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1 Introduction

Among the subsystems of first order Peano Arithmetic (PA), fragments for Δ1-for-
mulas are not completely understood yet. A well-known problem posed by Paris [6] 
asks whether, over the theory of bounded induction I Δ0, the induction principle for 
Δn-formulas I Δn and the collection principle for Σn-formulas BΣn are equivalent. 
By a result of R. Gandy (unpublished, see [12]), BΣn is equivalent to the least 
number principle for Δn-formulas LΔn . Hence, Paris’ question can be reformulated 
as asking whether I Δn and LΔn are equivalent. In 2004 Slaman [21] obtained a 
partial answer



to the problem. He proved IΔn and BΣn to be equivalent over IΔ0 + exp, where exp
is the axiom asserting the totality of the exponential function. Since IΔ2 proves exp,
this answered the problem completely for each n ≥ 2. As to the case n = 1, building
on Slaman’s work Thapen [23] showed that BΣ1 is provable from IΔ1 plus a very
weak form of exponentiation: “for all x, x y exists for some y such that x < p(y)”,
where p can be any primitive recursive function. (An alternative proof of this result
was given in [20]). However, the problem of proving or disproving the equivalence
over IΔ0 for n = 1 is still pending.

Motivated by this question, we initiated in [11] and [7] the study of fragments of
PA for formulas that areΔ1 provably in an external theory T . More precisely, let T be
an extension of IΔ0 in the language of arithmetic. The theory IΔ1(T ) is axiomatized
over Robinson’s Q by the axiom scheme

(Iϕ) ϕ(0, v) ∧ ∀x (ϕ(x, v) → ϕ(x + 1, v)) → ∀x ϕ(x, v),

where ϕ(x, v) ∈ Δ1(T ), i.e., ϕ(x, v) ∈ Σ1 and there is some ψ(x, v) ∈ Π1 such that
T � ∀x, v (ϕ(x, v) ↔ ψ(x, v)). The theory LΔ1(T ) is Q together with

(Lϕ) ∃x ϕ(x, v) → ∃x (ϕ(x, v) ∧ ∀y < x ¬ϕ(y, v)),

where ϕ(x, v) ∈ Δ1(T ). The theory BΔ1(T ) consists of IΔ0 plus

(Bϕ) ∀x ∃y ϕ(x, y, v) → ∀z ∃u ∀x ≤ z ∃y ≤ u ϕ(x, y, v),

where ϕ(x, y, v) ∈ Σ1 and T � ∀x ∃y ϕ(x, y, v) (so ∃y ϕ(x, y, v) ∈ Δ1(T )).
A variant of Paris’ problem then arises: For which theories T does the equivalence

IΔ1(T ) ≡ LΔ1(T ) hold?
Besides this original motivation, Δ1(T )-schemes have turned out to be interesting

subsystems of PA in their own right. On the one hand, Δ1(T ) formulas appear natu-
rally in the study of fragments of PA, remarkably in connection with the computable
functions provably total in T . In fact, as we shall show in this paper, Δ1(T )-schemes
exhibit a nice computational behavior: it is possible to give neat characterizations of
their provably total functions by means of some subrecursive operators. On the other
hand, Δ1(T )-schemes are closely related to theories of arithmetic described in terms
of inference rules. In fact, T + IΔ1(T ) coincides with the closure of T under unnested
applications of the Δ1-induction rule [T,Δ1-IR]. Even more, IΔ1(T ) precisely iso-
lates the amount of induction axioms added to T by unnested applications of Δ1-IR.
Similar remarks apply to LΔ1(T ) and BΔ1(T ) considering theΔ1-minimization rule
Δ1-LR and the Σ1-collection rule Σ1-CR, respectively.

In this work we go a step further and show that, as a matter of fact,Δ1(T )-schemes
can be fully characterized as the intersection between a “classic” scheme for Σ1-for-
mulas and an inference rule theory. More precisely, let T hΓ (T ) denote the set of all
Γ -consequences of a theory T . Then, for each sentence ϕ we have

IΔ1(T ) � ϕ if, and only if, both IΣ1 � ϕ and [T hΠ2(T ),Δ1-IR] � ϕ;
LΔ1(T ) � ϕ if, and only if, both IΣ1 � ϕ and [T hΠ2(T ),Δ1-LR] � ϕ;



BΔ1(T ) � ϕ if, and only if, both BΣ1 � ϕ and [T hΠ2(T ),Σ1-CR] � ϕ.

Thus, the study of Δ1(T )-schemes can be reduced to investigating how the prop-
erties of two theories are transferred to the theory given by the intersection of their
theorems. Using this methodology we shall obtain a complete description of the proof-
theoretic and computational properties of Δ1(T )-schemes.
Notably:

• We show that Slaman’s theorem transfers to the present context and prove that
IΔ1(T ) and LΔ1(T ) are equivalent for every T extending IΔ0 + exp.

• In studying parameter free Δ1(T )-schemes we introduce parameter free Δ1-rules
Δ−

1 -IR andΔ−
1 -LR (to our best knowledge, considered here for the first time) and

obtain a conservation result, which is of independent interest. Namely, if T ⊆ Π2
then [T,Δ1-IR] and [T,Δ1-LR] are conservative over their parameter free coun-
terparts with respect to Σ2-sentences.

• We determine the provably total computable functions (p.t.c.f.) of IΔ1(T ) and of
LΔ1(T ) for an arbitrary T extending IΔ0. We show that the p.t.c.f.’s of LΔ1(T )
are, precisely, the closure under composition and the bounded minimization oper-
ator of the p.t.c.f.’s of T which are primitive recursive. For IΔ1(T ) we obtain
a similar result in terms of the search operator introduced in [5]. In addition,
in presence of exp we give alternative and particularly neat characterizations by
means of a suitably modified version of the bounded recursion operator, that we
call C-bounded recursion.

• We obtain a reduction of the well-known problem whether IΔ0 + ¬exp implies
BΣ1 (for short, the NE Problem) raised by Wilkie and Paris [24] to a purely recur-
sion-theoretic question. Namely, BΣ1 is not provable from IΔ0 + ¬exp if there
is some elementary function f with a Δ0-definable graph such that the function
x → maxi∈[0,x] f (i) cannot be obtained by composition from f and rudimentary
functions.

The outline of the paper is as follows. Sections 1 and 2 are introductory. Section 3
contains the proof of the characterization theorem for Δ1(T )-schemes and several
applications. (In particular, we solve a number of questions left over from [11] and
[7]). In Sect. 4 we investigate parameter free Δ1(T )-schemes and parameter free Δ1-
inference rules. Finally, Sect. 5 is devoted to determining the p.t.c.f.’s of IΔ1(T ) and
of LΔ1(T ) and contains the above-mentioned reduction for the NE Problem.

2 Preliminaries

We assume familiarity with basic notions and results concerning fragments of Pea-
no Arithmetic (all relevant information can be found in [12]). We work in the usual
first-order language of arithmetic L = {0, 1,+, ·,≤}. We denote by N the standard
model of arithmetic and say that a theory T is sound if all its axioms are true in N. As
usual, the formulas of L are classified in theΣn/Πn hierarchy,Δ0 denotes the class of
bounded formulas, i.e., formulas with bounded quantifiers only, and B(Σn) denotes
the class of boolean combinations of Σn-formulas. For Γ = Σn or Πn, IΓ denotes
Q plus the scheme of induction for Γ -formulas, LΓ denotes Q plus minimization for



Γ -formulas, and BΓ denotes IΔ0 plus collection for Γ -formulas. Fragments IΔn

and LΔn are given by Q together with

(ϕ(x, v) ↔ ψ(x, v)) → Iϕ(x,v) ; (ϕ(x, v) ↔ ψ(x, v)) → Lϕ(x,v),

where ϕ ∈ Σn and ψ ∈ Πn . Recall from [14] that EΓ − denotes the parameter free
version of the theory EΓ . We also write ϕ(x) ∈ Γ − to mean that ϕ(x) is in Γ and
contains no other free variables than the ones shown. We will be concerned with the-
ories described in terms of inference rules too. The Γ -induction rule, Γ -IR, and the
Γ -collection rule, Γ -CR, are given by

ϕ(0, v) ∧ ∀x (ϕ(x, v) → ϕ(x + 1, v))
∀x ϕ(x, v)

; ∀x ∃y ϕ(x, y, v)
∀z ∃u ∀x ≤ z ∃y ≤ u ϕ(x, y, v)

,

where ϕ ∈ Γ . Similarly, Δn-IR and Δn-LR are given by

ϕ(x, v) ↔ ψ(x, v)
Iϕ(x,v)

; ϕ(x, v) ↔ ψ(x, v)
Lϕ(x,v)

,

with ϕ ∈ Σn and ψ ∈ Πn . Following [3], given an inference rule R and a theory
T, T + R denotes the closure of T under R and first order logic; while [T, R] denotes
the closure of T under non-nested applications of R and first order logic. A rule R1 is
reducible to R2 if [T, R1] ⊆ [T, R2] for every theory T extending IΔ0; two rules R1
and R2 are congruent if they are mutually reducible to each other.

In the present paper by an arbitrary arithmetic theory T we mean any exten-
sion of IΔ0 in the language L. In particular, Cantor’s pairing function 〈x, y〉 =
(x+y+1)·(x+y)

2 + x and projections y = (x)0 and y = (x)1 will be available in all
our theories.

Finally, if A and B are L-structures we write A ≺Γ B to mean that A is a Γ -
elementary substructure of B, i.e., for all ϕ(x) ∈ Γ and a ∈ A, A |� ϕ(a) if, and
only if, B |� ϕ(a). We denote by Kn(A, p) the submodel of A consisting of elements
which are Σn-definable (possibly with a parameter p). Submodels of Σn-definable
elements are natural examples ofΣn-elementary substructures. In addition, since [16]
and [17] it has been known that they provide examples of arithmetic structures where
Σn-collection fails. In [9] we obtained the following strengthening of these old results.

Proposition 1 ([9], Theorem 3.6)

1. If A |� IΔ0 and p ∈ A is nonstandard, K1(A, p) �|� BΣ1 + exp.
2. If A |� IΔ0 and K1(A) is nonstandard, K1(A) �|� LΔ−

1 + exp.
3. If A |� BΣ1 and p ∈ A is nonstandard and Π1-minimal (i.e., p is the least

element satisfying some Π1-formula), then K1(A, p) �|� BΣ−
1 + exp.

3 Models of Δ1(T )-schemes

Let T be a fixed but arbitrary extension of I Δ0. In this section we prove our character-
ization theorem for Δ1(T )-schemes and obtain their basic proof-theoretic 
properties.



Although we shall concentrate on the case n = 1, our results easily generalize to
Δn(T )-schemes for an arbitrary n ≥ 1. First, recall from [11] that

Lemma 1 1. LΔ1(T ) � IΔ1(T ).
2. LΔ1(T ) � BΔ1(T ).
3. T hΠ2(T )+ BΔ1(T ) � LΔ1(T ).

The proofs are easy adaptations of the proofs that LΣ1 � IΣ1 and LΔ1 ≡ BΣ1 (see
e.g., [12]). In particular, it follows that over T, LΔ1(T ) and BΔ1(T ) are deductively
equivalent, which is a reformulation of the fact thatΔ1-LR andΣ1-CR are congruent
rules.

Turning to the characterization theorem, we will reformulate the theorems of a
Δ1(T )-scheme as the intersection of the theorems of other two theories. Or, equiva-
lently, we will reformulate the class of models of aΔ1(T )-scheme as the union of the
models of other two theories. This motivates the following definition.

Definition 1 Let S and T be L-theories and let Ax(S) and Ax(T ) be the sets of their
non-logical axioms. Then S ∨ T is the theory whose non-logical axioms are the set of
sentences {ϕ ∨ θ : ϕ ∈ Ax(S) and θ ∈ Ax(T )}.
Lemma 2 A |� S ∨ T if and only if either A |� S or A |� T . Hence, for each
ϕ, S ∨ T � ϕ if and only if both S � ϕ and T � ϕ.

We are now ready to state our result.

Theorem 1 (Transfer theorem)

1. IΔ1(T ) � T hΠ2(T ) ∨ IΣ1.
2. LΔ1(T ) � T hΠ2(T ) ∨ IΣ1.
3. BΔ1(T ) � T hΠ2(T ) ∨ BΣ1.

Proof We only write the proof of part 1. The remaining cases are analogous. Suppose
A |� IΔ1(T ) and A �|� T hΠ2(T ). To see that A |� IΣ1 consider ϕ(x, v) ∈ Σ1.
Since A �|� T hΠ2(T ), there are θ(w) ∈ Σ1 and b ∈ A such that T � ∀w θ(w) and
A |� ¬θ(b). Put δ(x, v, w) ≡ ϕ(x, v) ∨ θ(w). Clearly, T proves ∀v,w, x δ(x, v, w)
and so δ(x, v, w) ∈ Δ1(T ). Hence, for all a ∈ A, A |� Iδ(x,a,b) by IΔ1(T ). But
A |� ϕ(x, a) ↔ δ(x, a, b) since A |� ¬θ(b). Thus, Iϕ(x,a) is true in A. ��
From Lemma 2 and Theorem 1 it follows that

Corollary 1 (Characterization theorem)

1. IΔ1(T ) ≡ [T hΠ2(T ),Δ1-IR] ∨ IΣ1.
2. LΔ1(T ) ≡ [T hΠ2(T ),Σ1-CR] ∨ IΣ1.
3. BΔ1(T ) ≡ [T hΠ2(T ),Σ1-CR] ∨ BΣ1.

As a first application, we obtain a partial solution to the variant of Paris’ problem
for Δ1(T )-schemes. Since Corollary 1 associates IΔ1(T ) and LΔ1(T ) to the same
classic scheme IΣ1, it will suffice to show thatΔ1-IR andΣ1-CR are congruent rules.

Proposition 2 Suppose T � exp. Then [T,Δ1-IR] ≡ [T,Σ1-CR].



Proof SinceΣ1-CR andΔ1-LR are congruent rules, it is clear that [T,Σ1-CR] implies
[T,Δ1-IR]. The converse will follow by adapting Slaman’s proof that IΔ1 + exp �
BΣ1 (see Theorem 2.1 of [21]). Suppose A |� T and [T,Σ1-CR] fails in A. Note that
Σ1-CR is reducible to its parameter free versionΣ−

1 -CR which in turn is reducible to
Π−

0 -CR. Hence, there is θ(x, y) ∈ Π−
0 such that

• T � ∀x ∃y θ(x, y);
• Bθ fails in A and so A |� ∀u ∃x ≤ a ∀y ≤ u ¬θ(x, y) for some a ∈ A.

Let δ(z) denote the Π1-formula ∀u ∃x ≤ z ∀y ≤ u ¬θ(x, y). Slaman’s proof shows
us how to produce a failure of IΔ1 from a failure of BΣ1. Inspection of that proof
gives us that there are ϕ(x, z) ∈ Σ1 and ψ(x, z) ∈ Π1 such that

• T � ∀z (δ(z) → ∀x (ϕ(x, z) ↔ ψ(x, z))
• Iϕ(x,a) fails in A.

Still we cannot conclude, as ϕ(x, z) need not be in Δ1(T ). However, it suffices to
modify ϕ(x, z) a bit to produce a failure of [T,Δ1-IR]. To that end, write δ(z) as
∀y δ′(z, y), ϕ(x, z) as ∃y ϕ′(x, y, z), and ψ(x, z) as ∀y ψ ′(x, y, z), with δ′, ϕ′, ψ ′ ∈
Δ0. Then, we have

T � ∀x, z ∃y [¬δ′(z, y) ∨ ¬ψ ′(x, y, z) ∨ ϕ′(x, y, z)].

Write θ ′(x, y, z) for the Δ0-formula in square brackets above and consider

ϕ
(x, z) ≡ ∃y (y = μt. θ ′(x, t, z) ∧ ϕ′(x, y, z))

ψ
(x, z) ≡ ∀y (y = μt. θ ′(x, t, z) → ϕ′(x, y, z))

It is clear that T � ∀x, z (ϕ
(x, z) ↔ ψ
(x, z)). In addition, it is easy to see that
T � δ(z) → (ϕ
(x, z) ↔ ϕ(x, z)) and so Iϕ
(x,a) fails in A since A |� δ(a). There-
fore, A �|� [T,Δ1-IR]. ��
Theorem 2 Suppose T � exp. Then IΔ1(T ) ≡ LΔ1(T ).

Proof Suppose A |� IΔ1(T ). If A |� T hΠ2(T ) then A |� BΔ1(T ) by Proposi-
tion 2 and so A |� LΔ1(T ) by Lemma 1. If A �|� T hΠ2(T ) then A satisfies IΣ1 by
Theorem 1. ��
Remark 1 1. In [11] the authors proved the equivalence IΔ1(T ) ≡ LΔ1(T ) pro-

vided T is an extension of IΔ0 closed under Σ1-CR, and asked whether this
condition is also necessary for that equivalence (see part 3 of Problem 7.1 in
[11]). Theorem 2 answers in the negative that question.

2. It follows from Theorem 1 that IΔ1(T ) � T hΠ2(T ) whenever T hΠ2(T ) ⊆ IΣ1.
This answers in the negative Problem 7.1 in [7], where the authors asked whether
a theory T satisfying that IΔ1(T ) � T hΠ2(T ) must be closed under Δ1-IR.

3. It follows from Lemma 1 and Theorem 2 that IΔ1(T ) � BΔ1(T ) if T � exp.
But, in general, BΔ1(T ) does not imply IΔ1(T ) (for example, if T = IΔ0 + exp
then IΔ1(T ) � exp whereas BΔ1(T ) ⊆ BΣ1). This differs from the classic case
where BΔ1(≡ BΣ1) � IΔ1.



A second application of the Transfer Theorem is an unboundedness result for
Δ1(T )-schemes. The so-called Kreisel–Lévy unboundedness theorems [15] are results
stating that a certain fragment of arithmetic has no extensions of bounded quantifier
complexity of a certain kind. Here we obtain the following variant of this family of
results.

Proposition 3 (Unboundedness) Suppose S ⊆ Σ3.

1. If S � IΔ1(T ) then S � T hΠ2(T ).
2. If S � exp and S � BΔ1(T ) then S � T hΠ2(T ).

Proof We only prove part 2. The proof of part 1 is similar. Towards a contradic-
tion, assume S � BΔ1(T ) + exp and S does not imply T hΠ2(T ). Let θ be a Π2
sentence such that T � θ and S �� θ . It follows from Theorem 1 for BΔ1(T ) that
S + ¬θ � BΣ1 + exp. Since BΣ1 + exp is finitely axiomatizable, there is a sin-
gle Σ3 sentence ϕ such that ϕ + ¬θ is a consistent extension of BΣ1 + exp. Let
A be a nonstandard model of ϕ + ¬θ . Put ϕ ≡ ∃x ϕ′(x) and ¬θ ≡ ∃x θ ′(x), with
ϕ′(x) ∈ Π2 and θ ′(x) ∈ Π1, and pick a, b, c ∈ A such that a is nonstandard and
A |� ϕ′(b) ∧ θ ′(c). Finally consider d = 〈a, b, c〉. Then, the submodel of definable
elements K1(A, d) also satisfies ϕ′(b) ∧ θ ′(c) since K1(A, d) ≺Σ1 A. So, K1(A, d)
is a model of BΣ1 + exp, which contradicts Proposition 1. ��
Since the sentence expressing that a Σ1 formula is equivalent to a Π1 formula has
complexityΠ2, it is clear thatΔ1(T )-schemes only depend on theΠ2-theorems of T .
Somewhat surprisingly, it follows from the Unboundedness results that we can also
recover the Π2-theorems of T from the corresponding Δ1(T )-schemes, no matters
how strong T might be.

Proposition 4

1. Suppose S and T are closed under Δ1-IR. Then, IΔ1(S) ≡ IΔ1(T ) if and only
if T hΠ2(S) = T hΠ2(T ).

2. Suppose S and T are closed under Σ1-CR and prove exp. Then, BΔ1(S) ≡
BΔ1(T ) if and only if T hΠ2(S) = T hΠ2(T ).

Proof We only write the proof of part 2. Assume BΔ1(S) � BΔ1(T ). Since S is
closed under Σ1-CR, T hΠ2(S) implies BΔ1(S). So, T hΠ2(S) implies BΔ1(T ) and
then T hΠ2(T ) ⊆ T hΠ2(S) by Proposition 3. The opposite direction follows by sym-
metry. ��
As an immediate consequence, we obtain that

Theorem 3 (Hierarchy theorem)

1. IΔ0 ≡ IΔ1(IΔ0) � IΔ1(IΣ1) � IΔ1(IΣ2) � IΔ1(IΣ3) � · · · ⊆ IΣ1
2. IΔ0 ≡ BΔ1(IΔ0) � BΔ1(IΣ1) � BΔ1(IΣ2) � BΔ1(IΣ3) � · · · ⊆ BΣ1

Using a modified version of the model-theoretic notion of an envelope, Theorem 6.6
in [11] gives another proof that IΔ1(IΣn), n ≥ 0 form a hierarchy. In contrast, a
hierarchy theorem for BΔ1(IΣn), n ≥ 0, was left over (see Problem 7.5 in [11]).



Theorem 3 answers that question as well as provides a much simpler proof of the
hierarchy theorem for the induction case.

We close this section by showing how to use the Unboundedness theorem to deter-
mine the usual proof-theoretic properties of Δ1(T )-schemes. Rather than being sys-
tematic, we prefer to illustrate this methodology with a few salient examples.

Proposition 5 (Quantifier complexity)

1. If IΣ1 � T hΠ2(T ), then IΔ1(T ) is Π2-axiomatizable. If IΣ1 �� T hΠ2(T ), then
IΔ1(T ) is Π3 and not Σ3-axiomatizable.

2. If IΔ0 + exp �� T hΠ2(T ), then BΔ1(T ) is Π3 and not Σ3-axiomatizable.

Proof Note that the natural axiomatizations of IΔ1(T ) and BΔ1(T ) are of quantifier
complexity Π3.

(1) On the one hand, if IΣ1 � T hΠ2(T ) then it follows from Theorem 1 that
IΔ1(T ) � T hΠ2(T ). Hence IΔ1(T ) is equivalent to [T hΠ2(T ),Δ1-IR] and this
last theory is Π2-axiomatizable. On the other hand, if IΔ1(T ) were to be Σ3-
axiomatizable then it would follow from Proposition 3 that IΔ1(T ) � T hΠ2(T )
and so IΣ1 � T hΠ2(T ) too.

(2) If BΔ1(T )were to beΣ3-axiomatizable then it would follow from Proposition 3
that BΔ1(T ) + exp � T hΠ2(T ) and hence IΔ0 + exp � T hΠ2(T ) too, for
BΣ1 + exp is well-known to be Π2-conservative over IΔ0 + exp. ��

Notice that it follows from Proposition 5 that IΔ1(T ) is Π2-axiomatizable if, and
only if, IΣ1 � T hΠ2(T ). This settles the motivating question of [7]: under which
conditions is IΔ1(T ) a Π2-axiomatizable theory?

Proposition 6 (Finite axiomatizability)

1. IΔ1(T ) is finitely axiomatizable if and only if so is [T hΠ2(T ),Δ1-IR].
2. Suppose T � exp. If BΔ1(T ) is finitely axiomatizable, so is [T hΠ2(T ),Σ1-CR].
3. So, if T is a consistent extension of IΣ1, neither IΔ1(T ) nor BΔ1(T ) is finitely

axiomatizable.

Proof (1) By Corollary 1 we have IΔ1(T ) ≡ [T hΠ2(T ),Δ1-IR] ∨ IΣ1. So, if
[T hΠ2(T ),Δ1-IR] has a finite axiomatization then the second theory in the pre-
vious equivalence provides a finite axiomatization of IΔ1(T ). For the opposite
direction, assume that IΔ1(T ) is finitely axiomatizable. Then there is a single
Π2-sentence, ϕ, such that T hΠ2(T ) + IΔ1(T ) � ϕ � IΔ1(T ). But it follows
from Proposition 3 that ϕ � T hΠ2(T ) and hence ϕ ≡ [T hΠ2(T ),Δ1-IR].

(2) Reason as in the second part of the proof of part 1.
(3) Assume T is consistent and implies IΣ1. Then, T hΠ2(T ) is closed underΔ1-IR

and Σ1-CR and is known to be not finitely axiomatizable (for a proof see, e.g.,
Theorem 5.3 of [7]). ��

Remark 2 (The theory BΔ1(I Δ0 +exp) and the NE Problem) In contrast to the induc-
tion case, Proposition 3 for BΔ1(T ) has only been obtained for Σ3-extensions proving 
exp. As a consequence, this additional assumption has also appeared in the subsequent



results on BΔ1(T ). Eliminating this use of exp is apparently quite difficult, for it is
related to the well-known open problem whether IΔ0 plus the negation of exp implies
BΣ1 (for short, the NE Problem) raised by Wilkie and Paris in [24]. Actually, we have

Lemma 3 The following are equivalent.

1. IΔ0 + ¬exp � BΣ1.
2. BΔ1(IΔ0 + exp) ≡ IΔ0.

Proof (1⇒2) By part 1, IΔ0 +¬exp � BΔ1(IΔ0 +exp). But IΔ0 +exp also implies
BΔ1(IΔ0 + exp) since IΔ0 + exp is closed under Σ1-CR and hence part 2 follows.
(2⇒1) Note that BΔ1(IΔ0 + exp)+ ¬exp � BΣ1 by Theorem 1. ��
Hence, eliminating exp in Proposition 3 would give that IΔ0 is strictly weaker than
BΔ1(IΔ0 + exp), thus settling the NE Problem. (A recent discussion on the difficulty
and significance of this problem can be found in [1]).

4 Parameter-free Δ1(T )-schemes

This section investigates the effect of disallowing parameters in Δ1(T )-schemes and
in Δ1-inference rules. Recall that IΔ1(T )−, LΔ1(T )− and BΔ1(T )− denote the
parameter free versions of the corresponding theories. Similarly, we define

Δ−
1 -IR : ∀x (ϕ(x) ↔ ψ(x))

Iϕ(x)
; Δ−

1 -LR : ∀x (ϕ(x) ↔ ψ(x))

Lϕ(x)
,

where ϕ(x) ∈ Σ−
1 and ψ(x) ∈ Π−

1 . We have not introduced the inference rule
associated to BΔ1(T )−, for Σ1-CR is reducible to its parameter free counterpart. In
contrast, Δ1-IR and Δ1-LR are no longer reducible to their parameter free versions.
To see that, recall from [13] that U IΔ1 denotes a variant of theΔ1-induction scheme
where parameters are distributed uniformly. Namely, U IΔ1 is Q together with

∀v ∀x (ϕ(x, v) ↔ ψ(x, v)) → ∀v Iϕ(x,v),

where ϕ ∈ Σ1 and ψ ∈ Π1. Since IΔ−
1 does not imply U IΔ1 (see e.g., Theo-

rem 1.2 in [9]), there are ϕ(x, v) ∈ Σ1 and ψ(x, v) ∈ Π1 satisfying that T =
IΔ−

1 + ∀v ∀x (ϕ(x, v) ↔ ψ(x, v)) does not prove ∀v Iϕ(x,v). Thus, such a theory T
is closed under Δ−

1 -IR and, however, does not imply [T,Δ1-IR]. A similar remark
applies to Δ1-LR considering U LΔ1 ≡ BΣ−

1 .
Regarding Δ1(T )-schemes, it follows from our results on quantifier complexity

in Sect. 3 that disallowing parameters also makes a difference. Let us see that for
the induction case. First, observe that IΔ1(T )− has quantifier complexity B(Σ2),
i.e., boolean combinations ofΣ2-sentences. Second, by Proposition 5, IΔ1(T ) is not
Σ3-axiomatizable whenever IΣ1 �� T hΠ2(T ). Thus, IΔ1(T )− is strictly weaker than
IΔ1(T ) if T hΠ2(T ) � IΣ1. Similar remarks apply to the collection and minimization
cases.

Our starting point is a Transfer Theorem for these theories.



Theorem 4 (Transfer theorem for parameter free fragments)

1. IΔ1(T )− � T hΠ2(T ) ∨ IΣ−
1 .

2. BΔ1(T )− � T hΠ2(T ) ∨ BΣ−
1 .

3. LΔ1(T )− � T hB(Σ1)(T ) ∨ IΠ−
1 .

Proof (1) Suppose A |� IΔ1(T )− and A �|� T hΠ2(T ). To see A |� IΣ−
1 , assume

a ∈ A and A |� ϕ(0) ∧ ∀x (ϕ(x) → ϕ(x + 1)), with ϕ(x) ∈ Σ−
1 . We must

show A |� ϕ(a). Since A �|� T hΠ2(T ), there are θ(w) ∈ Σ1 and b ∈ A such
that T � ∀w θ(w) and A |� ¬θ(b). We reason as in the proof of Theorem 1, but
now we need to codify the induction variable x and the parameter w in a single
variable u. To this end, consider

δ(u) ≡ ϕ((u)0) ∨ θ(((u)0 + (u)1)0)

It is clear that T � ∀u δ(u) and so δ(u) is in Δ1(T ). Observe that if u = 〈x, w〉,
it follows from the definition of the pairing function that u + 1 = 〈x + 1, w− 1〉
if w �= 0; and that u + 1 = 〈0, x + 1〉 if w = 0. Having this fact in mind, it
is easy to check that the assumption of the induction axiom for δ(u) holds in A
and so A |� ∀u δ(u) by IΔ1(T )−. Now consider c = 〈a, 〈b, a〉 − a〉 and reason
in the model A. It follows from δ(c) that ϕ(a) ∨ θ(b) and so ϕ(a) since b was
chosen so that ¬θ(b).

(2) Suppose A |� BΔ1(T )− and A �|� T hΠ2(T ). Then there are θ(w) ∈ Σ1 and
b ∈ A such that T � ∀w θ(w) and A |� ¬θ(b). To see A |� BΣ−

1 , assume
a ∈ A and A |� ∀x ∃y ϕ(x, y), with ϕ(x, y) ∈ Σ1. Put

δ(u, y) ≡ ϕ((u)0, y) ∨ (θ((u)1) ∧ y = 0)

Clearly, δ(u, y) ∈ Σ1 and T � ∀u ∃y δ(u, y). By BΔ1(T )− there is c such
that A |� ∀u ≤ 〈a, b〉 ∃y ≤ c (ϕ((u)0, y) ∨ θ((u)1)). So, A |� ∀x ≤ a ∃y ≤
c ϕ(x, y) since A |� ¬θ(b) and A |� x ≤ a → 〈x, b〉 ≤ 〈a, b〉.

(3) Suppose A |� LΔ1(T )− and there is a B(Σ1) sentence θ such that T � θ

and A �|� θ . We shall show that A satisfies the least number axiom scheme
for parameter free Σ1 formulas LΣ−

1 (which is well-known to be equivalent to
IΠ−

1 ). To this end, assume ϕ(x) ∈ Σ−
1 and A |� ∃x ϕ(x). By logical operations,

θ ≡ (θ0
1 ∨θ0

2 )∧ . . .∧ (θk
1 ∨θk

2 ), with θ i
1 ∈ Σ1 and θ i

2 ∈ Π1. So, there are θ1 ∈ Σ1
and θ2 ∈ Π1 satisfying that T � θ1 ∨ θ2 and A |� ¬θ1 ∧ ¬θ2. Put θ2 ≡ ∀z θ ′

2(z),
with θ ′

2 ∈ Δ0, and define δ(u) to be the Σ1 formula

¬θ ′
2((u)1) ∧ [θ1 ∨ ϕ((u)0)]

It follows from T � θ1 ∨ ∀z θ ′
2(z) that δ(u) is equivalent in T to ¬ θ ′

2((u)1) and
so δ(u) ∈ Δ1(T )−. It follows from A |� ¬θ2 ∧ ∃u ϕ(u) that A |� ∃u δ(u). By
applying LΔ1(T )− in A, we get that there exists c such that c = μu. δ(u). Using
the monotonicity of the pairing function, it is easy to check that (c)0 is the least
element satisfying ϕ(x) in A. ��



Corollary 2 (Characterization theorem)

1. IΔ1(T )− ≡ [T hΠ2(T ),Δ
−
1 -IR] ∨ IΣ−

1 .
2. BΔ1(T )− ≡ [T hΠ2(T ),Σ1-CR] ∨ BΣ−

1 .
3. If T is closed under Σ1-CR, then LΔ1(T )− ≡ T hB(Σ1)(T ) ∨ IΠ−

1 .

Proof Parts 1 and 2 are immediate consequences of Theorem 4. To get part 3, only
the fact that T hB(Σ1)(T ) � LΔ1(T )− needs some explanations. Consider ϕ(x) ∈ Σ−

1
and ψ(x) ∈ Π−

1 such that T � ∀x (ϕ(x) ↔ ψ(x)). Write ϕ(x) ≡ ∃y ϕ0(x, y) and
ψ(x) ≡ ∀y ψ0(x, y), with ϕ0, ψ0 ∈ Δ0. Since T � LΔ1(T )− and T � ∀x (ϕ(x) ↔
ψ(x)), we have

T � ∃x ϕ(x) → ∃x (ϕ(x) ∧ ∀z < x ∃y ¬ψ0(z, y))

Using again that T � ∀x (ϕ(x) ↔ ψ(x)), we get T � ∀x ∃y (¬ψ0(x, y) ∨ ϕ0(x, y))
and T � ∀x (∃y ¬ψ0(x, y) ↔ ∀y ¬ϕ0(x, y)). So, since T is closed underΣ1-CR, we
have

T � ∃x ϕ(x) → ∃x (ϕ(x) ∧ ∃u ∀z < x ∃y ≤ u ¬ψ0(z, y))

But the above sentence has complexity B(Σ1) and implies Lϕ(x) modulo the theory
T hΠ1(T ), as T hΠ1(T ) proves ∀x (∃y ¬ψ0(x, y) → ∀y ¬ϕ0(x, y)). ��
Remark 3 It is natural to ask whether the Transfer Theorem for LΔ1(T )− can be
improved to LΔ1(T )− � T hΠ2(T )∨ IΠ−

1 . The answer to this question is, in general,
negative. For instance, consider T = IΠ−

1 . Firstly, since IΠ−
1 is an extension of IΔ0

byΣ2-sentences, it is closed underΣ1-CR and hence LΔ1(IΠ
−
1 )

− ≡ T hB(Σ1)(IΠ
−
1 )

by Corollary 2. Secondly, it is clear that T hΠ2(IΠ
−
1 )∨ IΠ−

1 ≡ T hΠ2(IΠ
−
1 ). Thirdly,

Theorem 4.7 of [10] states that T hB(Σ1)(IΠ
−
1 ) is strictly weaker than T hΠ2(IΠ

−
1 ).

Equipped with Theorem 4 the next step is to obtain an unboundedness result for
parameter free Δ1(T )-schemes.

Proposition 7 (Unboundedness) Suppose S ⊆ Π2 and either S is recursively enu-
merable (r.e.) or T is sound.

1. If S � IΔ1(T )− then S � T hΠ2(T ).
2. If S is closed under Σ1-IR and S � BΔ1(T )− then S � T hΠ2(T ).
3. If S � LΔ1(T )− then S � T hB(Σ1)(T ).

Proof (1) Towards a contradiction, assume that S � IΔ1(T )− and there is a Π2
sentence θ such that T � θ and S �� θ . It follows from Theorem 4 for IΔ1(T )−
that S + ¬θ is a consistent extension of IΣ−

1 . In addition, we have:

Claim S + ¬θ does not imply T hΠ2(N).

If S is r.e. then S + ¬θ �� T hΠ2(N), for a Π0
2 -complete set cannot follow from

a r.e. set of sentences. If T is sound, θ ∈ T hΠ2(N) and so S + ¬θ �� T hΠ2(N).



It follows from the Claim and S + ¬θ � LΠ−
1 (recall that IΣ−

1 and LΠ−
1

are deductively equivalent) that there is A |� S + ¬θ with some nonstandard
Π1-minimal element, say a. Also, put ¬θ ≡ ∃x θ ′(x), with θ ′(x) ∈ Π−

1 , and
pick b satisfying that b = μx . θ ′(x). Consider c = 〈a, b〉. By Proposition 1,
K1(A, c) �|� BΣ−

1 + exp. But it follows from K1(A, c) ≺Σ1 A that K1(A, c)
satisfies S + ¬θ and thus also IΣ−

1 , which gives the desired contradiction.
(2) Assume that S is closed underΣ1-IR, S � BΔ1(T )− and there is aΠ2 sentence

θ such that T � θ and S �� θ . It follows from Theorem 4 for BΔ1(T )− that
S + ¬θ is a consistent extension of BΣ−

1 . By the Claim in part 1, there exists
A |� S + ¬θ in which T hΠ2(N) fails. But it is a well known result of Parsons
[18] that S + IΣ1 is Π2-conservative over S + Σ1-IR ≡ S. Hence, there is
B |� S + IΣ1 with A ≺Σ1 B. Clearly, B |� S +¬θ + IΣ1 and T hΠ2(N) fails
in B too. By repeating the argument in part 1, we get the desired contradiction.

(3) Assume that S � LΔ1(T )− and there is a B(Σ1) sentence θ such that T � θ

and S �� θ . It follows from Theorem 4 for LΔ1(T )− that S + ¬θ is a consis-
tent extension of IΠ−

1 . Again, S + ¬θ does not imply T hΠ1(N), for either S
is r.e. or T is sound. Let A be a model of S + ¬θ with K1(A) nonstandard.
Since A |� IΠ−

1 , K1(A) |� exp (see Theorem 2.9 in [14]). Since K1(A) ≺Σ1

A, K1(A) satisfies S + ¬θ and then also IΠ−
1 . Hence, K1(A) |� IΠ−

1 + exp,
which contradicts Proposition 1. ��

Using Proposition 4 and reasoning as in Sect. 3, one can obtain the basic proof-
theoretic information on parameter free Δ1(T )-schemes (relative strength, hierarchy
theorem, quantifier complexity, finite axiomatizability,. . .). This is more or less routine
and we omit it. Instead, we turn our attention to conservation results. We first study
conservativity between Δ1-rules (which is of independent interest) and then transfer
the results to Δ1(T )-schemes.

Proposition 8 Suppose T ⊆ Π2.

1. [T,Δ1-IR] is Σ2-conservative over [T,Δ−
1 -IR].

2. [T,Δ1-LR] is Σ2-conservative over [T,Δ−
1 -LR].

Proof (1) We shall show that if A |� [T,Δ−
1 -IR] then K1(A) |� [T,Δ1-IR]. This

suffices to obtain Σ2-conservation since K1(A) ≺Σ1 A. Let A be a model of
[T,Δ−

1 -IR]. Since T ⊆ Π2, K1(A) |� T . To prove K1(A) |� IΔ1(T ), con-
sider a ∈ K1(A), ϕ(x, v) ∈ Σ1, ψ(x, v) ∈ Π1 such that T � ∀x, v (ϕ(x, v) ↔
ψ(x, v)). We must prove that Iϕ(x,a) holds in K1(A). But it is easy to see that
Iϕ(x,a) is true in K1(A) if and only if it is true in A. Note that in models of IΔ0,
every Σ1-definable element can be obtained as the projection of a Δ0-minimal
one. So, there is δ(v) ∈ Δ0 such that a = (μt. δ(t))0 in A. Consider

ϕ′(x) ≡ ∃v (v = μt. δ(t) ∧ ϕ(x, (v)0)),
ψ ′(x) ≡ ∀v (v = μt. δ(t) → ψ(x, (v)0)).

Clearly, ϕ′(x) ∈ Σ−
1 , ψ(x) ∈ Π−

1 and A |� Iϕ′(x) ↔ Iϕ(x,a). However, we
cannot infer Iϕ′(x) from [T,Δ−

1 -IR], because ϕ′(x) and ψ ′(x) are equivalent in
T + ∃v δ(v) and not necessarily in T . To get round this problem, put



ϕ
(x) ≡ ¬δ(((x)0 + (x)1)0) ∨ ϕ′((x)0),
ψ
(x) ≡ ¬δ(((x)0 + (x)1)0) ∨ ψ ′((x)0).

Then, T � ∀x (ϕ
(x) ↔ ψ
(x)) and hence Iϕ
(x) is true in A by [T,Δ−
1 -IR].

But using the properties of the pairing function (see the proof of part 1 of The-
orem 4 for details), it is easy to check that IΔ0 + ∃v δ(v) � Iϕ
(x) → Iϕ′(x).
Therefore Iϕ′(x) holds in A and so does Iϕ(x,a), as required.

(2) We shall show that if A |� [T,Δ−
1 -LR] then K1(A) |� [T,Π−

0 -CR]. This suf-
fices as Δ1-LR and Π−

0 -CR are congruent. Let A be a model of [T,Δ−
1 -LR].

Consider a ∈ K1(A) and θ(x, y) ∈ Π−
0 such that T � ∀x ∃y θ(x, v). We must

show that ∃u ∀x ≤ a ∃y ≤ u θ(x, y) is true in K1(A) or, equivalently, in A. To
this end, we reason as in Gandy’s proof that LΔ1 � BΣ1 (see Lemma 2.17,
chapter I in [12] for details). Define ϕ′(x, v) and ψ ′(x, v) to be, respectively

x ≤ v ∧ ∃u (u = μt. θ(x, t) ∧ ∀z ∈ [x, v] ∃y ≤ u θ(z, y))
x ≤ v ∧ ∀u (u = μt. θ(x, t) → ∀z ∈ [x, v] ∃y ≤ u θ(z, y))

Clearly, ϕ′ ∈ Σ1, ψ
′ ∈ Π1, T � ∀x, v (ϕ′(x, v) ↔ ψ ′(x, v)) and A |�

ϕ′(a, a). In addition, Gandy’s proof shows that if c = μt. ϕ′(t, a) and A |�
θ(c, b), then A |� ∀x ≤ a ∃y ≤ b θ(x, y). So, it suffices to prove that Lϕ′(x,a)
is true in A. Let δ(v) ∈ Δ0 be such that a = (μt. δ(t))0 in A and put

ϕ
(x) ≡ δ((x)1) ∧ ∃v (v = μt. δ(t) ∧ ϕ′((x)0, (v)0)),
ψ
(x) ≡ δ((x)1) ∧ ∀v (v = μt. δ(t) → ψ ′((x)0, (v)0)),

Then, T � ∀x (ϕ
(x) ↔ ψ
(x)) and A |� ∃x ϕ
(x). By [T,Δ−
1 -LR] there

exists the least element d satisfying ϕ
(x) in A. It follows that (d)0 is the least
element satisfying ϕ′(x, a) in A. ��

Let us observe that the assumption T ⊆ Π2 in Proposition 8 cannot be eliminated:
Π1 sentences need not be conserved if the quantifier complexity of T exceedsΠ2. To
see that, let Con(PA) denote the consistency statement for PA. Then, IΔ−

1 +¬Con(PA)
does not imply U IΔ1. (Indeed, it follows from part 3 of Proposition 1 and Lemma
3.7 of [9] that U IΔ1 is not contained in any recursive set of Σ2-sentences consistent
with IΣ1). So, there are ϕ(x, v) ∈ Σ1 and ψ(x, v) ∈ Π1 satisfying that IΔ−

1 +
¬Con(PA)+∀v, x (ϕ(x, v) ↔ ψ(x, v)) does not prove ∀v Iϕ(x,v). If we consider T to
be the theory given by IΔ−

1 +∀v, x (ϕ(x, v) ↔ ψ(x, v))+ (∀v Iϕ(x,v) → Con(PA)),
then [T,Δ1-IR] proves Con(PA) whereas T +Δ−

1 -IR (which is equivalent to T ) does
not.

Theorem 5 1. IΔ1(T ) isΣ2-conservative over IΔ1(T )−. Moreover, if T is closed
under Δ1-IR then Σ3-sentences are also conserved.

2. BΔ1(T ) is Σ3-conservative over BΔ1(T )−.

Proof (1) Assume that A |� IΔ1(T )− and ϕ is a Σ2-theorem of IΔ1(T ). If A sat-
isfies T hΠ2(T ) then A |� [T hΠ2(T ),Δ

−
1 -IR] and so A |� ϕ by Proposition 8.

If A does not satisfy T hΠ2(T ) then A |� IΣ−
1 by Theorem 4 and so A |� ϕ, for

IΔ1(T ) ⊆ IΣ1 and IΣ1 is well-known to be Σ3-conservative over IΣ−
1 (see

Theorem 2.1 of [14]).



Now assume that T is closed under Δ1-IR. By Corollary 1 we have IΔ1(T ) ≡
T hΠ2(T )∨ IΣ1 and by Corollary 2 we have IΔ1(T )− ≡ T hΠ2(T )∨ IΣ−

1 . So,
that IΔ1(T ) isΣ3-conservative over IΔ1(T )− follows fromΣ3-conservation of
IΣ1 over IΣ−

1 .
(2) By Theorem 2.4 of [14] BΣ1 is Σ3-conservative over BΣ−

1 . Hence, the re-
sult follows since BΔ1(T ) ≡ [T hΠ2(T ),Σ1-CR] ∨ BΣ1 by Corollary 1 and
BΔ1(T )− ≡ [T hΠ2(T ),Σ1-CR] ∨ BΣ−

1 by Corollary 2. ��
Note that the situation for LΔ1(T ) and LΔ1(T )− is completely different: evenΠ1-sen-
tences are not necessarily conserved. For example, put T = IΣ1. Then LΔ1(IΣ1) is
equivalent to T hΠ2(IΣ1) by Corollary 1 and so proves Con(IΠ−

1 ), whereas
LΔ1(IΣ1)

− ⊆ IΠ−
1 .

We close this section with some other applications of Proposition 8.

Corollary 3 Suppose that T is an extension of IΔ0 + exp.

1. [T,Δ−
1 -IR] ≡ [T,Δ−

1 -LR].
2. IΔ1(T )− � LΔ1(T )−.

Proof (1) One direction is clear. For the other, assume T � ∀x (ϕ(x) ↔ ψ(x)).
By Proposition 2, [T hΠ2(T ),Δ1-IR] proves Lϕ . But since Lϕ is of quantifier
complexity Σ2, [T hΠ2(T ),Δ

−
1 -IR] also proves it by Proposition 8.

(2) Assume A |� IΔ1(T )−. If A satisfies T hΠ2(T ) then A |� LΔ1(T )− by part 1.
If A does not satisfy T hΠ2(T ), it follows from Theorem 4 that A |� IΣ−

1 . ��
Corollary 4 Suppose T ⊆ Π2.

1. T + BΣ1 is B(Σ1)-conservative over [T,Δ−
1 -LR].

2. If T +Δ1-IR collapses to [T,Δ1-IR] then T + IΔ1 is B(Σ1)-conservative over
[T,Δ−

1 -IR].
Proof Assume T ⊆ Π2. By Theorem 3.2 in [4] T + BΣ1 is Π2-conservative over
T + Σ1-CR, by Theorem 4.2 in [4] the latter theory collapses to [T,Σ1-CR]; and
by Theorem 2 in [5] T + IΔ1 is Π2-conservative over T + Δ1-IR (all these results
are proved for theories extending exp but this is unessential). Corollary 4 follows
combining these results and Proposition 8. ��

5 Provably total computable functions

In this section we address the question of what computable functions are provably
total in IΔ1(T ) and in LΔ1(T ). Recall that a number-theoretic function f : N

k → N

is said to be a provably total computable function (p.t.c.f.) of a theory T , written
f ∈ R(T ), if there is a Σ1 formula of the language of T, ϕ(x, y), such that:

1. ϕ defines the graph of f in the standard model of Arithmetic N; and
2. T � ∀x ∃y ϕ(x, y).

We call a formula ϕ(x, y) satisfying conditions 1 and 2 a definition of f in T . As  
long as T extends I Δ0, replacing the condition 2 with 2’. T � ∀x ∃!y ϕ(x, y) does not



change R(T ). In fact, if ∃z ϕ′(x, y, z) is a definition of f in T , with ϕ′ ∈ Δ0, it suffices
to put ϕ(x, y) ≡ ∃u (y = (u)0 ∧ u = μt. ϕ′(x, (t)0, (t)1)) to obtain a Σ1-definition
of f satisfying 2’.

We shall characterize the classes of p.t.c.f.’s ofΔ1(T )-schemes as function algebras
generated by means of some recursive operators. Let us fix some notation. We write
C(F) for the closure of the set of functions F under composition and, in general, O(F)
denotes the closure of F under composition and the recursive operator O. In addition,
we write [F ,O] for the closure of F under composition and unnested application of
the operator O. Our base function algebra will be Grzegorczyk’s M2, which is the
closure of a set of initial functions (zero, successor, projections, sum and product)
under composition and the bounded minimization operator, see [19]. By a result of
Takeuti [22] the p.t.c.f.’s of IΔ0 coincide with M2 and thus M2 ⊆ R(T ) for every
extension of IΔ0.

It is a more or less direct consequence of Herbrand’s theorem that there is a corre-
spondence between computable functions with aΔ0-definable graph and finite, sound
extensions of IΔ0 (see e.g., Proposition 4.2 in [3]).

Lemma 4 Suppose f is a computable function with a Δ0-definable graph and let
θ(x, y) ∈ Δ0 such that N |� ∀x θ(x, f (x)). Then

R(IΔ0 + ∀x ∃y θ(x, y)) = C
(
M2 ∪ { f }

)
.

This correspondence is not exact: some information is being lost when going from a
theory to the corresponding class of provably total functions. For example, R(IΔ0) =
R(IΠ−

1 ) = M2 whereas T hΠ2(IΠ
−
1 ) is strictly stronger than IΔ0, for IΔ0 + exp is

Σ2-conservative over IΠ−
1 by Theorem 2.9 of [14]. However, it turns out to be true

that R(T ) determines theΠ2-consequences of a sound theory T modulo the set of all
Π1-true sentences T hΠ1(N).

Lemma 5 Let T, S be sound extensions of IΔ0. The following are equivalent:

1. R(T ) = R(S).
2. Over T hΠ1(N), T hΠ2(T ) ≡ T hΠ2(S).

Proof (1⇒2): By symmetry we only prove T hΠ1(N)+T hΠ2(T ) � T hΠ2(S). Assume
S � ∀x ∃y ϕ(x, y), withϕ ∈ Δ0, and putϕ′(x, y) ≡ y = μt. ϕ(x, t). Since S is sound,
ϕ′ defines in N the graph of a computable function f and f ∈ R(S) = R(T ). Hence,
there is a Σ1-definition of f in T too, say ψ(x, y). Then N |� ∀x, y (ψ(x, y) →
ϕ′(x, y)) and so T + T hΠ1(N) � ∀x ∃y ϕ(x, y).
(2⇒1): This part follows because adding trueΠ1-sentences to a sound theory does not
increase the corresponding class of provably total functions. In fact, if ϕ(x, y) ∈ Σ1
defines f in T + θ , where θ is a Π1-sentence true in N, then (¬θ ∧ y = 0)∨ ϕ(x, y)
is a Σ1-definition of f in T . ��

Although quite simple, the key observation for determining the p.t.f.c.’s of IΔ1(T )
and LΔ1(T ) is the following

Lemma 6 R(T ∨ S) = R(T ) ∩ R(S).



Proof It follows from Lemma 2 that if ϕ(x, y) and ψ(x, y) areΣ1-definitions of f in
T and in S, respectively, then ϕ(x, y) ∨ ψ(x, y) is a Σ1-definition of f in T ∨ S. ��

By a well-known result due independently to G. Mints, C. Parsons and G. Takeuti,
R(IΣ1) equals to the class of primitive recursive functions P R. In view of Corol-
lary 1, it only remains to determine the p.t.c.f.’s of [T,Σ1-CR] and [T,Δ1-IR] for T
a sound Π2-extension of IΔ0. In both cases our results will be, more or less, direct
consequences of previous work by Beklemishev. In fact, in Corollary 5.6 of [3] it is
shown that if T extends IΔ0 +exp, then R([T,Σ1-CR]) coincides with the closure of
R(T ) under the bounded recursion operator BR or, equivalently, under the bounded
minimization operator M. Here we give a variant of that result in terms of the maxi-
mum operator Max. The proof is similar to that of Corollary 5.6 of [3] and we omit
it.

Definition 2 (Bounded Min and Max operators) Assume f : N
k+1 → N. Then

M( f ) denotes the function given by M( f )(x, z) = μi ≤ x . [ f (i, z) = 0] if such an i
exists, or x +1 otherwise; and Max( f ) denotes the function given by Max( f )(x, z) =
max({ f (i, z) : 0 ≤ i ≤ x}).
Proposition 9 Suppose that T is a sound Π2-theory extending IΔ0. Then,
R([T,Σ1-CR]) = [R(T ),Max] = M(R(T )).

As for the Δ1-IR case, Beklemishev introduced in [5] a new recursive operator
called search operator and showed that it corresponds toΔ1-IR. Given f : N → N, the
function defined by the search operator (S) from f is S( f )(a, b) = μz. J ( f, a, b, z),
where J ( f, a, b, z) stands for

∃x, u, v ≤ z z = 〈x, u, v〉
∧ [ (a ≤ x < b ∧ (u)0 = 0 ∧ (v)0 �= 0 ∧ f (x) = u ∧ f (x + 1) = v)

∨ (x = a ∧ (u)0 �= 0 ∧ v = 0 ∧ f (a) = u)
∨ (x = b ∧ (v)0 = 0 ∧ u = 0 ∧ f (b) = v) ]

In words, either one finds x ∈ [a, b) such that ( f (x))0 = 0 and ( f (x + 1))0 �= 0, or 
one establishes that ( f (a))0 �= 0 or ( f (b))0 = 0. Then one outputs such an x as the 
first coordinate of a witness z that x is as required (see [5] for details). It is important 
to note that in [5] it is assumed that, by definition, the search operator can only be 
applied to unary functions with Δ0-definable graph. Restricting the operator to unary 
functions is unessential but the restriction to functions with bounded graph is crucial. 
Here, to make this restriction explicit, we prefer to keep the search operator applicable 
to any unary function and then introduce the following notations. Let R0(T ) denote 
the class of those p.t.c.f.’s of T with a Δ0-definition in T . Note that, in general, R0(T ) 
is not closed under composition and that R(T ) = C(R0(T )). In addition,

Lemma 7 R0(T ) coincides with the class of the functions in R(T ) whose graph is 
Δ0-definable in the standard model.

Proof One inclusion is obvious. For the other, let ϕ(x, y) ∈ Σ1 be a definition of 
a function f in T and let θ(x, y) ∈ Δ0 defining the graph of f in N. Then N |�



∀x ∀y (ϕ(x, y) → θ(x, y)) and so there is a trueΠ1-sentence, say ∀z δ(z)with δ ∈ Δ0,
satisfying that T + ∀z δ(z) � ∀x ∃y θ(x, y). It is easy to see that the Δ0-formula
¬δ(y) ∨ θ(x, y) is a definition of f in T . ��
Let [F ,S]w denote the smallest set of functions containing F , closed under composi-
tion, and satisfying that S( f ) belongs to the set whenever f ∈ F . Note that [F ,S]w is
contained in, but could be weaker than, [F ,S] if F is not closed under composition.
Using this terminology, Theorem 3 in [5] can be restated as follows (that result is
proved in [5] over IΔ0 + exp but this is unessential).

Proposition 10 Suppose that T is a sound Π2-theory extending IΔ0. Then,
R([T,Δ1-IR]) = [R0(T ),S]w.

The above characterization is not as neat as the one obtained for Σ1-CR. It would
be nicer to show R([T,Δ1-IR]) = [R(T ),S], i.e., with the search operator being
applied to any computable function rather than only to functions with a bounded
graph. However, one should take into account the following fact.

Lemma 8 1. [C,M] ⊆ [C,S] for each function algebra C containing M2.
2. Assume that R([T,Δ1-IR]) = [R(T ),S] for every soundΠ2-theory T extending

IΔ0. Then BΣ−
1 is provable from T hΠ1(N)+ IΔ1. (Whether such a proof exists

is still open).

Proof (1) Pick f : N
k+1 → N in C(C). Roughly speaking, in order to obtain the

least i ≤ x such that f (i, z) = 0, it suffices to apply the search operator on the
interval [0, x + 2] to the function that takes the values

〈0, 0〉, 〈sg( f (0, z)), 0〉, · · · , 〈sg( f (x, z)), 0〉, 〈1, 0〉,
where sg denotes Kleene’s signum function, which satisfies sg(0) = 1 and
sg(x) = 0 if x �= 0. More formally, define f ′ : N

k+2 → N to be

f ′(x, z, w) =
⎧⎨
⎩

〈0, 0〉 x = 0
〈sg( f (x − 1, z)), 0〉 1 ≤ x ≤ w

〈1, 0〉 x > w

Then, f ′ ∈ C(C) as M2 ⊆ C, and it follows from the definition of the search
operator that M( f )(x, z) = (S( f ′)(0, x + 2, z, x + 1))0, where by abuse of
notation we also write S( f ′) to denote the search operator applied to a function
with parameters. It only remains to eliminate the use of parameters z, w in f ′.
This can be achieved by putting together pieces of f ′ as follows. (This idea has
been taken from the proof of Lemma 14 in [5] but we need to modify the coding
method because we work over M2 rather than over the class of elementary func-
tions). For simplicity, we first encode z, w into a single parameter v by putting
f ′′(x, v) = f ′(x, (v)0, . . . , (v)k). Now consider

g(x) = f ′′((x)0, ((x)0 + (x)1)0).

It follows from the definition of the pairing function that g on the interval
[〈0, 〈v, x〉〉, 〈0, 〈v, x〉〉 + x] takes the values f ′′(0, v), . . . , f ′′(x, v). If we put



h(x, v) = 〈0, 〈v, x〉〉 and write S(g)(h(x, v), h(x, v) + x) as 〈a, b, c〉, then
we have S( f ′′)(0, x, v) = 〈a − h(x, v), b, c〉 and S( f ′′)(0, x, 〈z, w〉) =
S( f ′)(0, x, z, w). So, the latter function is in [C,S], as required.

(2) Suppose A |� T hΠ1(N)+ IΔ1 and consider T to be the set of all Π2-sentences
true in A. Then T is a sound Π2-extension of IΔ0 closed under Δ1-IR and
hence R(T ) is closed under the search operator by the assumption. It follows
from part 1 that R(T ) is also closed under bounded minimization. So R(T ) =
R([T,Σ1-CR]) by Proposition 9 and T extends [T,Σ1-CR] by Lemma 5. Thus,
A |� BΣ−

1 as required. ��
Having justified the introduction of the function algebra [F ,S]w, we are now in a

position to obtain the main theorem of this section.

Theorem 6 Let T be a sound extension of IΔ0.

1. R(IΔ1(T )−) = PR ∩ R(T ).
2. R(IΔ1(T )) = PR ∩ [R0(T ),S]w = [P R ∩ R0(T ),S]w.
3. R(LΔ1(T )) = PR ∩ [R(T ),Max] = [P R ∩ R(T ),Max].
Proof Write T ′ for T hΠ2(T ).

(1) It follows from Corollary 2 and Lemma 6 that R(IΔ1(T )−) equals to P R ∩
R([T ′,Δ−

1 -IR]). But T ′ + T hΠ1(N) implies [T ′,Δ−
1 -IR] and R(T ) = R([T ′,

Δ−
1 -IR]), for adding true Π1-sentences to a sound theory does not increase the

corresponding class of provably total functions.
(2) First, it follows from Corollary 1, Lemma 6 and Proposition 10 thatR(IΔ1(T )) =

P R ∩ [R0(T ),S]w. Second, notice that

Claim IΔ1(T ) is Π2-conservative over IΔ1(IΣ1 ∨ T ).

Suppose that IΔ1(T ) proves θ , with θ ∈ Π2. Then both IΣ1 and [T ′,Δ1-IR]
prove θ too. Towards a contradiction, assume IΔ1(IΣ1 ∨ T ) �� θ . Since IΣ1 �
θ , it follows from Theorem 1 that [T hΠ2(IΣ1) ∨ T ′,Δ1-IR] + ¬θ is consistent.
Put S = T hΠ2(IΣ1) ∨ T ′ and ¬θ ≡ ∃z δ(z), with δ ∈ Π1, and suppose that
S+¬θ � ∀x (ϕ(x, v) ↔ ψ(x, v)), with ϕ ∈ Σ1, ψ ∈ Π1. Then S proves ∀z (δ(z) →
∀x (ϕ(x, v) ↔ ψ(x, v))) and reasoning as in the proof of Proposition 2, we get that
[S,Δ1-IR] + ¬θ � ∀v Iϕ(x,v). As a result, [S,Δ1-IR] + ¬θ implies [S + ¬θ,Δ1-IR]
and hence the latter theory is consistent as well. But we have

S + ¬θ ≡ (T hΠ2(IΣ1)+ ¬θ) ∨ (T ′ + ¬θ) ≡ (T ′ + ¬θ)
since θ is a Π2-theorem of IΣ1. We have thus obtained that [T ′,Δ1-IR] + ¬θ is
consistent, which is a contradiction. This completes the proof of the Claim.
It then follows that

R(IΔ1(T )) = R(IΔ1(IΣ1 ∨ T )) = PR ∩ R([T hΠ2(IΣ1) ∨ T ′,Δ1-IR])
= [R0(T hΠ2(IΣ1) ∨ T ′),S]w
= [PR ∩ R0(T ),S]w

(For the last equality note that each primitive recursive function whose graph is Δ0-
definable in N has a Δ0-definition in IΣ1 by Lemma 7).

(3) The proof is similar to that of part 2. ��



In what follows we show that in presence of exp, R(IΔ1(T )) and R(LΔ1(T ))
can also be described in purely recursion-theoretic terms. We introduce a suitably
modified version of the bounded recursion operator, called C-bounded recursion, and
prove that if T is a sound extension of IΔ0 + exp then R(LΔ1(T )) coincides with
the closure of the basic functions under composition and R(T )-bounded recursion.
(A preliminary version of this result appeared in [8]).

Definition 3 (C-bounded recursion) A function f : N
k+1 → N is defined from

g : N
k → N, h : N

k+2 → N and C : N
k+1 → N by C-bounded recursion, written

f = BRC (g, h), if f ≤ C and

f (x, 0) = g(x); f (x, y + 1) = h(x, y, f (x, y)),

i.e., f is defined from g and h by primitive recursion and f is bounded by C . Given a
function class C, EC is the smallest set of functions containing the basic functions (the
constant zero, projections, and the successor function) and closed under composition
and C-bounded recursion, that is, C-bounded recursion for every C ∈ C.

We use the notation EC in analogy with the well-known Grzegorczyk hierarchy E i , i ≥
0, defined in terms of usual bounded recursion (see e.g., [19]). One can attach to EC a
first-order theory in an extended language, denoted C-B R A, so that EC = R(C-B R A).
The definition of C-B R A is inspired by the well-known system P R A for the primitive
recursive functions.

Definition 4 Suppose that C contains M2 and is closed under composition. The theory
C-B R A, C-Bounded Recursive Arithmetic, is given by:

Language: LC = ⋃
i∈ω Li , where

• L0 = L plus a function symbol B f for each basic function.
• L j+1 = L j plus a function symbol ft for each term t of L j , and a function

symbol ft1,t2 for each pair of terms t1(x), t2(x, y, z) of L j such that the function
defined in the standard model from t1 and t2 by primitive recursion is bounded
by some function C ∈ C.

Axioms: (the universal closure of)

(1) Robinson’s Q.
(2) BS(x) = x + 1, BΠn

i
(x1, . . . , xn) = xi , BO(x) = 0.

(3) ft (x) = t (x).
(4) ft1,t2(x, 0) = t1(x), ft1,t2(x, z, y + 1) = t2(x, y, ft1,t2(x, y)).
(5) Open Induction: The induction scheme for open formulas of LC .

Observe that C-BRA is a theory only in an abstract model-theoretic sense (i.e., a set of
sentences in a first order language) but, in general, it is not even effectively axioma-
tized. We shall use this theory as a technical tool in order to prove that C ∩ PR ⊆ EC
in Proposition 11. Let us also note that bounds (i.e., the functions from C) are not
included in the axiomatizations of the recursive schemes (part (4) of the definition)
and, so, C-BRA cannot prove anything about them. This is natural because, in general,



C is not contained in EC : for instance, consider the case when C contains some non
primitive recursive functions, or, alternatively, see Remark 4 below.

It is routine to check that C-BRA satisfies the following properties, which are well-
known for PRA:

• in C-BRA every bounded formula is equivalent to an open one;
• C-BRA supports definition by cases;
• C-BRA admits a purely universal axiomatization.

As a consequence, a standard application of Herbrand’s theorem gives us that R(C − 
BRA) = EC . Equipped with this result, we are able to show that

Proposition 11 Suppose that C = R(T ) for T some sound extension of I Δ0. Then 
C ∩ P R  ⊆ EC .

Proof Since R(C-B R A) = EC and C ∩ P R  ⊆ R(I Δ1(T )) by Theorem 6, it is  
sufficient to prove that

Claim I Δ1(T ) is Π2-conservative over C-B R A.

To this end, we follow J. Avigad’s proof that I Σ1 is Π2-conservative over P R A  
given in [2]. The key ingredient is that of an ∃2-closed model (or Herbrand saturated 
model in Avigad’s terminology). We say that A is an ∃2-closed if, for every structure 
B, A ≺∀1 B implies A ≺∃2 B. By a union of chain argument every model of a 
universal theory U can be ∀1-elementary extended to a new model of U which is ∃2-
closed. Thus, if every ∃2-closed model of a universal theory U is a model of a theory 
W , then W is ∀2-conservative over U (this is Theorem 3.4 of [2]).

Turning back to the proof of the Claim, it suffices to show that every ∃2-closed model 
of C−B R A  satisfies I Δ1(T ), for each Π2-formula is equivalent in C−B R A  to a ∀2-for-
mula. Suppose that A is an ∃2-closed model of C − B R A. Let  ϕ(x, y, v),  ψ(x, y, v)  ∈ 
Δ0 with T � ∃y ϕ(x, y, v)  ↔ ∀y ψ(x, y, v). We may assume I Δ0 � ϕ(x, y1, v)  ∧ 
ϕ(x, y2, v)  → y1 = y2, otherwise consider ϕ(x, y, v)∧∀y′ < y ¬ϕ(x, y′, v)  instead. 
Since T � ∀x, v  ∃y (ϕ(x, y, v)  ∨ ¬ψ(x, y, v))  and T is sound, y = μt. (ϕ(x, t, v)  ∨ 
¬ψ(x, t, v))  defines a p.t.f.c. of T , say C . Then,

(†) N |� ϕ(x, y, v)  → y = C(x, v).

Let a ∈ A and let ϕ0(x, y, v)  be an open formula equivalent in C-B R A  to ϕ. We must  
show that the induction axiom for ∃y ϕ0(x, y, a) is true in A. To that end, assume 
A |� ∃y ϕ0(0, y, a) ∧ ∀x (∃y ϕ0(x, y, a) → ∃y ϕ0(x + 1, y, a)). In particular, A |� 
∀x, y ∃y′ (ϕ0(x, y, a) → ϕ0(x +1, y′, a)). Since this last formula has quantifier com-
plexity ∀2, it is provable from the universal diagram of A by the closedness condition 
for A. Thus, applying Herbrand’s theorem and using that C − B R A  supports definition 
by cases, we obtain that there are b, c ∈ A and a term of LC , t (x, y, v, w), satisfying 
that

A |� ϕ0(0, c, a) ∧ ∀x, y (ϕ0(x, y, a) → ϕ0(x + 1, t (x, y, a, b), a)).



Let h denote the function defined in the standard model by

h(x, y, z, v, w) =
{

t (x, z, v, w) if ϕ0(x + 1, t (x, z, v, w), v);
0 otherwise

Clearly h ∈ EC . Let f be the function defined by primitive recursion as follows:

f (0, y, v, w) = y, f (x + 1, y, v, w) = h(x, y, f (x, y, v, w), v,w).

By (†) f (x, y, v, w) ≤ C ′(x, y, v, w) = y+C(x, v). So f ∈ EC , since it is defined by
C ′-bounded recursion and C ′ ∈ C. Let f be the function symbol of LC corresponding
to f . Then A satisfies that

ϕ0(0, f(0, c, a, b), a) ∧ ∀x (ϕ0(x, f(x, c, a, b), a)→ϕ0(x + 1, f(x + 1, c, a, b), a)).

Since A is a model of open induction, A |� ∀x ϕ0(x, f(x, c, a, b), a) and hence A |�
∀x ∃y ϕ0(x, y, a), as required. ��

Remark 4 It is worth noting that the assumption that C is the class of p.t.c.f.’s of a
theory T cannot be dropped in Proposition 11. For example, put C = C(M2 ∪{Ch A}),
where Ch A is the characteristic function of a primitive recursive set A which is not
in the second level of the Grzegorczyk hierarchy E2. First, C cannot be written as
R(T ) for any theory T in the language of arithmetic, for we have R(T ) = C(R0(T ))
whereas closing under composition the functions in C with aΔ0-definable graph only
gives us M2. Second, C ∩ P R = C � EC = E2.

Theorem 7 Let T be a sound extension of IΔ0 + exp and let C = R(T ). Then,
R(IΔ1(T )) = R(LΔ1(T )) = EC .

Proof It follows from Proposition 11 that C ∩ P R ⊆ EC and it follows from Theo-
rem 6 that R(LΔ1(T )) = [C ∩ P R,Max] = M(C ∩ P R). But it is easy to see that
EC is closed under bounded minimization. Thus, R(LΔ1(T )) ⊆ EC . For the opposite
inclusion, note that

Claim EC = EC∩P R .

We reason by induction on the definition of f ∈ EC . The critical step is the definition
by C-bounded recursion. Suppose f = BRC (g, h)with C ∈ C. Since f itself is prim-
itive recursive, there are C1 ∈ P R and C2 ∈ C with Δ0-definable graphs such that
f ≤ C1,C2. Let θ1(x, y) ∈ Δ0 be a definition of C1 in IΣ1 and let θ2(x, y) ∈ Δ0 be
a definition of C2 in T . Then y = μt. (θ1(x, t)∨θ2(x, t)) defines a p.t.c.f. of T ∨ IΣ1,
say C3. Note that C3 ∈ C ∩ P R and f = BRC3(g, h), which proves the claim.
Thus EC = EC∩P R ⊆ BR(C ∩ P R) = M(C ∩ P R) = R(LΔ1(T )), where in the last
but one equality BR denotes the usual bounded recursion operator and we use that in
presence of exp, bounded recursion can be reduced to bounded minimization. ��



Exponentiation is used in two different ways in Theorem 7 above. On the one hand,
exp is needed to prove IΔ1(T ) and LΔ1(T ) to be equivalent and thus share the same
p.t.c.f.’s. On the other hand, exp is needed to reduce bounded recursion to bounded
minimization in the proof that EC ⊆ R(LΔ1(T )). Eliminating this second use of exp
seems to be a hard problem, for it is related to important problems in Complexity
Theory. In fact, if T = IΔ0 then R(LΔ1(T )) = M2 and EC = E2. Thus if Theo-
rem 7 holds for T = IΔ0 then the Linear Time Hierarchy coincides with LinSpace.
Likewise, if Theorem 7 holds for T = IΔ0 +Ω1, whereΩ1 expresses “x |x | is total”,
then the Polynomial Time Hierarchy equals to PolySpace.

In the same spirit, we close this section with a reduction of the NE Problem (see
Remark 2) to a purely recursion-theoretic question. Recall that E3 denotes the third
level of the Grzegorczyk hierarchy, which is well-known to coincide with the set of
Kalmár’s elementary functions.

Proposition 12 The following are equivalent.

1. T hΠ1(N)+ ¬exp � BΣ−
1 .

2. For each f ∈ E3 with aΔ0-definable graph, C(M2∪{ f }) is closed under bounded
minimization.

Proof (1⇒2): Let f ∈ E3 whose graph is definable by a Δ0-formula, say θ(x, y),
and put T = T hΠ1 (N) +∀x ∃y θ(x, y). It follows from Lemmas 4 and 5 that R(T ) = 
C(M2 ∪ { f }). Now observe that it follows from condition 1 that

Claim T is closed under Σ1-CR.

On the one hand, since R(T ) ⊆ E3 = R(I Δ0 + exp), it follows from the proof of 
Lemma 5 that T is included in T hΠ1 (N) + exp. But the latter theory is closed under 
Σ1-C R  and hence T exp implies T Σ1-C R. On the other hand, T exp is an

extension of BΣ1
− by

+
condition 1 and

+
so T + ¬exp implies T + Σ1-C R

+ ¬
too. As a result, T implies T + Σ1-C R, as required.

Thus C(M2 ∪ { f }) is closed under bounded minimization by Proposition 9.
(2⇒1): Observe that it follows from condition 2 that

Claim T hΠ1 (N) implies BΔ1(I Δ0 + exp)−.

To see this, assume that I Δ0 + exp � ∀x ∃y ϕ(x, y), with ϕ(x, y) ∈ Σ1
−. Put 

ϕ(x, y) ≡ ∃z ϕ0(x, y, z), with ϕ0 ∈ Δ0, and define θ(x, y) to be the Δ0-formula 
y = μt. ϕ0(x, (t)0, (t)1). Then θ(x, y) defines a computable function f ∈ E3 since 
I Δ0 + exp � ∀x ∃y θ(x, y). By condition 2, Max( f ) ∈ C(M2 ∪ { f }) = R(I Δ0 + 
∀x ∃y θ(x, y)). Note that ∀x ≤ z ∃y ≤ u θ(x, y) ∧ ∃x ≤ z θ(x, u) is a Δ0-formula 
defining Max( f ) in the standard model. Hence reasoning as in the proof of Lemma 5
we obtain that T hΠ1 (N) + ∀x ∃y θ(x, y) proves ∀z ∃u ∀x ≤ z ∃y ≤ u θ(x, y) and so 
T hΠ1 (N) Bϕ(x,y), as required.

Thus T hΠ1

�
(N)+¬exp implies BΔ1(I Δ0 +exp)−+¬exp which in turn implies BΣ1

− 
by Theorem 4. ��
Corollary 5 Assume that there exists some f ∈ E3 with a Δ0-definable graph such 
that Max( f ) �∈ C(M2 ∪ { f }). Then I Δ0 + ¬exp does not imply BΣ1.



Interestingly, Lemma 6.1 of [4] shows how to construct a function f ∈ E4 with
an elementary graph such that Max( f ) �∈ C(E3 ∪ { f }). The construction uses Turing
machines equipped with an internal clock. Although it is far from obvious how to
adapt that construction to obtain a function satisfying the assumptions of Corollary 5,
this approach gives us some new ideas to attack the NE Problem and to obtain, at least,
a conditional negative answer under some complexity-theoretic assumption.
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