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Abstract

Let IΠ−
2 denote the fragment of Peano Arithmetic obtained by restricting the

induction scheme to parameter free Π2 formulas. Answering a question of R.
Kaye, L. Beklemishev showed that the provably total computable functions
of IΠ−

2 are, precisely, the primitive recursive ones. In this work we give a new
proof of this fact through an analysis of certain local variants of induction
principles closely related to IΠ−

2 . In this way, we obtain a more direct answer
to Kaye’s question, avoiding the metamathematical machinery (reflection
principles, provability logic,...) needed for Beklemishev’s original proof.

Our methods are model–theoretic and allow for a general study of IΠ−
n+1

for all n ≥ 0. In particular, we derive a new conservation result for these
theories, namely that IΠ−

n+1 is Πn+2–conservative over IΣn for each n ≥ 1.

Keywords: First order Arithmetic, conservation results, parameter free
induction, primitive recursive functions.
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1. Introduction

An important notion in studying the computational content of a fragment
of Arithmetic is that of its provably total computable functions. A number–
theoretic computable function f : Nk → N is said to be a provably total
computable function (p.t.c.f.) of a theory T , written f ∈ R(T ), if there is a
Σ1 formula ϕ(~x, y) such that:
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1. ϕ defines the graph of f in the standard model of Arithmetic N; and

2. T ` ∀~x∃!y ϕ(~x, y).

Since it was introduced by G. Kreisel in the 1950s this notion has been
widely studied, and nice recursion–theoretic and computational complexity
characterizations of the sets R(T ) have been obtained for a good number of
theories T . For instance, by a classical result due independently to G. Mints,
C. Parsons and G. Takeuti, the class of p.t.c.f. of the scheme of induction
for Σ1–formulas IΣ1 equals to the class of the primitive recursive functions
PR. Indeed, all classes R(IΣn), n ≥ 1, can be characterized in terms of
the Fast Growing Hierarchy up to the ordinal ε0. As for weak fragments
below IΣ1, their p.t.c.f. have been characterized in terms of subrecursive
operators (bounded recursion, bounded minimization, ...) as well as in terms
of computational complexity classes. In fact, their classes of p.t.c.f. have
been intensively investigated in connection with important open problems in
Complexity Theory, mainly in the context of Bounded Arithmetic.

In spite of the wide range of the theories considered, a number of uniform
methods for characterizing the p.t.c.f. of an arithmetic theory are available.
E.g. Herbrand analyses as developed by W. Sieg in [13], S. Buss’ witnessing
method [5] or, in general, proof–theoretic techniques using Cut elimination
theorem. However, for some particular fragments of Peano Arithmetic none
of these standard methods seems to be applicable. Of special interest is
the case of the scheme of parameter free Π2–induction, IΠ−

2 , given by the
induction scheme

Iϕ : ϕ(0) ∧ ∀x (ϕ(x) → ϕ(x+ 1)) → ∀xϕ(x) ,

restricted to ϕ(x) ∈ Π−
2 (as usual, we write ϕ(x) ∈ Γ− to mean that ϕ is in

Γ and contains no other free variables than x). Since IΣ−
1 ⊆ IΠ−

2 and IΣ1

is Σ3–conservative over IΣ−
1 [10], it follows that every primitive recursive

function is provably total in IΠ−
2 ; and R. Kaye asked whether the p.t.c.f.

of IΠ−
2 are exactly the primitive recursive ones. This question remained

elusive until [4], where L. Beklemishev gave a positive answer using modal
provability logic techniques. Although quite elegant, Beklemishev’s answer
only provides an indirect solution. Firstly, he reformulated IΠ−

2 in terms
of local reflection principles (reflection principles in Arithmetic are axiom
schemes expressing the statement that “if a formula ϕ is provable in a theory
T then ϕ is valid”). Secondly, he derived the result as an application of a
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conservation theorem for local reflection principles whose proof leans upon
properties of Gödel–Löb provability logic GL.

In this work we obtain a more direct answer to Kaye’s question, avoiding
the metamathematical machinery needed for Beklemishev’s proof. In fact,
our proof that R(IΠ−

2 ) = PR will follow the lines of standard arguments
for characterizing classes R(T ). Let us consider, for instance, a proof that
R(IΣ1) = PR. Such a proof typically proceeds in two steps.

• Step 1: IΣ1 is Π2–conservative over the inference rule version of the
principle of Σ1–induction Σ1–IR. So, R(IΣ1) = R(Σ1–IR).

• Step 2: Applications of Σ1–IR correspond to applications of the prim-
itive recursion operator.

The main obstacle to apply this argument to IΠ−
2 is that there is no simple,

direct argument to reduce IΠ−
2 to an inference rule version of it. Here we

solve this problem by showing that IΠ−
2 is equivalent to I(Σ−

2 ,K2), a certain
local version of the parameter free Σ2–induction scheme where the elements
x for which the induction axiom claims ϕ(x) to hold are restricted to be Σ2–
definable elements. Equipped with this result, it is easy to obtain that IΠ−

2

is Π2 (in fact, Π3) conservative over the corresponding local inference rule
version (Σ2,K2)–IR. Then, we show that applications of (Σ2,K2)–IR corre-
spond to (restricted forms) of the iteration operator and thus all functions
in R(IΠ−

2 ) are primitive recursive.
Local induction schemes and local induction rules play a crucial role in

our methods. Interestingly, these local subsystems can be applied in con-
siderable generality to study fragments of arithmetic. Actually, in this work
we also make use of these ideas to develop a general study of the theories
IΠ−

n+1 for all n ≥ 1. As a result, we are able to give new proofs of some
well–known results on these fragments as well as to obtain a novel conser-
vation result. Namely, we prove that IΠ−

n+1 is Πn+2–conservative over IΣn

for all n ≥ 1. This improves on a previous result by Beklemishev in [4]
where conservativity between these theories with respect to boolean combi-
nations of Σn+1–sentences was established, and closes a notable gap in our
understanding of relationships between the standard fragments of arithmetic.

2. On Local Induction

In this section we give a precise definition of the auxiliary schemes that
will be central in our analysis of the class of p.t.c.f. of IΠ−

2 . We work in the
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language of first–order arithmetic L = {0, S, +, ·, <} and define the formula
classes ∆0, Σn and Πn as usual. For a class Γ of formulas, IΓ is the theory
axiomatized over Robinson’s Q by the induction scheme, Iϕ, restricted to
formulas ϕ(x) ∈ Γ. If free variables other that x are not allowed, we write
ϕ(x) ∈ Γ− and, accordingly, IΓ− denotes the theory axiomatized over Q by
the axioms Iϕ, for ϕ(x) ∈ Γ−.

The schemes we are interested in are local variants of the usual induction
scheme in a sense that the conclusion of the induction principle is no longer
assumed for every element in the universe but only for a certain subclass of
the universe. More precisely, we define:

Definition 1. For every n ≥ 1, I(Σn,Kn) is the theory given by I∆0 together
with the scheme

ϕ(0) ∧ ∀x (ϕ(x) → ϕ(x+ 1)) →
→ ∀x1, x2 (δ(x1) ∧ δ(x2) → x1 = x2) → ∀x (δ(x) → ϕ(x))

where ϕ(x) ∈ Σn and δ(x) ∈ Σ−
n . The natural inference rule associated to

this scheme, denoted (Σn,Kn)–IR, is given by:

ϕ(0) ∧ ∀x (ϕ(x) → ϕ(x+ 1))

∀x1, x2 (δ(x1) ∧ δ(x2) → x1 = x2) → ∀x (δ(x) → ϕ(x))

where δ(x) ∈ Σ−
n and ϕ(x) ∈ Σn. Finally, if we restrict the scheme to

ϕ(x) ∈ Σ−
n , we obtain the parameter free counterpart of I(Σn,Kn), denoted

I(Σ−
n ,Kn).

Remark 1. Firstly, let us recall that, given a model A, Kn(A) denotes the
set of elements of A that are definable in A by a formula δ(x) ∈ Σn. This
explains why Kn appears in our notation for these theories. Secondly, if
A |= IΣ−

n−1, then Kn(A) ≺n A (i.e. Kn(A) is a Πn–elementary substructure
of A). This property plays an important role in what follows and it is because
of it that some of our results on I(Σn,Kn) are obtained over IΣ−

n−1 instead
of over I∆0.

A key fact is that I(Σ−
n ,Kn) provides an alternative formulation of IΠ−

n

for every n ≥ 1:

Lemma 1. Over IΣ−
n−1, IΠ

−
n ≡ I(Σ−

n ,Kn).
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Proof. (`): Suppose A |= IΠ−
n and A |= ϕ(0) ∧ ∀x (ϕ(x) → ϕ(x + 1)), with

ϕ(x) ∈ Σ−
n . Let δ(v) ∈ Σn defining some element in A, say a. Towards a

contradiction, assume A 6|= ∀x (δ(x) → ϕ(x)). Then, A |= ¬ϕ(a). Define
θ(x) to be ∀v (δ(v) → ¬ϕ(x− v)). Clearly, A |= θ(0)∧ ∀x (θ(x) → θ(x+ 1)).
By IΠ−

n , A |= θ(a) and so A |= ¬ϕ(0), which is a contradiction.

(a): Suppose A |= I(Σ−
n ,Kn) and A |= ϕ(0) ∧ ∀x (ϕ(x) → ϕ(x + 1)), with

ϕ(x) ∈ Π−
n . Assume A |= ∃x¬ϕ(x). Since A |= IΣ−

n−1, Kn(A) ≺n A and
there is a ∈ Kn(A) such that A |= ¬ϕ(a). Let δ(v) be a Σn formula defining
the element a and let θ(x) be ∃v (δ(v) ∧ ¬ϕ(v − x)). Clearly, A |= θ(0) ∧
∀x (θ(x) → θ(x+1)). By I(Σ−

n ,Kn), A |= ∀x (δ(x) → θ(x)) and so A |= θ(a).
Thus A |= ¬ϕ(0), which is a contradiction.

Given a theory T and an inference rule R, we denote by [T,R] the closure
of T under first order logic and unnested applications of R. We denote by
T + R the closure of T under first order logic and (nested) applications of
R. Therefore, T + R =

⋃
k∈ω[T,R]k, where [T,R]0 = T and [T,R]k+1 =

[[T,R]k, R].
The first step in the analysis of IΠ−

2 is a suitable reduction of I(Σ2,K2)
to a fragment defined by the rule (Σ2,K2)–IR. Indeed, the following general
result holds for each n ≥ 1.

Proposition 1. Let T be a Πn+2–axiomatizable theory. Then, T +I(Σn,Kn)
is Πn+1–conservative over T + (Σn,Kn)–IR.

Very conveniently, this reduction can be carried out by the same tools used
to derive the reduction of IΣ1 to Σ1–IR (e.g. by adapting the cut–elimination
argument used in [3] to derive a similar reduction for the Collection scheme).
Alternatively, here we give a model–theoretic proof following the methods
developed by J. Avigad in [1], who in turn builds on previous ideas of A.
Visser (unpublished) and D. Zambella [14]. In [1] Avigad introduced the
notion of a Herbrand saturated model and showed that this notion provides
us with an unified method to prove ∀∃–conservation over universal theories.
Here we consider a hierarchical version of that notion that yields an unified
method to prove Πn+1–conservation over Πn+2–theories.

Definition 2. We say that a model of a theory T , A, is a Σn+1–closed model
of T if for every model of T , B,

A ≺n B =⇒ A ≺n+1 B.
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In words, A is a Σn+1–closed model of T if every Πn–formula that can
be satisfied in a Πn–elementary extension of A which is a model of T can
be already satisfied by an element of A. It is easy to show that Σn+1–
closed models exist for every n. In fact, by a rather standard union of chain
argument it follows that if T is a Πn+2–axiomatizable theory, then every
model of T can be Πn–elementary extended to a Σn+1–closed model of T . As
a consequence, the following version of theorem 3.4 of [1] holds.

Lemma 2. Suppose T2 is Πn+2–axiomatizable. In order to prove that T1

is Πn+1–conservative over T2 it is sufficient to show that every Σn+1–closed
model of T2 satisfies T1.

Next lemma is an analog of theorem 3.3 of [1] and states the key property
of Σn+1–closed models for proving conservation results.

Lemma 3. Suppose A is a Σn+1–closed model of T, ϕ(v) ∈ Πn+1 and a ∈ A.
Then

A |= ϕ(a) =⇒ T ` ψ(v, w) → ϕ(v),

for some ψ(v, w) ∈ Πn such that A |= ψ(a, b) for some b in A.

Proof. It follows from the Σn+1–closedness condition that T + DΠn(A) `
ϕ(a), where DΠn(A) denotes the Πn–diagram of A, i.e. the set of all Πn–
formulas (possibly with parameters) valid in A. Now the result follows by
compactness.

We are now in a position to give a proof of Proposition 1.

Proof. Suppose that A is a Σn+1–closed model of T + (Σn,Kn)–IR and A |=
ϕ(0, b) ∧ ∀x (ϕ(x, b) → ϕ(x + 1, b)), with ϕ(x, v) ∈ Σn. Consider a ∈ Kn(A)
and δ(x) ∈ Σn defining a. We must show that A |= ϕ(a, b). It follows from
Lemma 3 that

(T + (Σn,Kn)–IR) ` ψ(v, w) → ϕ(0, v) ∧ ∀x (ϕ(x, v) → ϕ(x+ 1, v)),

with ψ(v, w) ∈ Πn and A |= ψ(b, c) for some c ∈ A. Put θ(x, v, w) ≡
ψ(v, w) → ϕ(x, v). Clearly, θ ∈ Σn and (T + (Σn,Kn)–IR) proves the an-
tecedent of the induction axiom for θ and so A |= ∀v, w, x (δ(x) → θ(x, v, w)).
Thus θ(a, b, c) is valid in A and hence so is ϕ(a, b).

Combining Lemma 1 and Proposition 1, we get

Corollary 1. IΠ−
2 is Π3–conservative over IΣ−

1 + (Σ2,K2)–IR.
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3. Local Induction and Restricted Iteration

Next step in our analysis is to show that applications of (Σ2,K2)–IR
correspond to (a restricted form of) the iteration operator. To this end, we
shall consider extensions of L obtained by adding a finite set of unary function
symbols, F = {f1, . . . , fn}, and a (finite or countable) set of new constant
symbols, C. Through this section we consider a fixed set of constants, C,
and we will denote by LF the language L + {f1, . . . , fn} + C. If g is a new
unary function symbol then LF ,g will denote the language L{f1,...,fn,g}.

Definition 3. Let f ∈ F be a unary function symbol and let T be an LF–
theory. We say that f is an iterable non decreasing function over T if the
theory T proves:

∀x1, x2 (x1 ≤ x2 → f(x1) ≤ f(x2)), and ∀x (x2 < f(x))

Let ΣF
0 = ΠF

0 be the class of bounded formulas of LF . Classes ΣF
n+1 and

ΠF
n+1 are defined as usual. The theory IΣF

0 is the LF–theory axiomatized
over I∆0 by

• The induction axiom Iϕ for each formula ϕ ∈ ΣF
0 , and

• Axioms for each f ∈ F :

∀x1, x2 (x1 ≤ x2 → f(x1) ≤ f(x2)), and ∀x (x2 < f(x))

This is a basic theory to deal with the iteration of f and to guaran-
tee the usual properties of the iteration of a nondecreasing function with a
ΠF

0 –definable graph. The basic facts provable in this theory were stated in
[6]. Next result collects together the facts that we shall need in the present
context.

Proposition 2. For each f ∈ F there exists a formula ITf (z, x, y) ∈ ΣF
0

such that the following formulas are theorems of IΣF
0 :

1. ITf (z, x, y1) ∧ ITf (z, x, y2) → y1 = y2.

2. (ITf (0, x, y) ↔ x = y) ∧ (ITf (1, x, y) ↔ f(x) = y).

3. ITf (z + 1, x, y) ↔ ∃y0 ≤ y (ITf (z, x, y0) ∧ f(y0) = y).

4. ITf (z, x, y) → ∀z0 < z ∃y0 < y ITf (z0, x, y0).

5. z ≥ 1 ∧ ITf (z, x, y) → x2 < y ∧ z ≤ y.

6. z ≥ 1 ∧ x1 ≤ x2 ∧ ITf (z, x1, y1) ∧ ITf (z, x2, y2) → y1 ≤ y2.
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7. ITf (z1, x, y0) ∧ ITf (z2, y0, y) → ITf (z1 + z2, x, y).

In what follows we use a more suggestive notation and write f z(x) = y
instead of ITf (z, x, y).

Definition 4. We say that f ∈ F is a dominating function over T if, for
each term t(x) of LF , there exists k ∈ ω such that T proves

∀x (t(x) ≤ fk(x+ σ(t)))

where σ(t) = c1 + · · · + cm and c1, . . . , cm are all the constants occurring in
t(x).

Lemma 4. Let T be an extension of IΣF
0 and let f ∈ F be a (iterable non-

decreasing) dominating function over T . Then, for each term t(x1, . . . , xm)
of LF whose variables are among x1, . . . , xm, there exists k ∈ ω such that

T ` t(x1, . . . , xm) < fk(x1 + · · ·+ xm + σ(t)).

Proof. We proceed by induction on terms of LF . The most interesting
case occurs when t(x1, . . . , xm) is a sum (or a product) of two terms, say
t1(x1, . . . , xm) + t1(x1, . . . , xm). By induction hypothesis,

t1(~x) < fk(x1 + · · ·+ xm + σ(t1)) and t2(~x) < f l(x1 + · · ·+ xm + σ(t2)),

for some k, l ∈ ω. Without loss of generality we may assume k ≥ max(l, 2)
(so, for every u, fk(u) ≥ k ≥ 2.) Then,

t(~x) = t1(~x) + t2(~x)
< fk(x1 + · · ·+ xm + σ(t1)) + f l(x1 + · · ·+ xm + σ(t2))
≤ 2fk(x1 + · · ·+ xm + σ(t))
≤ (fk(x1 + · · ·+ xm + σ(t)))2

< fk+1(x1 + · · ·+ xm + σ(t)).

The remaining cases are similar.

Languages LF and the notion of a dominating function are tailored to
deal with the situation described in the following lemma.

Lemma 5. Let Γ = {θ1(x, y), . . . , θm(x, y)} be a finite set of ∆0–formulas
with only two free variables. For each j = 1, . . . ,m, let θ̄j(x, y) denote the
formula ∀u ≤ x ∃v ≤ y θj(u, v). Let F = {f1, . . . , fm, f} be a set of unary
function symbols and let T be the LF–theory extending I∆0 with the following
additional axioms:
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• For each j = 1, . . . ,m,

∀x (fj(x) = y ↔ ∃y0 ≤ y (y0 = µt. θ̄j(x, t) ∧ y = (x+ 1)2 + y0)).

• ∀x (f(x) = (x+ 1)2 + f1(x) + · · ·+ fm(x)).

Then, T extends IΣF
0 and f is a dominating function over T .

Proof. It is straighforward to check that each h ∈ F is an iterable nonde-
creasing function over T . In addition, by proposition V.1.3 of [8], T proves
ΣF

0 –induction. Thus we only must show that f is a dominating function
over T . This fact can be proved by induction on terms of LF . Again,
the most interesting case occurs when t(x) is a product (or sum) of two
terms, say t1(x) · t2(x). By induction hypothesis, t1(x) ≤ fk(x + σ(t1)) and
t2(x) ≤ f l(x+σ(t2)), for some k ≥ max(l, 2) (so, for every u, fk(u) ≥ k ≥ 2.)
Then,

t(x) ≤ (t1(x) + t2(x))
2 ≤ f(t1(x) + t2(x))

≤ f(fk(x+ σ(t1)) + f l(x+ σ(t2)))
≤ f(2 · fk(x+ σ(t))) ≤ f((fk(x+ σ(t)))2) ≤ fk+2(x+ σ(t)).

The remaining cases are similar.

As a final step in the analysis of (Σ2,K2)–IR and due to technical reasons,
it will be convenient to denote the Σ2–definable elements by closed terms of
an extended language. This motivates the introduction of the following local
induction rules.

Definition 5. For each set of formulas Γ and each set of closed terms Λ of
LF we consider the rules (where ϕ(x) ∈ Γ and t ∈ Λ):

(Γ,Λ)–IR :
ϕ(0) ∧ ∀x (ϕ(x) → ϕ(x+ 1))

ϕ(t)

(Γ,Λ)–IR0 :
∀x (ϕ(x) → ϕ(x+ 1))

ϕ(0) → ϕ(t)

These rules were first considered and intensively studied in [6]. There
we proved that a number of results on classical induction rules are also true
for the local ones. In what follows, we state two of these results that will
be needed in the present paper. For the rest of the section, we assume that
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T is an extension of IΣF
0 obtained by adding a set of ΠF

1 sentences, that Λ
denotes the set of all closed terms of a sublanguage of LF extending L (and
so Λ is closed under sum and product), and that there is f ∈ F which is a
dominating function over T .

Remark 2. Let us note that under these assumptions T satisfies a natural
version of Parikh’s theorem (see [8], chapter 5, theorem 1.4). This fact will
be used extensively without further comments.

Firstly, next lemma can be seen as a local version of the well–known fact
that [I∆0,Σ1–IR] ≡ I∆0 + exp, where exp denotes a Π2–axiom declaring
that the exponential function is total.

Lemma 6. The following theories are equivalent:

1. T + {∀x ∃y (f t(x) = y) : t ∈ Λ}.
2. [T, (ΣF

1 ,Λ)–IR]

3. T + (ΣF
1 ,Λ)–IR.

Proof. The proof is a standard argument using Parikh’s theorem. See lemma
4.8 of [6].

Observe that (ΣF
1 ,Λ)–IR collapses to unnested applications of the rule in

contrast to the classical case, where the hierarchy [I∆0,Σ1–IR]k, k ∈ ω, is
well–known to be proper.

Secondly, it is a theorem of Beklemishev (see [2], corollary 9.1) that
[T,Σ1–IR] ≡ [T,Π2–IR] for every Σ2 ∪Π2–extension of I∆0 + exp. In lemma
4.10 of [6] we used a model–theoretic construction to prove a similar result
for local induction rules under an additional assumption on the set of closed
terms Λ.

Definition 6. We say that Λ is exponentially closed over T if for every
t, s ∈ Λ there exists t′ ∈ Λ such that [T, (ΣF

1 ,Λ)–IR] ` ∃y ≤ t′ (st = y).

From now on, we also assume that Λ is exponentially closed over T . Then,
we have

Lemma 7. The following theories are equivalent:

1. [T, (ΣF
1 ,Λ)–IR]

2. [T, (ΠF
2 ,Λ)–IR]
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3. T + (ΠF
2 ,Λ)–IR.

Proof. See lemma 4.10 of [6].

Again, note that (ΠF
2 ,Λ)–IR collapses to unnested applications of the

rule in contrast to the classical case. Finally, putting together Lemma 6 and
Lemma 7 we get the useful fact that

Proposition 3. T + (ΠF
2 ,Λ)–IR ≡ T + {∀x∃y (f t(x) = y) : t ∈ Λ}.

We are now ready for the main result of this section. We extend our
work in [6] by obtaining a new theorem on these local induction systems
that will be crucial to derive the main results of the paper. Although I∆0 +
Σ2–IR is known to be much stronger than IΣ1 (indeed the former proves
the consistency of the latter), in the local case we are able to show that
T + (ΣF

2 ,Λ)–IR is contained in the theory T + IΣF
1 or, even more, in the

theory T + BΣF
1 + I(ΣF

1 ,Λ). Here BΣF
1 denotes the theory of language LF

axiomatized by IΣF
0 together with the collection scheme:

∀x∃y ϕ(x, y) → ∀u∃v ∀x ≤ u ∃y ≤ v ϕ(x, y)

for each ϕ(x, y) ∈ ΣF
1 (possibly containing parameters); and I(ΣF

1 ,Λ) is the
theory axiomatized over IΣF

0 by the scheme

ϕ(0) ∧ ∀x (ϕ(x) → ϕ(x+ 1)) → ϕ(t)

for each ϕ(x) ∈ ΣF
1 (possibly containing parameters) and t ∈ Λ. Towards a

proof, first we need the following lemma.

Lemma 8. T +BΣF
1 + I(ΣF

1 ,Λ) is ΠF
2 –conservative over T + (ΠF

2 ,Λ)–IR.

Proof. We adapt the proof of Proposition 1. The introduction of the notion
of a ΣF

2 –closed model and its use to obtain conservation results is straight-
forward. Hence, it is sufficient to show that every ΣF

2 –closed model of
T + (ΠF

2 ,Λ)–IR is a model of BΣF
1 + I(ΣF

1 ,Λ). To this end, let A be a
ΣF

2 –closed model of T + (ΠF
2 ,Λ)–IR. We can prove A |= I(ΣF

1 ,Λ) reasoning
as in the proof of Proposition 1; so, let us prove A |= BΣF

1 .
Let ϕ(x, y, z) ∈ ΣF

1 and c ∈ A such that A |= ∀x∃y ϕ(x, y, c). By Lemma
3, there exist d ∈ A and ψ(u, v) ∈ ΠF

1 such that A |= ψ(d, c) and

T + (ΠF
2 ,Λ)–IR ` ψ(u, z) → ∀x∃y ϕ(x, y, z),
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and hence, by Proposition 3, there are t1, . . . , tn ∈ Λ such that

T + {∀x∃y (f tj(x) = y) : j = 1, . . . , n} ` ∀u, z, x ∃y (ψ(u, z) → ϕ(x, y, z)).

Put L′ = LF ∪ {h1, . . . , hn} and define T ′ to be the extension of T by the
axioms ∀x (f tj(x) = hj(x)), with j = i, . . . , n. By Parikh’s theorem for T ′,
there is a term t(x, u, z) of L′ such that

T ′ ` ∀u, z, x ∃y ≤ t(x, u, z) (ψ(u, z) → ϕ(x, y, z)).

Then, we have

T ′ ` ∀x0, u, z ∀x ≤ x0 ∃y ≤ t(x0, u, z) (ψ(u, z) → ϕ(x, y, z)),

for terms of L′ define monotone functions. Since A has a natural expansion
to a model of T ′, we get that, for every a ∈ A,

A |= ∀x ≤ a ∃y ≤ t(a, d, c) (ψ(d, c) → ϕ(x, y, c)).

As a consequence, there exists b ∈ A such that

A |= ∀x ≤ a ∃y ≤ b (ψ(d, c) → ϕ(x, y, c)).

But, recall A |= ψ(d, c) and thus we get A |= ∀x ≤ a∃y ≤ b ϕ(x, y, c), as
required.

Now for the main result.

Theorem 1. T +BΣF
1 + I(ΣF

1 ,Λ) extends T + (ΣF
2 ,Λ)–IR.

Proof. We shall prove, by induction on k ≥ 0, that for every extension LF
of L, every theory T ⊆ ΠF

1 , and every Λ exponentially closed, it holds that

T +BΣF
1 + I(ΣF

1 ,Λ) extends [T, (ΠF
2 ,Λ)–IR0]k.

This suffices as the arguments used in [2], proposition 2.1, can be easily
adapted to yield that for every k ∈ ω, [T, (ΣF

2 ,Λ)–IR]k ≡ [T, (ΠF
2 ,Λ)–IR0]k.

Case k = 0 is trivial; so, let us assume that T +BΣF
1 + I(ΣF

1 ,Λ) extends
[T, (ΠF

2 ,Λ)–IR0]k. Let t ∈ Λ and ϕ(u, v) ∈ ΠF
2 such that

(†) [T, (ΠF
2 ,Λ)–IR0]k ` ∀u (ϕ(u, v) → ϕ(u+ 1, v)).

12



We must prove that T +BΣF
1 + I(ΣF

1 ,Λ) ` ϕ(0, v) → ϕ(t, v).
Without loss of generality, we can assume ϕ(u, v) ≡ ∀x∃y ϕ0(u, x, y, v),

with ϕ0(u, x, y, v) ∈ ΣF
0 . Let g be a new unary function symbol and let T g

be the extension of T + IΣF ,g
0 obtained by adding the axiom:

∀x (f(x) ≤ g(x)).

Thus, g is a dominating (iterable nondecreasing) function over T g. By (†),
it follows that [T g, (ΠF ,g

2 ,Λ)–IR0]k ` ϕg, where ϕg is the following sentence:

∀u (∀x∃y ≤ g(x+ u+ v)ϕ0(u, x, y, v) → ∀x ∃y ϕ0(u+ 1, x, y, v)).

Claim 1. There exists a closed term τ ∈ Λ such that the theory T g +
∀x ∃y (gτ (x) = y) proves

∀u (∀x∃y ≤ g(x+u+v)ϕ0(u, x, y, v) → ∀x ∃y ≤ gτ (u+x+v)ϕ0(u+1, x, y, v))

Proof of Claim: We distinguish two cases:

Case 1: k = 0. Then T g ` ϕg. Hence, by Parikh’s theorem, there exists a
term s(u, x, v) of LF ,g such that T g proves

∀u (∀x∃y ≤ g(x+ u+ v)ϕ0(u, x, y, v) → ∀x∃y ≤ s(u, x, v)ϕ0(u+ 1, x, y, v)).

By Lemma 4, there is m ∈ ω such that T g ` s(u, x, v) < gm(u+x+v+σ(s)).
By induction on z it can be proved that

T g ` gu(x+ z) = y1 ∧ gu+z(x) = y2 → y1 ≤ y2

and, thus, if τ = m+ σ(s) then τ ∈ Λ and the result follows.

Case 2: k ≥ 1. Since [T g, (ΠF ,g
2 ,Λ)–IR0]k ` ϕg and ϕg is a ΠF ,g

2 –formula,

by induction hypothesis, T g + BΣF ,g
1 + I(ΣF ,g

1 ,Λ) ` ϕg and, by Lemma 8
T g + (ΠF ,g

2 ,Λ)–IR also proves ϕg. It follows from Proposition 3 that there
exist t1, . . . , tn ∈ Λ such that

T g + {∀x∃y (gtj(x) = y) : j = 1, . . . , n} ` ϕg.

Let r = t1+· · ·+tn. Then, by part (4) of Proposition 2, T g+∀x∃y (gr(x) = y)
extends T g + {gtj is total : j = 1, . . . , n}. Let h be a new unary function
symbol and let T h be the extension of T g obtained by adding to T g the axiom
∀x (gr(x) = h(x)). Then T h ` ϕg and T h is conservative over T g.

13



By Proposition 2, h is an iterable nondecreasing function over T h and
T h ` ∀x (g(x) ≤ h(x)). Therefore, h is a dominating function over T h and
T h extends IΣF ,g,h

0 . By Parikh’s theorem, there is a term s(u, x, v) of LF ,g,h

such that T h proves

∀x∃y ≤ g(x+ u+ v)ϕ0(u, x, y, v) → ∀x∃y ≤ s(u, x, v)ϕ0(u+ 1, x, y, v)

and, by Lemma 4, there is m ∈ ω such that

T h ` s(u, x, v) < hm(u+ x+ v + σ(s)).

Recall that T h ` hu(x + z) = y1 ∧ hu+z(x) = y2 → y1 ≤ y2 and, thus, if
σ0 = m+ σ(s) then σ0 ∈ Λ and T h + ∀x∃y (hσ0(x) = y) proves

∀x ∃y ≤ g(x+ u+ v)ϕ0(u, x, y, v) → ∀x∃y ≤ hτ (u+ x+ v)ϕ0(u+ 1, x, y, v).

Using part (7) of Proposition 2, we can prove, by ΣF ,g,h
0 –induction, that

T h ` hz(x) = y ↔ gr·z(x) = y.

As a consequence, T h + ∀x∃y (hσ0(x) = y) proves

∀x ∃y ≤ g(x+u+v)ϕ0(u, x, y, v) → ∀x∃y ≤ gr·σ0(u+x+v)ϕ0(u+1, x, y, v).

Hence, putting τ = r · σ0 ∈ Λ, the result follows, concluding the proof of
Claim.

Let A |= T + BΣF
1 + I(ΣF

1 ,Λ) and c ∈ A such that A |= ϕ(0, c). We will
show that A |= ϕ(t, c). Let ψ(x, y, c) ∈ ΣF

0 be the formula

∀z ≤ x∃w ≤ y (ϕ0(0, z, w, c) ∧ y = w + f(x)).

Then, bearing in mind that A |= BΣF
1 , it holds that A |= ∀x ∃y ψ(x, y, c)

and the formula ψ(x, y, c) ∧ ∀z < y¬ψ(x, z, c) defines a total nondecreasing
function H : A → A. Since Λ is exponentially closed, there exists t′ ∈ Λ such
that

[T, (ΣF
1 ,Λ)–IR] ` ∃y ≤ t′ (τ t = y).

On the other hand, there is a ΣF
0 formula, that we denote by Hz(x) = y,

defining the iteration of H and, since A |= I(ΣF
1 ,Λ), we have

A |= ∀x∃y (H t′(x) = y).

14



Let θ(u, v) be the following ΠF
1 formula:

u > t ∨ ∀x ∀y1

[
Hτu

(x+ u+ v) = y1 → ∃y ≤ y1 ϕ0(u, x, y, v)
]
.

Since A |= ∀x∃y (H(x) = y), by definition of θ(u, v) we have A |= θ(0, c).
Let us show that A |= ∀u (θ(u, v) → θ(u+ 1, v)).

Pick a, b ∈ A such that A |= a ≤ t∧θ(a, b). Then, the formula Hτa
(x) = y

defines a total nondecreasing function in A and we can use it to get an
expansion of A to a model Ag of T g such that

Ag |= ∀x∃y ≤ g(x+ a+ b)ϕ0(a, x, y, b).

By part (7) of Proposition 2, we can prove by ΣF ,g
0 –induction on z that

Ag |= ∀z ≤ τ [gz(x+ a+ b) = Hτa·z(x+ a+ b)]

In particular, Ag |= ∀x (gτ (x+a+b) = Hτa·τ (x+a+b)) and, as a consequence,
Ag |= T g + ∀x∃y (gτ (x) = y). Hence, by the Claim, we conclude that Ag |=
∀x ∃y ≤ gτ (x+ a+ b)ϕ0(a+ 1, x, y, b) and, therefore, A |= θ(a+ 1, b).

We have shown that A |= θ(0, c) ∧ ∀u (θ(u, c) → θ(u + 1, c)), and we
know that A |= I(ΠF

1 ,Λ) (because I(ΣF
1 ,Λ) ≡ I(ΠF

1 ,Λ)), so, A |= θ(t, c). In
particular, since

A |= θ(t, c) → ∀x∃y ≤ Hτ t

(t+ x+ c)ϕ0(t, x, y, c),

we conclude A |= ϕ(t, c).

Note that theorem 4.14 of [6] is now a consequence of Theorem 1.

Corollary 2. T + (ΠF
2 ,Λ)–IR0 is ΠF

2 –conservative over T + (ΠF
2 ,Λ)–IR.

Finally, as a direct corollary of Theorem 1, we get

Theorem 2. T + IΣF
1 extends T + (ΣF

2 ,Λ)–IR.

This result will be a key ingredient in the analysis of the p.t.c.f. of IΠ−
2

in the following section, for in a sense it states that over a sufficiently weak
base theory, applications of local Σ2–IR are reducible to primitive recursion.
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4. Provably Total Computable Functions of IΠ−
2

We are now in a position to give a proof that R(IΠ−
2 ) = PR. Firstly, we

need a version of Theorem 2 in the language of first–order Arithmetic.

Lemma 9. IΣ1 extends I∆0 + (Σ2,K2)–IR.

Proof. Let A |= IΣ1 and ϕ(x) ∈ Σ2 such that

(•) I∆0 + (Σ2,K2)–IR ` ϕ(0) ∧ ∀x (ϕ(x) → ϕ(x+ 1)).

We must show that for every δ(u) ∈ Σ−
2 ,

(?) A |= ∀x1 ∀x2(δ(x1) ∧ δ(x2) → x1 = x2) → ∀x (δ(x) → ϕ(x)).

By (•) there exist formulas ϕ1(x), . . . , ϕr(x) ∈ Σ2 and δ1(x), . . . , δr(x) ∈ Σ−
2

such that I∆0 plus the sentences

αj : ∀x1 ∀x2(δj(x1) ∧ δj(x2) → x1 = x2) → ∀x (δj(x) → ϕj(x))

(j = 1, . . . , r) proves ϕ(0) ∧ ∀x (ϕ(x) → ϕ(x + 1)). More precisely, for each
j ≤ r,

I∆0 +
∧

1≤i<j

αi ` ϕj(0) ∧ ∀x (ϕj(x) → ϕj(x+ 1)),

and I∆0 +
∧r

i=1 αi ` ϕ(0) ∧ ∀x (ϕ(x) → ϕ(x+ 1)).
Let E = {j : 1 ≤ j ≤ r, A |= ¬∃xδj(x)} and, for each j ∈ E, let

θj(x, y) ∈ Π0 such that ¬∃x δj(x) is equivalent to ∀x∃y θj(x, y). Let m be
the cardinal of E and let F = {f1, . . . , fm, f} be a set of new unary function
symbols. From the set of Σ0 formulas Γ = {θj(x, y) : j ∈ E}, we define a
theory T as in Lemma 5. Let L(A) denote the language obtained by adding
to L a constant symbol a, for each a ∈ A. Put T ′ = T + DΠ1(A), where
DΠ1(A) is the Π1–diagram of A. Let Λ be the set of closed terms of L(A)
containing only constants of the form a for a ∈ K2(A). Then A has a natural
expansion AF to the language LF ∪ L(A) such that AF |= T ′ + IΣF

1 . By
Theorem 2, AF |= T ′ + (ΣF

2 ,Λ)–IR. Given δ(x) ∈ Σ−
2 , we distinguish several

cases:
If A |= ¬∃x δ(x) then (?) obviously holds. On the other hand, if A |=

¬∀x1 ∀x2(δ(x1)∧δ(x2) → x1 = x2), since this is a Σ2–sentence and T ′ extends
DΠ1(A), T ′ ` ¬∀x1 ∀x2(δ(x1) ∧ δ(x2) → x1 = x2). So,

T ′ ` ∀x1 ∀x2(δ(x1) ∧ δ(x2) → x1 = x2) → ∀x (δ(x) → ϕ(x)).
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In that way (?) holds again. We must deal with a last case: A |= ∃!x δ(x).
Then there exists d ∈ K2(A) such that A |= δ(d) and d ∈ Λ. In order to

verify (?) it is enough to show that T ′ + (ΣF
2 ,Λ)–IR ` ϕ(d).

We prove, by induction on j, that for all j = 1, . . . , r, T ′ + (ΣF
2 ,Λ)–IR `

αj. Let j ≤ r, and assume that T ′ + (ΣF
2 ,Λ)–IR ` ∧

1≤i<j αi. Then

(•)j T ′ + (ΣF
2 ,Λ)–IR ` ϕj(0) ∧ ∀x (ϕj(x) → ϕj(x+ 1)).

If j ∈ E or A |= ¬∀x1 ∀x2(δj(x1) ∧ δj(x2) → x1 = x2) then, reasoning as
in previous cases, we conclude that T ′ ` αj. If A |= ∃!x δj(x), then there
exists b ∈ K2(A) such that A |= δj(b) and b ∈ Λ. Using (•)j we obtain
T ′ + (ΣF

2 ,Λ)–IR ` ϕj(b). Therefore, T ′ + (ΣF
2 ,Λ)–IR ` ∃x (δj(x) ∧ ϕj(x)),

and it follows that T ′ + (ΣF
2 ,Λ)–IR ` αj, as required.

We have proved that T ′ + (ΣF
2 ,Λ)–IR ` ∧r

j=1 αj and so

T ′ + (ΣF
2 ,Λ)–IR ` ϕ(0) ∧ ∀x (ϕ(x) → ϕ(x+ 1)).

Thus, T ′ + (ΣF
2 ,Λ)–IR ` ϕ(d) and, as a consequence, (?) holds.

Next theorem extends a previous conservation result obtained in [4] and,
as a direct corollary, yields the characterization of the p.t.c.f. of IΠ−

2 .

Theorem 3. IΠ−
2 is Π3–conservative over IΣ1.

Proof. Let θ be a Π3 sentence provable in IΠ−
2 . Then I(Σ2,K2) ` θ by

Lemma 1 and IΣ−
1 +(Σ2,K2)–IR ` θ by Proposition 1. We need the following

fact:

Claim 2. IΣ−
1 + (Σ2,K2)–IR ≡ IΣ−

1 + (I∆0 + (Σ2,K2)–IR).

Proof of Claim: Each axiom of IΣ−
1 is a Σ3 sentence, so it is enough to

prove that for every σ0(u) ∈ Π2,

[I∆0, (Σ2,K2)–IR] + ∃uσ0(u) extends [I∆0 + ∃uσ0(u), (Σ2,K2)–IR].

Assume I∆0 + ∃uσ0(u) ` ϕ(0) ∧ ∀x (ϕ(x) → ϕ(x + 1)), where ϕ(x) ∈ Σ2,
and let ψ(x, u) ∈ Σ2 be σ0(u) → ϕ(x). Then, I∆0 proves

ψ(0, u) ∧ ∀x (ψ(x, u) → ψ(x+ 1, u))
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and, therefore, [I∆0, (Σ2,K2)–IR] ` Uδ → ∀x (δ(x) → ψ(x, u)), where δ(x) ∈
Σ−

2 and Uδ denotes the sentence ∀x1 ∀x2(δ(x1) ∧ δ(x2) → x1 = x2). Then
[I∆0, (Σ2,K2)–IR] also proves

∃uσ0(u) → (Uδ → ∀x (δ(x) → ϕ(x)))

and so [I∆0, (Σ2,K2)–IR] + ∃uσ0(u) ` Uδ → ∀x (δ(x) → ϕ(x)), as required.

It follows from Claim and Lemma 9 that IΣ1 implies IΣ−
1 + (Σ2,K2)–IR

and, therefore, IΣ1 ` θ.
Corollary 3. The class of provably total computable functions of IΠ−

2 is the
class of primitive recursive functions.

5. Relativization and Concluding Remarks

It is natural to ask ourselves whether Theorem 3 is also true for IΠ−
n+1

and IΣn for an arbitrary n ≥ 1. We have already seen that the reduction of
IΠ−

n+1 to IΣ−
n +(Σn+1,Kn+1)–IR works for all n and it is immediate to check

that the claim in the proof of Theorem 3 can be generalized too. Thus, the
key point is to prove that Lemma 9 also holds for n > 1, i.e. to prove that
IΣn implies IΣn−1+(Σn+1,Kn+1)–IR for all n ≥ 1. Our proof of Lemma 9 for
n = 1 leans upon Theorem 2 reducing (ΣF

2 ,Λ)–IR to IΣF
1 . Interestingly, the

result for n > 1 can also be derived from Theorem 2 by using some standard
relativization techniques. Building on previous work of Kaye [9], in [7] it is
shown that, for each n ≥ 1, there is a Πn–formula y = Kn(x) satisfying that

(a) IΣn ≡ I∆0 + ∀x∃!y (y = Kn(x)),

(b) y = Kn(x) is iterable and non decreasing over IΣn, and

(c) initial segments of A |= IΣn closed under function y = Kn(x) are Πn–
elementary substructures of A.

Using functions Kn one can reformulate IΣn as a ΠF
1 –theory in an ex-

tended language L∪ {g1, . . . , gn} so that Σn+m formulas of L correspond to
ΣF

m formulas of the extended language (a similar treatment of relativization
was also developed by Z. Ratajczyk in [11] via the notion of a conditionally
absolute formula.)

Lemma 10. Let n ≥ 1 and let F = {g1, . . . , gn}. There is a ΠF
1 –theory T n

satisfying that
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1. T n extends IΣn,

2. every model of IΣn has a (canonical) extension to a model of T n,

3. every ΣF
m formula is equivalent in T n to a Σn+m–formula of L, and

4. every Σn+m formula is equivalent in T n to a ΣF
m–formula.

Proof. (Sketch)

n = 1: Put T 1 ≡ IΣF
0 + (y = g1(x) → y = K1(x)).

Conditions (1), (2) and (3) are easy to verify, for we know that allowing
monotone functions instead of only variables as the bounds in ΣF

0 formulas
does not increase the strength of ΣF

0 –induction (see, e.g. proposition V.1.3
of [8]). As for (4), since IΣ1 contains the strong collection scheme for Π0–
formulas

∀z ∃u∀x ≤ z (∃y ϕ(x, y) → ∃y ≤ uϕ(x, y)),

by a Parikh–like argument (available thanks to condiction (c) above) it fol-
lows that for each θ(~x, y) ∈ Π0 there is some k ∈ ω such that

IΣ1 ` ∃y θ(~x, y) ↔ ∃y ≤ Kk
1(x1 + . . .+ xp) θ(~x, y),

and the result follows.

n→ n+ 1: Let y = K′n+1(x) denote a ΠF
1 –formula equivalent in T n to y =

Kn+1(x) and put T n+1 ≡ T n + (y = gn+1(x) → y = K′n+1(x)).

Equipped with this result, it is not hard to check that everything in
the proof of Lemma 9 relativizes. Indeed, let n ≥ 2 and suppose A is a
model of IΣn and ϕ(x) is in Σn+1. As in Lemma 9 let δ1(x), . . . , δr(x) be
the Σ−

n+1–formulas occurring in a proof of ϕ(0) ∧ ∀x (ϕ(x) → ϕ(x + 1)) in
IΣn−1 + (Σn+1,Kn+1)–IR. Let E = {j : 1 ≤ j ≤ r, A |= ¬∃xδj(x)} and
let F = {f1, . . . , fm, g1, . . . , gn−1, f}, where m is the cardinal of E. For
each j ∈ E, let θ′j(x, y) ∈ ΠF

0 such that ¬∃x δj(x) is equivalent in T n−1 to
∀x∃y θj(x, y). From this set of ΣF

0 formulas define a ΠF
1 –theory T extending

T n−1 as in Lemma 5. Finally, put T ′ ≡ T + DΠg
1
(A), where DΠg

1
(A) is the

Π1–diagram of A in the language of T n−1, and take Λ = Kn+1(A). Then,
A |= T ′+ IΣF

1 . So, applying Theorem 2 and reasoning as in Lemma 9 we get
A |= IΣn−1 + (Σn+1,Kn+1)–IR, as desired.

Thus, we have

Theorem 4. For every n ≥ 1, IΠ−
n+1 is Πn+2–conservative over IΣn.
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A straightforward consequence of this result is a characterization of the
class of p.t.c.f. of IΠ−

n+1 in terms of the extended Grzegorczyk Hierarchy
{Eα : α < ε0}, see [12] for precise definitions.

Corollary 4. For every n ≥ 1, R(IΠ−
n+1) = R(IΣn) = Eωn, where ω0 = 1,

ωn+1 = ωωn.

An important ingredient in this analysis of the class of Πn+2–consequences
of IΠ−

n+1 is the study of the closure a weak theory, such as IΣ−
n (or even

I∆0), under (Σn+1,Kn+1)–IR. This analysis can be extended to stronger
base theories providing us with similar conservation results for theories of
the form T + IΠ−

n+1, where T is a Πn+2–axiomatizable extension IΣn. In the
following proposition we obtain this kind of conservation results when T is
closed under Σn+1–collection rule:

Σn+1–CR :
∀x∃y ϕ(x, y)

∀u∃v ∀x ≤ u∃y ≤ v ϕ(x, y)

for ϕ(x, y) ∈ Σn+1.

Proposition 4. Let T be a Πn+2–axiomatizable extension of IΣn, closed
under Σn+1–CR. Then:

1. T + IΠ−
n+1 is Πn+2–conservative over [T,Σn+1–IR]

2. T + IΠ−
n+1 is Πn+1–conservative over T + Πn+1–IR.

Proof. These results were proved for n = 0 in [6]. The proof for n ≥ 1 is
very similar, modulo relativization. Here we discuss the proof for n = 1.

(1) First of all, let us recall that, over IΣ1, IΠ
−
2 ≡ I(Σ−

2 ,K2) and that, by
Proposition 1, T + I(Σ2,K2) is Π3–conservative over T + (Σ2,K2)–IR. So it
is enough to show that [T,Σ2–IR] extends this last theory. But observe that

(•) T + (Σ2,K2)–IR ≡ [T, (Σ2,K2)–IR].

This can be obtained from Lemma 6, by using the relativization device that
we have developed (see the proof of lemma 3.7 in [6] for details). By (•),
[T,Σ2–IR] obviously extends T + (Σ2,K2)–IR and the result follows.

(2) By part (1) it suffices to show that [T,Σ2–IR] is Π2–conservative over
T + Π2–IR. By proposition 2.1 of [2], [T,Σ2–IR] is equivalent to [T,Π2–IR0]
and it is straightforward to show (using Lemma 3) that every Σ2–closed
model of T + Π2–IR is a model of [T,Π2–IR0]. By Lemma 2 it follows that
[T,Π2–IR0] is Π2–conservative over T + Π2–IR, as required.
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The interest of Proposition 4 is twofold. On the one hand, part (1)
provides a generalization of a similar result obtained in [10]:

Theorem 5 (Kaye–Paris–Dimitracopoulos).
IΠ−

1 is Π2–conservative over I∆0 + exp (≡ [I∆0,Σ1–IR]).

We can think of this result as a counterpart of Theorem 4 for IΠ−
1 . How-

ever, a generalization of Theorem 5 for every n ≥ 1 must take into considera-
tion two different scenarios, since I∆0 ≡ I∆−

0 , but IΣn is a proper extension
of IΣ−

n . Together Proposition 4 and Theorem 4 show that both generaliza-
tions are correct. For T = IΣn, Proposition 4 shows that Theorem 5 also
holds for every n ≥ 1 (essentially, this result was obtained by Kaye in [9]):

Corollary 5. IΣn + IΠ−
n+1 is Πn+2–conservative over [IΣn,Σn+1–IR].

In turn, Theorem 4 shows that this corollary also holds for IΣ−
n , since for

every n ≥ 1, IΣn ≡ [IΣ−
n ,Σn+1–IR] and, obviously IΠ−

n+1 extends IΣ−
n .

On the other hand, Proposition 4 reduces the question about the class of
p.t.c.f. of IΣ1 + IΠ−

2 to the study of the closure of IΣ1 under Π2–IR. In a
similar vein, by combining parts (1) and (2), we obtain that, for every k ≥ 1,

[IΣ1,Σ2–IR]k+1 is Π2–conservative over [IΣ1,Σ2–IR]k + Π2–IR.

These reductions suggest that local induction can be a useful tool in obtaining
new proofs of some of the already known characterizations of classes of p.t.c.f.
in terms of the extended Grzegorczyk hierarchy; for instance, R(IΣ1 + IΠ−

2 )
(studied by Beklemishev in [4]), R([IΣ1,Σ2–IR]k) or R(IΣ2) and, more gen-
erally, R(IΣn + IΠ−

n+1) and R(IΣn). This points out natural extensions of
the results and methods we have introduced in this paper.
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