = 1%,
see Corollary 4.5(a). The uniform version of the above fragments for A, formulas
are the following theories
UBA, 41 =TA¢+ {VaVi [Ty p(z,y,T) < Ywip(x,w,¥)] — VaV0 By 5 y(2,7)

pell,, Y€ X,},
UILA, 41 =P + {VaVi [p(x, V) « ¢Y(x, V)] = VU1, 4(T) : ¢ € Epgr, ¥ € Hppa b,
ULA, 1 =P + {VaV7 [p(z,T) < Y(x,0)] > VL, »(V) : ¢ € Bpt1, ¥ € My }.
Theses schemas were introduced by R. KAYE in [3]. It holds the following result
(see [3]).



Theorem 1.5.

I, = LA, = IA;,
il f

UBA, 1 <= BX,,, < ULA,;; = UIA,
) ) T

an—i-l <~ LAn+1 - IAn+1

We also have
(a) Forn >0, ULA, 1 F=1A, ;. (b) Forn>0,LA | == ULA, ;.

(c) TA;,, == ULA,.;.

In a preprint, H. FRIEDMAN claimed (about 1985) that LA, ; and IA, 4, are
equivalent (see [2, p. 398]). In [1] this equivalence appears as an open problem (Prob-
lem 34) and it is credited to J. PARIS. We have the following open problems.

- The Paris-Friedman’s Conjecture: LA, 11 < I A,11.

- The Parameter Free Paris-Friedman’s Conjecture: LA, | <= TA ;.

- The Uniform Paris-Friedman’s Conjecture: UL A, 41 <= UILA, 4;.

The remainder of this paper is organized as follows. In Section 2 we study the quan-
tifier complexity and finite axiomatizability of LA, ;. In Section 3 we study the
relationship between L A, and the II, {1-theory of . Section 4 is devoted to ob-

tain for IA,,; similar results to those obtained for LA, ,,. Finally, we close this
paper with some open problems.

2 Quantifier complexity of LA,

First we prove some properties that will be useful in the following.
Lemma 2.1.
(a) Let T be a consistent theory such that Thy,  (N) € Th,,, (T). Then we have
Th, ., (N) = Thn,,, (T).
(b) Thy,,,(N) =111, .
Proof. The crucial fact for the proof is that for all model 2,
(¥) 2AEThy, , (N) iff N <4 2L

(a). Let T be a theory such that Thy,,, (N) € Thy,,, (T), let ¢ € Thy,,, (T)
and let A F T. Then 2 F Thy, ,, (NV). Hence, by (), N <,41 2. Since A E ¢, from
this follows that N F ¢, that is, ¢ € Thy, ., (V).

(b). Since Il has a recursive set of %, 2 axioms and Thy, ., (N) is a II9 ;-
complete set, the result follows from (k). O

The following result is essentially Proposition 1.9 of [5].
Lemma 2.2. Let A be a model in which every element is ¥, +1-definable. Then

(a) AEBE,1 iff AEBE, ;5 (b)) AELA, iff AELA,,.



Proposition 2.3. Let T be a consistent extension of 1X,11. The following
conditions are equivalent:

( ) Thnn+1( ) Thnn+1 (N) ( ) Thnn+1( ) ad LAr_L—i-l
(b) Th, ., (T) = IIL,,. (d) Thn,,.(T) = LA, ;.

Proof. The implication (a)=-(b) follows from Lemma 2.1(b). The implication
(b) = (c) follows from Il ,, <= LY, = LA ;. The implication (c) = (d) is
trivial. To prove the implication (d)=-(a) by way of contradiction suppose that
Thy, ., (T) # Thn,,,(N). Then, by Lemma 2.1(a), there exists a nonstandard
model A of T such that 2 ¥ Thy,,, (V). Let p(z) € X, such that Nk Vz ¢(x)
and A E 3z —¢(x). Then K,,41 () is nonstandard. So, by Theorem 1.2(b) and Theo-
rem 1.4, ;11 () ¥ L A, 41. Since every element of K, 1(2) is 2, 1-definable, then,
by Lemma 2.2,

(ex) Knpa(A) FLA L,
Since A F IX, 41, by Theorem 1.2(a), Kp11(A) <41 A Thus, Kyy1(A) E Thy,,,, (T).
So, from (d) and (x*) we get the desired contradiction. O

Theorem 2.4. (a) LA, is Xy 12-aviomatized but is not 11, y2-aziomatizable.
(b) LA, is not finitely aziomatizable.

Proof.

(a). It is clear that LA, is ¥, o-axiomatized. We also have that I3, =
LA, and, by Proposition 2.3, Thyy, ,(IX,41) == LA ;. Hence, LA, is not
I1,, +2-axiomatizable.

(b). Suppose that L A | is finitely axiomatizable. Since Thyy, ., (N) = LA,
then there exists a recursively axiomatized consistent extension 7" of I¥,,+; such that
Thr,,,(T) = LA, ;. Then, by Proposition 2.3(a), Thy,,,(T) = Thy,,, (N).
But Thyy, ., (T) is recursively enumerable, and Thyy,,,, (N) is II)  ;-complete, which
provides the desired contradiction. O

3 LA,_LJrl and II,,; true sentences

In the following we answer the following questions.
Let T be a theory such that 7= LA .
- Suppose T is II,, +1-axiomatized. Does it hold that T' <= Thy, ,, (N)?
- Suppose T is II,, yo-axiomatized. Does it hold that Thy,,, (7)) = Thy,,, (N)?
First we discuss the case n = 0 and then we analyse the case n > 0.
Lemma 3.1. Let AETAq. Then Ko(2A) is cofinal in K1 ().
Proof. Let a € K1(2) and let ¥(z,y) € Ag such that

AF y(a,y) A 3z Iyd(z,y).

Since IC1 (1) <1 2, there exists b € K1(2A) such that IC1(A) E ¢(a,b). So, (where J is
Cantor’s pairing function) K1 () F 3z(3z < 2)(Fy < 2) [z = J(z,y) A z/)( y)]. This
formula is also true in 2. Let 6(z) € Ag be (Fx < 2)(Fy < 2) [z = J(z,y) A ¥(z,y)].
So, there is ¢ € 2 such that AF 6(c) A (Vz < ¢)=0(z). So, c € Ko(A) anda <ec. O



Theorem 3.2. Let T be an extension of 1Ay such that (1) T + exp is consistent
and (ii) Thy,(T) = L AT . Then Thy, (T + exp) = Thy, (N).

Proof. By way of contradiction suppose that the theorem’s conclusion is false.
Then, by (i) and Lemma 2.1, there exists ¢(z) € Ag such that N' E Vx —p(z) and
T + exp ¥ Vo —p(z). Let A E T + exp + Jz p(z). It is clear that 2 and K1 () are
nonstandard, and K1 (2() E Thy, (T + exp + 3z ¢(x)). We also have

Claim. K;(A) ELAT.

Proof. Every element of K1 (2) is 3¥1-definable in K1 (). So, by Lemma 2.2 and
Theorem 1.4, it is enough to see that IC1(2A) ¥ BX;. Let a, d € K1(2) nonstandard.
Since IC1(2) E IA( + exp, we have that

(*) K1) E (Vu < d+1)(Fw < d) 3z [(Vz < ) ~Vo(w, (2), 203727
AVo(w, (x), 2@FD") A u = (2)0],
where Vy(v1,v2,v3) € Ag is a truth definition for Ag formulas whose properties are
provable in IAg+exp (see [2] for details). [This follows from the proof of Lemma 3.1.
Let u € K1(2A) such that w < d+ 1 and let Jy(z,y) € X1 be a formula that defines
uw in 2A. Let w € w be the Godel number of (Fz < 2)(3y < 2) [z = J(z,y) A ¥(z,y)].
Since d is nonstandard, w < d and satisfies (x).] Now suppose that IC1 () F B X;.
Then there exists ¢ € K1 (2) such that
K1) E (Vu < d4+1)Fw < d)(3x < o)[(Vz < ) ~Vo(w, (2), 26+2)%)
AVo(w, (x), 2@D") A u = (2)0].

This gives an injective Ag-map from (< d+ 1) to (< d). Since K1 () E IAq + exp,
this contradicts the Pigeon-hole principle for (coded) Ag-functions in IAy + exp
(see [2]). O Claim

Since K1(2A) F Thyy, ., (T'), the claim and (ii) provide the desired contradiction. O

Remark 3.3. We have that for all 2 F ITI], IC1() E IAg + exp (see [5, Theo-
rem 2.9]). So, with a proof similar to the one given for Theorem 3.2, we have

Claim 3.3.1. If T is a consistent theory such that Thp,(T) = 1117, then
Thu, (T) = Thy, (A).

This improves Theorem 3.2 for I1I; .

Corollary 3.4.

(a) TAg == LA, hence, LAT = 1A4A¢. (b) Ifn >0, then IX,, = LA .

(c) Ifn>0, then LA | == UILA, 1 = 1A, =& 1I%,.

Proof.

(a). Let us consider IAg + exp. By Theorem 3.2, Thy, (IAg +exp) == LA;T.
Since I A is IT;-axiomatized, this proves (a).

(b). Since I'%,, is II,, 1 2-axiomatizable, from Proposition 2.3 for T = IX,, 1, follows
I¥, == LA, ;. Ifn >0, then III,, == 1%, and III,,;, = LA, ;. Hence,
LA, == I3,

(c). The assertion A, == IX, follows from (b) and LA, = IA ;. The
assertion UTA,, 41 =T A, follows from UL A, = 1%, +IA  , and the above

n+1
property. Finally, LA, ,; == UI A, follows from (b), since ULA,;; = I%,. O



Corollary 3.5. Let T be a consistent Ils-axiomatized extension of 1Aqg such
that T\ exp. Then the following conditions are equivalent:
(a) Thy, (T) = Thy, (N); (b) T = I1I7; (¢ T=LAT.

Remark 3.6. Now we generalize Proposition 2.3 and Theorem 3.2 to extensions
of IX, for n > 1. In the following let % F IX, with n > 1. We first characterize a
subset of K11 (%) that plays the same role with respect of K, 11 (2) that Ko(21) plays
with respect to IC1(21).
Definition (MCALOON). We say that a € 2 is II,,-minimal in 2 if there is
o(x) € II,; such that AE ¢(a) A (Vz < a) —p(z). Let
M, () ={a €A : ais II,-minimal in 2A}.
Claim 3.6.1. (a) M, () C Kpy1 (). (b) M, () is cofinal in K1 ().
Proof.
(i). By Lemma 1.3, if p(x) € II,;, then the formula ¢(z) A (Vy < z)—¢(y) is
Apt1 in IX . So, (i) holds.
(ii). Let a € K41 () and let t(x,y) € II;, such that
AE Jy(a,y) AN Nz Iy(x,y), thatis, Iy (z,y) defines a in A.
Since Kpp1(A) <pa1 A, K1 (A) E Iy p(a,y). Let b € A such that K, 1 (A) E ¥(a,b).
Then Kp1(A) E Jz(Va,y < 2) [z = J(z,y) — ¥(x,y)]. So, from i1 (A) <pt1 A
follows that 2 F t(a,b) and A E Jz(Va,y < 2) [z = J(z,y) — ¥(z,y)]. Let 6(z) € II;,
be the formula (Va,y < 2) [z = J(z,y) — ¥(x,y)]. By Theorem 1.1, A F LTI,,. Then
there is ¢ € A such that A F 6(c) A (Vz < ¢) =0(z). Hence, c € M, () anda <c. O

Now we establish the promised result:

Theorem 3.7. Letn > 1 and let T be a consistent theory. Then the following
conditions are equivalent:

(a) Thy,,,(T) = Thy, ., (V). (¢c) Thy,,,(T) = LA, ;.
(b) Thy,,,,(T) = 11 ,. (d) Thy,,,,(T) =LA, ;.

Proof. It is enough to prove that (d) implies (a). By way of contradiction
suppose that (a) is false. Since T is consistent, by Lemma 2.1, there exists ¢(z) € II,;
such that N E Vz —¢(z) and T ¥ Vz —p(x). Let A E T + 3z @(x). Tt is clear that A
is nonstandard. We also have

Claim 3.7.1. K, 11(2) is nonstandard.
Proof. First observe that for every ¢ € &
(%) if AF ¢(c), then c is nonstandard.
Since A E Jx ¢(x) and A FIX,,, then there exists a € A such that
AE pla) A (Vz < a)p(z).
So, a € M, (). Then, by Claim 3.6.1(i), a € K,,+1(2). Hence, by (x), py1(2A) is
nonstandard. O Claim
Since Kpy1(A) <ps1 A, then K1 (A) E Thy,,,, (T + 3z ¢(x)). Since
Thp,,,(T) =L ALy
then K, 41 () EIX,. So, it is enough to prove the following

— 13,



Claim 3.7.2. K11 () F LA, ;.

Proof. Since every element of K,41(2) is 3, 11-definable, it is enough to see
that KCpy1 () ¥ BX,41. Let d € K11 () nonstandard. Since K, 11 () E IX,, and
n > 1 we have that
(#%) Knt1()E (Vu<d+1)(Fw < d)Jx [(Vz < x) —Satn,, (w(2))

A Satr, (w(E)) A u= (x)o],

where Satr, (v) € II, is a truth definition for II,, formulas whose properties are
provable in I%; (see [2] or [4] for details). [This follows from the proof of Claim
3.6.1(ii). Let u € K11 () such that u < d+1 and let Fyy(z,y) € X141 be a formula
that defines w in A. Let w € w be the Gédel number of the formula

(Va,y < 2) [z = J(2,y) = ¢(2,y)]-
Since d is nonstandard, then w < d and satisfies (xx).] Now suppose that K, 41 () F
B, 1. Then there is ¢ € K,,41(2) such that

Knt1() E (Vu<d+1)Fw < d)(3x < ¢) [(Vz < x)-Satm, (w(2))

ASatr, (w(E)) A u = ()]

From this we obtain an injective 3¢ (2, )-map from (< d+1) to (< d). This contradicts

the Pigeon-hole principle for coded X (3,)-maps. O Claim
Since & F Thy, ,,(7), from Claim 3.7.2 and (d) we obtain the desired contra-
diction. 0

An immediate consequence of Theorem 3.7 is

Theorem 3.8. If n > 1, then Thy,  (N) is (up to equivalence) the unique
I, +1-aziomatized theory that is an extension of LA, . a

4 The theory IA

Here we shall see that the properties proved above for LA, (or weak versions of
them) are also true for TA ;. In the following we will use results of K. MCALOON [7]
and H. LESSAN [6] whose proofs lean upon the Arithmetized Completeness Theorem.
Let 2 be a model of PA (Peano Arithmetic). The standard system of 2, denoted by
SSy (21), is the collection of subsets of w which are definable in 2, that is, X € SSy(2()
if there exist a formula ¢(z,v) and b € A such that X = {k € w: AF p(k,b)}. Let T
be a theory and let T be a class of formulas. We say that T is coded in 2 (denoted by
T € SSy()) if {"¢7 : ¢ is an axiom of T'} € SSy(A). We say that T is I'-definable
in N if there is ¢(z) € T with {"¢7 : ¢ is an axiom of T} = {k € w : N F ¢(k)}.
We have the following results.
Theorem 4.1 (MCALOON). Let T be an extension of PA and let A F T such
that T € SSy(A). Then for every n € w there exists B F Thy, ., (T) such that
(a) B is an n-elementary final extension of A, A << B;
(b) there exist p(x,U) € Apy1(B) and b € B such that w ={c € B : BE (¢, b)}.
Theorem 4.2 (MCALOON). Let T be an extension of PA consistent with

Thp, (N) and X, y1-definable in N'. Then there are a nonstandard model 2 of
Thr,,,(T) + Thy, (N) and ¢(x) € A, () such that w = {a € A: AFE ¢(a)}.



Theorem 4.3 (LESSAN). Let A E PA and let X C w nonrecursive. Then for
every k > 1 there exists B E Thyy, () + PA such that X € SSy(B).

Now we get a weak version of Theorem 3.7 for TA,,44.

Proposition 4.4. Let T be a consistent extension of PA such that (1) T is
recursively aziomatized, or (ii) there exists T C Iy such that T <= PA +T. Then
for alln € w, Thy, ,(T) = TA,;1.

Proof. First we assume (i). Let 2 F T be nonstandard. Since T is recursively
axiomatized, T" is coded in 2. Then, by Theorem 4.1, there exists B F Thy, ,(T)
such that B ¥ IA, 4, as required.

Now we assume (ii). Let T' C T be such that T <= PA 4+ T and let 2 = T.
By Theorem 4.3, there exists B F PA + Thyy, (/) such that T € SSy(2). So, by
Theorem 4.1, there exists € F Thyy, ,,(T") such that € # I A, 1, as required. O

Corollary4.5. For alln € w, (a) IA, 11 F= 1%, (b) Thy, ,,(N) == TA, ;1.

Proof. Since IY, is I, o-axiomatizable, the assertion (a) follows from Propo-
sition 5.4(i), and (b) is a consequence of Proposition 4.4(ii). O

Now we consider the theory IA ;. From Theorem 4.2 we get

Corollary 4.6.

(a) Let T be an extension of PA consistent with Thry, (N) and X,,11-definable in .
Then Th, ,(T) == IA, ;.

(b) Thr,,,(PA) == TA ;.
We now study the quantifier complexity of TA ;.

Theorem 4.7. For all n € w we have: (a) IA, ,, is ¥, 2-aviomatized but is not
I,y 2-aziomatizable. (b) TA, |, is not finitely aviomatizable.

Proof. It is clear that TA, ,, is ¥, p-axiomatized and then from Corollary
4.6(b) we get (a). For (b) let us assume that IA, ,, is finitely axiomatizable. Since
Thy,,, (V) = TIA,,;, then there exists a recursively axiomatized, and so in N
¥1-definable, extension 7' of PA such that Thyy, ,,(T) = I A, ;. This contradicts
Corollary 4.6(a), which proves (b). O

Corollary 4.8. (a) IA] = T1Aq. (b) For alln >0, 1%, & TA, .

Proof. Assertion (a) follows from Corollary 4.6(a). Since I%,, is I, o-axiom-
atizable, by Corollary 4.6(b), IX,, == TA_ ;. Since LA, = IA,, by Corol-
lary 3.4(b) we get that TA | == IX,. This proves (b). O

In [5] it is proved that BX ,; is neither X, o- nor II, ;o-axiomatizable. By
Theorem 1.5, this is also true for UL A, ;1. Now we prove that UL A,, 1 also satisfies
this property.

Corollary 4.9. UL A, is not Il,4+o-aziomatizable, and forn >0, ULA, 14 is
not Xpyo-aziomatizable.

Proof. Since UL A, 1 = I A, ;, from Corollary 4.6(b) it follows that UT A, 1
is not II,,+2-axiomatizable. Let us suppose that n > 0.

Claim 4.9.1. Let T be a ¥,12-aziomatizable theory such that N & T. Then

T == 13%,.



Proof. Let 2 E Th(N) and let a € 2 nonstandard. Then K, (2, a) <, 2 and
N <. So, N <n41 Kn(2, a). Hence, K, (AU, a) E Thy, ., (N) and so, K,(A, a) E T.

On the other hand, K, (2, a) ¥ IX,, as required. O Claim
Since UL A,,+1 = I%,,, by the claim it follows that UL A,,;; is not ¥,, y2-axiom-
atizable. O

5 Remarks and open questions

In [5] the following question appears as an open problem:
Problem 5.1. BsX, ;<= BX .
The results proved in Theorem 3.2 and Theorem 3.7 seems to suggest that

ULA,1+exp== LA, ;.

Problem 5.2. Can we obtain this property from the above refered results ?
In Theorem 3.2 we have proved a weak version of Theorem 3.8 for n = 0. The

following question ask if the exponential function can be eliminated in Theorem 3.2.
Problem 5.3. Is Thyy, (NV) (up to equivalence) the unique IT;-axiomatized theory

that is an extension of L AT 7 In [3] it is proved that this is true for ITI] (see Claim

3.3.1).

Since TA, ,; is ¥, 2-axiomatized, from Corollary 4.9 we have that for n > 0,

UIA,11 = TA, ;. Let us consider the following question:

Problem 5.4. (a) UIA; /= TIA7 ? (b) Is UL A; a Xs-axiomatizable theory ?

In this paper we have studied properties for LA, ,; and TA, ;. But in some
cases we have only proved that I A, satisfies a weak version of the property that
satisfies LA, ;. Let us consider the following question.

Problem 5.5. Are the Theorems 3.2 and 3.7 true for TA ;7
It is easy to see that Ko(2l) is a substructure of 2, and if Ko(2l) is nonstandard,

then Ko(2) ¥ TEg, where Eq is the class of open formulas of L.
Let us consider the following question.
Problem 5.6. Ko(A) E P~ ? In other words, ICo() EVa(Vy < z)3z[x =y+2]?
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