
PREDICATIVITY THROUGH TRANSFINITE REFLECTION

ANDR ́ES CORD ÓN-FRANCO, DAVID FERN ÁNDEZ-DUQUE, JOOST J. JOOSTEN,
AND FRANCISCO F ́ELIX LARA-MARTÍN

Abstract. Let T be a second-order arithmetical theory, Λ a well-order, � < Λ and X ⊆ N. We use
[�|X]Λϕ as a formalization of “ϕ is provable from T and an oracle for the set X , using �-rules of
nesting

T

depth at most �”.
For a set of formulas Γ, define predicative oracle reflection for T over Γ (Pred-O-RFNΓ(T)) to be the

schema that asserts that, if X ⊆ N, Λ is a well-order and ϕ ∈ Γ, then

∀ � < Λ ([�|X]ΛTϕ → ϕ).

In particular, define predicative oracle consistency (Pred-O-Cons(T)) as Pred-O-RFN{0=1}(T).
Our main result is as follows. Let ATR0 be the second-order theory of Arithmetical Transfinite

Recursion, RCA∗
0 be Weakened Recursive Comprehension and ACA be Arithmetical Comprehension

with Full Induction. Then,

ATR0 ≡ RCA∗
0 + Pred-O-Cons(RCA∗

0) ≡ RCA∗
0 + Pred-O-RFNΠ12

(ACA).

We may even replace RCA∗
0 by the weaker ECA0, the second-order analogue of Elementary Arithmetic.

Thus we characterize ATR0, a theory often considered to embody Predicative Reductionism, in terms
of strong reflection and consistency principles.

1. Introduction. Reflection over a theory T roughly says that whatever is prov-
able in T is actually true. As such, reflection is natural from a methodological or
philosophical point of view. Moreover, from a technical point of view it also turns
out to be natural, since various well-known fragments of arithmetic can be re-cast
in terms of reflection principles. In this introduction we will discuss results along
these lines for first-order arithmetical theories and address the question of how this
can be extended beyond first-order theories.

1.1. Reflection, consistency and fragments of first-order arithmetic. Fix a formal
theory T . If we denote the formal provability of a formula ϕ in T by �Tϕ, we can
write Rfn(T), called local reflection over T , as the scheme �Tϕ → ϕ, where ϕ has
no free variables.
It turns out that a better-behaved notion of reflection is so-called uniform reflec-
tion where we allow for formulas, possibly with parameters. This scheme, denoted
RFN(T), is given by ∀x (

�Tϕ(ẋ) → ϕ(x)
)
, where ϕ is any formula and ẋ means

that we must replace x by a name for x.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2017.30
https://www.cambridge.org/core

Let us denote the consistency of T + ϕ by ♦Tϕ, which is equivalent to ¬�T¬ϕ.
By Gödel’s Second Incompleteness Theorem we know that consistent computably
enumerable (c.e.) theoriesT do not, in general, prove their own reflection principles;
if we define ⊥ by 0 = 1, we know that T � �T⊥ → ⊥, since the latter is provably
equivalent to the consistency of T .
Thus, adding reflection to a consistent base theory will yield a proper extension of
it. This is philosophically appealing, since one can sustain that it is natural to accept
reflection over T once one has accepted T . An early result by Kreisel and Lévy [23]
shows that reflection principles are also natural from a technical point of view in
that adding them yields natural extensions. Below, PA denotes the well-known first-
order theory Peano Arithmetic and PRA refers to Primitive Recursive Arithmetic,
which is often considered to embody Hilbert’s concept of finitist mathematics [29].

Theorem 1.1 (Kreisel, Lévy (1968)). PRA+ RFN(PRA) ≡ PA.
This relation between reflection and a system of arithmetic can be extended
to fragments of Peano arithmetic like the theories IΣn . The theory IΣn is Peano
arithmetic with induction restricted to Σn-formulas. Given a class of formulas Γ,
we may consider restricted reflection principles, denoted RFNΓ(T), when we only
consider instances of RFN(T) with ϕ(x) ∈ Γ.
Leivant [24] proved that there is a sharp correspondence between the principles
IΣn forn ≥ 2 and restricted reflection principles over PRA.Beklemishev [2] extended
Leviant’s result to the case n = 1 by lowering the base theory from PRA to a
somewhat weaker theory EA called Kalmár Elementary Arithmetic.

Theorem 1.2. Given n ≥ 1, EA + RFNΣn+1(EA) ≡ IΣn.
Moreover, for various notions of provability one can often relate reflection to con-
sistency statements. This relation is normally proved in theway presented in Lemma
1.4 below, where we need to require some minimal properties of the particular
provability predicate, leading to the notion of normal provability predicate.

Definition 1.3. We will call a predicate � a normal provability predicate if it is
provable in EA that � satisfies the modal logic K; that is, EA � �(ϕ → �) →
(�ϕ → ��), and EA � ϕ implies that EA � �ϕ.
If U is any theory and Γ a set of formulas, we say that � is provably Γ-complete
in U if U � � → �� for any � ∈ Γ.
Below, we will use the notation ¬Γ = {¬� : � ∈ Γ}.
Lemma 1.4. Let U be a theory extending EA and let � be a normal provability
predicate with dual consistency predicate �. If Γ contains (a provable equivalence of)
⊥ and � is provably ¬Γ-complete in U , then Γ-reflection for � is equivalent over U
to �	. That is, U + {�� → � : � ∈ Γ} ≡ U + �	.
Proof. The � direction follows directly from the assumption that ⊥ ∈ Γ. The
other direction follows from¬Γ-completeness: suppose that �� and �	 and suppose
for a contradiction that ¬�; by completeness we have �¬�, whence by �� and by
normality we get �⊥, which contradicts �	.

Stronger notions of provability can be related to stronger notions of consistency.
For this purpose it is very useful to consider the provability predicates [n]T for n ∈ �

and c.e. theories T where [n]T is a natural first-order formalization of “provable

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2017.30
https://www.cambridge.org/core

from the axioms of T together with some true Πn sentence”. More precisely, let
TrueΠn be the standard partial truth-predicate for Πn formulas, which is itself of
complexity Πn (see [18] for information about partial truth definitions within EA).
Then, we define

[n]Tϕ ↔ ∃� (TrueΠn (�) ∧�T (� → ϕ)
)
.

For each c.e. theory T extending EA and n ∈ �, the predicate [n]T is normal
and provably Πn-complete in EA (for proofs see [5, Propositions 2.10 and 2.11]).
Hence, together with Lemma 1.4, we get

T + 〈n〉T	 ≡ T + {∀x (
[n]T�(ẋ)→ �(x)

)
: � ∈ Σn}. (1)

We can easily prove that the reflection principle from (1) is equivalent over T to the
more standard notion of reflection RFNΣn (T). Thus, together with Theorem 1.2, we
see the intimate relation between reflection, consistency statements and fragments
of first-order arithmetic.

Theorem 1.5. Given n ≥ 1, EA + 〈n + 1〉EA	 ≡ EA + RFNΣn+1(EA) ≡ IΣn.
1.2. Ordinal analysis beyond first-order. Ignatiev showed in [20] that for a large
variety of theories T , the joint behavior of the provability predicates [n]T for n ∈ �
can be described and fully understood via a relatively simple and well-behaved
modal logic called GLP, first studied by Japaridze in [21]. Theorem 1.5 is a clear
witness of the expressiveness of this modal logic; as a matter of fact, Beklemishev
has shown in [3] that the computation of a proof-theoretical Π01 ordinal for PA
along the lines of Schmerl’s work [25] on transfinitely adding consistency to a weak
base theory can be realized largely within GLP.
The ordinals involved in the analysis actually are naturally represented within the
logic GLP by so-called worms, which are iterated consistency statements of the form
〈n1〉 . . . 〈nm〉	. These iterated consistency statements are called worms in analogy
to hydra’s in the hydra battle since they give rise to a similar worm battle with
corresponding unprovable true combinatorial principles and related term-rewriting
systems ([6,9]).
However, worms in GLP correspond to ordinals below ε0, so GLPwould certainly
not suffice for the analysis of theories which are substantially stronger than PA.
First steps to extend the relation between ordinals and modal-logical terms beyond
ε0 were made in [4, 8, 14, 15, 17] by studying logics GLPΛ that contain for each
ordinal α < Λ a modality [α]. One should go beyond first-order theories in order
to interpret GLPΛ, and in [16] two of the authors provide an interpretation of GLPΛ
within second-order arithmetic by reading [α]Tφ as φ is derivable in T using an
�-rule of depth at most α.
Our present goal is to provide analogues of Theorem 1.5 for fragments of second-
order arithmetic, by using more powerful reflection principles. These principles will
involve provability using transfinite iterations of the �-rule and require reasoning
about arbitrary sets in the guise of free set parameters, which poses a challenge in a
proof-theoretic setting. Every natural number can be represented by a closed term;
however, in any countable language it is of course not the case that each set can be
denoted by a syntactical name.
In [1] this problemwas addressed by resorting to a richer languagewith sufficiently
many names around. Our way to surpass this complication is by introducing and

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2017.30
https://www.cambridge.org/core

studying what we call oracle provability which allows us to reason in a formalized
setting about externally defined sets. In particular, we will introduce a new first-
order predicate O which we shall call the oracle predicate and which will be used to
reason formally about arbitrary sets.
Once a workable relation between reflection principles and fragments of second
order arithmetic has been established, this relation will constitute a significant step
forward in the Π01 ordinal analysis and semifinitary consistency proofs of second-
order theories as anticipated in [22]. A next ingredient towards such an ordinal
analysis will be to study one of the forms of the so-called reduction property (see
e.g., [7,22])which expresses the amount of conservativity between various fragments
of second order arithmetic based on the consistency statements that are introduced
in this paper.

1.3. Overview of the paper. In Section 2 we will settle our notation and nomen-
clature and fix the formal language that we will work in. One new ingredient is the
first-order oracle symbol O which will, in a way, provide a name for any arbitrary
set. We define formalized oracle provability in this new language and mention some
basic properties.
In Section 3 we will define the fragments of second-order arithmetic which are
relevant for this paper, and in Section 4 we formalize within these fragments the
notion [�|X]ΛT of provability in T using an oracle forX and atmost � < Λ iterations
of the �-rule. Next, in Section 5 we define and prove the basic properties of the
notions of reflection and consistency based on the provability predicates [�|X]ΛT .
In Section 6 we define the notions of predicative oracle reflection and con-
sistency. Basically, predicative oracle reflection/consistency is the statement that
“if Λ is a well-order, then reflection/consistency holds for iterations of the �-rule
along Λ with an oracle for X”. In the section we show that predicative ora-
cle consistency proves ATR0, the second-order system of arithmetical transfinite
recursion. Finally, in Section 7 we prove the converse implication so that we end
up with a characterization of ATR0 in terms of predicative oracle reflection and
consistency.
It follows fromTheorem 1.5 that PA ≡ EA+{〈n〉EA	 : n < �}.Our results show
that ATR0 can similarly be reduced to sufficiently strong consistency or reflection
principles. Using slightly suggestive notation, one can paraphrase our result as

ATR0 ≡ ECA0 + “Λ-OracleCons(ECA0) holds for every well-order Λ”,
whereECA0 is the second-order pendant ofEA, andΛ-OracleCons(ECA0) denotes
oracle consistency for ECA0 for iterations of the �-rule along Λ.

2. Second-order theories with oracles. In this section we fix syntactical notations
for the remainder of this paper. Moreover, we will formalize a notion of provability
where we use an oracle symbol which provides a name for an arbitrary set much
like one has numerals to name natural numbers.

2.1. Conventions of syntax. Wewill work in a languageL2 of second-order arith-
metic, with primitive symbols 0, 1,+,×, xy,<,=,∈, representing the standard con-
stants, operations and relations on the natural numbers; that is,L2 extends the usual
language of second-order arithmetic with a primitive symbol for exponentiation.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2017.30
https://www.cambridge.org/core

Moreover,wewill be interested in an extension of second-order arithmetic,L2(O),
which contains a designated unary predicate O(·), used to represent a set “oracle”,
as specified below.
We fix some set of numerals which are terms so that each natural number n
is denoted by exactly one numeral, written as n. Moreover, we fix some Gödel
numbering,mapping a formula� ∈ L2(O) to its correspondingGödel number ���,
and similarly for terms and sequents of formulas (used to represent derivations).We
will assume that theGödel numbering is simple in that simple syntactical operations
like concatenation and substitution correspond to elementary functions on the
respective Gödel numbers. Further, we will assume that the Gödel numbering is
natural in that the Gödel number of a strict substring is numerically smaller than
the Gödel number of the entire string and, moreover, that n < �n�. Since we will be
working mainly inside theories of arithmetic, we will often identify � with ���, or
even with ���, for that matter.
Δ00 denotes the set of all L2 formulas, possibly with set parameters, but without

the occurrence of O, and where no second-order quantifiers appear and all first-
order quantifiers are bounded; that is, of the form ∀x < y ϕ or ∃x < y ϕ. We
simultaneously define Σ00 = Π

0
0 = Δ

0
0 and recursively define Σ

0
n+1 to be the set of all

formulas of the form ∃x0 · · · ∃xm ϕ with ϕ ∈ Π0n, and similarly Π0n+1 to be the set
of all formulas of the form ∀x0 · · · ∀xm ϕ with ϕ ∈ Σ0n . We denote by Π0� the union
of all Π0n; these are the arithmetical formulas.
The classesΣ1n ,Π

1
n,Π

1
� are defined analogously but using second-order quantifiers

and setting Σ10 = Π
1
0 = Δ

1
0 = Π

0
� . It is well-known that every second-order formula

is equivalent to another in one of the above forms. We use a lightface font for the
analogous classes where no set-variables appear free: Δm0 ,Π

m
n ,Σ

m
n . The set of free

variables of a formula ϕ will be denoted by FV(ϕ).
We also use Δ00(X1, . . . , Xk) to denote the class of those Δ

0
0 formulas whose

free second order variables are among X1, . . . , Xk , and analogously for the classes
Πmn (X1, . . . , Xk), Σ

m
n (X1, . . . , Xk), etc.

We will say that a theory T is elementarily presented if a Δ00 formula AxiomT (x)
is specified that is true if and only if x codes a (non-logical) axiom of T . Then,
there is a Δ00 formula ProofT (x, y) which holds if and only if x codes a deriva-
tion in T of a formula coded by y. Note that by Craig’s trick, any c.e. theory
has an equivalent elementary presentation. We will write �Tϕ as shorthand for
∃p ProofT (p,ϕ).
Wewill also use the following pseudo-terms to simplify notation,where an expres-
sion ϕ(t(�x)) should be seen as a shorthand for ∃ y< s(�x) (�(�x, y) ∧ ϕ(y)), with �
a Δ00 formula defining the graph of the intended interpretation of t and s a standard
term bounding the values of t(�x):
1. A term 〈x, y〉 which returns a code of the ordered pair formed by x and y and
projection terms so that (〈x, y〉)0 = x and (〈x, y〉)1 = y. We may also write ti
instead of (t)i when this improves legibility.

2. A term x[y/z] which, when x codes a formula ϕ(v), y a variable v and z
a term t, returns the code of ϕ(t). Otherwise, its value is unspecified, or for
example it could be the default �⊥�.

3. A term x → y which, when x, y are codes for ϕ,�, returns a code of ϕ → �,
and similarly for other connectives and quantifiers.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2017.30
https://www.cambridge.org/core

4. A term x mapping a number to the code of its numeral.
5. For every formula ϕ and variables x0, . . . , xm, a term ϕ(ẋ0, . . . , ẋm) which,
given numbers n0, . . . , nm, returns the code of the outcome of ϕ[�x/�n], i.e., the
code of ϕ(n0, . . . , nm).

The only purpose of using these pseudo-terms is to shorten complex formulas
for the sake of legibility. We write �Tϕ(ẋ0, . . . , ẋn) as shorthand for ∃� (� =
ϕ(ẋ0, . . . , ẋn)∧�T�) and adhere to the same convention when using other notions
of provability. Note that�Tϕ(ẋ0, . . . , ẋn) is a formula, not a term.
2.2. Oracle provability. The oracle O will be used to add information about any
set of numbers to our theory T . To be precise, given a set A ⊆ N, define T |A to be
the theory

T + {O(n) : n ∈ A} + {¬O(n) : n �∈ A} + {∃Y ∀x (x ∈Y ↔ O(x))}.
It should be clear that if T is elementary presented then T |X has a Δ00(X)
axiomatization (i.e., the only set variable that may appear is X) and provability
in T |X is Σ01(X). To be more precise, there exist formulas AxiomT |X (x) ∈ Δ00(X),
as well as ProofT |X (x, y) ∈ Δ00(X), and �T |X (x) ∈ Σ01(X) so that ϕ is an axiom
of T |A if and only if N |= AxiomT |A(�ϕ�), the sequence � is a proof of ϕ in the
theory T |A if and only if N |= ProofT |A(���, �ϕ�), and T |A � ϕ if and only if
N |= �T |A(�ϕ�). For example, we can define
AxiomT |X (ϕ) := AxiomT (ϕ) ∨ ∃x<ϕ (ϕ = �O(x)� ∧ x ∈ X)

∨ ∃x<ϕ (ϕ = �¬O(x)� ∧ x /∈ X) ∨ ϕ = �∃Y ∀x (x ∈Y ↔ O(x))�,
so that ProofT |X (x, ϕ) will just become as ProofT (x, ϕ) where every occurrence of
AxiomT (�) for some � is replaced by AxiomT |X (�). As before, we define �T |X (ϕ)
by ∃x ProofT |X (x, ϕ). For readability, when working in T |A we will write x ∈ A
instead of O(x), provided this does not lead to confusion.
As is standard, one may use a single set {〈i, x〉 : x ∈ Ai} to represent sets
A1, . . . , An , and as such we will freely use our oracle to interpret tuples of sets.
If working in T |A1, . . . , An , we will write x ∈ Ai instead of O(〈i, x〉).
However, a word of warning is due here. The bar notation we have introduced
is informal and will not be used in ambiguous expressions like �T |A,A(x ∈ A) or
�T |X

(
x ∈ X → �T |X ẋ ∈ X)

. Fortunately, for the purpose of this paper these
ambiguities are not salient, and the notation will be useful in making expressions
easier to understand.
Finally, we mention that we would like to be able to infer �T |X ∃Yϕ(Y)

from the formula �T |X ϕ(X). This is why in T |X we have included the axiom
∃Y ∀x (x ∈ Y ↔ O(x)).

3. Fragments of second-order arithmetic. Important fragments of second-order
arithmetic are typically characterized by their set-existence axioms. In this section
we shall introduce the fragments which are relevant for this paper.

3.1. Comprehension and induction. It is important to keep track of the second-
order principles that are used; below we describe themost basic ones. The induction
and comprehension axioms are the universal closures of the following formulas.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2017.30
https://www.cambridge.org/core

Γ-CA ∃X∀x (
x ∈ X ↔ ϕ(x)) where ϕ ∈ Γ and X is not free in ϕ;

Δ01-CA ∀x (ϕ(x)↔ �(x))→ ∃X∀x (x ∈ X ↔ ϕ(x)) where ϕ ∈ Σ01, � ∈ Π01,
and X is not free in ϕ;

IΓ ϕ(0) ∧ ∀x (ϕ(x)→ ϕ(x + 1)
) → ∀x ϕ(x) where ϕ ∈ Γ;

Ind 0 ∈ X ∧ ∀x (
x ∈ X → x + 1 ∈ X) → ∀x (x ∈ X).

We assume all theories extend two-sorted classical first-order logic, so that they
include modus ponens, generalization, etc., as well as Robinson arithmetic Q, i.e.,
Peano arithmetic without induction. By Q+ we denote Q together with the defining
axioms for xy .
In the list below, recall that we have included exponentiation in our language,
which is essential for the theories ECA0 and RCA∗

0 .

ECA0 : Q+ + Ind+ Δ00 − CA; ACA0 : Q+ + Ind+Π0� − CA;
RCA∗

0 : Q
+ + Ind+ Δ01 − CA; ACA : Q+ + IΠ1� +Π

0
� − CA.

RCA0 : Q+ + IΣ01 + Δ
0
1 − CA;

We mention these from weakest to strongest, but note that ACA0 is still a medium-
strength system of second-order arithmetic, being arithmetically conservative over
PA. The system ECA0 stands for Elementary Comprehension Axiom and was intro-
duced in [16] as the second-order equivalent of ElementaryArithmetic, EA (we refer
the reader to [5] for an axiomatization of EA). In order to relate ECA0 to the more
classical systems we need to mention Σ01-bounding. The principle of Σ

0
1-bounding is

given by
∀x <a ∃ z ϕ(x, y, z) → ∃b ∀x <a ∃ z <b ϕ(x, y, z)

with ϕ ∈ Σ01, and is also referred to as Σ01-collection.
Lemma 3.1. The first-order part of ECA0 is EA, and the first-order part of RCA∗

0
is EA plus Σ01-bounding. Moreover, RCA

∗
0 is Π

0
2-conservative over ECA0, and Σ

0
2

sentences are already not conserved.
Proof sketch. In [28] the above-mentioned characterization of the first-order
part of RCA∗

0 is proven. IfM is a model of EA, then it is easy to check that 〈M,S〉
is a model of ECA0, where S is the set of all Δ00-definable subsets ofM. This proves
that the first-order part of ECA0 is just EA.
It is well-known (see e.g., [18], Section 1(f), Chapter IV) that EA plus
Σ01-bounding is Π

0
2 conservative over EA. Moreover, the least number principle

for parameter-free Δ01 predicates is known to be Σ
0
2-axiomatizable, provable from

Σ01-bounding over EA, but not provable in plain EA (see e.g., [11]). This establishes
that Σ02 conservativity fails.

With the dot notation from above we can express an important feature of formal-
ized provability called provable Σ1-completeness which says that true Σ01 formulas
are actually provable.
Lemma 3.2 (Provable Σ1-completeness). Let U be a theory in the language of

arithmetic that extends ECA0. Further, let T be an elementary presented theory
extending Robinson arithmetic. For any Σ01 formula �(x1, . . . , xn), we have that

U � �(x1, . . . , xn)→ �T |X�(ẋ1, . . . , ẋn).
A proof of EA-provable Σ1 completeness for regular provability�T can be found,
e.g., in [18] or in [10] where in the latter reference we only need to observe that all

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2017.30
https://www.cambridge.org/core

arguments only require the totality of exponentiation and very little induction. Since
T |X is provably an extension of T we get Lemma 3.2. One key ingredient in the
proof is that bounded quantifiers may be effectively replaced by finite conjunctions
and disjunctions; the latter remains true in our second-order context, so wemention
it explicitly in the form that we will use it.

Lemma 3.3. Let T be any theory extendingQ and ϕ(x) ∈ Π0� . Then, it is provable
in ECA0 that ∀v�T

(∀u<v̇ ϕ(u)↔ ∧
u<v̇ ϕ(u̇)

)
.

Proof. See item (5) in the proof of Lemma III.3.14 of [18]. Note that the addition
of second-order or unbounded quantifiers does not affect the proof.

3.2. Transfinite induction and transfinite recursion. Another principle that will

be relevant in this work is transfinite recursion, but this is a bit more elaborate to
describe. Let us recall that L2 contains only monadic set-variables. Binary relations
and functions are represented by coding pairs of numbers. We can also encode
countable ordinals as well-orders on N, which may be represented using a set Λ
coding a pair 〈|Λ|, <Λ〉. As is standard, we write x <Λ y instead of 〈x, y〉 ∈ <Λ.
Let linear(Λ) be a formula naturally asserting that Λ is a linearly ordered set, and
define the formula wo(Λ) as

linear(Λ) ∧ ∀X⊆|Λ|
(
∃x∈X → ∃ y∈X ∀z ∈ X (

y ≤Λ z
))
.

We will use lower-case Greek letters for elements of |Λ| and boldface natural num-
bers to denote finite ordinals, so that n is {0, . . . , n − 1} with the usual ordering.
Similarly, a boldface � is the standard ordering on the naturals.
When it is clear from the context that we are working within Λ, we will often omit
explicit mention of it and we may write
 < � instead of
 <Λ �; similarly we may
write
 < Λ instead of
 ∈ |Λ|. We define x = 0Λ to be a formula stating that x is
the least element with respect to <Λ, and LimΛ(x) to be a formula expressing that
x has limit order-type within Λ, that is,

LimΛ(x) := x < Λ ∧ x �= 0Λ ∧ ∀ y <Λ x ∃ z (y <Λ z ∧ z <Λ x).

Along these lines, we define Lim(Λ) to state that Λ is a well-order with limit
order-type.
In this paper we shall use some very basic results on ordinal addition provable
in ACA0. The reverse mathematics of ordinal arithmetic has been developed by
J. L. Hirst in a series of papers (see [19] for a survey and further references). How-
ever, Hirst defines ordinal addition, multiplication, and exponentiation through
operations between well-orders (encoding ordinals). Here, instead, we are inter-
ested in the inner additive structure of limit ordinals. As a matter of fact, we will
only need some basic properties of the function (n, α, m) �→ n · α +m, for n, m ∈ N,
α < Λ, and Λ a limit ordinal. A word of warning is due: when we write n · α + m,
the operations in this expressions are not the usual ordinal operations, but rather
special operations on Λ that we define below and which behave analogously.
The theory ACA0 proves that if Lim(Λ) holds then the usual successor function

Succ : |Λ| → |Λ| exists and can be iterated to produce a function from N × |Λ| to
|Λ| satisfying the recurrence equations

Succ0(α) = α, Succk+1(α) = Succ(Succk (α)).

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2017.30
https://www.cambridge.org/core

The following lemma summarizes the properties of the function n · α + m that
we will use. The proof is straightforward and we omit it.

Lemma 3.4. Within ACA0 we have that if Lim(Λ) holds, then:

1. For each α < Λ there are unique k ∈ N and � < Λ such that � = 0 ∨ LimΛ(�)
and α = Succk(�).

2. There is a function f : N×Λ× N → Λ such that f(n, α,m) = Succn·k+m(�),
where α = Succk(�) and � = 0 ∨ LimΛ(�). (We will write n · α +m instead of
f(n, α,m) and simply n · α when m = 0.)

3. For all α, � < Λ and n,m ∈ N, α ≤Λ � → n · α +m ≤Λ n · � +m.
Our main focus will be the theory ATR0, in which new sets may be defined
using transfinite recursion. Transfinite recursion is the principle that sets may be
defined by iterating a formula along a well-order. To formalize this, let us con-
sider a set X whose elements are of the form 〈
, x〉. We shall write x ∈ X
 for
〈
, x〉 ∈ X .
Given a formula ϕ(X), define ϕ(X<Λ�) to be the formula where every occurrence
of t ∈ X in ϕ is replaced by ((t)0 <Λ �) ∧ (t ∈ X). Then define TRΛ(ϕ,X) to be
the formula

∀
 < Λ ∀x
(
x ∈ X
 ↔ ϕ(x,X<Λ
)

)
.

Finally, given a set of formulas Γ we define the schema

TR-Γ : ∀Λ
(
wo(Λ)→ ∃Y TRΛ(ϕ,Y)

)
for ϕ ∈ Γ.

We can now write down the axiom schema for Arithmetical Transfinite Recursion:

ATR0 : Q+ + Ind+ TR− Π0�.

The system ATR0 is important within reverse mathematics and commonly
associated with Predicative Reductionism [12,13,26].

In various proofs we will reason by induction along a well-order. By TIΛ(ϕ) we
denote the transfinite induction axiom for ϕ along the ordering <Λ:

TIΛ(ϕ) :=
(
∀
 < Λ (∀ �<Λ
 ϕ(�)→ ϕ(
))

)
→ ∀
 < Λ ϕ(
).

We will write ϕ-CA instead of {ϕ}-CA, i.e., the instance of the comprehension axiom
stating that {x : ϕ(x)} is a set. The following easy lemma tells us that we have
access to transfinite induction for formulas of the right complexity:

Lemma 3.5. In any second-order arithmetical theory we can prove

wo(Λ) ∧ (¬ϕ)-CA → TIΛ(ϕ).

As an easy corollary to this lemma we see that in ACA0 we can apply transfinite
induction for arithmetical formulas over any well-order, and we shall use this time
and again in the remainder of this paper.

4. Nested �-rules for oracle provability. In this section, we will briefly discuss
how nested �-rules for oracle provability can be formalized and prove certain
basic properties of the formalization. From now on, T will denote an elementarily
presented theory extending ECA0.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2017.30
https://www.cambridge.org/core

4.1. Formalizing nested�-rules for oracle provability. Wewill use [�]ΛT ϕ to denote
our representation of “ϕ is provable in T using iterated applications of the �-rule
of depth at most � (according to <Λ)”. The desired recursion for such a sequence
of provability operators is given by the following equivalence:

[�]ΛT ϕ ↔
(
�Tϕ ∨ ∃� ∃
<Λ�

(∀n [
]ΛT �(ṅ) ∧ �T (∀x�(x)→ ϕ)
))
. (2)

In [16], two of the authors formalize a notion [�]ΛT ϕ in second-order number theory
so that under certain conditions it provably satisfies (2). In the current paper we
introduce a minor modification, and define [�|X]ΛT ϕ = [�]T |X ϕ. Although [16]
does not consider theories with oracles, the construction given there readily applies
in this setting. For the sake of clarity and keeping the paper self-contained, we shall
sketch here how such a formalization would proceed and refer for [16] for further
details.
As a first step in such a formalization, we will use a set P as a provability operator
for the oracle X . Its elements are codes of pairs 〈�, ϕ〉, with � a code for an ordinal
and ϕ a code for a formula. We use [�]Pϕ to denote 〈�, ϕ〉 ∈ P.
The idea is that we want to consider those sets P of pairs 〈�, ϕ〉 so that (2) holds
for T |X whenever we define [�|X]ΛT ϕ := 〈�, ϕ〉 ∈ P. Of course, we will use second-
order logic to impose the necessary conditions on the set P. Whenever P satisfies
(2) forT |X wewill write IPCΛT |X (P) and say that “P is an iterated oracle provability
class”. The following definition is a minor modification from [16].

Definition 4.1. Let Λ be a second-order variable that will be used to denote a
well-order. Define RuleΛT |X (d,
, �, �, ϕ, P) to be the formula

<Λ� ∧ ∀n [
]P�(ṅ) ∧ ProofT |X (d,∀x�(x)→ ϕ),
ProofΛT |X (c, �, ϕ, P) to be

∃d ∃
 ∃�
(
c = 〈d,
, �〉 ∧ [

ProofT |X (d, ϕ) ∨ RuleΛT |X (d,
, �, �, ϕ, P)
])
,

and let IPCΛT |X (P) be the formula

∀ � < Λ ∀ϕ
(
[�]Pϕ ↔ ∃c ProofΛT |X (c, �, ϕ, P)

)
.

Then, [�|X]ΛT ϕ is theΠ11 formula∀P (IPCΛT |X (P)→ [�]Pϕ), and 〈�|X 〉ΛT ϕ is defined
as ¬[�|X]ΛT¬ϕ.
Note that the formulas [�]Pϕ and 〈�〉Pϕ are independent of T , Λ, and X and are
merely of complexity Δ00(P). Note also that IPC

Λ
T |X (P) is a Π

0
3(Λ, X, P) formula

since T is elementary presented.
We would like to stress that our notion of oracle provability is rather weak
in a sense: a formula is provable if it is a member of every iterated provability
class corresponding to that oracle, but it can be the case that there simply are no
such iterated provability classes. Consequently, and in the same sense, consistency
statements are rather strong: from oracle consistency wemay conclude the existence
of an iterated provability class corresponding to that oracle. Let us state this explicitly
in a lemma whose proof merely follows from the definition.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2017.30
https://www.cambridge.org/core

Lemma 4.2. ECA0 � ∀X (〈�|X 〉ΛT	 → ∃Y IPCΛT |X (Y)
)
.

However, if we are mainly interested in consistency strength, it is not such a bad
thing to work under the assumption that iterated provability classes exist for all
oracles.

Lemma 4.3. Any theory T extending ECA0 is provably equiconsistent with
T + ∀X ∃Y IPCΛT |X (Y) over EA. That is,

EA � T ≡Π01 T + ∀X ∃Y IPCΛT |X (Y).

Proof. As in [16] we remark thatT +�T⊥ � T +∀X ∃Y IPCΛT |X (Y) � T and
that T + �T⊥ ≡Π01 T . To see the latter, suppose T � �T⊥ → � for some � ∈ Π01.
Reason in T and assume�T� and ¬�. By provable Σ01-completeness, �T¬�. Hence
�T⊥ and so �. Thus, T � �T� → � whence by Löb’s rule, T � �, and all this
argument may be formalized in EA.

The assumption that an IPC exists will sometimes be needed to prove apparently
trivial properties of iterated provability; for example, that 0-provability corresponds
to ordinary provability. The proof of the following is straightforward andwe omit it.

Lemma 4.4. Fix a theory T . It is provable in ECA0 that, if Λ has a minimum
element 0Λ, ϕ is any formula and X is any set, then:

1. �T |Xφ implies that [0Λ|X]ΛTφ, and
2. if P satisfies IPCΛT |X (P), then [0Λ]Pφ implies that �T |Xφ.
Fortunately, we can prove that IPCs exist and are unique, but such a proof requires
a relatively strong theory. Below, ∃! is a standard abbreviation for “there exists a
unique”, and ∃≤1 for “there exists at most one”.
Lemma 4.5. Let T be any elementarily represented theory. Then,

1. ACA0 proves that if Λ is a well-order then ∃≤1P IPCΛT |X (P), and
2. ATR0 proves that if Λ is a well-order then ∃!P IPCΛT |X (P).

Proof. The first claim is analogous to a result of [16]. Via an easy transfinite
induction we see in ACA0 that iterated provability classes are unique, given a well-
order Λ, an oracle set X , and a c.e. base theory T . The second is immediate
from the first and the fact that ∀Λ(wo(Λ) → ∀X∃P IPCΛT |X (P)

)
is an instance

of TR-Π0�.

4.2. Normality and completeness for oracle provability. Many results established
in [16] for [�]ΛT ϕ simply carry over to [�|X]ΛT ϕ. For example, as an almost immediate
consequence of the definition, we get monotonicity on �. Moreover, there is also a
form of oracle-monotonicity which requires stronger assumptions. The next lemma
is a generalization of a result in [16] to theories with oracles.

Lemma 4.6. Let T be any theory.

1. It is provable in ECA0 that, if Λ is any linear order, then for every formula ϕ,
every � <Λ � and every set X , [�|X]ΛT ϕ implies that [�|X]ΛT ϕ.

2. It is provable in ACA0 that, if Λ is a well-order and X,Y are sets such that
∃P IPCΛT |X (P) holds, then for every formula ϕ and every � < Λ, [�|X]ΛT ϕ
implies that [�|X,Y]ΛT ϕ.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2017.30
https://www.cambridge.org/core

Proof. The first claim follows from the definition of an IPC using the transitivity
of<Λ. For the second, it should be noted that a small technical translation between
the ‘ϕ’ in [�|X,Y]ΛT ϕ and the ‘ϕ’ in [�|X]ΛT ϕ is needed according to the notational
conventions established in Section 2.2. Now using the assumption we fix an IPC P
forT |X , and consider an arbitrary IPCQ forT |X,Y . Then, we prove by transfinite
induction on � < Λ that ∀ϕ (

[�]Pϕ → [�]Qϕ
)
holds; since the latter is arithmetical,

this induction may be performed within ACA0.

We also see that we have distributivity for our provability predicates [�|X]ΛT .
Lemma 4.7. ACA0 proves that, given a theory T , a well-order Λ, � < Λ and

formulas ϕ1, ϕ2, [�|X]ΛT (ϕ1 → ϕ2)→ ([�|X]ΛTϕ1 → [�|X]ΛTϕ2).
Proof. See [16, Lemma 6.1]. Note that the addition of an oracle does not affect
the proof.

Corollary 4.8. It is provable in ACA0 that the provability predicates [�|X]ΛT

satisfy the modal logic K for each well-order Λ and each � < Λ.

We also can prove various completeness results for our provability predicates.
Recall that n denotes the set {m : m < n} and � the natural numbers, both with
their usual ordering.

Lemma 4.9. If ϕ(X, x) ∈ Σ02m+1(X) andm < n ≤ �, then

ECA0 � ∀X ∀x
(
ϕ(X, x)→ [m|X]nT ϕ(X , ẋ)

)
. (3)

Proof. We proceed by an external induction on m and the subformulas of ϕ
by their build. Thus, we assume (3) for each subformula of ϕ. Without loss of
generality we may assume that negations occur only on atomic formulas, that ϕ is
in prenex normal form and that it does not contain subformulas of the form ∀x∀y �
or ∃x∃y � where the occurrence of y is unbounded. For the remainder of the proof
we reason in ECA0.
For the base case,ϕ is an atomic formula or negation of an atomic formula, which
is of oneof the following forms: either it contains no second-order variables, inwhich
case we obtain �Tϕ(ẋ) by provable Σ01-completeness, Lemma 3.2. Otherwise, it is
of the form t ∈ X or t �∈ X for some term t, which is provably equivalent to an
axiom of T |X .
If ϕ is bounded but not atomic, we merely follow a routine induction on the build

of ϕ. The case where ϕ is a Boolean combination of its subformulas is straight-
forward, and bounded quantifiers may be replaced by conjunctions or disjunctions
using Lemma 3.3.
If ϕ = ∃x �(x), then for some k we have that �(k) is true. By the induction

hypothesis, [m|X]nT �(k), and by existential introduction, [m|X]nT ∃x �(x). Finally,
we consider the case ϕ = ∀x �. Since by assumption ∀x � ∈ Σ02m+1, we have that
∀x � ∈ Π02m since it starts with a universal quantifier, so that � ∈ Σ02(m−1)+1. Thus,
by the induction hypothesis we have for every k that [m − 1|X]nT �(k̇) and therefore
[m|X]nT ∀x �(x) by one application of the �-rule.

As an immediate corollary we get Π02m-completeness as well. We also get
Σ11-completeness for provability involving at least �-many iterations as is mani-
fest in the next theorem, provided we are allowed to pick a suitable oracle. We will

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2017.30
https://www.cambridge.org/core

write [�|X0, . . . , Xn]ΛT for oracle provability where the tupleX0, . . . , Xn is represented
by a single set using the conventions from Section 3.

Theorem 4.10. If ϕ(X, x) ∈ Σ11(X) then there exists n such that
ECA0 � ∀x ∀X ∃Y

(
ϕ(X, x)→ [n|Y,X]�T ϕ(X , ẋ)

)
.

Proof. By assumption, ϕ(X, x) is of the form ∃Yϕ0(Y,X, x) with the formula
ϕ0(Y,X, x) ∈ Π0n(X,Y) for some n. We now reason in ECA0, fix some X and x and
assume ϕ(X, x). Thus, for some Y we have ϕ0(Y,X, x). By Lemma 4.9, we see that
[n|Y,X]�T ϕ0(Y,X , ẋ), whence also [n|Y,X]�T ϕ(X, ẋ).

5. Oracle consistency and oracle reflection. In this section we will introduce the
notions of reflection and consistency that naturally correspond to oracle provability,
and relate them both to each other and to arithmetical comprehension.

5.1. Basic definitions. First, let us define the notions of reflection and consistency
we are interested in.

Definition 5.1 (Oracle reflection and oracle consistency). For Γ a class of
formulas not containing any occurrence of O, we define �-OracleRFNΛΓ(T) (oracle
reflection) as the schema

∀X0 · · · ∀Xn ∀x
(
[�|X0, . . . , Xn]ΛT ϕ(X0, . . . , Xn, ẋ)→ ϕ(X0, . . . , Xn, x)

)

for ϕ(X0, . . . , Xn, x) ∈ Γ and FV(ϕ(X0, . . . , Xn, x)) ⊆ {X0, . . . , Xn, x}. We also
define

�-OracleConsΛ(T) := �-OracleRFNΛ{⊥}(T);

Λ-OracleCons(T) := ∀�<Λ(�-OracleConsΛ(T));
Λ-OracleRFNΓ(T) := ∀�<Λ(�-OracleRFNΛΓ(T)).

The next easy example makes clear why we imposed the restriction of O not
occurring in Γ. Let X := {2} and let Y := ∅. Clearly we have [�|X]ΛT O(2) and
[�|Y]ΛT ¬O(2) so that we arise at a contradiction where we allowed to apply ora-
cle reflection to these sentences. We shall later see that oracle reflection with the
restriction is consistent.

5.2. Oracle reflection and comprehension. Let us see that with just a little amount
of oracle reflection we get arithmetical comprehension. Observe that below we do
not assume that Λ is a well-order, only that it has a minimum element 0Λ.

Lemma 5.2. ACA0 ⊆ ECA0 + ∀�<Λ(0Λ ≤Λ �) + 0Λ-OracleRFNΛΣ01 (ECA0).
Proof. Without loss of generality, we may restrict our attention to formulas with
at most one set parameter, so we fix a Σ01(X) formula ϕ(x,X). Thus, we reason in
ECA0 and fix some set X . Since reflection implies consistency we know that there
is some iterated provability predicate for X (Lemma 4.2). That is, there is some P
with IPCΛECA0|X (P).
By Δ00-CA, we can form the set Z = {z : [0Λ]P ϕ(z,X)}.We claim that z ∈ Z ↔
ϕ(z,X), which finishes the proof, for Σ01-CA and Π

0
�-CA are equivalent over ECA0

(see, e.g., [27, Lemma III.1.3]).

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2017.30
https://www.cambridge.org/core

If z ∈ Z, byLemma4.4.2wehave that�ECA0|Xϕ(z,X), and thus byLemma4.4.1,
[0Λ|X]ΛECA0ϕ(z,X). By reflection, we obtainϕ(z,X). On the other hand, if ϕ(z,X),
we get by completeness (Lemma 4.9) that [0Λ|X]ΛECA0ϕ(z,X), so that in particular
[0Λ]Pϕ(z,X), and thus z ∈ Z.

The upshot of this lemma is that we can performmany of our arguments in ACA0

once we have just a little bit of reflection, as we will do in the next subsection.

5.3. Oracle consistency versus oracle reflection. It will be convenient to observe
that consistency and reflection are easily related to each other.
Lemma 5.3. Fix m < n ≤ �. Over ECA0 we have that:
1. m-OracleRFNnΠ02m+1

(T) ≡ m-OracleConsn(T);
2. if Lim(Λ) then Λ-OracleRFNΠ11 (T) ≡ Λ-OracleCons(T).
Proof. For the first claim, we reason in ECA0. It should be clear that
m-OracleRFNnΠ02m+1

(T) provesm-OracleConsn(T).For the other direction, fix a for-

mula ϕ(x) ∈ Π02m+1(X), and assume that [m|X]nTϕ(ȧ) holds for some a. Towards
a contradiction, assume that ¬ϕ(a) also holds, so that by Lemma 4.9, we have that
[m|X]nT¬ϕ(ȧ). We may then use Lemma 4.7 to do a bit of propositional reasoning
and obtain [m|X]nT⊥, contradicting m-OracleConsn(T).
For the second claim, we once again focus on the right-to-left direction, since
the other is immediate. Reason in ECA0 and assume Λ-OracleCons(T). Let 1Λ
denote the second element in the well-order Λ. Reasoning as in the first item with
m = 1, we obtain 1Λ-OracleRFNΛΠ03

(T), which in view of Lemma 4.6.1 implies

0Λ-OracleRFNΛΣ01
(T) and we may use Lemma 5.2 to obtain ACA0.

Thus we may continue reasoning in ACA0 + Λ-OracleCons(T). Fix a formula
ϕ(x) ∈ Π11(X), and assume that [�|X]ΛTϕ(ȧ) for some � < Λ and a. As before,
assume that ¬ϕ(a) holds; then, by Theorem 4.10 there are m and Y such that
[mΛ|X,Y]ΛT¬ϕ(ȧ), wheremΛ denotes them-th element in the well-order Λ. Letting
� be the greatest of �,mΛ in Λ, we see using [�|X]ΛTϕ(ȧ) that [�|X,Y]ΛT¬ϕ(ȧ) and
[�|X]ΛTϕ(ȧ) both hold.
Now, using Lemma 4.2, there exists P such that IPCΛT |X (P). Thus we may use
[�|X]ΛTϕ(ȧ) and Lemma 4.6.2 to obtain [�|X,Y]ΛTϕ(ȧ); but since we also had that
[�|X,Y]ΛT¬ϕ(ȧ), this contradicts Λ-OracleCons(T).

6. Predicative oracle reflection and consistency. Our notions of oracle reflection

and oracle consistency include a particular well-order Λ. We shall now define what
we call predicative oracle reflection and predicative oracle consistencywhich stipulate
the oracle notions for any well-order.

Definition 6.1. Wedefine the principle predicative oracle reflection as the scheme

Pred-O-RFNΓ(T) = ∀Λ ∀ � < Λ (
wo(Λ)→ �-OracleRFNΛΓ(T)

)
,

and predicative oracle consistency as the statement

Pred-O-Cons(T) = ∀Λ ∀ � < Λ (
wo(Λ)→ �-OracleConsΛ(T)).

Let us first make a simple observation.
Lemma 6.2. Over ECA0, Pred-O-Cons(T) ≡ Pred-O-RFNΠ11 (T).
Proof. This follows from Lemma 5.3.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2017.30
https://www.cambridge.org/core

The main result of this section is that predicative reductionism follows from
predicative oracle consistency over a rather weak theory. To be more precise, we
shall prove that ATR0 follows from ECA0 + Pred-O-Cons(ECA0).

6.1. Predicative oracle consistency proves predicative reductionism. Let us recall
from Section 3.2 the formula TRΛ(ϕ,X) which says that the setX satisfies transfinite
recursion for ϕ over the well-order Λ. If ϕ is arithmetical, then so is TRΛ(ϕ,X).
Moreover, we note that TRΛ(ϕ,X) only imposes restrictions on numbers which code
pairs 〈
, n〉 with
 ∈ |Λ| and says nothing about numbers not of this form.
In order to prove properties of transfinite recursion it will be useful to have
restricted versions of TRΛ(ϕ,X). Thus, we define

TRΛ� (ϕ,X) := ∀
≤Λ� ∀x
(
x ∈ X
 ↔ ϕ(x,X<Λ
)

)
,

and TRΛ<�(ϕ,X) := ∀
<Λ� TRΛ
 (ϕ,X). The formula ϕ may have many free number
and set variables. However, one set variable of ϕ plays a special role in TRΛ(ϕ,X),
like the variable X in TRΛ� (ϕ,X), and this variable shall always be displayed.
Sometimes we may wish to emphasize that TRΛ� (ϕ,Y) has other free variables
appearing in ϕ. We will do so by using a semicolon, e.g., TRΛ� (ϕ,Y ;X). We stipulate
that any first-order variable, say z, in TRΛ� (ϕ,Y ; z) will be dotted when occurring
in the scope of a box. Thus if, for example z is free in ϕ, then TRΛ� (ϕ,X) means
TRΛ� (ϕ,X ; z), and by definition [
|Λ]ΛT TRΛ�̇ (ϕ,Y) denotes [
|Λ]ΛT TRΛ�̇ (ϕ,Y ; ż).
In order to prove that predicative oracle consistency proves transfinite recursion,
given arithmeticalϕ(z,Z) and awell-order Λ, we need to construct a setA satisfying
TRΛ(ϕ,A). We cannot do this directly without assuming ATR0, so instead we would
want to consider the setA of all 〈�, n〉 such that it is provable that 〈�, n〉 ∈ A. But of
course we cannot refer directly toA, so insteadwewill prove that n belongs to any set
that is definedby transfinite recursion ofϕoverΛ; that is,∀Z (

TRΛ(ϕ,Z)→ n ∈ Z).
To be precise, we will use a set of the form{

〈�, n〉 : [fϕ(�)|A]ΛECA0∀Z(TRΛ<�(ϕ,Z)→ ϕ(n,Z<�))
}
,

for an appropriate function fϕ and an appropriately chosen setA. The exact values
will be provided by the following lemma, where we use the function n · α + m
described in Lemma 3.4:
Lemma 6.3. For any pair of formulas ϕ ∈ Π02m(X,Z,Λ) and � ∈ Σ02�+1(X,Z,Λ)

we have that ACA0 proves

Lim(Λ) → ∀Z,X ∀�<Λ
(
TRΛ<�(ϕ,Z;X) ∧ �(Z<�,X,Λ)

→ [m·�+ �|X,Λ]ΛT ∀Z
(
TRΛ
<�̇
(ϕ,Z;X)→ �(Z<�̇, X ,Λ)

))
.

Proof. We reason in ACA0, assume Lim(Λ), fix Z and X and proceed to prove
the claim simultaneously for all subformulas � of ϕ, ¬ϕ and of �. We will assume
that ϕ,� are in prenex normal form, and that there is no subformula of the form
∀x∀y � or ∃x∃y � where the occurrence of y is unbounded. By using negation
normal forms, we may also assume that ¬ is only applied to atomic formulas.
Similarly, let ∼ϕ be a formula provably equivalent to ¬ϕ also in the above form.
Let Θ denote the set of all subformulas of ϕ, ∼ϕ, and �. For each � ∈ Θ,
we consider the following formula ��(�) ∈ Π0�(X,Z,Λ):

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2017.30
https://www.cambridge.org/core

∀v
(
TRΛ<�(ϕ,Z;X)∧ �(v,Z<�,X,Λ)

→ [m·�+ �� |X,Λ]ΛT ∀Z
(
TRΛ
<�̇
(ϕ,Z;X)→ �(v̇, Z<�̇, X ,Λ)

))
,

where �� is the least natural number such that � ∈ Π02�� (X,Z,Λ) ∪ Σ02��+1(X,Z,Λ).
Finally, we define �(�) =

∧
�∈Θ ��(�) ∈ Π0�(X,Z,Λ).

We reason by transfinite induction in ACA0, assuming that ∀�<� �(�). In order
to derive �(�), we show that ��(�) holds for each � ∈ Θ. We prove ��(�) by a
(secondary) external induction on the build of the subformulas � as in the proof of
Lemma 4.9. Hence, we have to consider two new base cases.
First we consider the case when � = �(v,Z<�,X,Λ) is of the form
(v0<Λ�)∧ (v ∈ Z), in which case we have that v0 <Λ � is readily derivable from the
axioms of T |X,Λ. Meanwhile, by the assumption that v ∈ Z and TRΛ<�(ϕ,Z), we
must have that bothϕ(v1, Z<v0 , X,Λ) and TR

Λ
<v0
(ϕ,Z) are true, andby the induction

hypothesis applied to v0 (notice that ϕ ∈ Θ) we have
[m · v0 +m|X,Λ]ΛT ∀Z

(
TRΛ<v̇0 (ϕ,Z;X)→ ϕ(v̇1, Z<v̇0 , X ,Λ)

)
.

Since Λ is a limit well-order, in view of Lemma 3.4 we havem · v0 +m ∈ |Λ|. Since
v0 + 1 ≤Λ � it now immediately follows that

[m · �|X,Λ]ΛT ∀Z
(
TRΛ
<�̇
(ϕ,Z;X)→ (v̇0 <Λ �̇ ∧ v̇ ∈ Z)

)
as was to be shown. The case where � = ¬((v0<Λ�) ∧ (v∈Z)) is proven similarly.
If ¬(v0 <Λ �) holds then this formulas is derivable from the axioms of T |X,Λ.
In other case, by the assumption that ¬(v ∈ Z) and TRΛ<�(ϕ,Z;X), we have that
¬ϕ(v1, Z<v0 , X,Λ) and TRΛ<v0 (ϕ,Z;X) are true, and we conclude as in the previous
case (using now that∼ϕ ∈ Θ).
Other base cases and the induction step for Boolean connectives and unbounded
existential quantifiers can be handled as in Lemma 4.9.
Let us show how to deal with bounded quantifiers. Assume that � is of the
form ∀u<t(v) �0(u,Z), and that TRΛ<�(ϕ,Z;X) and �(v,Z<�,X,Λ) hold. Note that
�� = ��0 = 0; then, by our (external) induction hypothesis, we get

∀u < t(v) [m · �|X,Λ]ΛT ∀Z
(
TRΛ
<�̇
(ϕ,Z;X)→ �0(u̇, Z<�̇, X ,Λ)

)
.

As a consequence,

[m · �|X,Λ]ΛT ∀Z
(
TRΛ
<�̇
(ϕ,Z;X)→

∧
u<t(v̇)

�0(u̇, Z<�̇, X ,Λ)
)
.

In view of Lemma 3.3, it follows that

[m · �|X,Λ]ΛT ∀Z
(
TRΛ
<�̇
(ϕ,Z;X)→ �(v̇, Z<�̇, X ,Λ)

)
.

Finally, we deal with an unbounded universal quantifier; that is, suppose that � is
of the form ∀u �0(u,Z,X,Λ). Then, assuming TRΛ<�(ϕ,Z) and �(Z<�,X,Λ), by our
(external) induction hypothesis we get

∀u[m · �+ ��0 |X,Λ]ΛT ∀Z
(
TRΛ
<�̇
(ϕ,Z;X)→ �0(u̇, Z<�̇, X ,Λ)

)
.

Observe that in this case �� = ��0 + 1, and thus by an application of the �-rule and
some reasoning in predicate logic we obtain

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2017.30
https://www.cambridge.org/core

[m · �+ �� |X,Λ]ΛT ∀Z
(
TRΛ
<�̇
(ϕ,Z;X)→ ∀u �0(u,Z<�̇, X ,Λ)

)
,

as required.

By the above lemma, if A is a set satisfying TRΛ(ϕ,A;X) and 〈�, n〉 ∈ A, then

we must also have that [m·�+ �|X,Λ]ΛT ∀Z
(
TRΛ
<�̇
(ϕ,Z;X)→ ṅ ∈ Z<�̇

)
. If we have

reflection forΠ11 formulas, then setting Z = A we see that the converse implication

also holds. Thus we may expect that A satisfies T̃R
Λ
� (ϕ,A), as defined below:

Definition 6.4. Consider ϕ ∈ Π0m(W,X,Λ). We define T̃R
Λ
� (ϕ,A;W) by

∀x
(
x0 ≤Λ �→

(
x ∈ A

↔ [m · x0 +m|W,Λ]ΛT ∀X
(
TRΛ<ẋ0 (ϕ,X ;W)→ ϕ(ẋ1, X<ẋ0 ,W ,Λ)

)))
.

We also define T̃R
Λ
<�(ϕ,A) by ∀ �<Λ� T̃R

Λ
� (ϕ,A), as well as defining T̃R

Λ
(ϕ,A) by

∀ � < Λ T̃R
Λ
� (ϕ,A).

Roughly, T̃R
Λ
� (ϕ,A) means that the elements of A are precisely those 〈�, n〉 for

which it is provable that any setZ satisfying TRΛ� (ϕ,Z)must contain 〈�, n〉.Aswewill
see later, T̃R

Λ
� (ϕ,A) is actually equivalent to TR

Λ
� (ϕ,A); however, using T̃R

Λ
� (ϕ,A)

to defineAwill be useful to us because the construction of such a set may be carried
out using only predicative oracle reflection.

Lemma 6.5. Given ϕ ∈ Π0n(W,X,Λ), we have that
ECA0 + Pred-O-Cons(ECA0) � Lim(Λ)→ ∀W ∃X T̃R

Λ
(ϕ,X ;W).

Proof. Since ECA0 + Pred-O-Cons(ECA0) � ACA0, we know that any IPC
will be unique given a well-order Λ and oracle W . So, we reason in ECA0 +
Pred-O-Cons(ECA0), assume Lim(Λ) and pick W arbitrary as well as � ∈ |Λ|.
By [0|W,Λ]ΛECA0⊥ → ⊥ we observe that ∃P IPCΛECA0|W,Λ(P). So let P be such an
IPC and consider the set

Y := {〈�, x〉 : � ∈ |Λ| ∧ [n�+ n]P ∀X (
TRΛ
<�̇
(ϕ,X ;W)→ ϕ(ẋ, X<�̇,W ,Λ)

)}.
By Δ00-comprehension Y is a set and by definition and the uniqueness of an IPC we

conclude that T̃R
Λ
(ϕ,Y ;W).

Lemma 6.6. For ϕ ∈ Π0�(W,X,Λ) we have that

ECA0 + Pred-O-Cons(ECA0) � Lim(Λ) →
(
T̃R
Λ
(ϕ,A) → TRΛ(ϕ,A)

)
.

Proof. Fix ϕ ∈ Π02m(W,X,Λ) and reason in ECA0 + Pred-O-Cons(ECA0).
Let Λ, A,W be sets such that Lim(Λ), and proceed by transfinite induction on
� < Λ. Note that since all sets are fixed, this induction can be carried out in ACA0,
which is available thanks to Lemma 5.2.
So, assume that T̃R

Λ
� (ϕ,A) holds and, by induction, that for all � < �, TR

Λ
� (ϕ,A).

We need to conclude TRΛ� (ϕ,A) and, since that is equivalent to TR
Λ
<�(ϕ,A) ∧ ∀n (n ∈

A� ↔ ϕ(n,A<�)
)
, it suffices to focus on the second conjunct.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2017.30
https://www.cambridge.org/core

If 〈�, n〉 ∈ A, it is immediate by Π11 oracle reflection that ∀X
(
TRΛ<�(ϕ,X) →

ϕ(n,X<�)
)
. But by the induction hypothesis, TRΛ<�(ϕ,A) holds; therefore, in

particular, ϕ(n,A<�) holds as well.
Conversely, if we have thatϕ(n,A<�), wewish to appeal to Lemma 6.3 to conclude
that 〈�, n〉 ∈ A. By the induction hypothesis, A satisfies TRΛ<�(ϕ,A). Thus from
Lemma 6.3,

[m · �+m|W,Λ]ΛT ∀X (
TRΛ
<�̇
(ϕ,X ;W)→ ϕ(ṅ, X<�̇,W ,Λ)

)
,

and hence 〈�, n〉 ∈ A. To summarize, we have now shown that for all x = 〈�, n〉
with � ≤ �, x ∈ A ↔ ϕ(n,A<�), that is, TRΛ� (ϕ,A). By transfinite induction on �,
we conclude that TRΛ(ϕ,A), as claimed.

We can now finally combine all our previous results and formulate the main
theorem of this section.

Theorem 6.7. ECA0 + Pred-O-Cons(ECA0) � ATR0.
Proof. Immediate from Lemmas 6.5 and 6.6, bearing in mind that every well-
order Λ can be extended to the limit well-order Λ + �.

7. Countable coded �-models and reflection. Our goal in this section is to
derive a converse of Theorem 6.7; in fact, we will even show that ATR0 proves
Pred-O-RFNΠ12 (ACA). The main tool for this task will be the notion of a countable
coded �-model. In what follows we shall discuss existence results for �-models and
the satisfaction definitions associated to them. First we briefly recall the definition
and basic properties of these models (we refer to [27, Chapters VII and VIII] for a
more detailed account of this topic).

7.1. �-models and satisfaction definitions. Let L1 denote the usual language of
first-order arithmetic augmented with exponentiation. A structureM = 〈N,S〉 for
the language of second-order arithmetic L2 is given by an L1-structure N together
with a family S of subsets of the universe ofN. An �-model is just an L2-structure
M = 〈N,S〉 where N is the standard L1-structure with universe �. Therefore, in
order to fully describe an �-model it is enough to provide a subset S of P(�). This
motivates the following definition.

Definition 7.1. A countable coded �-model is a set M ⊆ N viewed as a code
for a countable sequence of subsets of N, {Mn : n ∈ N}, where for each n ∈ N,
Mn = {i : 〈n, i〉 ∈ M}.
A satisfaction notion can be associated to each countable coded �-model in a

rather natural way. To this end we introduce some auxiliary concepts. We denote
by LC the language obtained by adding to L2 a sequence of new constant symbols
{Cn : n ∈ N}. The constantsCn are second-order and are used as names for the sets
Mn of the sequence coded byM.
Let val : TrmC → N be the standard primitive recursive function that associates

to each (Gödel number of a) closed first-order term t of LC its value val(t) under
the usual interpretation for the symbols of LC . Moreover, let SntC denote the set
of sentences of LC .
Definition 7.2. LetM be a countable coded �-model. A (full) satisfaction defi-

nition forM is a set Sat ⊆ SntC which obeys the usual recursive clauses of Tarski’s

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2017.30
https://www.cambridge.org/core

truth definition, where each constant Cn is interpreted usingMn. In particular, for
every t, t′ ∈ TrmC and n ∈ N,

(t = t′) ∈ Sat ⇔ val(t) = val(t′);
(t ∈ Cn) ∈ Sat ⇔ val(t) ∈ Mn;
(¬ϕ) ∈ Sat ⇔ ϕ �∈ Sat;

(ϕ1 ∧ ϕ2) ∈ Sat ⇔ ϕ1 ∈ Sat and ϕ2 ∈ Sat;
(∀u ϕ(u)) ∈ Sat ⇔ for all n ∈ N, ϕ(n) ∈ Sat;
(∀X ϕ(X)) ∈ Sat ⇔ for all n ∈ N, ϕ(Cn) ∈ Sat.

We may assume other connectives and quantifiers are defined in terms of ¬,∧,∀.
We say thatM is a full �-model if there is a full satisfaction definition forM.

It can be easily shown in RCA0 that if M is a countable coded �-model, then
there exists a unique partial satisfaction definition for Δ00-formulas in M (that is,
the recursion from Definition 7.2 is only required to hold for Δ00 sentences of LC).
Nevertheless, existence of a full satisfaction definition requires a stronger theory,
such as ATR0; uniqueness, on the other hand, does not require such a strong base
theory.
Lemma 7.3. RCA0 proves that for any countable coded �-model M, there is at
most one full satisfaction definition forM.
Proof. We shall give a sketch. First we define by primitive recursion a function
dg : Form(LC) → N, so that dg(ϕ) is the number of quantifiers and connectives
occurring in ϕ. Then, if Sat1 and Sat2 are full satisfaction definitions forM, we can
prove byΠ01-induction on u that

∀u ∀ϕ ∈ SntC (dg(ϕ) ≤ u → (ϕ ∈ Sat1 ↔ ϕ ∈ Sat2));
therefore, Sat1 = Sat2. But RCA0 provesΠ01-induction (see [27, Corollary II.3.10]),
so the result follows.

Definition 7.4. Let M be a countable coded �-model and let ϕ be a sentence

of LC . We say thatM is a full �-model of ϕ if there is a full satisfaction definition
Sat forM such that ϕ ∈ Sat, in which case we writeM |= ϕ. We say thatM is a
model of a set of formulas Φ of LC if, for every � ∈ Φ,M is a model of the universal
closure of �.

Lemma 7.5. Let ϕ(X1, . . . , Xm, v1, . . . , vn) ∈ Π0�(X1, . . . , Xn) with all variables
shown. It is provable in ECA0 that for every full countable coded �-model M and
numbers a1, . . . , an, b1, . . . , bm, we have that

ϕ(Ma1 , . . . ,Man , b1, . . . , bm) ⇐⇒ M |= ϕ(Ca1 , . . . , Can , b1, . . . , bm).
Proof. Straightforward by (external) induction on the syntactical complexity of
the formula ϕ, using the Tarskian truth conditions.

Lemma 7.6. ECA0 proves that for any full countable coded �-modelM we have

thatM |= Q+ + IΠ1� .
Proof. Reasoning in ECA0, let Sat denote the full satisfaction definition forM.
Since Q+ is axiomatized by a true Π01-formula, it follows from Lemma 7.5 that
M |= Q+. Now let ϕ(u,X) ∈ Π1� be such that for some b

M |= ϕ(0,Mb) ∧ ∀u (ϕ(u,Mb)→ ϕ(u + 1,Mb)
)
.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2017.30
https://www.cambridge.org/core

Then, �(0, b, ϕ, Sat) ∧ ∀x (�(x, b, ϕ, Sat) → �(x + 1, b, ϕ, Sat)
)
, where

�(x, b, ϕ, Sat) is the Δ00-formula ϕ(x,Cb) ∈ Sat. By induction we see that
∀x �(x, b, ϕ, Sat) and, as a consequence,M |= ∀u ϕ(u,Mb).

7.2. �-models of ACA0. The following result will be very useful to us; it is a
trivial generalization of [27, Theorem VIII.1.13].

Proposition 7.7. Fix a natural number k. Then, ATR0 proves that for any tuple
X0, . . . , Xk ⊆ N, there exists a unique, smallest, full countable coded �-model M
such that Mi = Xi for all i ≤ k and M |= ACA0. We will denote this model by
M[X0, . . . , Xk].

In view of Lemma 7.6, we immediately obtain the following result (see also [27,
Corollary VIII.1.14]):

Corollary 7.8. Proposition 7.7 remains true if we replace ACA0 by ACA (with
full induction). In fact, we already have thatM[�X] |= ACA.
Countable coded �-models can be used for theories with an oracle in which
case we only should fix the interpretation of the oracle. For each countable coded
�-model we will adopt the following convention: the oracle O will always be
interpreted usingM0.

Lemma 7.9 (Soundness for �-models). The following is provable in ATR0. For
any X ⊆ N, any well-order Λ, and any full �-modelM for T |X withM0 = X , we
have for any � ∈ |Λ| and any formula ϕ that if [�|X]ΛT ϕ, thenM |= ϕ.
Proof. We reason in ATR0. Given a set X , a well-order Λ and, a full �-model

M for T |X withM0 = X , we fix the full satisfaction definition Sat forM. Using
Lemma 4.5.2, let P be the unique set such that IPCΛT |X (P) holds. By transfinite
induction we show that ∀ �<Λ ∀ϕ (

[�]Pϕ → ϕ ∈ Sat).
For � = 0 this follows from the assumption thatM |= T |X , and the inductive

step is trivial since we work with �-models.

7.3. Proving predicative reflection. We are almost ready to state and prove our
main theorem. We only need the following lemma.

Lemma 7.10. Let T in L2 be any formal theory such that it is provable in ATR0
that every set X can be included in a full �-model for T . Then,

ATR0 � Pred-O-RFNΠ12 (T).

Proof. Given a theory T meeting the requirements of the lemma, we fix some
ϕ(X, x) ∈ Π12(X) and reason in ATR0. Let Λ be such that wo(Λ) and � ∈ |Λ|. Now
assume that for A ⊆ N and a ∈ N we have [�|A]ΛT ϕ(A, ȧ). Since ϕ(X, x) ∈ Π12(X),
we can assume that ϕ(X, x) is of the form ∀Y ∃Z �(X,Y,Z, x) for some formula
�(X,Y,Z, x) ∈ Π0�(X,Y,Z).
Let B ⊆ N be arbitrary. We shall show that �(A,B,C, a) holds for some set C .

In view of Lemma 4.6.2 and the fact that ATR0 can prove the existence of IPCs, it
follows from [�|A]ΛT ϕ(A, ȧ), that [�|A,B]ΛT ∃Z �(A,B,Z, ȧ). By the hypothesis on
T , there exists a full�-modelM =M[A,B] forT , so thatM0 = A andM1 = B. By
soundness for �-models (Lemma 7.9), we conclude thatM |= ∃Z �(C0, C1, Z, a),
so that for some b we haveM |= �(C0, C1, Cb, a). By Lemma 7.5, for this b we have

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2017.30
https://www.cambridge.org/core

that �(A,B,Mb , a), and hence ∃Z �(A,B,Z, a) holds. Since B was arbitrary, we
conclude that ϕ.

We may now summarize our results in the main theorem of this article.

Theorem 7.11. Let U,T be c.e. theories such that ECA0 ⊆ U ⊆ ATR0,
ECA0 ⊆ T and such that ATR0 proves that any set X can be included in a full
�-model for T . Then,

ATR0 ≡ U + Pred-O-Cons(T) ≡ U + Pred-O-RFNΠ12 (T). (4)

Proof. It is obvious that the third theory is at least as strong as the second, and
the other inclusions are Theorem 6.7 and Lemma 7.10.

The following is then immediate in view of Proposition 7.7 and Corollary 7.8:

Corollary 7.12. Let G = {ECA0,RCA∗
0 ,RCA0,ACA0}. Then, (4) holds when-

ever U ∈ G ∪ {ATR0} and T is any theory from G possibly augmented with full
induction.

8. Acknowledgements. All authors were funded via Grant MTM2014-59178-P
from the Spanish government. In addition, David Fernández-Duque’s work was
partially funded by ANR-11-LABX-0040-CIMI within the program ANR-11-
IDEX-0002-02. Joost J. Joosten received further support from Grant 2014 SGR
437 from the Catalan Government.
Further, wewould like to thank JeremyAvigad,CarlMummert,Michael Rathjen,
Henry Towsner, andAlbert Visser for fruitful discussions and/or comments. We are
also much indebted to an anonymous referee who pointed out various inaccuracies
and who substantially helped to improve the paper.

REFERENCES

[1]M. Beeson and A. Ščedrov, Church’s thesis, continuity, and set theory, this Journal, vol. 49
(1984), no. 2, pp. 630–643.
[2] L. D. Beklemishev, Induction rules, reflection principles, and provably recursive functions. Annals

of Pure and Applied Logic, vol. 85 (1997), pp. 193–242.
[3] , Provability algebras and proof-theoretic ordinals, I. Annals of Pure and Applied Logic,

vol. 128 (2004), pp. 103–124.
[4] , Veblen hierarchy in the context of provability algebras, Logic, Methodology and Philoso-

phy of Science, Proceedings of the Twelfth International Congress (P. Hájek, L. Valdés-Villanueva, and
D. Westerståhl, editors), Kings College Publications, London, 2005, pp. 65–78.
[5] , Reflection principles and provability algebras in formal arithmetic. Russian Mathematical

Surveys, vol. 60 (2005), pp. 197–268.
[6] , The Worm principle, Logic Colloquium 2002 (Z. Chatzidakis, P. Koepke, and W. Pohlers,

editors), Lecture Notes in Logic 27, ASL Publications, 2006, pp. 75–95.
[7] ,On the reduction property forGLP-algebras.Doklady:Mathematics, vol. 472 (2017), no. 4.
[8] L. D. Beklemishev, D. Fernández-Duque, and J. J. Joosten, On provability logics with linearly

ordered modalities. Studia Logica, vol. 102 (2014), pp. 541–566.
[9] L. D. Beklemishev and A. A. Onoprienko, On some slowly terminating term rewriting systems.

Sbornik: Mathematics, vol. 206 (2015), no. 9, pp. 1173–1190.
[10] G. S. Boolos, The Logic of Provability, Cambridge University Press, Cambridge, 1993.
[11] A. Cordón-Franco, A. Fernández-Margarit, and F. F. Lara-Martı́n, Fragments of

Arithmetic and true sentences.Mathematical Logic Quarterly, vol. 51 (2005), pp. 313–328.
[12] S. Feferman, Systems of predicative analysis, this Journal, vol. 29 (1964), pp. 1–30.
[13] , Systems of predicative analysis II, this Journal, vol. 33 (1968), pp. 193–220.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2017.30
https://www.cambridge.org/core

[14] D. Fernández-Duque, The polytopologies of transfinite provability logic. Archive for Mathemat-
ical Logic, vol. 53 (2014), no. 3–4, pp. 385–431.
[15] D. Fernández-Duque and J. J. Joosten,Models of transfinite provability logics, this Journal,

vol. 78 (2013), no. 2, pp. 543–561.
[16] ,Theomega-rule interpretation of transfinite provability logic, (2013), arXiv, vol. 1205.2036

[math.LO].
[17] , Well-orders in the transfinite Japaridze algebra. Logic Journal of the Interest Group in

Pure and Applied Logic, vol. 22 (2014), no. 6, pp. 933–963.
[18] P. Hájek and P. Pudlák, Metamathematics of First Order Arithmetic, Springer-Verlag, Berlin,

Heidelberg, New York, 1993.
[19] J. L. Hirst,A survey of the reverse mathematics of ordinal arithmetic, ReverseMathematics 2001,

Lecture Notes in Logic, vol. 21, A. K. Peters, Natick, MA, 2005, pp. 222–234.
[20] K. N. Ignatiev, On strong provability predicates and the associated modal logics, this Journal,

vol. 58 (1993), pp. 249–290.
[21] G. Japaridze, The polymodal provability logic, Intensional Logics and Logical Structure of

Theories: Material from the Fourth Soviet-Finnish Symposium on Logic, Metsniereba, Telaviv, 1988,
pp. 16–48, In Russian.
[22] J. J. Joosten, Π01-ordinal analysis beyond first-order arithmetic. Mathematical Communications,

vol. 18 (2013), pp. 109–121.
[23] G. Kreisel and A. Lévy, Reflection principles and their use for establishing the complexity of

axiomatic systems. Zeitschrift für mathematische Logik und Grundlagen der Mathematik, vol. 14 (1968),
pp. 97–142.
[24] D. Leivant, The optimality of induction as an axiomatization of arithmetic, this Journal, vol. 48

(1983), pp. 182–184.
[25] U.R. Schmerl,Afine structure generated by reflection formulas over primitive recursive arithmetic,

Logic Colloquium ’78 (Mons, 1978) (M. Boffa, D. Dalen, and K. Mcaloon, editors), Studies in Logic
and the Foundations of Mathematics, vol. 97, North-Holland, Amsterdam, 1979, pp. 335–350.
[26] S. G. Simpson, Friedman’s research on subsystems of second-order arithmetic, Harvey Friedman’s

Research in the Foundations of Mathematics (L. Harrington, M. Morley, A Ščedrov, and S. G. Simpson,
editors), North-Holland, Amsterdam, 1985, pp. 137–159.
[27] , Subsystems of Second Order Arithmetic, Cambridge University Press, New York, 2009.
[28] S. G. Simpson and R. L. Smith, Factorization of polynomials and Σ01 induction. Annals of Pure

and Applied Logic, vol. 31 (1986), pp. 289–306.
[29]W. Tait, Finitism. Journal of Philosophy, vol. 78 (1981), pp. 524–546.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2017.30
https://www.cambridge.org/core

