On axiom schemes for \boldsymbol{T}-provably $\boldsymbol{\Delta 1}$ formulas

A. Cordón-Franco • A. Fernández-Margarit • F. F. Lara-Martín

Abstract

This paper investigates the status of the fragments of Peano Arithmetic obtained by restricting induction, collection and least number axiom schemes to formulas which are Δ_{1} provably in an arithmetic theory T. In particular, we determine the provably total computable functions of this kind of theories. As an application, we obtain a reduction of the problem whether $I \Delta_{0}+\neg \exp \operatorname{implies} B \Sigma_{1}$ to a purely recursion-theoretic question.

Keywords Fragments of Peano Arithmetic • Δ_{1} formulas . Provably total computable functions

Mathematics Subject Classification 03F30 • 03D20

1 Introduction

Among the subsystems of first order Peano Arithmetic (PA), fragments for Δ_{1}-formulas are not completely understood yet. A well-known problem posed by Paris [6] asks whether, over the theory of bounded induction $I \Delta_{0}$, the induction principle for Δ_{n}-formulas $I \Delta_{n}$ and the collection principle for Σ_{n}-formulas $B \Sigma_{n}$ are equivalent. By a result of R. Gandy (unpublished, see [12]), $B \Sigma_{n}$ is equivalent to the least number principle for Δ_{n}-formulas $L \Delta_{n}$. Hence, Paris' question can be reformulated as asking whether $I \Delta_{n}$ and $L \Delta_{n}$ are equivalent. In 2004 Slaman [21] obtained a partial answer
to the problem. He proved $I \Delta_{n}$ and $B \Sigma_{n}$ to be equivalent over $I \Delta_{0}+\exp$, where exp is the axiom asserting the totality of the exponential function. Since $I \Delta_{2}$ proves exp, this answered the problem completely for each $n \geq 2$. As to the case $n=1$, building on Slaman's work Thapen [23] showed that $B \Sigma_{1}$ is provable from $I \Delta_{1}$ plus a very weak form of exponentiation: "for all x, x^{y} exists for some y such that $x<p(y)$ ", where p can be any primitive recursive function. (An alternative proof of this result was given in [20]). However, the problem of proving or disproving the equivalence over $I \Delta_{0}$ for $n=1$ is still pending.

Motivated by this question, we initiated in [11] and [7] the study of fragments of $P A$ for formulas that are Δ_{1} provably in an external theory T. More precisely, let T be an extension of $I \Delta_{0}$ in the language of arithmetic. The theory $I \Delta_{1}(T)$ is axiomatized over Robinson's Q by the axiom scheme

$$
\left(I_{\varphi}\right) \quad \varphi(0, \mathbf{v}) \wedge \forall x(\varphi(x, \mathbf{v}) \rightarrow \varphi(x+1, \mathbf{v})) \rightarrow \forall x \varphi(x, \mathbf{v}),
$$

where $\varphi(x, \mathbf{v}) \in \Delta_{1}(T)$, i.e., $\varphi(x, \mathbf{v}) \in \Sigma_{1}$ and there is some $\psi(x, \mathbf{v}) \in \Pi_{1}$ such that $T \vdash \forall x, \mathbf{v}(\varphi(x, \mathbf{v}) \leftrightarrow \psi(x, \mathbf{v}))$. The theory $L \Delta_{1}(T)$ is Q together with

$$
\left(L_{\varphi}\right) \quad \exists x \varphi(x, \mathbf{v}) \rightarrow \exists x(\varphi(x, \mathbf{v}) \wedge \forall y<x \neg \varphi(y, \mathbf{v})),
$$

where $\varphi(x, \mathbf{v}) \in \Delta_{1}(T)$. The theory $B \Delta_{1}(T)$ consists of $I \Delta_{0}$ plus

$$
\left(B_{\varphi}\right) \quad \forall x \exists y \varphi(x, y, \mathbf{v}) \rightarrow \forall z \exists u \forall x \leq z \exists y \leq u \varphi(x, y, \mathbf{v}),
$$

where $\varphi(x, y, \mathbf{v}) \in \Sigma_{1}$ and $T \vdash \forall x \exists y \varphi(x, y, \mathbf{v})$ (so $\exists y \varphi(x, y, \mathbf{v}) \in \Delta_{1}(T)$).
A variant of Paris' problem then arises: For which theories T does the equivalence $I \Delta_{1}(T) \equiv L \Delta_{1}(T)$ hold?

Besides this original motivation, $\Delta_{1}(T)$-schemes have turned out to be interesting subsystems of $P A$ in their own right. On the one hand, $\Delta_{1}(T)$ formulas appear naturally in the study of fragments of $P A$, remarkably in connection with the computable functions provably total in T. In fact, as we shall show in this paper, $\Delta_{1}(T)$-schemes exhibit a nice computational behavior: it is possible to give neat characterizations of their provably total functions by means of some subrecursive operators. On the other hand, $\Delta_{1}(T)$-schemes are closely related to theories of arithmetic described in terms of inference rules. In fact, $T+I \Delta_{1}(T)$ coincides with the closure of T under unnested applications of the Δ_{1}-induction rule [T, Δ_{1}-IR]. Even more, $I \Delta_{1}(T)$ precisely isolates the amount of induction axioms added to T by unnested applications of Δ_{1}-IR. Similar remarks apply to $L \Delta_{1}(T)$ and $B \Delta_{1}(T)$ considering the Δ_{1}-minimization rule Δ_{1}-LR and the Σ_{1}-collection rule $\Sigma_{1}-\mathrm{CR}$, respectively.

In this work we go a step further and show that, as a matter of fact, $\Delta_{1}(T)$-schemes can be fully characterized as the intersection between a "classic" scheme for Σ_{1}-formulas and an inference rule theory. More precisely, let $T h_{\Gamma}(T)$ denote the set of all Γ-consequences of a theory T. Then, for each sentence φ we have
$I \Delta_{1}(T) \vdash \varphi$ if, and only if, both $I \Sigma_{1} \vdash \varphi$ and $\left[T h_{\Pi_{2}}(T), \Delta_{1}\right.$-IR] $\vdash \varphi$;
$L \Delta_{1}(T) \vdash \varphi$ if, and only if, both $I \Sigma_{1} \vdash \varphi$ and $\left[T h_{\Pi_{2}}(T), \Delta_{1}-\mathrm{LR}\right] \vdash \varphi$;

$$
B \Delta_{1}(T) \vdash \varphi \text { if, and only if, both } B \Sigma_{1} \vdash \varphi \text { and }\left[T h_{\Pi_{2}}(T), \Sigma_{1} \text {-CR] } \vdash \varphi .\right.
$$

Thus, the study of $\Delta_{1}(T)$-schemes can be reduced to investigating how the properties of two theories are transferred to the theory given by the intersection of their theorems. Using this methodology we shall obtain a complete description of the prooftheoretic and computational properties of $\Delta_{1}(T)$-schemes.
Notably:

- We show that Slaman's theorem transfers to the present context and prove that $I \Delta_{1}(T)$ and $L \Delta_{1}(T)$ are equivalent for every T extending $I \Delta_{0}+\exp$.
- In studying parameter free $\Delta_{1}(T)$-schemes we introduce parameter free Δ_{1}-rules Δ_{1}^{-}-IR and Δ_{1}^{-}-LR (to our best knowledge, considered here for the first time) and obtain a conservation result, which is of independent interest. Namely, if $T \subseteq \Pi_{2}$ then $\left[T, \Delta_{1}-\mathrm{IR}\right]$ and $\left[T, \Delta_{1}\right.$-LR] are conservative over their parameter free counterparts with respect to Σ_{2}-sentences.
- We determine the provably total computable functions (p.t.c.f.) of $I \Delta_{1}(T)$ and of $L \Delta_{1}(T)$ for an arbitrary T extending $I \Delta_{0}$. We show that the p.t.c.f.'s of $L \Delta_{1}(T)$ are, precisely, the closure under composition and the bounded minimization operator of the p.t.c.f.'s of T which are primitive recursive. For $I \Delta_{1}(T)$ we obtain a similar result in terms of the search operator introduced in [5]. In addition, in presence of exp we give alternative and particularly neat characterizations by means of a suitably modified version of the bounded recursion operator, that we call C-bounded recursion.
- We obtain a reduction of the well-known problem whether $I \Delta_{0}+\neg \exp$ implies $B \Sigma_{1}$ (for short, the NE Problem) raised by Wilkie and Paris [24] to a purely recur-sion-theoretic question. Namely, $B \Sigma_{1}$ is not provable from $I \Delta_{0}+\neg \exp$ if there is some elementary function f with a Δ_{0}-definable graph such that the function $x \mapsto \max _{i \in[0, x]} f(i)$ cannot be obtained by composition from f and rudimentary functions.

The outline of the paper is as follows. Sections 1 and 2 are introductory. Section 3 contains the proof of the characterization theorem for $\Delta_{1}(T)$-schemes and several applications. (In particular, we solve a number of questions left over from [11] and [7]). In Sect. 4 we investigate parameter free $\Delta_{1}(T)$-schemes and parameter free $\Delta_{1^{-}}$ inference rules. Finally, Sect. 5 is devoted to determining the p.t.c.f.'s of $I \Delta_{1}(T)$ and of $L \Delta_{1}(T)$ and contains the above-mentioned reduction for the NE Problem.

2 Preliminaries

We assume familiarity with basic notions and results concerning fragments of Peano Arithmetic (all relevant information can be found in [12]). We work in the usual first-order language of arithmetic $\mathcal{L}=\{0,1,+, \cdot, \leq\}$. We denote by \mathbb{N} the standard model of arithmetic and say that a theory T is sound if all its axioms are true in \mathbb{N}. As usual, the formulas of \mathcal{L} are classified in the Σ_{n} / Π_{n} hierarchy, Δ_{0} denotes the class of bounded formulas, i.e., formulas with bounded quantifiers only, and $\mathcal{B}\left(\Sigma_{n}\right)$ denotes the class of boolean combinations of Σ_{n}-formulas. For $\Gamma=\Sigma_{n}$ or $\Pi_{n}, I \Gamma$ denotes Q plus the scheme of induction for Γ-formulas, $L \Gamma$ denotes Q plus minimization for
Γ-formulas, and $B \Gamma$ denotes $I \Delta_{0}$ plus collection for Γ-formulas. Fragments $I \Delta_{n}$ and $L \Delta_{n}$ are given by Q together with

$$
(\varphi(x, \mathbf{v}) \leftrightarrow \psi(x, \mathbf{v})) \rightarrow I_{\varphi(x, \mathbf{v})} ; \quad(\varphi(x, \mathbf{v}) \leftrightarrow \psi(x, \mathbf{v})) \rightarrow L_{\varphi(x, \mathbf{v})}
$$

where $\varphi \in \Sigma_{n}$ and $\psi \in \Pi_{n}$. Recall from [14] that $E \Gamma^{-}$denotes the parameter free version of the theory $E \Gamma$. We also write $\varphi(\mathbf{x}) \in \Gamma^{-}$to mean that $\varphi(\mathbf{x})$ is in Γ and contains no other free variables than the ones shown. We will be concerned with theories described in terms of inference rules too. The Γ-induction rule, Γ-IR, and the Γ-collection rule, Γ-CR, are given by

$$
\frac{\varphi(0, \mathbf{v}) \wedge \forall x(\varphi(x, \mathbf{v}) \rightarrow \varphi(x+1, \mathbf{v}))}{\forall x \varphi(x, \mathbf{v})} ; \quad \frac{\forall x \exists y \varphi(x, y, \mathbf{v})}{\forall z \exists u \forall x \leq z \exists y \leq u \varphi(x, y, \mathbf{v})}
$$

where $\varphi \in \Gamma$. Similarly, Δ_{n}-IR and Δ_{n}-LR are given by

$$
\frac{\varphi(x, \mathbf{v}) \leftrightarrow \psi(x, \mathbf{v})}{I_{\varphi(x, \mathbf{v})}} ; \quad \frac{\varphi(x, \mathbf{v}) \leftrightarrow \psi(x, \mathbf{v})}{L_{\varphi(x, \mathbf{v})}}
$$

with $\varphi \in \Sigma_{n}$ and $\psi \in \Pi_{n}$. Following [3], given an inference rule R and a theory $T, T+R$ denotes the closure of T under R and first order logic; while $[T, R]$ denotes the closure of T under non-nested applications of R and first order logic. A rule R_{1} is reducible to R_{2} if $\left[T, R_{1}\right] \subseteq\left[T, R_{2}\right]$ for every theory T extending $I \Delta_{0}$; two rules R_{1} and R_{2} are congruent if they are mutually reducible to each other.

In the present paper by an arbitrary arithmetic theory T we mean any extension of $I \Delta_{0}$ in the language \mathcal{L}. In particular, Cantor's pairing function $\langle x, y\rangle=$ $\frac{(x+y+1) \cdot(x+y)}{2}+x$ and projections $y=(x)_{0}$ and $y=(x)_{1}$ will be available in all our theories.

Finally, if \mathfrak{A} and \mathfrak{B} are \mathcal{L}-structures we write $\mathfrak{A} \prec_{\Gamma} \mathfrak{B}$ to mean that \mathfrak{A} is a Γ elementary substructure of \mathfrak{B}, i.e., for all $\varphi(\mathbf{x}) \in \Gamma$ and $\mathbf{a} \in \mathfrak{A}, \mathfrak{A} \models \varphi(\mathbf{a})$ if, and only if, $\mathfrak{B} \models \varphi(\mathbf{a})$. We denote by $\mathcal{K}_{n}(\mathfrak{A}, p)$ the submodel of \mathfrak{A} consisting of elements which are Σ_{n}-definable (possibly with a parameter p). Submodels of Σ_{n}-definable elements are natural examples of Σ_{n}-elementary substructures. In addition, since [16] and [17] it has been known that they provide examples of arithmetic structures where Σ_{n}-collection fails. In [9] we obtained the following strengthening of these old results.

Proposition 1 ([9], Theorem 3.6)

1. If $\mathfrak{A} \models I \Delta_{0}$ and $p \in \mathfrak{A}$ is nonstandard, $\mathcal{K}_{1}(\mathfrak{A}, p) \not \vDash B \Sigma_{1}+\exp$.
2. If $\mathfrak{A} \models I \Delta_{0}$ and $\mathcal{K}_{1}(\mathfrak{A})$ is nonstandard, $\mathcal{K}_{1}(\mathfrak{A}) \not \models L \Delta_{1}^{-}+\exp$.
3. If $\mathfrak{A} \vDash B \Sigma_{1}$ and $p \in \mathfrak{A}$ is nonstandard and Π_{1}-minimal (i.e., p is the least element satisfying some Π_{1}-formula), then $\mathcal{K}_{1}(\mathfrak{A}, p) \not \vDash B \Sigma_{1}^{-}+$exp.

3 Models of $\boldsymbol{\Delta}_{\mathbf{1}}(T)$-schemes

Let T be a fixed but arbitrary extension of $I \Delta_{0}$. In this section we prove our characterization theorem for $\Delta_{1}(T)$-schemes and obtain their basic proof-theoretic properties.

Although we shall concentrate on the case $n=1$, our results easily generalize to $\Delta_{n}(T)$-schemes for an arbitrary $n \geq 1$. First, recall from [11] that

Lemma 1 1. $L \Delta_{1}(T) \vdash I \Delta_{1}(T)$.
2. $L \Delta_{1}(T) \vdash B \Delta_{1}(T)$.
3. $T h_{\Pi_{2}}(T)+B \Delta_{1}(T) \vdash L \Delta_{1}(T)$.

The proofs are easy adaptations of the proofs that $L \Sigma_{1} \vdash I \Sigma_{1}$ and $L \Delta_{1} \equiv B \Sigma_{1}$ (see e.g., [12]). In particular, it follows that over $T, L \Delta_{1}(T)$ and $B \Delta_{1}(T)$ are deductively equivalent, which is a reformulation of the fact that Δ_{1}-LR and Σ_{1} - CR are congruent rules.

Turning to the characterization theorem, we will reformulate the theorems of a $\Delta_{1}(T)$-scheme as the intersection of the theorems of other two theories. Or, equivalently, we will reformulate the class of models of a $\Delta_{1}(T)$-scheme as the union of the models of other two theories. This motivates the following definition.

Definition 1 Let S and T be \mathcal{L}-theories and let $\operatorname{Ax}(S)$ and $A x(T)$ be the sets of their non-logical axioms. Then $S \vee T$ is the theory whose non-logical axioms are the set of sentences $\{\varphi \vee \theta: \varphi \in A x(S)$ and $\theta \in A x(T)\}$.

Lemma $2 \mathfrak{A} \models S \vee T$ if and only if either $\mathfrak{A} \models S$ or $\mathfrak{A} \models T$. Hence, for each $\varphi, S \vee T \vdash \varphi$ if and only if both $S \vdash \varphi$ and $T \vdash \varphi$.

We are now ready to state our result.
Theorem 1 (Transfer theorem)

1. $I \Delta_{1}(T) \vdash T h_{\Pi_{2}}(T) \vee I \Sigma_{1}$.
2. $L \Delta_{1}(T) \vdash T h_{\Pi_{2}}(T) \vee I \Sigma_{1}$.
3. $B \Delta_{1}(T) \vdash T h_{\Pi_{2}}(T) \vee B \Sigma_{1}$.

Proof We only write the proof of part 1. The remaining cases are analogous. Suppose $\mathfrak{A} \vDash I \Delta_{1}(T)$ and $\mathfrak{A} \not \vDash T h_{\Pi_{2}}(T)$. To see that $\mathfrak{A} \models I \Sigma_{1}$ consider $\varphi(x, v) \in \Sigma_{1}$. Since $\mathfrak{A} \not \models T h_{\Pi_{2}}(T)$, there are $\theta(w) \in \Sigma_{1}$ and $b \in \mathfrak{A}$ such that $T \vdash \forall w \theta(w)$ and $\mathfrak{A} \models \neg \theta(b)$. Put $\delta(x, v, w) \equiv \varphi(x, v) \vee \theta(w)$. Clearly, T proves $\forall v, w, x \delta(x, v, w)$ and so $\delta(x, v, w) \in \Delta_{1}(T)$. Hence, for all $a \in \mathfrak{A}, \mathfrak{A} \vDash I_{\delta(x, a, b)}$ by $I \Delta_{1}(T)$. But $\mathfrak{A} \models \varphi(x, a) \leftrightarrow \delta(x, a, b)$ since $\mathfrak{A} \models \neg \theta(b)$. Thus, $I_{\varphi(x, a)}$ is true in \mathfrak{A}.

From Lemma 2 and Theorem 1 it follows that
Corollary 1 (Characterization theorem)

1. $I \Delta_{1}(T) \equiv\left[T h_{\Pi_{2}}(T), \Delta_{1}-I R\right] \vee I \Sigma_{1}$.
2. $L \Delta_{1}(T) \equiv\left[T h_{\Pi_{2}}(T), \Sigma_{1}-C R\right] \vee I \Sigma_{1}$.
3. $B \Delta_{1}(T) \equiv\left[T h_{\Pi_{2}}(T), \Sigma_{1}-C R\right] \vee B \Sigma_{1}$.

As a first application, we obtain a partial solution to the variant of Paris' problem for $\Delta_{1}(T)$-schemes. Since Corollary 1 associates $I \Delta_{1}(T)$ and $L \Delta_{1}(T)$ to the same classic scheme $I \Sigma_{1}$, it will suffice to show that $\Delta_{1}-\mathrm{IR}$ and $\Sigma_{1}-\mathrm{CR}$ are congruent rules.

Proposition 2 Suppose $T \vdash$ exp. Then $\left[T, \Delta_{1}-I R\right] \equiv\left[T, \Sigma_{1}-C R\right]$.

Proof Since Σ_{1}-CR and Δ_{1}-LR are congruent rules, it is clear that [T, Σ_{1}-CR] implies [$\left.T, \Delta_{1}-\mathrm{IR}\right]$. The converse will follow by adapting Slaman's proof that $I \Delta_{1}+\exp \vdash$ $B \Sigma_{1}$ (see Theorem 2.1 of [21]). Suppose $\mathfrak{A} \vDash T$ and $\left[T, \Sigma_{1}\right.$-CR] fails in \mathfrak{A}. Note that Σ_{1}-CR is reducible to its parameter free version $\Sigma_{1}^{-}-\mathrm{CR}$ which in turn is reducible to Π_{0}^{-}-CR. Hence, there is $\theta(x, y) \in \Pi_{0}^{-}$such that

- $T \vdash \forall x \exists y \theta(x, y)$;
- B_{θ} fails in \mathfrak{A} and so $\mathfrak{A} \models \forall u \exists x \leq a \forall y \leq u \neg \theta(x, y)$ for some $a \in \mathfrak{A}$.

Let $\delta(z)$ denote the Π_{1}-formula $\forall u \exists x \leq z \forall y \leq u \neg \theta(x, y)$. Slaman's proof shows us how to produce a failure of $I \Delta_{1}$ from a failure of $B \Sigma_{1}$. Inspection of that proof gives us that there are $\varphi(x, z) \in \Sigma_{1}$ and $\psi(x, z) \in \Pi_{1}$ such that

- $T \vdash \forall z(\delta(z) \rightarrow \forall x(\varphi(x, z) \leftrightarrow \psi(x, z))$
- $I_{\varphi(x, a)}$ fails in \mathfrak{A}.

Still we cannot conclude, as $\varphi(x, z)$ need not be in $\Delta_{1}(T)$. However, it suffices to modify $\varphi(x, z)$ a bit to produce a failure of [T, Δ_{1}-IR]. To that end, write $\delta(z)$ as $\forall y \delta^{\prime}(z, y), \varphi(x, z)$ as $\exists y \varphi^{\prime}(x, y, z)$, and $\psi(x, z)$ as $\forall y \psi^{\prime}(x, y, z)$, with $\delta^{\prime}, \varphi^{\prime}, \psi^{\prime} \in$ Δ_{0}. Then, we have

$$
T \vdash \forall x, z \exists y\left[\neg \delta^{\prime}(z, y) \vee \neg \psi^{\prime}(x, y, z) \vee \varphi^{\prime}(x, y, z)\right] .
$$

Write $\theta^{\prime}(x, y, z)$ for the Δ_{0}-formula in square brackets above and consider

$$
\begin{aligned}
& \varphi^{\star}(x, z) \equiv \exists y\left(y=\mu t \cdot \theta^{\prime}(x, t, z) \wedge \varphi^{\prime}(x, y, z)\right) \\
& \psi^{\star}(x, z) \equiv \forall y\left(y=\mu t \cdot \theta^{\prime}(x, t, z) \rightarrow \varphi^{\prime}(x, y, z)\right)
\end{aligned}
$$

It is clear that $T \vdash \forall x, z\left(\varphi^{\star}(x, z) \leftrightarrow \psi^{\star}(x, z)\right)$. In addition, it is easy to see that $T \vdash \delta(z) \rightarrow\left(\varphi^{\star}(x, z) \leftrightarrow \varphi(x, z)\right)$ and so $I_{\varphi^{\star}(x, a)}$ fails in \mathfrak{A} since $\mathfrak{A} \vDash \delta(a)$. Therefore, $\mathfrak{A} \notin\left[T, \Delta_{1}-\mathrm{IR}\right]$.

Theorem 2 Suppose $T \vdash \exp$. Then $I \Delta_{1}(T) \equiv L \Delta_{1}(T)$.
Proof Suppose $\mathfrak{A} \vDash I \Delta_{1}(T)$. If $\mathfrak{A} \vDash T h_{\Pi_{2}}(T)$ then $\mathfrak{A} \models B \Delta_{1}(T)$ by Proposition 2 and so $\mathfrak{A} \models L \Delta_{1}(T)$ by Lemma 1. If $\mathfrak{A} \not \vDash T h_{\Pi_{2}}(T)$ then \mathfrak{A} satisfies $I \Sigma_{1}$ by Theorem 1.

Remark 1 1. In [11] the authors proved the equivalence $I \Delta_{1}(T) \equiv L \Delta_{1}(T)$ provided T is an extension of $I \Delta_{0}$ closed under $\Sigma_{1}-\mathrm{CR}$, and asked whether this condition is also necessary for that equivalence (see part 3 of Problem 7.1 in [11]). Theorem 2 answers in the negative that question.
2. It follows from Theorem 1 that $I \Delta_{1}(T) \vdash T h_{\Pi_{2}}(T)$ whenever $T h_{\Pi_{2}}(T) \subseteq I \Sigma_{1}$. This answers in the negative Problem 7.1 in [7], where the authors asked whether a theory T satisfying that $I \Delta_{1}(T) \vdash T h_{\Pi_{2}}(T)$ must be closed under Δ_{1}-IR.
3. It follows from Lemma 1 and Theorem 2 that $I \Delta_{1}(T) \vdash B \Delta_{1}(T)$ if $T \vdash$ exp. But, in general, $B \Delta_{1}(T)$ does not imply $I \Delta_{1}(T)$ (for example, if $T=I \Delta_{0}+\exp$ then $I \Delta_{1}(T) \vdash \exp$ whereas $\left.B \Delta_{1}(T) \subseteq B \Sigma_{1}\right)$. This differs from the classic case where $B \Delta_{1}\left(\equiv B \Sigma_{1}\right) \vdash I \Delta_{1}$.

A second application of the Transfer Theorem is an unboundedness result for $\Delta_{1}(T)$-schemes. The so-called Kreisel-Lévy unboundedness theorems [15] are results stating that a certain fragment of arithmetic has no extensions of bounded quantifier complexity of a certain kind. Here we obtain the following variant of this family of results.

Proposition 3 (Unboundedness) Suppose $S \subseteq \Sigma_{3}$.

1. If $S \vdash I \Delta_{1}(T)$ then $S \vdash T h_{\Pi_{2}}(T)$.
2. If $S \vdash \exp$ and $S \vdash B \Delta_{1}(T)$ then $S \vdash T h_{\Pi_{2}}(T)$.

Proof We only prove part 2 . The proof of part 1 is similar. Towards a contradiction, assume $S \vdash B \Delta_{1}(T)+\exp$ and S does not imply $T h_{\Pi_{2}}(T)$. Let θ be a Π_{2} sentence such that $T \vdash \theta$ and $S \nvdash \theta$. It follows from Theorem 1 for $B \Delta_{1}(T)$ that $S+\neg \theta \vdash B \Sigma_{1}+\exp$. Since $B \Sigma_{1}+\exp$ is finitely axiomatizable, there is a single Σ_{3} sentence φ such that $\varphi+\neg \theta$ is a consistent extension of $B \Sigma_{1}+\exp$. Let \mathfrak{A} be a nonstandard model of $\varphi+\neg \theta$. Put $\varphi \equiv \exists x \varphi^{\prime}(x)$ and $\neg \theta \equiv \exists x \theta^{\prime}(x)$, with $\varphi^{\prime}(x) \in \Pi_{2}$ and $\theta^{\prime}(x) \in \Pi_{1}$, and pick $a, b, c \in \mathfrak{A}$ such that a is nonstandard and $\mathfrak{A} \models \varphi^{\prime}(b) \wedge \theta^{\prime}(c)$. Finally consider $d=\langle a, b, c\rangle$. Then, the submodel of definable elements $\mathcal{K}_{1}(\mathfrak{A}, d)$ also satisfies $\varphi^{\prime}(b) \wedge \theta^{\prime}(c)$ since $\mathcal{K}_{1}(\mathfrak{A}, d) \prec \Sigma_{1} \mathfrak{A}$. So, $\mathcal{K}_{1}(\mathfrak{A}, d)$ is a model of $B \Sigma_{1}+\exp$, which contradicts Proposition 1.

Since the sentence expressing that a Σ_{1} formula is equivalent to a Π_{1} formula has complexity Π_{2}, it is clear that $\Delta_{1}(T)$-schemes only depend on the Π_{2}-theorems of T. Somewhat surprisingly, it follows from the Unboundedness results that we can also recover the Π_{2}-theorems of T from the corresponding $\Delta_{1}(T)$-schemes, no matters how strong T might be.

Proposition 4

1. Suppose S and T are closed under $\Delta_{1}-I R$. Then, $I \Delta_{1}(S) \equiv I \Delta_{1}(T)$ if and only if $T h_{\Pi_{2}}(S)=T h_{\Pi_{2}}(T)$.
2. Suppose S and T are closed under $\Sigma_{1}-C R$ and prove exp. Then, $B \Delta_{1}(S) \equiv$ $B \Delta_{1}(T)$ if and only if $T h_{\Pi_{2}}(S)=T h_{\Pi_{2}}(T)$.

Proof We only write the proof of part 2. Assume $B \Delta_{1}(S) \vdash B \Delta_{1}(T)$. Since S is closed under Σ_{1}-CR, $T h_{\Pi_{2}}(S)$ implies $B \Delta_{1}(S)$. So, $T h_{\Pi_{2}}(S)$ implies $B \Delta_{1}(T)$ and then $T h_{\Pi_{2}}(T) \subseteq T h_{\Pi_{2}}(S)$ by Proposition 3. The opposite direction follows by symmetry.

As an immediate consequence, we obtain that
Theorem 3 (Hierarchy theorem)

1. $I \Delta_{0} \equiv I \Delta_{1}\left(I \Delta_{0}\right) \subsetneq I \Delta_{1}\left(I \Sigma_{1}\right) \subsetneq I \Delta_{1}\left(I \Sigma_{2}\right) \subsetneq I \Delta_{1}\left(I \Sigma_{3}\right) \subsetneq \cdots \subseteq I \Sigma_{1}$
2. $I \Delta_{0} \equiv B \Delta_{1}\left(I \Delta_{0}\right) \subsetneq B \Delta_{1}\left(I \Sigma_{1}\right) \subsetneq B \Delta_{1}\left(I \Sigma_{2}\right) \subsetneq B \Delta_{1}\left(I \Sigma_{3}\right) \subsetneq \cdots \subseteq B \Sigma_{1}$

Using a modified version of the model-theoretic notion of an envelope, Theorem 6.6 in [11] gives another proof that $I \Delta_{1}\left(I \Sigma_{n}\right), n \geq 0$ form a hierarchy. In contrast, a hierarchy theorem for $B \Delta_{1}\left(I \Sigma_{n}\right), n \geq 0$, was left over (see Problem 7.5 in [11]).

Theorem 3 answers that question as well as provides a much simpler proof of the hierarchy theorem for the induction case.

We close this section by showing how to use the Unboundedness theorem to determine the usual proof-theoretic properties of $\Delta_{1}(T)$-schemes. Rather than being systematic, we prefer to illustrate this methodology with a few salient examples.

Proposition 5 (Quantifier complexity)

1. If $I \Sigma_{1} \vdash T h_{\Pi_{2}}(T)$, then $I \Delta_{1}(T)$ is Π_{2}-axiomatizable. If I $\Sigma_{1} \nvdash T h_{\Pi_{2}}(T)$, then $I \Delta_{1}(T)$ is Π_{3} and not Σ_{3}-axiomatizable.
2. If I $\Delta_{0}+\exp \nvdash T h_{\Pi_{2}}(T)$, then $B \Delta_{1}(T)$ is Π_{3} and not Σ_{3}-axiomatizable.

Proof Note that the natural axiomatizations of $I \Delta_{1}(T)$ and $B \Delta_{1}(T)$ are of quantifier complexity Π_{3}.
(1) On the one hand, if $I \Sigma_{1} \vdash T h_{\Pi_{2}}(T)$ then it follows from Theorem 1 that $I \Delta_{1}(T) \vdash T h_{\Pi_{2}}(T)$. Hence $I \Delta_{1}(T)$ is equivalent to $\left[T h_{\Pi_{2}}(T), \Delta_{1}\right.$-IR] and this last theory is Π_{2}-axiomatizable. On the other hand, if $I \Delta_{1}(T)$ were to be Σ_{3} axiomatizable then it would follow from Proposition 3 that $I \Delta_{1}(T) \vdash T h_{\Pi_{2}}(T)$ and so $I \Sigma_{1} \vdash T h_{\Pi_{2}}(T)$ too.
(2) If $B \Delta_{1}(T)$ were to be Σ_{3}-axiomatizable then it would follow from Proposition 3 that $B \Delta_{1}(T)+\exp \vdash T h_{\Pi_{2}}(T)$ and hence $I \Delta_{0}+\exp \vdash T h_{\Pi_{2}}(T)$ too, for $B \Sigma_{1}+\exp$ is well-known to be Π_{2}-conservative over $I \Delta_{0}+\exp$.

Notice that it follows from Proposition 5 that $I \Delta_{1}(T)$ is Π_{2}-axiomatizable if, and only if, $I \Sigma_{1} \vdash T h_{\Pi_{2}}(T)$. This settles the motivating question of [7]: under which conditions is $I \Delta_{1}(T)$ a Π_{2}-axiomatizable theory?

Proposition 6 (Finite axiomatizability)

1. $I \Delta_{1}(T)$ is finitely axiomatizable if and only if so is $\left[T h_{\Pi_{2}}(T), \Delta_{1}-I R\right]$.
2. Suppose $T \vdash \exp$. If $B \Delta_{1}(T)$ is finitely axiomatizable, so is $\left[T h_{\Pi_{2}}(T), \Sigma_{1}-C R\right]$.
3. So, if T is a consistent extension of $I \Sigma_{1}$, neither $I \Delta_{1}(T)$ nor $B \Delta_{1}(T)$ is finitely axiomatizable.

Proof (1) By Corollary 1 we have $I \Delta_{1}(T) \equiv\left[T h_{\Pi_{2}}(T), \Delta_{1}-\mathrm{IR}\right] \vee I \Sigma_{1}$. So, if [$T h_{\Pi_{2}}(T), \Delta_{1}$-IR] has a finite axiomatization then the second theory in the previous equivalence provides a finite axiomatization of $I \Delta_{1}(T)$. For the opposite direction, assume that $I \Delta_{1}(T)$ is finitely axiomatizable. Then there is a single Π_{2}-sentence, φ, such that $T h_{\Pi_{2}}(T)+I \Delta_{1}(T) \vdash \varphi \vdash I \Delta_{1}(T)$. But it follows from Proposition 3 that $\varphi \vdash T h_{\Pi_{2}}(T)$ and hence $\varphi \equiv\left[T h_{\Pi_{2}}(T), \Delta_{1}\right.$-IR $]$.
(2) Reason as in the second part of the proof of part 1.
(3) Assume T is consistent and implies $I \Sigma_{1}$. Then, $T h_{\Pi_{2}}(T)$ is closed under Δ_{1}-IR and $\Sigma_{1}-\mathrm{CR}$ and is known to be not finitely axiomatizable (for a proof see, e.g., Theorem 5.3 of [7]).

Remark 2 (The theory $B \Delta_{1}\left(I \Delta_{0}+\exp \right)$ and the NE Problem) In contrast to the induction case, Proposition 3 for $B \Delta_{1}(T)$ has only been obtained for Σ_{3}-extensions proving exp. As a consequence, this additional assumption has also appeared in the subsequent
results on $B \Delta_{1}(T)$. Eliminating this use of \exp is apparently quite difficult, for it is related to the well-known open problem whether $I \Delta_{0}$ plus the negation of exp implies $B \Sigma_{1}$ (for short, the NE Problem) raised by Wilkie and Paris in [24]. Actually, we have

Lemma 3 The following are equivalent.

1. $I \Delta_{0}+\neg \exp \vdash B \Sigma_{1}$.
2. $B \Delta_{1}\left(I \Delta_{0}+\exp \right) \equiv I \Delta_{0}$.

Proof $(I \Rightarrow 2)$ By part $1, I \Delta_{0}+\neg \exp \vdash B \Delta_{1}\left(I \Delta_{0}+\exp \right)$. But $I \Delta_{0}+\exp$ also implies $B \Delta_{1}\left(I \Delta_{0}+\exp \right)$ since $I \Delta_{0}+\exp$ is closed under Σ_{1}-CR and hence part 2 follows. $(2 \Rightarrow 1)$ Note that $B \Delta_{1}\left(I \Delta_{0}+\exp \right)+\neg \exp \vdash B \Sigma_{1}$ by Theorem 1.

Hence, eliminating exp in Proposition 3 would give that $I \Delta_{0}$ is strictly weaker than $B \Delta_{1}\left(I \Delta_{0}+\exp \right)$, thus settling the NE Problem. (A recent discussion on the difficulty and significance of this problem can be found in [1]).

4 Parameter-free $\boldsymbol{\Delta}_{\mathbf{1}}(\boldsymbol{T})$-schemes

This section investigates the effect of disallowing parameters in $\Delta_{1}(T)$-schemes and in Δ_{1}-inference rules. Recall that $I \Delta_{1}(T)^{-}, L \Delta_{1}(T)^{-}$and $B \Delta_{1}(T)^{-}$denote the parameter free versions of the corresponding theories. Similarly, we define

$$
\Delta_{1}^{-}-\operatorname{IR}: \frac{\forall x(\varphi(x) \leftrightarrow \psi(x))}{I_{\varphi(x)}} ; \quad \Delta_{1}^{-}-\operatorname{LR}: \frac{\forall x(\varphi(x) \leftrightarrow \psi(x))}{L_{\varphi(x)}},
$$

where $\varphi(x) \in \Sigma_{1}^{-}$and $\psi(x) \in \Pi_{1}^{-}$. We have not introduced the inference rule associated to $B \Delta_{1}(T)^{-}$, for Σ_{1}-CR is reducible to its parameter free counterpart. In contrast, Δ_{1}-IR and $\Delta_{1}-\mathrm{LR}$ are no longer reducible to their parameter free versions. To see that, recall from [13] that $U I \Delta_{1}$ denotes a variant of the Δ_{1}-induction scheme where parameters are distributed uniformly. Namely, $U I \Delta_{1}$ is Q together with

$$
\forall \mathbf{v} \forall x(\varphi(x, \mathbf{v}) \leftrightarrow \psi(x, \mathbf{v})) \rightarrow \forall \mathbf{v} I_{\varphi(x, \mathbf{v})}
$$

where $\varphi \in \Sigma_{1}$ and $\psi \in \Pi_{1}$. Since $I \Delta_{1}^{-}$does not imply UI Δ_{1} (see e.g., Theorem 1.2 in [9]), there are $\varphi(x, \mathbf{v}) \in \Sigma_{1}$ and $\psi(x, \mathbf{v}) \in \Pi_{1}$ satisfying that $T=$ $I \Delta_{1}^{-}+\forall \mathbf{v} \forall x(\varphi(x, \mathbf{v}) \leftrightarrow \psi(x, \mathbf{v}))$ does not prove $\forall \mathbf{v} I_{\varphi(x, \mathbf{v})}$. Thus, such a theory T is closed under Δ_{1}^{-}-IR and, however, does not imply [$\left.T, \Delta_{1}-\mathrm{IR}\right]$. A similar remark applies to Δ_{1}-LR considering $U L \Delta_{1} \equiv B \Sigma_{1}^{-}$.

Regarding $\Delta_{1}(T)$-schemes, it follows from our results on quantifier complexity in Sect. 3 that disallowing parameters also makes a difference. Let us see that for the induction case. First, observe that $I \Delta_{1}(T)^{-}$has quantifier complexity $\mathcal{B}\left(\Sigma_{2}\right)$, i.e., boolean combinations of Σ_{2}-sentences. Second, by Proposition 5, $I \Delta_{1}(T)$ is not Σ_{3}-axiomatizable whenever $I \Sigma_{1} \nvdash T h_{\Pi_{2}}(T)$. Thus, $I \Delta_{1}(T)^{-}$is strictly weaker than $I \Delta_{1}(T)$ if $T h_{\Pi_{2}}(T) \nsubseteq I \Sigma_{1}$. Similar remarks apply to the collection and minimization cases.

Our starting point is a Transfer Theorem for these theories.

Theorem 4 (Transfer theorem for parameter free fragments)

1. $I \Delta_{1}(T)^{-} \vdash T h_{\Pi_{2}}(T) \vee I \Sigma_{1}^{-}$.
2. $B \Delta_{1}(T)^{-} \vdash T h_{\Pi_{2}}(T) \vee B \Sigma_{1}^{-}$.
3. $L \Delta_{1}(T)^{-} \vdash T h_{\mathcal{B}\left(\Sigma_{1}\right)}(T) \vee I \Pi_{1}^{-}$.

Proof (1) Suppose $\mathfrak{A} \models I \Delta_{1}(T)^{-}$and $\mathfrak{A} \not \vDash T h_{\Pi_{2}}(T)$. To see $\mathfrak{A} \models I \Sigma_{1}^{-}$, assume $a \in \mathfrak{A}$ and $\mathfrak{A} \models \varphi(0) \wedge \forall x(\varphi(x) \rightarrow \varphi(x+1))$, with $\varphi(x) \in \Sigma_{1}^{-}$. We must show $\mathfrak{A} \models \varphi(a)$. Since $\mathfrak{A} \notin T h_{\Pi_{2}}(T)$, there are $\theta(w) \in \Sigma_{1}$ and $b \in \mathfrak{A}$ such that $T \vdash \forall w \theta(w)$ and $\mathfrak{A} \models \neg \theta(b)$. We reason as in the proof of Theorem 1, but now we need to codify the induction variable x and the parameter w in a single variable u. To this end, consider

$$
\delta(u) \equiv \varphi\left((u)_{0}\right) \vee \theta\left(\left((u)_{0}+(u)_{1}\right)_{0}\right)
$$

It is clear that $T \vdash \forall u \delta(u)$ and so $\delta(u)$ is in $\Delta_{1}(T)$. Observe that if $u=\langle x, w\rangle$, it follows from the definition of the pairing function that $u+1=\langle x+1, w-1\rangle$ if $w \neq 0$; and that $u+1=\langle 0, x+1\rangle$ if $w=0$. Having this fact in mind, it is easy to check that the assumption of the induction axiom for $\delta(u)$ holds in \mathfrak{A} and so $\mathfrak{A} \models \forall u \delta(u)$ by $I \Delta_{1}(T)^{-}$. Now consider $c=\langle a,\langle b, a\rangle-a\rangle$ and reason in the model \mathfrak{A}. It follows from $\delta(c)$ that $\varphi(a) \vee \theta(b)$ and so $\varphi(a)$ since b was chosen so that $\neg \theta(b)$.
(2) Suppose $\mathfrak{A} \models B \Delta_{1}(T)^{-}$and $\mathfrak{A} \not \vDash T h_{\Pi_{2}}(T)$. Then there are $\theta(w) \in \Sigma_{1}$ and $b \in \mathfrak{A}$ such that $T \vdash \forall w \theta(w)$ and $\mathfrak{A} \models \neg \theta(b)$. To see $\mathfrak{A} \models B \Sigma_{1}^{-}$, assume $a \in \mathfrak{A}$ and $\mathfrak{A} \vDash \forall x \exists y \varphi(x, y)$, with $\varphi(x, y) \in \Sigma_{1}$. Put

$$
\delta(u, y) \equiv \varphi\left((u)_{0}, y\right) \vee\left(\theta\left((u)_{1}\right) \wedge y=0\right)
$$

Clearly, $\delta(u, y) \in \Sigma_{1}$ and $T \vdash \forall u \exists y \delta(u, y)$. By $B \Delta_{1}(T)^{-}$there is c such that $\mathfrak{A} \models \forall u \leq\langle a, b\rangle \exists y \leq c\left(\varphi\left((u)_{0}, y\right) \vee \theta\left((u)_{1}\right)\right)$. So, $\mathfrak{A} \models \forall x \leq a \exists y \leq$ $c \varphi(x, y)$ since $\mathfrak{A} \models \neg \theta(b)$ and $\mathfrak{A} \models x \leq a \rightarrow\langle x, b\rangle \leq\langle a, b\rangle$.
(3) Suppose $\mathfrak{A} \models L \Delta_{1}(T)^{-}$and there is a $\mathcal{B}\left(\Sigma_{1}\right)$ sentence θ such that $T \vdash \theta$ and $\mathfrak{A} \notin \theta$. We shall show that \mathfrak{A} satisfies the least number axiom scheme for parameter free Σ_{1} formulas $L \Sigma_{1}^{-}$(which is well-known to be equivalent to $I \Pi_{1}^{-}$). To this end, assume $\varphi(x) \in \Sigma_{1}^{-}$and $\mathfrak{A} \vDash \exists x \varphi(x)$. By logical operations, $\theta \equiv\left(\theta_{1}^{0} \vee \theta_{2}^{0}\right) \wedge \ldots \wedge\left(\theta_{1}^{k} \vee \theta_{2}^{k}\right)$, with $\theta_{1}^{i} \in \Sigma_{1}$ and $\theta_{2}^{i} \in \Pi_{1}$. So, there are $\theta_{1} \in \Sigma_{1}$ and $\theta_{2} \in \Pi_{1}$ satisfying that $T \vdash \theta_{1} \vee \theta_{2}$ and $\mathfrak{A} \models \neg \theta_{1} \wedge \neg \theta_{2}$. Put $\theta_{2} \equiv \forall z \theta_{2}^{\prime}(z)$, with $\theta_{2}^{\prime} \in \Delta_{0}$, and define $\delta(u)$ to be the Σ_{1} formula

$$
\neg \theta_{2}^{\prime}\left((u)_{1}\right) \wedge\left[\theta_{1} \vee \varphi\left((u)_{0}\right)\right]
$$

It follows from $T \vdash \theta_{1} \vee \forall z \theta_{2}^{\prime}(z)$ that $\delta(u)$ is equivalent in T to $\neg \theta_{2}^{\prime}\left((u)_{1}\right)$ and so $\delta(u) \in \Delta_{1}(T)^{-}$. It follows from $\mathfrak{A} \models \neg \theta_{2} \wedge \exists u \varphi(u)$ that $\mathfrak{A} \models \exists u \delta(u)$. By applying $L \Delta_{1}(T)^{-}$in \mathfrak{A}, we get that there exists c such that $c=\mu u . \delta(u)$. Using the monotonicity of the pairing function, it is easy to check that $(c)_{0}$ is the least element satisfying $\varphi(x)$ in \mathfrak{A}.

Corollary 2 (Characterization theorem)

1. $I \Delta_{1}(T)^{-} \equiv\left[T h_{\Pi_{2}}(T), \Delta_{1}^{-}-I R\right] \vee I \Sigma_{1}^{-}$.
2. $B \Delta_{1}(T)^{-} \equiv\left[T h_{\Pi_{2}}(T), \Sigma_{1}-C R\right] \vee B \Sigma_{1}^{-}$.
3. If T is closed under $\Sigma_{1}-C R$, then $L \Delta_{1}(T)^{-} \equiv T h_{\mathcal{B}\left(\Sigma_{1}\right)}(T) \vee I \Pi_{1}^{-}$.

Proof Parts 1 and 2 are immediate consequences of Theorem 4. To get part 3, only the fact that $T h_{\mathcal{B}\left(\Sigma_{1}\right)}(T) \vdash L \Delta_{1}(T)^{-}$needs some explanations. Consider $\varphi(x) \in \Sigma_{1}^{-}$ and $\psi(x) \in \Pi_{1}^{-}$such that $T \vdash \forall x(\varphi(x) \leftrightarrow \psi(x))$. Write $\varphi(x) \equiv \exists y \varphi_{0}(x, y)$ and $\psi(x) \equiv \forall y \psi_{0}(x, y)$, with $\varphi_{0}, \psi_{0} \in \Delta_{0}$. Since $T \vdash L \Delta_{1}(T)^{-}$and $T \vdash \forall x(\varphi(x) \leftrightarrow$ $\psi(x)$), we have

$$
T \vdash \exists x \varphi(x) \rightarrow \exists x\left(\varphi(x) \wedge \forall z<x \exists y \neg \psi_{0}(z, y)\right)
$$

Using again that $T \vdash \forall x(\varphi(x) \leftrightarrow \psi(x))$, we get $T \vdash \forall x \exists y\left(\neg \psi_{0}(x, y) \vee \varphi_{0}(x, y)\right)$ and $T \vdash \forall x\left(\exists y \neg \psi_{0}(x, y) \leftrightarrow \forall y \neg \varphi_{0}(x, y)\right)$. So, since T is closed under Σ_{1}-CR, we have

$$
T \vdash \exists x \varphi(x) \rightarrow \exists x\left(\varphi(x) \wedge \exists u \forall z<x \exists y \leq u \neg \psi_{0}(z, y)\right)
$$

But the above sentence has complexity $\mathcal{B}\left(\Sigma_{1}\right)$ and implies $L_{\varphi(x)}$ modulo the theory $T h_{\Pi_{1}}(T)$, as $T h_{\Pi_{1}}(T)$ proves $\forall x\left(\exists y \neg \psi_{0}(x, y) \rightarrow \forall y \neg \varphi_{0}(x, y)\right)$.

Remark 3 It is natural to ask whether the Transfer Theorem for $L \Delta_{1}(T)^{-}$can be improved to $L \Delta_{1}(T)^{-} \vdash T h_{\Pi_{2}}(T) \vee I \Pi_{1}^{-}$. The answer to this question is, in general, negative. For instance, consider $T=I \Pi_{1}^{-}$. Firstly, since $I \Pi_{1}^{-}$is an extension of $I \Delta_{0}$ by Σ_{2}-sentences, it is closed under Σ_{1}-CR and hence $L \Delta_{1}\left(I \Pi_{1}^{-}\right)^{-} \equiv T h_{\mathcal{B}\left(\Sigma_{1}\right)}\left(I \Pi_{1}^{-}\right)$ by Corollary 2 . Secondly, it is clear that $T h_{\Pi_{2}}\left(I \Pi_{1}^{-}\right) \vee I \Pi_{1}^{-} \equiv T h_{\Pi_{2}}\left(I \Pi_{1}^{-}\right)$. Thirdly, Theorem 4.7 of [10] states that $T h_{\mathcal{B}\left(\Sigma_{1}\right)}\left(I \Pi_{1}^{-}\right)$is strictly weaker than $T h_{\Pi_{2}}\left(I \Pi_{1}^{-}\right)$.

Equipped with Theorem 4 the next step is to obtain an unboundedness result for parameter free $\Delta_{1}(T)$-schemes.

Proposition 7 (Unboundedness) Suppose $S \subseteq \Pi_{2}$ and either S is recursively enumerable (r.e.) or T is sound.

1. If $S \vdash I \Delta_{1}(T)^{-}$then $S \vdash T h_{\Pi_{2}}(T)$.
2. If S is closed under $\Sigma_{1}-I R$ and $S \vdash B \Delta_{1}(T)^{-}$then $S \vdash T h_{\Pi_{2}}(T)$.
3. If $S \vdash L \Delta_{1}(T)^{-}$then $S \vdash T h_{\mathcal{B}\left(\Sigma_{1}\right)}(T)$.

Proof (1) Towards a contradiction, assume that $S \vdash I \Delta_{1}(T)^{-}$and there is a Π_{2} sentence θ such that $T \vdash \theta$ and $S \nvdash \theta$. It follows from Theorem 4 for $I \Delta_{1}(T)^{-}$ that $S+\neg \theta$ is a consistent extension of $I \Sigma_{1}^{-}$. In addition, we have:

Claim $S+\neg \theta$ does not imply $T h_{\Pi_{2}}(\mathbb{N})$.
If S is r.e. then $S+\neg \theta \nvdash T h_{\Pi_{2}}(\mathbb{N})$, for a Π_{2}^{0}-complete set cannot follow from a r.e. set of sentences. If T is sound, $\theta \in T h_{\Pi_{2}}(\mathbb{N})$ and so $S+\neg \theta \nvdash T h_{\Pi_{2}}(\mathbb{N})$.

It follows from the Claim and $S+\neg \theta \vdash L \Pi_{1}^{-}$(recall that $I \Sigma_{1}^{-}$and $L \Pi_{1}^{-}$ are deductively equivalent) that there is $\mathfrak{A} \models S+\neg \theta$ with some nonstandard Π_{1}-minimal element, say a. Also, put $\neg \theta \equiv \exists x \theta^{\prime}(x)$, with $\theta^{\prime}(x) \in \Pi_{1}^{-}$, and pick b satisfying that $b=\mu x \cdot \theta^{\prime}(x)$. Consider $c=\langle a, b\rangle$. By Proposition 1, $\mathcal{K}_{1}(\mathfrak{A}, c) \not \vDash B \Sigma_{1}^{-}+\exp$. But it follows from $\mathcal{K}_{1}(\mathfrak{A}, c) \prec \Sigma_{1} \mathfrak{A}$ that $\mathcal{K}_{1}(\mathfrak{A}, c)$ satisfies $S+\neg \theta$ and thus also $I \Sigma_{1}^{-}$, which gives the desired contradiction.
(2) Assume that S is closed under Σ_{1}-IR, $S \vdash B \Delta_{1}(T)^{-}$and there is a Π_{2} sentence θ such that $T \vdash \theta$ and $S \nvdash \theta$. It follows from Theorem 4 for $B \Delta_{1}(T)^{-}$that $S+\neg \theta$ is a consistent extension of $B \Sigma_{1}^{-}$. By the Claim in part 1, there exists $\mathfrak{A} \models S+\neg \theta$ in which $T h_{\Pi_{2}}(\mathbb{N})$ fails. But it is a well known result of Parsons [18] that $S+I \Sigma_{1}$ is Π_{2}-conservative over $S+\Sigma_{1}$-IR $\equiv S$. Hence, there is $\mathfrak{B} \models S+I \Sigma_{1}$ with $\mathfrak{A} \prec_{\Sigma_{1}} \mathfrak{B}$. Clearly, $\mathfrak{B} \models S+\neg \theta+I \Sigma_{1}$ and $T h_{\Pi_{2}}(\mathbb{N})$ fails in \mathfrak{B} too. By repeating the argument in part 1 , we get the desired contradiction.
(3) Assume that $S \vdash L \Delta_{1}(T)^{-}$and there is a $\mathcal{B}\left(\Sigma_{1}\right)$ sentence θ such that $T \vdash \theta$ and $S \nvdash \theta$. It follows from Theorem 4 for $L \Delta_{1}(T)^{-}$that $S+\neg \theta$ is a consistent extension of $I \Pi_{1}^{-}$. Again, $S+\neg \theta$ does not imply $T h_{\Pi_{1}}(\mathbb{N})$, for either S is r.e. or T is sound. Let \mathfrak{A} be a model of $S+\neg \theta$ with $\mathcal{K}_{1}(\mathfrak{A})$ nonstandard. Since $\mathfrak{A} \models I \Pi_{1}^{-}, \mathcal{K}_{1}(\mathfrak{A}) \models \exp$ (see Theorem 2.9 in [14]). Since $\mathcal{K}_{1}(\mathfrak{A}) \prec \Sigma_{1}$ $\mathfrak{A}, \mathcal{K}_{1}(\mathfrak{A})$ satisfies $S+\neg \theta$ and then also $I \Pi_{1}^{-}$. Hence, $\mathcal{K}_{1}(\mathfrak{A}) \models I \Pi_{1}^{-}+\exp$, which contradicts Proposition 1.

Using Proposition 4 and reasoning as in Sect. 3, one can obtain the basic prooftheoretic information on parameter free $\Delta_{1}(T)$-schemes (relative strength, hierarchy theorem, quantifier complexity, finite axiomatizability, . . .). This is more or less routine and we omit it. Instead, we turn our attention to conservation results. We first study conservativity between Δ_{1}-rules (which is of independent interest) and then transfer the results to $\Delta_{1}(T)$-schemes.

Proposition 8 Suppose $T \subseteq \Pi_{2}$.

1. $\left[T, \Delta_{1}-I R\right]$ is Σ_{2}-conservative over $\left[T, \Delta_{1}^{-}-I R\right]$.
2. $\left[T, \Delta_{1}-L R\right]$ is Σ_{2}-conservative over $\left[T, \Delta_{1}^{-}-L R\right]$.

Proof (1) We shall show that if $\mathfrak{A} \models\left[T, \Delta_{1}^{-}\right.$-IR] then $\mathcal{K}_{1}(\mathfrak{A}) \models\left[T, \Delta_{1}\right.$-IR]. This suffices to obtain Σ_{2}-conservation since $\mathcal{K}_{1}(\mathfrak{A}) \prec \Sigma_{1} \mathfrak{A}$. Let \mathfrak{A} be a model of [T, Δ_{1}^{-}-IR]. Since $T \subseteq \Pi_{2}, \mathcal{K}_{1}(\mathfrak{A}) \models T$. To prove $\mathcal{K}_{1}(\mathfrak{A}) \models I \Delta_{1}(T)$, consider $a \in \mathcal{K}_{1}(\mathfrak{A}), \varphi(x, v) \in \Sigma_{1}, \psi(x, v) \in \Pi_{1}$ such that $T \vdash \forall x, v(\varphi(x, v) \leftrightarrow$ $\psi(x, v))$. We must prove that $I_{\varphi(x, a)}$ holds in $\mathcal{K}_{1}(\mathfrak{A})$. But it is easy to see that $I_{\varphi(x, a)}$ is true in $\mathcal{K}_{1}(\mathfrak{A})$ if and only if it is true in \mathfrak{A}. Note that in models of $I \Delta_{0}$, every Σ_{1}-definable element can be obtained as the projection of a Δ_{0}-minimal one. So, there is $\delta(v) \in \Delta_{0}$ such that $a=(\mu t . \delta(t))_{0}$ in \mathfrak{A}. Consider

$$
\begin{gathered}
\varphi^{\prime}(x) \equiv \exists v\left(v=\mu t . \delta(t) \wedge \varphi\left(x,(v)_{0}\right)\right) \\
\psi^{\prime}(x) \equiv \forall v\left(v=\mu t . \delta(t) \rightarrow \psi\left(x,(v)_{0}\right)\right)
\end{gathered}
$$

Clearly, $\varphi^{\prime}(x) \in \Sigma_{1}^{-}, \psi(x) \in \Pi_{1}^{-}$and $\mathfrak{A} \vDash I_{\varphi^{\prime}(x)} \leftrightarrow I_{\varphi(x, a)}$. However, we cannot infer $I_{\varphi^{\prime}(x)}$ from $\left[T, \Delta_{1}^{-}-\mathrm{IR}\right]$, because $\varphi^{\prime}(x)$ and $\psi^{\prime}(x)$ are equivalent in $T+\exists v \delta(v)$ and not necessarily in T. To get round this problem, put

$$
\begin{aligned}
\varphi^{\star}(x) & \equiv \neg \delta\left(\left((x)_{0}+(x)_{1}\right)_{0}\right) \vee \varphi^{\prime}\left((x)_{0}\right) \\
\psi^{\star}(x) & \equiv \neg \delta\left(\left((x)_{0}+(x)_{1}\right)_{0}\right) \vee \psi^{\prime}\left((x)_{0}\right)
\end{aligned}
$$

Then, $T \vdash \forall x\left(\varphi^{\star}(x) \leftrightarrow \psi^{\star}(x)\right)$ and hence $I_{\varphi^{\star}(x)}$ is true in \mathfrak{A} by $\left[T, \Delta_{1}^{-}\right.$-IR]. But using the properties of the pairing function (see the proof of part 1 of Theorem 4 for details), it is easy to check that $I \Delta_{0}+\exists v \delta(v) \vdash I_{\varphi^{\star}(x)} \rightarrow I_{\varphi^{\prime}(x)}$. Therefore $I_{\varphi^{\prime}(x)}$ holds in \mathfrak{A} and so does $I_{\varphi(x, a)}$, as required.
(2) We shall show that if $\mathfrak{A} \models\left[T, \Delta_{1}^{-}\right.$-LR $]$then $\mathcal{K}_{1}(\mathfrak{A}) \models\left[T, \Pi_{0}^{-}\right.$-CR]. This suffices as Δ_{1}-LR and $\Pi_{0}^{-}-\mathrm{CR}$ are congruent. Let \mathfrak{A} be a model of $\left[T, \Delta_{1}^{-}\right.$-LR]. Consider $a \in \mathcal{K}_{1}(\mathfrak{A})$ and $\theta(x, y) \in \Pi_{0}^{-}$such that $T \vdash \forall x \exists y \theta(x, v)$. We must show that $\exists u \forall x \leq a \exists y \leq u \theta(x, y)$ is true in $\mathcal{K}_{1}(\mathfrak{A})$ or, equivalently, in \mathfrak{A}. To this end, we reason as in Gandy's proof that $L \Delta_{1} \vdash B \Sigma_{1}$ (see Lemma 2.17, chapter I in [12] for details). Define $\varphi^{\prime}(x, v)$ and $\psi^{\prime}(x, v)$ to be, respectively

$$
\begin{gathered}
x \leq v \wedge \exists u(u=\mu t \cdot \theta(x, t) \wedge \forall z \in[x, v] \exists y \leq u \theta(z, y)) \\
x \leq v \wedge \forall u(u=\mu t \cdot \theta(x, t) \rightarrow \forall z \in[x, v] \exists y \leq u \theta(z, y))
\end{gathered}
$$

Clearly, $\varphi^{\prime} \in \Sigma_{1}, \psi^{\prime} \in \Pi_{1}, T \vdash \forall x, v\left(\varphi^{\prime}(x, v) \leftrightarrow \psi^{\prime}(x, v)\right)$ and $\mathfrak{A} \models$ $\varphi^{\prime}(a, a)$. In addition, Gandy's proof shows that if $c=\mu t . \varphi^{\prime}(t, a)$ and $\mathfrak{A} \models$ $\theta(c, b)$, then $\mathfrak{A} \models \forall x \leq a \exists y \leq b \theta(x, y)$. So, it suffices to prove that $L_{\varphi^{\prime}(x, a)}$ is true in \mathfrak{A}. Let $\delta(v) \in \Delta_{0}$ be such that $a=(\mu t . \delta(t))_{0}$ in \mathfrak{A} and put

$$
\begin{gathered}
\varphi^{\star}(x) \equiv \delta\left((x)_{1}\right) \wedge \exists v\left(v=\mu t . \delta(t) \wedge \varphi^{\prime}\left((x)_{0},(v)_{0}\right)\right) \\
\psi^{\star}(x) \equiv \delta\left((x)_{1}\right) \wedge \forall v\left(v=\mu t . \delta(t) \rightarrow \psi^{\prime}\left((x)_{0},(v)_{0}\right)\right)
\end{gathered}
$$

Then, $T \vdash \forall x\left(\varphi^{\star}(x) \leftrightarrow \psi^{\star}(x)\right)$ and $\mathfrak{A} \vDash \exists x \varphi^{\star}(x)$. By [T, Δ_{1}^{-}-LR] there exists the least element d satisfying $\varphi^{\star}(x)$ in \mathfrak{A}. It follows that $(d)_{0}$ is the least element satisfying $\varphi^{\prime}(x, a)$ in \mathfrak{A}.

Let us observe that the assumption $T \subseteq \Pi_{2}$ in Proposition 8 cannot be eliminated: Π_{1} sentences need not be conserved if the quantifier complexity of T exceeds Π_{2}. To see that, let $\operatorname{Con}(P A)$ denote the consistency statement for $P A$. Then, $I \Delta_{1}^{-}+\neg \operatorname{Con}(P A)$ does not imply $U I \Delta_{1}$. (Indeed, it follows from part 3 of Proposition 1 and Lemma 3.7 of [9] that $U I \Delta_{1}$ is not contained in any recursive set of Σ_{2}-sentences consistent with $\left.I \Sigma_{1}\right)$. So, there are $\varphi(x, \mathbf{v}) \in \Sigma_{1}$ and $\psi(x, \mathbf{v}) \in \Pi_{1}$ satisfying that $I \Delta_{1}^{-}+$ $\neg \operatorname{Con}(P A)+\forall \mathbf{v}, x(\varphi(x, \mathbf{v}) \leftrightarrow \psi(x, \mathbf{v}))$ does not prove $\forall \mathbf{v} I_{\varphi(x, \mathbf{v})}$. If we consider T to be the theory given by $I \Delta_{1}^{-}+\forall \mathbf{v}, x(\varphi(x, \mathbf{v}) \leftrightarrow \psi(x, \mathbf{v}))+\left(\forall \mathbf{v} I_{\varphi(x, \mathbf{v})} \rightarrow \operatorname{Con}(P A)\right)$, then [T, Δ_{1}-IR] proves $\operatorname{Con}(P A)$ whereas $T+\Delta_{1}^{-}$-IR (which is equivalent to T) does not.

Theorem 5 1. $I \Delta_{1}(T)$ is Σ_{2}-conservative over $I \Delta_{1}(T)^{-}$. Moreover, if T is closed under Δ_{1}-IR then Σ_{3}-sentences are also conserved.
2. $B \Delta_{1}(T)$ is Σ_{3}-conservative over $B \Delta_{1}(T)^{-}$.

Proof (1) Assume that $\mathfrak{A} \models I \Delta_{1}(T)^{-}$and φ is a Σ_{2}-theorem of $I \Delta_{1}(T)$. If \mathfrak{A} satisfies $T h_{\Pi_{2}}(T)$ then $\mathfrak{A} \models\left[T h_{\Pi_{2}}(T), \Delta_{1}^{-}\right.$-IR] and so $\mathfrak{A} \models \varphi$ by Proposition 8 . If \mathfrak{A} does not satisfy $T h_{\Pi_{2}}(T)$ then $\mathfrak{A} \models I \Sigma_{1}^{-}$by Theorem 4 and so $\mathfrak{A} \models \varphi$, for $I \Delta_{1}(T) \subseteq I \Sigma_{1}$ and $I \Sigma_{1}$ is well-known to be Σ_{3}-conservative over $I \Sigma_{1}^{-}$(see Theorem 2.1 of [14]).

Now assume that T is closed under Δ_{1}-IR. By Corollary 1 we have $I \Delta_{1}(T) \equiv$ $T h_{\Pi_{2}}(T) \vee I \Sigma_{1}$ and by Corollary 2 we have $I \Delta_{1}(T)^{-} \equiv T h_{\Pi_{2}}(T) \vee I \Sigma_{1}^{-}$. So, that $I \Delta_{1}(T)$ is Σ_{3}-conservative over $I \Delta_{1}(T)^{-}$follows from Σ_{3}-conservation of $I \Sigma_{1}$ over $I \Sigma_{1}^{-}$.
(2) By Theorem 2.4 of [14] $B \Sigma_{1}$ is Σ_{3}-conservative over $B \Sigma_{1}^{-}$. Hence, the result follows since $B \Delta_{1}(T) \equiv\left[T h_{\Pi_{2}}(T), \Sigma_{1}-\mathrm{CR}\right] \vee B \Sigma_{1}$ by Corollary 1 and $B \Delta_{1}(T)^{-} \equiv\left[T h_{\Pi_{2}}(T), \Sigma_{1}-\mathrm{CR}\right] \vee B \Sigma_{1}^{-}$by Corollary 2.

Note that the situation for $L \Delta_{1}(T)$ and $L \Delta_{1}(T)^{-}$is completely different: even Π_{1}-sentences are not necessarily conserved. For example, put $T=I \Sigma_{1}$. Then $L \Delta_{1}\left(I \Sigma_{1}\right)$ is equivalent to $T h_{\Pi_{2}}\left(I \Sigma_{1}\right)$ by Corollary 1 and so proves $\operatorname{Con}\left(I \Pi_{1}^{-}\right)$, whereas $L \Delta_{1}\left(I \Sigma_{1}\right)^{-} \subseteq I \Pi_{1}^{-}$.

We close this section with some other applications of Proposition 8.
Corollary 3 Suppose that T is an extension of $I \Delta_{0}+\exp$.

1. $\left[T, \Delta_{1}^{-}-I R\right] \equiv\left[T, \Delta_{1}^{-}-L R\right]$.
2. $I \Delta_{1}(T)^{-} \vdash L \Delta_{1}(T)^{-}$.

Proof (1) One direction is clear. For the other, assume $T \vdash \forall x(\varphi(x) \leftrightarrow \psi(x))$. By Proposition 2, $\left[T h_{\Pi_{2}}(T), \Delta_{1}\right.$-IR] proves L_{φ}. But since L_{φ} is of quantifier complexity Σ_{2}, $\left[T h_{\Pi_{2}}(T), \Delta_{1}^{-}\right.$-IR] also proves it by Proposition 8.
(2) Assume $\mathfrak{A} \models I \Delta_{1}(T)^{-}$. If \mathfrak{A} satisfies $T h_{\Pi_{2}}(T)$ then $\mathfrak{A} \models L \Delta_{1}(T)^{-}$by part 1 . If \mathfrak{A} does not satisfy $T h_{\Pi_{2}}(T)$, it follows from Theorem 4 that $\mathfrak{A} \models I \Sigma_{1}^{-}$.

Corollary 4 Suppose $T \subseteq \Pi_{2}$.

1. $T+B \Sigma_{1}$ is $\mathcal{B}\left(\Sigma_{1}\right)$-conservative over $\left[T, \Delta_{1}^{-}-L R\right]$.
2. If $T+\Delta_{1}$-IR collapses to $\left[T, \Delta_{1}-I R\right]$ then $T+I \Delta_{1}$ is $\mathcal{B}\left(\Sigma_{1}\right)$-conservative over $\left[T, \Delta_{1}^{-}-I R\right]$.

Proof Assume $T \subseteq \Pi_{2}$. By Theorem 3.2 in [4] $T+B \Sigma_{1}$ is Π_{2}-conservative over $T+\Sigma_{1}$-CR, by Theorem 4.2 in [4] the latter theory collapses to [T, Σ_{1}-CR]; and by Theorem 2 in [5] $T+I \Delta_{1}$ is Π_{2}-conservative over $T+\Delta_{1}$-IR (all these results are proved for theories extending exp but this is unessential). Corollary 4 follows combining these results and Proposition 8.

5 Provably total computable functions

In this section we address the question of what computable functions are provably total in $I \Delta_{1}(T)$ and in $L \Delta_{1}(T)$. Recall that a number-theoretic function $f: \mathbb{N}^{k} \rightarrow \mathbb{N}$ is said to be a provably total computable function (p.t.c.f.) of a theory T, written $f \in \mathcal{R}(T)$, if there is a Σ_{1} formula of the language of $T, \varphi(\mathbf{x}, y)$, such that:

1. φ defines the graph of f in the standard model of Arithmetic \mathbb{N}; and
2. $T \vdash \forall \mathbf{x} \exists y \varphi(\mathbf{x}, y)$.

We call a formula $\varphi(\mathbf{x}, y)$ satisfying conditions 1 and $2 a$ definition of f in T. As long as T extends $I \Delta_{0}$, replacing the condition 2 with $2^{\prime} . T \vdash \forall \mathbf{x} \exists!y \varphi(\mathbf{x}, y)$ does not
change $\mathcal{R}(T)$. In fact, if $\exists z \varphi^{\prime}(\mathbf{x}, y, z)$ is a definition of f in T, with $\varphi^{\prime} \in \Delta_{0}$, it suffices to put $\varphi(\mathbf{x}, y) \equiv \exists u\left(y=(u)_{0} \wedge u=\mu t . \varphi^{\prime}\left(\mathbf{x},(t)_{0},(t)_{1}\right)\right)$ to obtain a Σ_{1}-definition of f satisfying 2^{\prime}.

We shall characterize the classes of p.t.c.f.'s of $\Delta_{1}(T)$-schemes as function algebras generated by means of some recursive operators. Let us fix some notation. We write $\mathbf{C}(\mathcal{F})$ for the closure of the set of functions \mathcal{F} under composition and, in general, $\mathbf{O}(\mathcal{F})$ denotes the closure of \mathcal{F} under composition and the recursive operator \mathbf{O}. In addition, we write $[\mathcal{F}, \mathbf{O}]$ for the closure of \mathcal{F} under composition and unnested application of the operator \mathbf{O}. Our base function algebra will be Grzegorczyk's \mathcal{M}^{2}, which is the closure of a set of initial functions (zero, successor, projections, sum and product) under composition and the bounded minimization operator, see [19]. By a result of Takeuti [22] the p.t.c.f.'s of $I \Delta_{0}$ coincide with \mathcal{M}^{2} and thus $\mathcal{M}^{2} \subseteq \mathcal{R}(T)$ for every extension of $I \Delta_{0}$.

It is a more or less direct consequence of Herbrand's theorem that there is a correspondence between computable functions with a Δ_{0}-definable graph and finite, sound extensions of $I \Delta_{0}$ (see e.g., Proposition 4.2 in [3]).

Lemma 4 Suppose f is a computable function with a Δ_{0}-definable graph and let $\theta(x, y) \in \Delta_{0}$ such that $\mathbb{N} \models \forall x \theta(x, f(x))$. Then

$$
\mathcal{R}\left(I \Delta_{0}+\forall x \exists y \theta(x, y)\right)=\mathbf{C}\left(\mathcal{M}^{2} \cup\{f\}\right)
$$

This correspondence is not exact: some information is being lost when going from a theory to the corresponding class of provably total functions. For example, $\mathcal{R}\left(I \Delta_{0}\right)=$ $\mathcal{R}\left(I \Pi_{1}^{-}\right)=\mathcal{M}^{2}$ whereas $T h_{\Pi_{2}}\left(I \Pi_{1}^{-}\right)$is strictly stronger than $I \Delta_{0}$, for $I \Delta_{0}+\exp$ is Σ_{2}-conservative over $I \Pi_{1}^{-}$by Theorem 2.9 of [14]. However, it turns out to be true that $\mathcal{R}(T)$ determines the Π_{2}-consequences of a sound theory T modulo the set of all Π_{1}-true sentences $T h_{\Pi_{1}}(\mathbb{N})$.

Lemma 5 Let T, S be sound extensions of $I \Delta_{0}$. The following are equivalent:

1. $\mathcal{R}(T)=\mathcal{R}(S)$.
2. $\operatorname{Over} T h_{\Pi_{1}}(\mathbb{N}), T h_{\Pi_{2}}(T) \equiv T h_{\Pi_{2}}(S)$.

Proof $(1 \Rightarrow 2)$: By symmetry we only prove $T h_{\Pi_{1}}(\mathbb{N})+T h_{\Pi_{2}}(T) \vdash T h_{\Pi_{2}}(S)$. Assume $S \vdash \forall x \exists y \varphi(x, y)$, with $\varphi \in \Delta_{0}$, and put $\varphi^{\prime}(x, y) \equiv y=\mu t . \varphi(x, t)$. Since S is sound, φ^{\prime} defines in \mathbb{N} the graph of a computable function f and $f \in \mathcal{R}(S)=\mathcal{R}(T)$. Hence, there is a Σ_{1}-definition of f in T too, say $\psi(x, y)$. Then $\mathbb{N} \models \forall x, y(\psi(x, y) \rightarrow$ $\left.\varphi^{\prime}(x, y)\right)$ and so $T+T h_{\Pi_{1}}(\mathbb{N}) \vdash \forall x \exists y \varphi(x, y)$.
$(2 \Rightarrow 1)$: This part follows because adding true Π_{1}-sentences to a sound theory does not increase the corresponding class of provably total functions. In fact, if $\varphi(\mathbf{x}, y) \in \Sigma_{1}$ defines f in $T+\theta$, where θ is a Π_{1}-sentence true in \mathbb{N}, then $(\neg \theta \wedge y=0) \vee \varphi(\mathbf{x}, y)$ is a Σ_{1}-definition of f in T.

Although quite simple, the key observation for determining the p.t.f.c.'s of $I \Delta_{1}(T)$ and $L \Delta_{1}(T)$ is the following

Lemma $6 \mathcal{R}(T \vee S)=\mathcal{R}(T) \cap \mathcal{R}(S)$.

Proof It follows from Lemma 2 that if $\varphi(\mathbf{x}, y)$ and $\psi(\mathbf{x}, y)$ are Σ_{1}-definitions of f in T and in S, respectively, then $\varphi(\mathbf{x}, y) \vee \psi(\mathbf{x}, y)$ is a Σ_{1}-definition of f in $T \vee S$.

By a well-known result due independently to G. Mints, C. Parsons and G. Takeuti, $\mathcal{R}\left(I \Sigma_{1}\right)$ equals to the class of primitive recursive functions $P R$. In view of Corollary 1 , it only remains to determine the p.t.c.f.'s of $\left[T, \Sigma_{1}\right.$-CR] and $\left[T, \Delta_{1}-\mathrm{IR}\right]$ for T a sound Π_{2}-extension of $I \Delta_{0}$. In both cases our results will be, more or less, direct consequences of previous work by Beklemishev. In fact, in Corollary 5.6 of [3] it is shown that if T extends $I \Delta_{0}+\exp$, then $\mathcal{R}\left(\left[T, \Sigma_{1}-\mathrm{CR}\right]\right)$ coincides with the closure of $\mathcal{R}(T)$ under the bounded recursion operator $\mathbf{B R}$ or, equivalently, under the bounded minimization operator \mathbf{M}. Here we give a variant of that result in terms of the maximum operator Max. The proof is similar to that of Corollary 5.6 of [3] and we omit it.

Definition 2 (Bounded Min and Max operators) Assume $f: \mathbb{N}^{k+1} \rightarrow \mathbb{N}$. Then $M(f)$ denotes the function given by $M(f)(x, \mathbf{z})=\mu i \leq x .[f(i, \mathbf{z})=0]$ if such an i exists, or $x+1$ otherwise; and $\operatorname{Max}(f)$ denotes the function given by $\operatorname{Max}(f)(x, \mathbf{z})=$ $\max (\{f(i, \mathbf{z}): 0 \leq i \leq x\})$.

Proposition 9 Suppose that T is a sound Π_{2}-theory extending $I \Delta_{0}$. Then, $\mathcal{R}\left(\left[T, \Sigma_{1}-C R\right]\right)=[\mathcal{R}(T), \mathbf{M a x}]=\mathbf{M}(\mathcal{R}(T))$.

As for the Δ_{1}-IR case, Beklemishev introduced in [5] a new recursive operator called search operator and showed that it corresponds to Δ_{1}-IR. Given $f: \mathbb{N} \rightarrow \mathbb{N}$, the function defined by the search operator (\mathbf{S}) from f is $S(f)(a, b)=\mu z . J(f, a, b, z)$, where $J(f, a, b, z)$ stands for

$$
\begin{aligned}
\exists x, u, v \leq & z \quad z=\langle x, u, v\rangle \\
& \wedge\left[\left(a \leq x<b \wedge(u)_{0}=0 \wedge(v)_{0} \neq 0 \wedge f(x)=u \wedge f(x+1)=v\right)\right. \\
& \vee\left(x=a \wedge(u)_{0} \neq 0 \wedge v=0 \wedge f(a)=u\right) \\
& \left.\vee\left(x=b \wedge(v)_{0}=0 \wedge u=0 \wedge f(b)=v\right)\right]
\end{aligned}
$$

In words, either one finds $x \in[a, b)$ such that $(f(x))_{0}=0$ and $(f(x+1))_{0} \neq 0$, or one establishes that $(f(a))_{0} \neq 0$ or $(f(b))_{0}=0$. Then one outputs such an x as the first coordinate of a witness z that x is as required (see [5] for details). It is important to note that in [5] it is assumed that, by definition, the search operator can only be applied to unary functions with Δ_{0}-definable graph. Restricting the operator to unary functions is unessential but the restriction to functions with bounded graph is crucial. Here, to make this restriction explicit, we prefer to keep the search operator applicable to any unary function and then introduce the following notations. Let $\mathcal{R}_{0}(T)$ denote the class of those p.t.c.f.'s of T with a Δ_{0}-definition in T. Note that, in general, $\mathcal{R}_{0}(T)$ is not closed under composition and that $\mathcal{R}(T)=\mathbf{C}\left(\mathcal{R}_{0}(T)\right)$. In addition,

Lemma $7 \mathcal{R}_{0}(T)$ coincides with the class of the functions in $\mathcal{R}(T)$ whose graph is Δ_{0}-definable in the standard model.

Proof One inclusion is obvious. For the other, let $\varphi(\mathbf{x}, y) \in \Sigma_{1}$ be a definition of a function f in T and let $\theta(\mathbf{x}, y) \in \Delta_{0}$ defining the graph of f in \mathbb{N}. Then $\mathbb{N} \models$
$\forall \mathbf{x} \forall y(\varphi(\mathbf{x}, y) \rightarrow \theta(\mathbf{x}, y))$ and so there is a true Π_{1}-sentence, say $\forall z \delta(z)$ with $\delta \in \Delta_{0}$, satisfying that $T+\forall z \delta(z) \vdash \forall \mathbf{x} \exists y \theta(\mathbf{x}, y)$. It is easy to see that the Δ_{0}-formula $\neg \delta(y) \vee \theta(\mathbf{x}, y)$ is a definition of f in T.

Let $[\mathcal{F}, \mathbf{S}]^{w}$ denote the smallest set of functions containing \mathcal{F}, closed under composition, and satisfying that $S(f)$ belongs to the set whenever $f \in \mathcal{F}$. Note that $[\mathcal{F}, \mathbf{S}]^{w}$ is contained in, but could be weaker than, $[\mathcal{F}, \mathbf{S}]$ if \mathcal{F} is not closed under composition. Using this terminology, Theorem 3 in [5] can be restated as follows (that result is proved in [5] over $I \Delta_{0}+\exp$ but this is unessential).

Proposition 10 Suppose that T is a sound Π_{2}-theory extending $I \Delta_{0}$. Then, $\mathcal{R}\left(\left[T, \Delta_{1}-I R\right]\right)=\left[\mathcal{R}_{0}(T), \mathbf{S}\right]^{w}$.

The above characterization is not as neat as the one obtained for $\Sigma_{1}-\mathrm{CR}$. It would be nicer to show $\mathcal{R}\left(\left[T, \Delta_{1}-\mathrm{IR}\right]\right)=[\mathcal{R}(T), \mathbf{S}]$, i.e., with the search operator being applied to any computable function rather than only to functions with a bounded graph. However, one should take into account the following fact.
Lemma 8 1. $[\mathcal{C}, \mathbf{M}] \subseteq[\mathcal{C}, \mathbf{S}]$ for each function algebra \mathcal{C} containing \mathcal{M}^{2}.
2. Assume that $\mathcal{R}\left(\left[T, \Delta_{1}-I R\right]\right)=[\mathcal{R}(T), \mathbf{S}]$ for every sound Π_{2}-theory T extending $I \Delta_{0}$. Then $B \Sigma_{1}^{-}$is provable from $T h_{\Pi_{1}}(\mathbb{N})+I \Delta_{1}$. (Whether such a proof exists is still open).

Proof (1) Pick $f: \mathbb{N}^{k+1} \rightarrow \mathbb{N}$ in $\mathbf{C}(\mathcal{C})$. Roughly speaking, in order to obtain the least $i \leq x$ such that $f(i, \mathbf{z})=0$, it suffices to apply the search operator on the interval $[0, x+2]$ to the function that takes the values

$$
\langle 0,0\rangle,\langle\overline{s g}(f(0, \mathbf{z})), 0\rangle, \cdots,\langle\overline{s g}(f(x, \mathbf{z})), 0\rangle,\langle 1,0\rangle,
$$

where $\overline{s g}$ denotes Kleene's signum function, which satisfies $\overline{s g}(0)=1$ and $\overline{s g}(x)=0$ if $x \neq 0$. More formally, define $f^{\prime}: \mathbb{N}^{k+2} \rightarrow \mathbb{N}$ to be

$$
f^{\prime}(x, \mathbf{z}, w)= \begin{cases}\langle 0,0\rangle & x=0 \\ \langle\overline{\operatorname{sg}}(f(x-1, \mathbf{z})), 0\rangle & 1 \leq x \leq w \\ \langle 1,0\rangle & x>w\end{cases}
$$

Then, $f^{\prime} \in \mathbf{C}(\mathcal{C})$ as $\mathcal{M}^{2} \subseteq \mathcal{C}$, and it follows from the definition of the search operator that $M(f)(x, \mathbf{z})=\left(S\left(f^{\prime}\right)(0, x+2, \mathbf{z}, x+1)\right)_{0}$, where by abuse of notation we also write $S\left(f^{\prime}\right)$ to denote the search operator applied to a function with parameters. It only remains to eliminate the use of parameters \mathbf{z}, w in f^{\prime}. This can be achieved by putting together pieces of f^{\prime} as follows. (This idea has been taken from the proof of Lemma 14 in [5] but we need to modify the coding method because we work over \mathcal{M}^{2} rather than over the class of elementary functions). For simplicity, we first encode \mathbf{z}, w into a single parameter v by putting $f^{\prime \prime}(x, v)=f^{\prime}\left(x,(v)_{0}, \ldots,(v)_{k}\right)$. Now consider

$$
g(x)=f^{\prime \prime}\left((x)_{0},\left((x)_{0}+(x)_{1}\right)_{0}\right)
$$

It follows from the definition of the pairing function that g on the interval $[\langle 0,\langle v, x\rangle\rangle,\langle 0,\langle v, x\rangle\rangle+x]$ takes the values $f^{\prime \prime}(0, v), \ldots, f^{\prime \prime}(x, v)$. If we put
$h(x, v)=\langle 0,\langle v, x\rangle\rangle$ and write $S(g)(h(x, v), h(x, v)+x)$ as $\langle a, b, c\rangle$, then we have $S\left(f^{\prime \prime}\right)(0, x, v)=\langle a-h(x, v), b, c\rangle$ and $S\left(f^{\prime \prime}\right)(0, x,\langle\mathbf{z}, w\rangle)=$ $S\left(f^{\prime}\right)(0, x, \mathbf{z}, w)$. So, the latter function is in $[\mathcal{C}, \mathbf{S}]$, as required.
(2) Suppose $\mathfrak{A} \models T h_{\Pi_{1}}(\mathbb{N})+I \Delta_{1}$ and consider T to be the set of all Π_{2}-sentences true in \mathfrak{A}. Then T is a sound Π_{2}-extension of $I \Delta_{0}$ closed under Δ_{1}-IR and hence $\mathcal{R}(T)$ is closed under the search operator by the assumption. It follows from part 1 that $\mathcal{R}(T)$ is also closed under bounded minimization. So $\mathcal{R}(T)=$ $\mathcal{R}\left(\left[T, \Sigma_{1}-\mathrm{CR}\right]\right)$ by Proposition 9 and T extends [T, Σ_{1}-CR] by Lemma 5. Thus, $\mathfrak{A} \models B \Sigma_{1}^{-}$as required.
Having justified the introduction of the function algebra $[\mathcal{F}, \mathbf{S}]^{w}$, we are now in a position to obtain the main theorem of this section.

Theorem 6 Let T be a sound extension of $I \Delta_{0}$.

1. $\mathcal{R}\left(I \Delta_{1}(T)^{-}\right)=P R \cap \mathcal{R}(T)$.
2. $\mathcal{R}\left(I \Delta_{1}(T)\right)=P R \cap\left[\mathcal{R}_{0}(T), \mathbf{S}\right]^{w}=\left[P R \cap \mathcal{R}_{0}(T), \mathbf{S}\right]^{w}$.
3. $\mathcal{R}\left(L \Delta_{1}(T)\right)=P R \cap[\mathcal{R}(T), \mathbf{M a x}]=[P R \cap \mathcal{R}(T)$, Max $]$.

Proof Write T^{\prime} for $T h_{\Pi_{2}}(T)$.
(1) It follows from Corollary 2 and Lemma 6 that $\mathcal{R}\left(I \Delta_{1}(T)^{-}\right)$equals to $P R \cap$ $\mathcal{R}\left(\left[T^{\prime}, \Delta_{1}^{-}-\mathrm{IR}\right]\right)$. But $T^{\prime}+T h_{\Pi_{1}}(\mathbb{N})$ implies $\left[T^{\prime}, \Delta_{1}^{-}-\mathrm{IR}\right]$ and $\mathcal{R}(T)=\mathcal{R}\left(\left[T^{\prime}\right.\right.$, Δ_{1}^{-}-IR]), for adding true Π_{1}-sentences to a sound theory does not increase the corresponding class of provably total functions.
(2) First, it follows from Corollary 1, Lemma 6 and Proposition 10 that $\mathcal{R}\left(I \Delta_{1}(T)\right)=$ $P R \cap\left[\mathcal{R}_{0}(T), \mathbf{S}\right]^{w}$. Second, notice that

Claim $I \Delta_{1}(T)$ is Π_{2}-conservative over $I \Delta_{1}\left(I \Sigma_{1} \vee T\right)$.
Suppose that $I \Delta_{1}(T)$ proves θ, with $\theta \in \Pi_{2}$. Then both $I \Sigma_{1}$ and [T^{\prime}, Δ_{1}-IR] prove θ too. Towards a contradiction, assume $I \Delta_{1}\left(I \Sigma_{1} \vee T\right) \nvdash \theta$. Since $I \Sigma_{1} \vdash$ θ, it follows from Theorem 1 that $\left[T h_{\Pi_{2}}\left(I \Sigma_{1}\right) \vee T^{\prime}, \Delta_{1}\right.$-IR] $+\neg \theta$ is consistent. Put $S=T h_{\Pi_{2}}\left(I \Sigma_{1}\right) \vee T^{\prime}$ and $\neg \theta \equiv \exists z \delta(z)$, with $\delta \in \Pi_{1}$, and suppose that $S+\neg \theta \vdash \forall x(\varphi(x, v) \leftrightarrow \psi(x, v))$, with $\varphi \in \Sigma_{1}, \psi \in \Pi_{1}$. Then S proves $\forall z(\delta(z) \rightarrow$ $\forall x(\varphi(x, v) \leftrightarrow \psi(x, v)))$ and reasoning as in the proof of Proposition 2, we get that $\left[S, \Delta_{1}-\mathrm{IR}\right]+\neg \theta \vdash \forall v I_{\varphi(x, v)}$. As a result, [S, Δ_{1}-IR] $+\neg \theta$ implies [$S+\neg \theta, \Delta_{1}$-IR] and hence the latter theory is consistent as well. But we have

$$
S+\neg \theta \equiv\left(T h_{\Pi_{2}}\left(I \Sigma_{1}\right)+\neg \theta\right) \vee\left(T^{\prime}+\neg \theta\right) \equiv\left(T^{\prime}+\neg \theta\right)
$$

since θ is a Π_{2}-theorem of $I \Sigma_{1}$. We have thus obtained that $\left[T^{\prime}, \Delta_{1}\right.$-IR] $+\neg \theta$ is consistent, which is a contradiction. This completes the proof of the Claim.
It then follows that

$$
\begin{aligned}
\mathcal{R}\left(I \Delta_{1}(T)\right)=\mathcal{R}\left(I \Delta_{1}\left(I \Sigma_{1} \vee T\right)\right) & =P R \cap \mathcal{R}\left(\left[T h_{\Pi_{2}}\left(I \Sigma_{1}\right) \vee T^{\prime}, \Delta_{1}-\mathrm{IR}\right]\right) \\
& =\left[\mathcal{R}_{0}\left(T h_{\Pi_{2}}\left(I \Sigma_{1}\right) \vee T^{\prime}\right), \mathbf{S}\right]^{w} \\
& =\left[P R \cap \mathcal{R}_{0}(T), \mathbf{S}\right]^{w}
\end{aligned}
$$

(For the last equality note that each primitive recursive function whose graph is $\Delta_{0^{-}}$ definable in \mathbb{N} has a Δ_{0}-definition in $I \Sigma_{1}$ by Lemma 7).
(3) The proof is similar to that of part 2 .

In what follows we show that in presence of $\exp , \mathcal{R}\left(I \Delta_{1}(T)\right)$ and $\mathcal{R}\left(L \Delta_{1}(T)\right)$ can also be described in purely recursion-theoretic terms. We introduce a suitably modified version of the bounded recursion operator, called C-bounded recursion, and prove that if T is a sound extension of $I \Delta_{0}+\exp$ then $\mathcal{R}\left(L \Delta_{1}(T)\right)$ coincides with the closure of the basic functions under composition and $\mathcal{R}(T)$-bounded recursion. (A preliminary version of this result appeared in [8]).

Definition 3 (C-bounded recursion) A function $f: \mathbb{N}^{k+1} \rightarrow \mathbb{N}$ is defined from $g: \mathbb{N}^{k} \rightarrow \mathbb{N}, h: \mathbb{N}^{k+2} \rightarrow \mathbb{N}$ and $C: \mathbb{N}^{k+1} \rightarrow \mathbb{N}$ by C-bounded recursion, written $f=\mathbf{B R}_{C}(g, h)$, if $f \leq C$ and

$$
f(\mathbf{x}, 0)=g(\mathbf{x}) ; \quad f(\mathbf{x}, y+1)=h(\mathbf{x}, y, f(\mathbf{x}, y)),
$$

i.e., f is defined from g and h by primitive recursion and f is bounded by C. Given a function class $\mathcal{C}, \mathcal{E}^{\mathcal{C}}$ is the smallest set of functions containing the basic functions (the constant zero, projections, and the successor function) and closed under composition and \mathcal{C}-bounded recursion, that is, C-bounded recursion for every $C \in \mathcal{C}$.

We use the notation $\mathcal{E}^{\mathcal{C}}$ in analogy with the well-known Grzegorczyk hierarchy $\mathcal{E}^{i}, i \geq$ 0 , defined in terms of usual bounded recursion (see e.g., [19]). One can attach to $\mathcal{E}^{\mathcal{C}}$ a first-order theory in an extended language, denoted $\mathcal{C}-B R A$, so that $\mathcal{E}^{\mathcal{C}}=\mathcal{R}(\mathcal{C}-B R A)$. The definition of $\mathcal{C}-B R A$ is inspired by the well-known system $P R A$ for the primitive recursive functions.

Definition 4 Suppose that \mathcal{C} contains \mathcal{M}^{2} and is closed under composition. The theory $\mathcal{C}-B R A, \mathcal{C}$-Bounded Recursive Arithmetic, is given by:

Language: $\mathcal{L}^{\mathcal{C}}=\bigcup_{i \in \omega} L_{i}$, where

- $L_{0}=\mathcal{L}$ plus a function symbol B_{f} for each basic function.
- $L_{j+1}=L_{j}$ plus a function symbol f_{t} for each term t of L_{j}, and a function symbol $f_{t_{1}, t_{2}}$ for each pair of terms $t_{1}(\mathbf{x}), t_{2}(\mathbf{x}, y, z)$ of L_{j} such that the function defined in the standard model from t_{1} and t_{2} by primitive recursion is bounded by some function $C \in \mathcal{C}$.
Axioms: (the universal closure of)
(1) Robinson's Q.
(2) $B_{S}(x)=x+1, \quad B_{\Pi_{i}^{n}}\left(x_{1}, \ldots, x_{n}\right)=x_{i}, \quad B_{O}(x)=0$.
(3) $\mathbf{f}_{t}(\mathbf{x})=t(\mathbf{x})$.
(4) $\mathbf{f}_{t_{1}, t_{2}}(\mathbf{x}, 0)=t_{1}(\mathbf{x}), \quad \mathbf{f}_{t_{1}, t_{2}}(\mathbf{x}, z, y+1)=t_{2}\left(\mathbf{x}, y, \mathbf{f}_{t_{1}, t_{2}}(\mathbf{x}, y)\right)$.
(5) Open Induction: The induction scheme for open formulas of $\mathcal{L}^{\mathcal{C}}$.

Observe that $\mathcal{C}-B R A$ is a theory only in an abstract model-theoretic sense (i.e., a set of sentences in a first order language) but, in general, it is not even effectively axiomatized. We shall use this theory as a technical tool in order to prove that $\mathcal{C} \cap P R \subseteq \mathcal{E}^{\mathcal{C}}$ in Proposition 11. Let us also note that bounds (i.e., the functions from \mathcal{C}) are not included in the axiomatizations of the recursive schemes (part (4) of the definition) and, so, \mathcal{C}-BRA cannot prove anything about them. This is natural because, in general,
\mathcal{C} is not contained in $\mathcal{E}^{\mathcal{C}}$: for instance, consider the case when \mathcal{C} contains some non primitive recursive functions, or, alternatively, see Remark 4 below.

It is routine to check that $\mathcal{C}-B R A$ satisfies the following properties, which are wellknown for PRA:

- in $\mathcal{C}-B R A$ every bounded formula is equivalent to an open one;
- \mathcal{C} - $B R A$ supports definition by cases;
- $\mathcal{C}-B R A$ admits a purely universal axiomatization.

As a consequence, a standard application of Herbrand's theorem gives us that $\mathcal{R}(\mathcal{C}-$ $B R A)=\mathcal{E}^{\mathcal{C}}$. Equipped with this result, we are able to show that

Proposition 11 Suppose that $\mathcal{C}=\mathcal{R}(T)$ for T some sound extension of $I \Delta_{0}$. Then $\mathcal{C} \cap P R \subseteq \mathcal{E}^{\mathcal{C}}$.

Proof. Since $\mathcal{R}(\mathcal{C}-B R A)=\mathcal{E}^{\mathcal{C}}$ and $\mathcal{C} \cap P R \subseteq \mathcal{R}\left(I \Delta_{1}(T)\right)$ by Theorem 6, it is sufficient to prove that

Claim $I \Delta_{1}(T)$ is Π_{2}-conservative over $\mathcal{C}-B R A$.
To this end, we follow J. Avigad's proof that $I \Sigma_{1}$ is Π_{2}-conservative over $P R A$ given in [2]. The key ingredient is that of an \exists_{2}-closed model (or Herbrand saturated model in Avigad's terminology). We say that \mathfrak{A} is an \exists_{2}-closed if, for every structure $\mathfrak{B}, \mathfrak{A}<\forall_{1} \mathfrak{B}$ implies $\mathfrak{A} \prec_{\exists_{2}} \mathfrak{B}$. By a union of chain argument every model of a universal theory U can be \forall_{1}-elementary extended to a new model of U which is \exists_{2} closed. Thus, if every \exists_{2}-closed model of a universal theory U is a model of a theory W, then W is \forall_{2}-conservative over U (this is Theorem 3.4 of [2]).

Turning back to the proof of the Claim, it suffices to show that every \exists_{2}-closed model of $\mathcal{C}-B R A$ satisfies $I \Delta_{1}(T)$, for each Π_{2}-formula is equivalent in $\mathcal{C}-B R A$ to a \forall_{2}-formula. Suppose that \mathfrak{A} is an \exists_{2}-closed model of $\mathcal{C}-B R A$. Let $\varphi(x, y, v), \psi(x, y, v) \in$ Δ_{0} with $T \vdash \exists y \varphi(x, y, v) \leftrightarrow \forall y \psi(x, y, v)$. We may assume $I \Delta_{0} \vdash \varphi\left(x, y_{1}, v\right) \wedge$ $\varphi\left(x, y_{2}, v\right) \rightarrow y_{1}=y_{2}$, otherwise consider $\varphi(x, y, v) \wedge \forall y^{\prime}<y \neg \varphi\left(x, y^{\prime}, v\right)$ instead. Since $T \vdash \forall x, v \exists y(\varphi(x, y, v) \vee \neg \psi(x, y, v))$ and T is sound, $y=\mu t .(\varphi(x, t, v) \vee$ $\neg \psi(x, t, v))$ defines a p.t.f.c. of T, say C. Then,

$$
(\dagger) \mathbb{N} \models \varphi(x, y, v) \rightarrow y=C(x, v) .
$$

Let $a \in \mathfrak{A}$ and let $\varphi_{0}(x, y, v)$ be an open formula equivalent in $\mathcal{C}-B R A$ to φ. We must show that the induction axiom for $\exists y \varphi_{0}(x, y, a)$ is true in \mathfrak{A}. To that end, assume $\mathfrak{A} \models \exists y \varphi_{0}(0, y, a) \wedge \forall x\left(\exists y \varphi_{0}(x, y, a) \rightarrow \exists y \varphi_{0}(x+1, y, a)\right)$. In particular, $\mathfrak{A} \models$ $\forall x, y \exists y^{\prime}\left(\varphi_{0}(x, y, a) \rightarrow \varphi_{0}\left(x+1, y^{\prime}, a\right)\right)$. Since this last formula has quantifier complexity \forall_{2}, it is provable from the universal diagram of \mathfrak{A} by the closedness condition for \mathfrak{A}. Thus, applying Herbrand's theorem and using that $\mathcal{C}-B R A$ supports definition by cases, we obtain that there are $b, c \in \mathfrak{A}$ and a term of $\mathcal{L}^{\mathcal{C}}, t(x, y, v, w)$, satisfying that

$$
\mathfrak{A} \models \varphi_{0}(0, c, a) \wedge \forall x, y\left(\varphi_{0}(x, y, a) \rightarrow \varphi_{0}(x+1, t(x, y, a, b), a)\right) .
$$

Let h denote the function defined in the standard model by

$$
h(x, y, z, v, w)= \begin{cases}t(x, z, v, w) & \text { if } \varphi_{0}(x+1, t(x, z, v, w), v) ; \\ 0 & \text { otherwise }\end{cases}
$$

Clearly $h \in \mathcal{E}^{\mathcal{C}}$. Let f be the function defined by primitive recursion as follows:

$$
f(0, y, v, w)=y, \quad f(x+1, y, v, w)=h(x, y, f(x, y, v, w), v, w)
$$

By $(\dagger) f(x, y, v, w) \leq C^{\prime}(x, y, v, w)=y+C(x, v)$. So $f \in \mathcal{E}^{\mathcal{C}}$, since it is defined by C^{\prime}-bounded recursion and $C^{\prime} \in \mathcal{C}$. Let \mathbf{f} be the function symbol of $\mathcal{L}^{\mathcal{C}}$ corresponding to f. Then \mathfrak{A} satisfies that
$\varphi_{0}(0, \mathbf{f}(0, c, a, b), a) \wedge \forall x\left(\varphi_{0}(x, \mathbf{f}(x, c, a, b), a) \rightarrow \varphi_{0}(x+1, \mathbf{f}(x+1, c, a, b), a)\right)$.

Since \mathfrak{A} is a model of open induction, $\mathfrak{A} \models \forall x \varphi_{0}(x, \mathbf{f}(x, c, a, b), a)$ and hence $\mathfrak{A} \models$ $\forall x \exists y \varphi_{0}(x, y, a)$, as required.

Remark 4 It is worth noting that the assumption that \mathcal{C} is the class of p.t.c.f.'s of a theory T cannot be dropped in Proposition 11. For example, put $\mathcal{C}=\mathbf{C}\left(\mathcal{M}^{2} \cup\left\{C h_{A}\right\}\right)$, where $C h_{A}$ is the characteristic function of a primitive recursive set A which is not in the second level of the Grzegorczyk hierarchy \mathcal{E}^{2}. First, \mathcal{C} cannot be written as $\mathcal{R}(T)$ for any theory T in the language of arithmetic, for we have $\mathcal{R}(T)=\mathbf{C}\left(\mathcal{R}_{0}(T)\right)$ whereas closing under composition the functions in \mathcal{C} with a Δ_{0}-definable graph only gives us \mathcal{M}^{2}. Second, $\mathcal{C} \cap P R=\mathcal{C} \nsubseteq \mathcal{E}^{\mathcal{C}}=\mathcal{E}^{2}$.

Theorem 7 Let T be a sound extension of $I \Delta_{0}+\exp$ and let $\mathcal{C}=\mathcal{R}(T)$. Then, $\mathcal{R}\left(I \Delta_{1}(T)\right)=\mathcal{R}\left(L \Delta_{1}(T)\right)=\mathcal{E}^{\mathcal{C}}$.

Proof It follows from Proposition 11 that $\mathcal{C} \cap P R \subseteq \mathcal{E}^{\mathcal{C}}$ and it follows from Theorem 6 that $\mathcal{R}\left(L \Delta_{1}(T)\right)=[\mathcal{C} \cap P R, \mathbf{M a x}]=\mathbf{M}(\mathcal{C} \cap P R)$. But it is easy to see that $\mathcal{E}^{\mathcal{C}}$ is closed under bounded minimization. Thus, $\mathcal{R}\left(L \Delta_{1}(T)\right) \subseteq \mathcal{E}^{\mathcal{C}}$. For the opposite inclusion, note that

Claim $\mathcal{E}^{\mathcal{C}}=\mathcal{E}^{\mathcal{C} \cap P R}$.
We reason by induction on the definition of $f \in \mathcal{E}^{\mathcal{C}}$. The critical step is the definition by \mathcal{C}-bounded recursion. Suppose $f=\mathbf{B R}_{C}(g, h)$ with $C \in \mathcal{C}$. Since f itself is primitive recursive, there are $C_{1} \in P R$ and $C_{2} \in \mathcal{C}$ with Δ_{0}-definable graphs such that $f \leq C_{1}, C_{2}$. Let $\theta_{1}(\mathbf{x}, y) \in \Delta_{0}$ be a definition of C_{1} in $I \Sigma_{1}$ and let $\theta_{2}(\mathbf{x}, y) \in \Delta_{0}$ be a definition of C_{2} in T. Then $y=\mu t .\left(\theta_{1}(\mathbf{x}, t) \vee \theta_{2}(\mathbf{x}, t)\right)$ defines a p.t.c.f. of $T \vee I \Sigma_{1}$, say C_{3}. Note that $C_{3} \in \mathcal{C} \cap P R$ and $f=\mathbf{B R}_{C_{3}}(g, h)$, which proves the claim.
Thus $\mathcal{E}^{\mathcal{C}}=\mathcal{E}^{\mathcal{C} \cap P R} \subseteq \mathbf{B R}(\mathcal{C} \cap P R)=\mathbf{M}(\mathcal{C} \cap P R)=\mathcal{R}\left(L \Delta_{1}(T)\right)$, where in the last but one equality $\mathbf{B R}$ denotes the usual bounded recursion operator and we use that in presence of exp, bounded recursion can be reduced to bounded minimization.

Exponentiation is used in two different ways in Theorem 7 above. On the one hand, \exp is needed to prove $I \Delta_{1}(T)$ and $L \Delta_{1}(T)$ to be equivalent and thus share the same p.t.c.f.'s. On the other hand, exp is needed to reduce bounded recursion to bounded minimization in the proof that $\mathcal{E}^{\mathcal{C}} \subseteq \mathcal{R}\left(L \Delta_{1}(T)\right)$. Eliminating this second use of exp seems to be a hard problem, for it is related to important problems in Complexity Theory. In fact, if $T=I \Delta_{0}$ then $\mathcal{R}\left(L \Delta_{1}(T)\right)=\mathcal{M}^{2}$ and $\mathcal{E}^{\mathcal{C}}=\mathcal{E}^{2}$. Thus if Theorem 7 holds for $T=I \Delta_{0}$ then the Linear Time Hierarchy coincides with LinSpace. Likewise, if Theorem 7 holds for $T=I \Delta_{0}+\Omega_{1}$, where Ω_{1} expresses " x "x| is total", then the Polynomial Time Hierarchy equals to PolySpace.

In the same spirit, we close this section with a reduction of the NE Problem (see Remark 2) to a purely recursion-theoretic question. Recall that \mathcal{E}^{3} denotes the third level of the Grzegorczyk hierarchy, which is well-known to coincide with the set of Kalmár's elementary functions.

Proposition 12 The following are equivalent.

1. $T h_{\Pi_{1}}(\mathbb{N})+\neg \exp \vdash B \Sigma_{1}^{-}$.
2. For each $f \in \mathcal{E}^{3}$ with a Δ_{0}-definable graph, $\mathbf{C}\left(\mathcal{M}^{2} \cup\{f\}\right)$ is closed under bounded minimization.

Proof $(1 \Rightarrow 2)$: Let $f \in \mathcal{E}^{3}$ whose graph is definable by a Δ_{0}-formula, say $\theta(\mathbf{x}, y)$, and put $T=T h_{\Pi_{1}}(\mathbb{N})+\forall \mathbf{x} \exists y \theta(\mathbf{x}, y)$. It follows from Lemmas 4 and 5 that $\mathcal{R}(T)=$ $\mathbf{C}\left(\mathcal{M}^{2} \cup\{f\}\right)$. Now observe that it follows from condition 1 that

Claim T is closed under $\Sigma_{1}-C R$.
On the one hand, since $\mathcal{R}(T) \subseteq \mathcal{E}^{3}=\mathcal{R}\left(I \Delta_{0}+\right.$ exp $)$, it follows from the proof of Lemma 5 that T is included in $T h_{\Pi_{1}}(\mathbb{N})+\exp$. But the latter theory is closed under $\Sigma_{1}-C R$ and hence $T_{+} \exp$ implies $T_{+} \Sigma_{1}-C R$. On the other hand, $T_{+\neg} \exp$ is an
 Thus $\mathbf{C}\left(\mathcal{M}^{2} \cup\{f\}\right)$ is closed under bounded minimization by Proposition 9 . $(2 \Rightarrow 1)$: Observe that it follows from condition 2 that

Claim $T h_{\Pi_{1}}(\mathbb{N})$ implies $B \Delta_{1}\left(I \Delta_{0}+\exp \right)^{-}$.
To see this, assume that $I \Delta_{0}+\exp \vdash \forall x \exists y \varphi(x, y)$, with $\varphi(x, y) \in \Sigma_{1}^{-}$. Put $\varphi(x, y) \equiv \exists z \varphi_{0}(x, y, z)$, with $\varphi_{0} \in \Delta_{0}$, and define $\theta(x, y)$ to be the Δ_{0}-formula $y=\mu t \cdot \varphi_{0}\left(x,(t)_{0},(t)_{1}\right)$. Then $\theta(x, y)$ defines a computable function $f \in \mathcal{E}^{3}$ since $I \Delta_{0}+\exp \vdash \forall x \exists y \theta(x, y)$. By condition $2, \operatorname{Max}(f) \in \mathbf{C}\left(\mathcal{M}^{2} \cup\{f\}\right)=\mathcal{R}\left(I \Delta_{0}+\right.$ $\forall x \exists y \theta(x, y))$. Note that $\forall x \leq z \exists y \leq u \theta(x, y) \wedge \exists x \leq z \theta(x, u)$ is a Δ_{0}-formula defining $\operatorname{Max}(f)$ in the standard model. Hence reasoning as in the proof of Lemma 5 we obtain that $T h_{\Pi_{1}}(\mathbb{N})+\forall x \exists y \theta(x, y)$ proves $\forall z \exists u \forall x \leq z \exists y \leq u \theta(x, y)$ and so $T h_{\Pi_{1}}(\mathbb{N}) \stackrel{B_{\varphi(x, y)}}{ }$, as required.
Bhqsedren $\mathbb{N})+\neg \exp$ implies $B \Delta_{1}\left(I \Delta_{0}+\exp \right)^{-}+\neg \exp$ which in turn implies $B \Sigma_{\square}^{-}$
Corollary 5 Assume that there exists some $f \in \mathcal{E}^{3}$ with a Δ_{0}-definable graph such that $\operatorname{Max}(f) \notin \mathbf{C}\left(\mathcal{M}^{2} \cup\{f\}\right)$. Then I $\Delta_{0}+\neg \exp$ does not imply $B \Sigma_{1}$.

Interestingly, Lemma 6.1 of [4] shows how to construct a function $f \in \mathcal{E}^{4}$ with an elementary graph such that $\operatorname{Max}(f) \notin \mathbf{C}\left(\mathcal{E}^{3} \cup\{f\}\right)$. The construction uses Turing machines equipped with an internal clock. Although it is far from obvious how to adapt that construction to obtain a function satisfying the assumptions of Corollary 5, this approach gives us some new ideas to attack the NE Problem and to obtain, at least, a conditional negative answer under some complexity-theoretic assumption.

Acknowledgments Work partially supported by grant MTM2008-06435, Ministerio de Ciencia e Innovación, Spain and FEDER funds (EU).

References

1. Adamowicz, Z., Kołodziejczyk, L.A., Paris, J.B.: Truth definitions without exponentiation and the Σ_{1} collection scheme. J. Symb. Logic 77, 649-655 (2012)
2. Avigad, J.: Saturated models of universal theories. Ann. Pure Appl. Logic 118, 219-234 (2002)
3. Beklemishev, L.D.: Induction rules, reflection principles, and provably recursive functions. Ann. Pure Appl. Logic 85, 193-242 (1997)
4. Beklemishev, L.D.: A proof-theoretic analysis of collection. Arch. Math. Logic 37, 275-296 (1998)
5. Beklemishev, L.D.: On the induction scheme for decidable predicates. J. Symb. Logic 68, 17-34 (2003)
6. Clote, P., Krajíček, J. : Open problems. In: Clote, P., Krajíček, J. (eds.) Arithmetic, Proof Theory, and Computational Complexity, pp. 1-19. Oxford University Press, Oxford (1993)
7. Cordón-Franco, A., Fernández-Margarit, A., Lara-Martín, F.F.: On the quantifier complexity of $\Delta_{n+1}(T)$-induction. Arch. Math. Logic 43, 371-398 (2004)
8. Cordón-Franco, A., Fernández-Margarit, A., Lara-Martín, F.F.: Provably total primitive recursive functions: theories with induction. In: Marcinkowski, J., Tarlecki, A. (eds.) Computer Science Logic, 18th International Workshop, CSL 2004, Karpacz, Poland, Sept 20-24, 2004, Proceedings, pp. 355-369, Lecture Notes in Comput. Sci. 3210, Springer, Berlin, Heidelberg (2004)
9. Cordón-Franco, A., Fernández-Margarit, A., Lara-Martín, F.F.: Fragments of Arithmetic and true sentences. MLQ Math. Log. Q. 51, 313-328 (2005)
10. Cordón-Franco, A., Fernández-Margarit, A., Lara-Martín, F.F.: A note on parameter free Π_{1}-induction and restricted exponentiation. MLQ Math. Log. Q. 57, 444-455 (2011)
11. Fernández-Margarit, A., Lara-Martín, F.F.: Induction, minimization and collection for $\Delta_{n+1}(T)$-formulas. Arch. Math. Logic 43, 505-541 (2004)
12. Hájek, P., Pudlák, P.: Metamathematics of First-Order Arithmetic. Springer, Berlin, Heidelberg (1993)
13. Kaye, R.: Diophantine and parameter-free induction. Ph.D. thesis, University of Manchester (1987)
14. Kaye, R., Paris, J., Dimitracopoulos, C.: On parameter free induction schemas. J. Symb. Logic 53, 10821097 (1988)
15. Kreisel, H., Lévy, A.: Reflection principles and their use for establising the complexity of axiomatic systems. Arch. Math. Logik Grundlag. 14, 97-142 (1968)
16. Lessan, H.: Models of Arithmetic. Ph.D. thesis, University of Manchester (1978)
17. Paris, J.B., Kirby, L. : Σ_{n}-Collection schemas in arithmetic. In: Macintyre, A., Pacholski, L., Paris, J. (eds.) Logic Colloquium 77, Studies in Logic and the Foundations of Mathematics 96., pp. 285-296. North-Holland, Amsterdam (1978)
18. Parsons, C.: On n-quantifier induction. J. Symb. Logic 37, 466-482 (1972)
19. Rose, H.E.: Subrecursion: Functions and Hierarchies. Clarendon Press, Oxford (1984)
20. Sirokofskich, A., Dimitracopoulos, C.: On a problem of J. Paris. J. Log. Comput. 17, 1099-1107 (2007)
21. Slaman, T.: Σ_{n}-bounding and Δ_{n}-induction. Proc. Am. Math. Soc. 132, 2449-2456 (2004)
22. Takeuti, G.: Grzegorcyk's hierarchy and Iep Σ_{1}. J. Symb. Logic 59, 1274-1284 (1994)
23. Thapen, N.: A note on Δ_{1} induction and Σ_{1} collection. Fund. Math. 186, 79-84 (2005)
24. Wilkie, A.J., Paris, J.B.: On the existence of end-extensions of models of bounded induction. In: Fenstad, J.E., Frolov, I.T., Hilpinen, R. (eds.) Logic, Methodology, and Philosophy of Science VIII, Moscow, 1987, pp. 143-161. North-Holland, Amsterdam (1989)
