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Abstract. By a theorem of R. Kaye, J. Paris and C. Dimitracopoulos, the class
of the Πn+1–sentences true in the standard model is the only (up to deductive
equivalence) consistent Πn+1–theory which extends the scheme of induction for
parameter free Πn+1–formulas. Motivated by this result, we present a systematic
study of extensions of bounded quantifier complexity of fragments of first–order
Peano Arithmetic. Here, we improve that result and show that this property de-
scribes a general phenomenon valid for parameter free schemes. As a consequence,
we obtain results on the quantifier complexity, (non)finite axiomatizability and
relative strength of schemes for ∆n+1–formulas.

1. Introduction

In this paper we shall deal with parameter free fragments of Arithmetic, that
is, those subsystems of first–order Peano Arithmetic obtained by restricting some
axiom scheme (induction, minimization and collection) to a class of formulas without
parameters. A central paper on this topic is [15], where R. Kaye, J. Paris and C.
Dimitracopoulos introduced parameter free fragments for Σn and Πn formulas and
proved their basic properties. This work was further developed by Kaye [13], Z.
Adamowicz and T. Bigorajska [1, 5], L. Beklemishev [3, 4], and others, pointing out
tight relationships among parameter free schemes, classification of provably total
recursive functions and subsystems of Arithmetic described in terms of inference
rules or reflection principles. All these works provide evidence that the behaviour
of parameter free fragments is very different from their parameter counterparts.

The aim of this paper is to investigate one of those differences: the existence
of extensions with small quantifier complexity. In [19] A. Wilkie proved that the
scheme of induction for parameter free universal formulas I∀−1 does not have a uni-
versal axiomatization but does have a universal extension: Th∀1(N ) (the theory
of the ∀1–sentences true in the standard model of Arithmetic). To establish this
result it is shown that Th∀1(N ) is the only (up to deductive equivalence) consistent
∀1–theory which extends I∀−1 and Wilkie asked if the same was true for I∀−n+1 and
Th∀n+1(N ) for n ≥ 1. In his thesis [13] Kaye gave a positive answer to Wilkie’s
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question. By Kaye’s analysis of Matiyasevič’s theorem on the diophantine represen-
tation of recursively enumerable predicates, it follows that, for n ≥ 1, Matiyasevič’s
theorem is provable both in Th∀n+1(N ) and in I∀−n+1. So, for n ≥ 1, Th∀n+1(N ) and
ThΠn+1(N ) are deductively equivalent and I∀−n+1 is equivalent to the parameter free
Πn+1–induction scheme IΠ−n+1. Then Wilkie’s question is answered by proving that
ThΠn+1(N ) is the only (up to deductive equivalence) consistent Πn+1–theory which
implies IΠ−n+1. The fragment IΠ−n+1 is Σn+2–axiomatized but not Πn+2. There-
fore, for each n, IΠ−n+1 has consistent extensions of quantifier complexity less than
Σn+2 (the one given by its natural formulation), but necessarily of big descriptive
complexity (such extensions correspond to Π0

n+1–complete sets).
Our purpose is to show that this result is not a particular property of IΠ−n+1, but

actually a general phenomenon valid for parameter free schemes. More concretely,
we deal with the following problem:

Given a fragment of Arithmetic, T,

• determine the least level Γ in the classical Σn/Πn Arithmetic Hierarchy such
that there exists some consistent and Γ–axiomatized theory which extends
T,

• in the case that T has consistent extensions of quantifier complexity less
than that of its axiomatization, determine the descriptive complexity of such
extensions.

In order to describe in a simple way the results obtained in this work, we intro-
duce the following measures for the complexity of extensions of T (where ThΠm(T)
denotes the class of the Πm–sentences provable in T):

(1) (Syntactical complexity) We say that T has Γ–extensions if there is some
consistent and Γ–axiomatized theory which implies T.

(2) (Descriptive complexity) Let k,m ≥ 1. Assume that T has Πk–extensions.
(a) We say that T is of type k → m if for each Πk–extension of T, T′, it

holds that ThΠm(T′) = ThΠm(N ).
(b) We say that T is of type k w−→ m if for each Πk–extension of T, T′, it

holds that ThΠm(N ) is recursive in ThΠm(T′).

Notice that we can reformulate Kaye–Paris–Dimitracopoulos’ result on IΠ−n+1 by
saying that this theory is of type n+ 1 → n+ 1.

Our main motivation for a systematic analysis of properties of extensions of frag-
ments of Arithmetic is to use these properties in order to obtain (usual) results on
fragments of Arithmetic such as quantifier complexity, (non)finite axiomatizability
or relative strength. For instance, let us observe that for a theory T to be of type
k → m is a strong way of saying T is not finitely axiomatized. Moreover, the in-
vestigation of these properties of fragments of Arithmetic naturally leads to new
conditions to solve some open problems in this area.

In [10] some previous work in this direction was developed in connection with (the
parameter free version of) Paris–Friedman’s problem on the equivalence between the
schemes of induction and minimization for ∆n+1–formulas. The present paper can
be considered to be an extension of [10]. We improve some results and give partial
answers to some open problems there. Besides we simplify some proofs, especially
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for results on ∆n+1–induction scheme, both for its parameter free version, I∆−
n+1,

and for its uniform version, UI∆n+1 (see section 2 for a detailed formulation of
these fragments). Proofs given in [10] for determining the quantifier complexity and
(non)finite axiomatizability of theories I∆−

n+1, UI∆n+1 make use of the Arithme-
tized Completeness Theorem. On the other hand, as remarked by the anonymous
referee, some results obtained in this paper can be also proved using reflection prin-
ciples (see [3, 4, 16, 20]). Here we offer alternative proofs which employ a basic
technique in the study of fragments of Arithmetic; namely, the construction of sub-
models using definable elements.

To close this section we describe and briefly discuss the main results obtained
in this paper. In section 3 we refine basic results on models constructed using
definable elements. In section 4 we use those results to develop a systematic study
of the syntactical and descriptive complexity of extensions of fragments. Diagrams in
Theorem 1.1 summarize our main results on extensions of fragments (let us remark
that

∨
n denotes the class of formulas {ϕ ∨ θ : ϕ ∈ Σn, θ ∈ Πn} and ∪n denotes the

class Σn ∪Πn).

Theorem 1.1.

• (Syntactical complexity):

Theories IΣn+1,BΣn+1

I∆n+1

IΣ−n+1,BΣ−n+1
UI∆n+1

IΠ−n+1

L∆−
n+1, I∆

−
n+1

Quantifier complexity Πn+3
∨

n+2 Σn+2

Γ–extensions
Πn+3

but not(1)Σn+3

Πn+2

but not(2)Σn+2

Πn+1

but not(1)Σn+1

(1) n = 0, for BΣ1, I∆1, L∆−
1 and I∆−

1 , extensions consistent with exp,
(2) n = 0, for BΣ−1 and UI∆1, sound extensions.

• (Descriptive complexity):

Theories IΣ−n+1 BΣ−n+1 + exp
IΠ−n+1

L∆−
n+1 + exp

I∆−
n+1 + exp

L∆−
1

I∆−
1

type n+ 2 → n+ 2 n+ 2 w−→ n+ 2 n+ 2 → n+ 1 1 w−→ 1

Previous theorem shows that parameter free fragments do have extensions of
quantifier complexity less than that of their axiomatizations (but, necessarily, of big
descriptive complexity), while fragments with parameters do not. This divergent
behaviour between schemes with and without parameters can be explained from the
study of fragments for ∆n+1(N )–formulas (that is, the class of the Σn+1–formulas
equivalent in the standard model to some Πn+1–formula). For instance, induction
for ∆n+1(N )–formulas, I∆n+1(N ), and its parameter free version, I∆n+1(N )−, have
extensions of less syntactical complexity but of big descriptive complexity. But
fragments IΣ−n+1 and I∆n+1(N )− are equivalent, while IΣn+1 is strictly stronger
than I∆n+1(N ) (for more on ∆n+1(N )–schemes, see [7]).

Notice that, for n ≥ 1, all the results on the syntactical complexity of extensions
are best possible. For n = 0, it remains to find out if the additional conditions
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(1) and (2) can be omitted. As will be noticed in section 4 (see Corollary 4.5 and
remarks following Questions 3 and 4), this question is related to an open problem
raised by Wilkie and Paris [21] asking if every model of bounded induction which
is not closed under exponentiation is a model of the Σ1–collection scheme. Results
on descriptive complexity are also best possible for n ≥ 1 (except for the collection
scheme). Optimal results for n = 0 would also yield a solution to Wilkie–Paris’
Problem.

Finally, in section 5, from the results in Theorem 1.1, we obtain the following
properties on the schemes of induction and minimization for ∆n+1–formulas.

Theorem 1.2.

(1) I∆−
n+1 and L∆−

n+1 are Σn+2–axiomatized, but not Πn+2.
(2) UI∆n+1 is

∨
n+2–axiomatized, but not ∪n+2.

(3) I∆−
n+1, L∆−

n+1 and UI∆n+1 are not finitely axiomatized.
(4) I∆n+1 is strictly stronger than UI∆n+1 and UI∆n+1 is strictly stronger

than I∆−
n+1.

(5) There is no recursively enumerable set of true Πn+2–sentences which implies
I∆−

n+1.

Some parts of Theorem 1.2 were previously established by Beklemishev [4] by means
of proof–theoretical methods. Nevertheless, part 5 above answers problem 4 posed
in [4].

Through this paper we also raise some questions which allow one to obtain
stronger forms of some of the proved results and we point out relationships between
these questions and other open problems in the field of Fragments of Arithmetic.

2. Preliminaries

In this section we state some notation and results on fragments of Arithmetics
that will be used through this paper (for general notation and references see [12, 14]).

We work in the usual language of first order Arithmetic, L = {0, 1,+, ·, <}. We
denote by N the standard model for L, that is, the model with domain consisting
of the set of natural numbers, ω, where the nonlogical symbols have the usual in-
terpretation. For T,T′ theories, we shall write: T =⇒ T′, if T is an extension of
T′; T ⇐⇒ T′, if T and T′ are deductively equivalent; and T |=⇒ T′, if T is a
proper extension of T′. If N |= T, we say that T is a sound theory. We denote
by 〈x1, x2〉 = y Cantor’s pairing function and by (y)0 = x and (y)1 = x its lateral
inverse functions; that is, 〈(y)0, (y)1〉 = y. By xy = z we denote a bounded formula
which defines, in the standard model, the exponential function; and exp is the Π2

sentence ∀x∀y ∃z (xy = z), see [12] for details.
We recall the usual formulations of the fragments considered in this paper. The

induction and minimization axioms for a formula ϕ(x,~v) of L are, respectively,

Iϕ( v) ≡ ϕ(0, ~v) ∧ ∀x [ϕ(x,~v) → ϕ(x+ 1, ~v)] → ∀xϕ(x,~v) ,
Lϕ( v) ≡ ∃xϕ(x,~v) → ∃x (ϕ(x,~v) ∧ ∀y < x¬ϕ(y,~v)).
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The collection axiom for a formula ϕ(x, y,~v) of L is

Bϕ(z, v) ≡ ∀x ≤ z ∃y ϕ(x, y,~v) → ∃u∀x ≤ z ∃y ≤ uϕ(x, y,~v).

Let Γ be a class of formulas of L. The fragments of induction, minimization and
collection for Γ–formulas are, respectively, the following theories: IΓ = P− + {Iϕ :
ϕ ∈ Γ}, LΓ = P− + {Lϕ : ϕ ∈ Γ} and BΓ = I∆0 + {Bϕ : ϕ ∈ Γ}; where P−
denotes a finite set of Π1 axioms for the nonnegative part of a commutative discretely
ordered ring and ∆0 is the class of the bounded formulas of L.
Now we consider parameter free fragments. We shall write ϕ(x1, . . . , xn) ∈ Γ− if
ϕ ∈ Γ and x1, . . . , xn are all variables which occur free in ϕ. Then IΓ− and LΓ− are
defined as before but restricting the corresponding scheme to formulas ϕ(x) ∈ Γ−.
We consider two versions of the parameter free collection scheme: BsΓ− is the
fragment given by I∆0 + {Bϕ : ϕ(x, y) ∈ Γ−} and BΓ− is I∆0 together with the
scheme

∀x∃y ϕ(x, y) → ∀z ∃u∀x ≤ z ∃y ≤ uϕ(x, y),
for all ϕ(x, y) ∈ Γ−. Fragment BsΓ− was first considered in the proof of Proposition
1.7 in [15]. There it is proved that IΣ−n+1 |=⇒ BsΣ−n+1 =⇒ BΣ−n+1 and it is posed
as an open problem if both formulations of the parameter free collection scheme are
equivalent.

Problem 1. BΣ−n+1 =⇒ BsΣ−n+1?

We need to consider this (apparently) strong formulation mainly due to the following
result.

Lemma 2.1. Let ϕ(x) ∈ Σ−n+1. Then ∀x ≤ z ϕ(x) ∈ Σ−n+1 in BsΣ−n+1.

Fragments for ∆n+1–formulas are obtained as follows. The theory I∆n+1 is P−
together with

{∀x (ϕ(x, v) ↔ θ(x, v)) → Iϕ( v) : ϕ ∈ Σn+1, θ ∈ Πn+1}.
If parameters in formulas ϕ(x) and θ(x) are not allowed, then we obtain I∆−

n+1.
Moreover, Kaye [13] introduced an intermediate case: parameters are allowed but
they are uniformly distributed. Namely, UI∆n+1 is P− together with

{∀~v ∀x (ϕ(x,~v) ↔ θ(x,~v)) → ∀~v Iϕ( v) : ϕ ∈ Σn+1, θ ∈ Πn+1}.
Similarly, theories L∆n+1, L∆−

n+1 and UL∆n+1 are defined.
For the basic results on the considered fragments we refer the reader to [12, 13, 15].

Nevertheless, we emphasize some properties on ∆n+1–schemes. The relationships
between ∆n+1–induction and ∆n+1–minimization schemes are not completely de-
termined. In a preprint (about 1985) H. Friedman claimed L∆n+1 and I∆n+1 to
be equivalent; but in [6] that equivalence appears as an open problem credited to J.
Paris.
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• (Paris–Friedman’s Conjecture) I∆n+1 ⇐⇒ L∆n+1.
The usual argument for the equivalence of IΣn+1 and LΠn+1 allows one to show that
the ∆n+1–minimization scheme implies the ∆n+1–induction scheme (for each one of
the considered versions), but this argument does not work to prove the converse.
Even so, recently T. Slaman [18] has obtained a partial answer to this problem.

Theorem 2.2. (Slaman’s Theorem) I∆n+1 + exp ⇐⇒ BΣn+1 + exp.

It is well known that L∆n+1 ⇐⇒ BΣn+1 (it holds that UL∆n+1 ⇐⇒ BΣ−n+1 as
well) and, for n ≥ 1, I∆n+1 =⇒ IΣn =⇒ exp; so, by Slaman’s Theorem, it follows
that, for n ≥ 1, I∆n+1 and L∆n+1 are indeed equivalent. However, the case n = 0
is still an open problem.

Problem 2. I∆1 =⇒ L∆1?

This seems to be a hard question since the proof of Slaman’s Theorem heavily
depends on the use of the exponential function to handle a (suitable) coding of
sequences. Besides it is related to the following open question raised by Wilkie and
Paris [21].

Problem 3. I∆0 + ¬exp =⇒ BΣ1?

Problem 3 in turn is related to a central open question in the field of Fragments of
Arithmetic, the End Extension Problem asking if every countable model of BΣ1 has
a proper end extension to a model of I∆0. In [21] it is shown that one of Problem
3 or the End Extension Problem must fail. We also have the following result.

Corollary 2.3. Suppose that Problem 3 has an affirmative answer, that is, I∆0 +
¬exp =⇒ BΣ1. Then:

(1) I∆1 ⇐⇒ L∆1.
(2) I∆0 is finitely axiomatized if and only if BΣ1 is finitely axiomatized.

Proof. (1): By Slaman’s Theorem and the hypothesis, it follows that both I∆1+exp
and I∆1 + ¬exp are extensions of L∆1. So, I∆1 =⇒ L∆1.

(2): Assume that there is a sentence ϕ axiomatizing I∆0. Let θ be a sentence
axiomatizing BΣ1 + exp. Then, it holds that BΣ1 ⇐⇒ (ϕ ∧ ¬exp) ∨ θ; so BΣ1 is
finitely axiomatized. The proof of the converse is similar. ¤

Slaman’s proof also depends on the presence of parameters in the ∆n+1–schemes; so,
it does not provide a direct answer to uniform and parameter free versions of Paris-
Friedman’s Conjecture. Nonetheless, from Slaman’s Theorem and a theorem due to
Beklemishev [4] stating that I∆1 + exp is Σ3–conservative over UI∆1 + exp, we
can deduce a partial answer to the Uniform Conjecture for n = 0. In [4] the author
claims to be routine to prove the analog of the previous conservativeness result for
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schemes I∆n+1, UI∆n+1 for n ≥ 1. In [9] we have obtained an independent model-
theoretic proof of that fact: for all n ∈ ω, I∆n+1 is a Σn+3–conservative extension
of UI∆n+1. So, it holds

Theorem 2.4. UI∆n+1 + exp ⇐⇒ UL∆n+1 + exp.

Therefore, it only remains to answer parameter free Paris–Friedman’s Conjecture
and its uniform version for n = 0:

Problem 4.
(1) I∆−

n+1 =⇒ L∆−
n+1?

(2) UI∆−
1 =⇒ UL∆−

1 ?

Obviously, Theorem 2.4 reduces, for n ≥ 1, the study of the fragment UI∆n+1

to BΣ−n+1. Nevertheless, in this paper we shall provide altenative proofs of some
properties of UI∆n+1 that do not use Theorem 2.4, and also work for n = 0 without
using exponential, see Lemma 3.4, Proposition 4.18 and Theorem 5.3.

Finally, we recall some results on structures constructed using definable elements.
Let A be a model and p ∈ A. Then Kn(A, p) is the submodel of A with domain {a ∈
A : a is Σn–definable in (A, p)} and In(A, p) is the initial segment of A determined
by Kn(A, p), that is, {b ∈ A : there is a ∈ Kn(A, p) such that b ≤ a}. If parameter
p is not used, we shall write Kn(A) and In(A), respectively.

Proposition 2.5. ([15, 17]) Let A |= IΣn and p ∈ A.

(1) Kn+1(A, p) ≺n+1 A and Kn+1(A, p) |= IΣn. Furthermore, if parameter p is
not used, A |= IΣ−n suffices.

(2) Kn+1(A, p) ≺n+1 In+1(A, p) ≺n A.
(3) If In+1(A, p) 6= A, then In+1(A, p) |= BΣn+1.
(4) If A |= BΣn+1, then In+1(A, p) |= ThΠn+2(A).

It is well known that submodels constructed using Σn+1–definable elements pro-
vide examples of models in which the Σn+1–induction or the Σn+1–collection scheme
fails.

Theorem 2.6. (Paris–Kirby, [17]) Let A |= IΣn+1 and p ∈ A nonstandard. Then
Kn+1(A, p) 6|= BΣn+1 and In+1(A, p) 6|= IΣn+1.

In [15] it is proved that if parameter p is not used, then Kn+1(A) |= BΣn+1 if and
only if Kn+1(A) |= BΣ−n+1, and In+1(A) |= IΣn+1 if and only if In+1(A) |= IΠ−n+1;
thus Theorem 2.6 is strengthened as follows.

Theorem 2.7. ([15]) Let A |= IΣn+1 such that Kn+1(A) is nonstandard. Then
Kn+1(A) 6|= BΣ−n+1 and In+1(A) 6|= IΠ−n+1.
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Notice that previous theorem is no longer true when an arbitrary parameter p is al-
lowed. To see this, let us consider A |= IΣn+1 +ThΠn+2(N ) and p ∈ A nonstandard.
Then Kn+1(A, p) and In+1(A, p) are models of ThΠn+2(N ); and, consequently, both
structures satisfy IΣ−n+1.

3. Σn+1–definable elements

The main tool for the study of fragments of Arithmetic developed in this paper is
the construction of submodels using definable elements. It will be important to es-
tablish the usual properties of these structures under sufficiently general conditions.
Concretely, the aim of this section is to refine Theorems 2.6 and 2.7 in two ways:

(a) weakening the main hypothesis on A, A |= IΣn+1; and
(b) characterizing parameters p ∈ A such that Kn+1(A, p) 6|= BΣ−n+1.

To this end, following ideas in [10, 15], we consider classes of Πn+1–definable and
Πn+1–minimal elements.

(–) We say that a ∈ A is Πk–definable in (A, p) if there exists ϕ(x, v) ∈ Πk such
that

A |= ϕ(a, p) ∧ ∀x (ϕ(x, p) → x = a).
(–) We say that a ∈ A is Πk–minimal in (A, p) if there exists ϕ(x, v) ∈ Πk such

that

A |= ϕ(a, p) ∧ ∀x < a¬ϕ(x, p),
that is, A |= a = (µx) (ϕ(x, p)).

We shall denote by Dk(A, p) and Mk(A, p), respectively, the classes of Πk–definable
and Πk–minimal elements in (A, p). If no parameters are used, we shall write Dk(A)
and Mk(A). If A |= BΣk+1 then Dk(A, p) and Mk(A, p) are domains of substruc-
tures of A, but they are not, in general, models of very weak fragments of Arithmetic.
In fact, if they are nonstandard, then they are not closed under Cantor’s lateral in-
verse functions; so, they are not models of Open induction.

Our starting point is the study of the distribution of definable elements. We write
A ⊆e B if A is an initial segment of B, and A ⊆c B if A is a cofinal subclass of B.

Proposition 3.1. Let A |= IΣn+1 and p ∈ A. Then

Kn+1(A, p)eDn+1(A, p) ⊆c Mn+1(A, p) ⊆c Kn+2(A, p).
Furthermore, if parameter p is not used, A |= IΣ−n+1 suffices.

Proof. (Kn+1(A, p) ⊆e Dn+1(A, p)): Let a ∈ Kn+1(A, p) and ϕ(x, v) ∈ Σn+1 a for-
mula defining a in (A, p). Then ∀z (ϕ(z, v) → x = z) is a Πn+1 formula that defines a
in (A, p); so, a ∈ Dn+1(A, p). Let b ∈ Dn+1(A, p) such that b ≤ a and ψ(x, v) ∈ Πn+1

a formula defining b in (A, p). Let δ(x, v) be the formula

∃z (ϕ(z, v) ∧ ∀y ≤ z (ψ(y, v) → y = x)).
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Then δ(x, v) ∈ Σn+1 in BΣn+1 and, as b ≤ a, A |= δ(b, p) ∧ ∀x (δ(x, p) → x = b).
So, b ∈ Kn+1(A, p).

(Dn+1(A, p) ⊆c Mn+1(A, p)): The proof of this part essentially appears in the proof
of Proposition 1.13 in [15]. Let a ∈ Dn+1(A, p) and ϕ(x, v) ∈ Πn+1 a formula
defining a in (A, p). Then A |= a = (µx)(ϕ(x, p)); so, a ∈ Mn+1(A, p). Now let
b ∈ Mn+1(A, p) and ψ(x, y, v) ∈ Σn such that A |= b = (µx)(∀y ψ(x, y, p)). Since
A |= BΣn+1,

A |= ∀y ψ(b, y, p) ∧ ∃u∀x < b ∃y ≤ u¬ψ(x, y, p).

So, as A |= LΠn(⇐⇒ IΣn), there exists c ∈ A such that

A |= c = (µu)(∀x < b∃y ≤ u¬ψ(x, y, p));

that is, c is the maximum of the function ¬ψ(x, y, p) when x < b. Let d = 〈b, c〉 and
let θ(u, v) be the formula

∀y ψ((u)0, y, v) ∧ ∀x < (u)0 ∃y ≤ (u)1 ¬ψ(x, y, v) ∧ ∃x < (u)0 ∀y < (u)1 ψ(x, y, v).

Since θ(u, v) ∈ Πn+1 in BΣn+1 and A |= θ(d, p) ∧ ∀u (θ(u, p) → u = d), d ∈
Dn+1(A, p). Hence, as b = (d)0 ≤ d, this proves that Dn+1(A, p) is cofinal in
Mn+1(A, p).

(Mn+1(A, p) ⊆c Kn+2(A, p)): Let a ∈ Mn+1(A, p), ϕ(x, v) ∈ Πn+1 such that A |=
a = (µx)(ϕ(x, p)) and θ(x, v) ≡ ϕ(x, v) ∧ ∀z < x¬ϕ(z, v). Then θ(x, v) ∈ Σn+2

in BΣn+1 and A |= θ(a, p) ∧ ∀x (θ(x, p) → x = a). So, a ∈ Kn+2(A, p). Now let
a ∈ Kn+2(A, p) and ϕ(x, y, v) ∈ Πn+1 such that ∃y ϕ(x, y, v) defines a in (A, p). So,
A |= ∃uϕ((u)0, (u)1, p). Since A |= LΠn+1, there exists b ∈ A such that

A |= b = (µu)(ϕ((u)0, (u)1, p)).

So, b ∈Mn+1(A, p). Since a = (b)0 < b, Mn+1(A, p) is cofinal in Kn+2(A, p). ¤

Nota 3.2.

(1) Notice that the hypothesis A |= IΣn+1 is only needed to establish that
Mn+1(A, p) is cofinal in Kn+2(A, p). For the rest of the proof of Proposition
3.1, A |= BΣn+1 (or, A |= BsΣ−n+1 if parameter p is not used) suffices.

(2) The proof of the last inclusion in the previous proposition also shows that if
A |= I∆0 and p ∈ A, then M0(A, p) is cofinal in K1(A, p).

(3) It is well known that Σn+1–definable elements are not cofinal in nonstandard
models of IΣn+1. Hence, by Proposition 3.1, it follows that in every model of
IΣ−n+1 containing nonstandard Σn+2–definable elements there exists a Πn+1–
definable element which is not Σn+1–definable. Even more; it is easy to
check that for every model of IΣn+1 containing nonstandard Σn+1–definable
elements all the inclusions in Proposition 3.1 are proper.

9



As first observed by H. Lessan, in A |= IΣ−n , there exist nonstandard Σn+1–
definable elements if and only if A 6|= ThΠn+1(N ). So, from Proposition 3.1 we
obtain the following corollary.

Corollary 3.3. Let A |= IΣ−n+1. The following conditions are equivalent.

(1) A 6|= ThΠn+2(N ).
(2) Kn+2(A) is nonstandard.
(3) Dn+1(A) is nonstandard.
(4) Mn+1(A) is nonstandard.

Consequently, in models of IΣ−n+1, A 6|= ThΠn+2(N ) is a necessary and sufficient
condition for the existence of nonstandard Πn+1–definable elements. Next question
asks if the hypothesis on A can be weakened:

Question 1. Let A |= BΣn+1 such that A 6|= ThΠn+2(N ). Is Dn+1(A) nonstandard?

A positive answer to this question would yield an improvement of our results on the
descriptive complexity of extensions of BΣ−n+1, see Proposition 4.17.

Next result shows conditions under which models of definable elements satisfying
some parameter free scheme also satisfy its parameter counterpart.

Lemma 3.4.

(1) If Kn+1(B) = B and B |= I∆−
n+1, then B |= I∆n+1. If, moreover, B |= exp,

then, by Slaman’s Theorem (see Theorem 2.2), B |= BΣn+1.
(2) Assume that Kn+2(B) = B.

(a) If B |= BΣ−n+1 then B |= BΣn+1.
(b) If B |= UI∆n+1 then B |= I∆n+1.

Proof. (1): Let ϕ(x, v) ∈ Σn+1, θ(x, v) ∈ Πn+1 and b ∈ B such that B |= ϕ(x, b) ↔
θ(x, b) and B |= ϕ(0, b)∧ (ϕ(x, b) → ϕ(x+ 1, b)). Since all elements of B are Σn+1–
definable, there exists δ(v) ∈ Σ−n+1 defining b in B. Let ϕ′(x) ≡ ∃v (δ(v) ∧ ϕ(x, v)).
Then, B |= ∃v (δ(v) ∧ ϕ(x, v)) ↔ ∀v (δ(v) → ϕ(x, v)) and B |= ϕ′(0) ∧ (ϕ′(x) →
ϕ′(x+ 1)). Since B |= I∆−

n+1, B |= ∀xϕ′(x). So, B |= ∀xϕ(x, b), as required.

(2–(a)): The proof of this part implicitly appears in the proof of Proposition 1.13
in [15]. Let ϕ(x, y, v) ∈ Π−n and a, b ∈ B such that B |= ∀x∃y ϕ(x, y, b). Let
θ(v, z1, z2) ∈ Σn such that ∃z1 ∀z2 θ(v, z1, z2) defines b in B. Since B |= BΣ−n+1 and
B |= ∀v, x, z1 ∃y, z2 (¬θ(v, z1, z2) ∨ ϕ(x, y, v)), then it follows that

B |= ∀v, z1 ∃u∀x ≤ a ∃y, z2 ≤ u (¬θ(v, z1, z2) ∨ ϕ(x, y, v)).

So, B |= ∃u∀x ≤ a∃y ≤ uϕ(x, y, b), as required.

(2–(b)): For n > 0 the result follows from Theorem 2.4 and part 2–(a). Nevertheless
we offer an alternative proof which works also for n = 0.
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Let ϕ(x, y, v) ∈ Πn, ψ(x, y, v) ∈ Σn and b ∈ B such that B |= ∃y ϕ(x, y, b) ↔
∀y ψ(x, y, b) and

B |= ∃y ϕ(0, y, b) and B |= ∃y ϕ(x, y, b) → ∃y ϕ(x+ 1, y, b).

Let us see that B |= ∀x∃y ϕ(x, y, b).
Since Kn+2(B) = B, there exists δ(w, y, v) ∈ Σn such that ∃w ∀y δ(w, y, v) ∈ Σn+2

defines b in B. Let ϕ0(x, y, w, v) ∈ Πn be the formula ¬δ(w, y, v) ∨ ϕ(x, y, v) ∨
¬ψ(x, y, v). Let ϕ1(x, y, w, v) ∈ Σn+1 (recall that, for n > 0, UI∆n+1 =⇒ BΣn)
such that

B |= ϕ1(x, y, w, v) ↔ [ϕ0(x, y, w, v) ∧ ∀z < y ¬ϕ0(x, z, w, v)].

Let ϕ2(x,w, v) ∈ Σn+1 be the formula ∃y [ϕ1(x, y, w, v) ∧ ϕ(x, y, v)]. Since B |=
∀x,w, v ∃y ϕ0(x, y, w, v) and B |= IΣn, B |= ∃!y ϕ1(x, y, w, v); so, B |= ϕ2(x,w, v) ↔
∀y [ϕ1(x, y, w, v) → ϕ(x, y, v)]. Hence, ϕ2(x,w, v) ∈ ∆n+1(B). Let c ∈ B such that
B |= ∀y δ(c, y, b). Then B |= ϕ2(x, c, b) ↔ ∃y ϕ(x, y, b). So,

B |= ϕ2(0, c, b) and B |= ϕ2(x, c, b) → ϕ2(x+ 1, c, b).

Since B |= UI∆n+1, B |= ∀xϕ2(x, c, b) and, as a consequence, B |= ∀x∃y ϕ(x, y, b),
as required. ¤

We can now obtain the main result of this section: the desired generalization of
Theorems 2.6 and 2.7.

Theorem 3.5.

(1) Let A |= IΣn and p ∈ A nonstandard. Then Kn+1(A, p) 6|= BΣn+1 + exp.
(2) If A |= IΣ−n and Kn+1(A) is nonstandard then Kn+1(A) 6|= I∆−

n+1 + exp.

(3) Let A |= BsΣ−n+1 and p ∈ Mn+1(A) nonstandard. Then Kn+1(A, p) 6|=
BΣ−n+1 + exp.

Proof. (1): Towards a contradiction assume that Kn+1(A, p) |= BΣn+1 + exp. Let
a ∈ Kn+1(A, p) nonstandard. Let us consider the following cases.
Case A: n ≥ 1. Let SatΠn(x) ∈ Πn be a truth definition for Πn formulas in IΣ1.
By Kn+1(A, p) |= BΣn+1 and the fact that Mn(A, p) is cofinal in Kn+1(A, p) (see
Proposition 3.1), it follows that there exists c ∈ Kn+1(A, p) such that Kn+1(A, p)
satisfies

∀u ≤ a∃σ < a∃x < c (∀z < x¬SatΠn(σ(z, p)) ∧ SatΠn(σ(x, p)) ∧ u = (x)0).

So, there exists an injective Σ0(Σn)–map from 2a+1−1 into 2a−1. This contradicts
the Pigeon–hole principle for (coded) Σ0(Σn)–functions in models of IΣn, n ≥ 1.
Case B: n = 0. Let d ∈ K1(A, p) nonstandard. By the proof of Proposition 3.1 (see
Remark 3.2–(2)), it holds that M0(A, p) is cofinal in K1(A, p); so, K1(A, p) satisfies

∀u ≤ a ∃σ < a∃x (∀z < x¬V0(σ(z, p), 2(z+p+2)d
)∧V0(σ(x, p), 2(z+p+2)d

)∧ u = (x)0),

where V0(v1, v2) ∈ ∆0 is a truth definition for ∆0 formulas in I∆0 + exp, see [12].
Since K1(A, p) |= BΣ1, there is c ∈ K1(A, p) such that K1(A, p) satisfies
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∀u ≤ a∃σ < a∃x, y < c

{
y = 2(x+p+2)d ∧ V0(σ(x, p), y) ∧ u = (x)0 ∧
∀z < x∃y1 ≤ y [y1 = 2(z+p+2)d ∧ ¬V0(σ(z, p), y1)].

So, there exists an injective ∆0–map from 2a+1− 1 into 2a− 1. This contradicts the
Pigeon–hole principle for (coded) ∆0–functions in models of I∆0 + exp.
(2): Assume that Kn+1(A) |= I∆−

n+1 + exp. Then, by Lemma 3.4–(1) and the fact
that all elements of Kn+1(A) are Σn+1–definable, it follows that Kn+1(A) |= BΣn+1+
exp. Thus, the same reasoning as in part (1) gives the required contradiction. Notice
that now A |= IΣ−n suffices since parameter p is not used.
(3): First observe that BsΣ−n+1 =⇒ IΣn; so, Kn+1(A, p) ≺n+1 A and, by part (1),
Kn+1(A, p) 6|= BΣn+1 + exp. Now we check that Kn+1(A, p) verifies the hypothesis
of Lemma 3.4–(2).

Claim Kn+2(Kn+1(A, p)) = Kn+1(A, p).
P r o o f o f C l a i m. Let a ∈ Kn+1(A, p) and ϕ(x, v) ∈ Σn+1 a formula

defining a in (A, p). Since p ∈Mn+1(A), there exists θ(v, y) ∈ Σn such that
A |= p = (µv)(∀y θ(v, y)). Since A |= BsΣ−n+1,

A |= ∀y θ(p, y) ∧ ∃u∀v < p ∃y ≤ u¬θ(v, y);
and, therefore, Kn+1(A, p) also satisfies this formula. Let δ(x) be the formula

∃v (∀y θ(v, y) ∧ ∃u∀w < v ∃y ≤ u¬θ(w, y) ∧ ϕ(x, v)).
Then, δ(x) is Σ−n+2 in IΣn and defines a in Kn+1(A, p). Which proves the
claim.

Thus, part (3) follows from previous claim, Lemma 3.4–(2) and the fact thatKn+1(A, p)
is not a model of BΣn+1 + exp. ¤

We close this section with a result concerning relationships between models of
Σn+1–definable elements and the fragment IΠ−n+1.

Lemma 3.6. Let T = {∃x θi(x) : θi(x) ∈ Π−n+1, i ∈ ω} be a Σn+2–axiomatized

theory and A |= T + IΣ−n+1 such that:

(i) A 6|= ThΠn+2(N ).
(ii) T ∈ SSy(Kn+2(A)) (where SSy(Kn+2(A)) is the standard system ofKn+2(A)).
(iii) {ai : i ∈ ω, A |= ai = (µx)(θi(x))} is not cofinal in Kn+2(A).

Then there exists p ∈ Dn+1(A) such that, for each B ≺n A, if p ∈ B, then B |= T.

Proof. By Corollary 3.3 and (i), Kn+2(A) is nonstandard; and, since Kn+2(A) ≺n+2

A, by (iii), there is a ∈ Kn+2(A) such that, for every i ∈ ω, Kn+2(A) |= ∃x ≤ a θi(x).
By (ii), there exists b ∈ Kn+2(A) codifying {pθi(x)q : i ∈ ω}, where pθi(x)q denotes
the Gödel number of θi(x). Then, for each k ∈ ω, we have (notice that (x)y = z
denotes a ∆0 formula defining the standard coding of sequences in I∆0 + exp)

Kn+2(A) |= ∀σ ≤ k ∃x ≤ a [(b)σ 6= 0 → SatΠn+1(σ(x))].
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Let a′ ∈ Kn+2(A) be a sequence number of nonstandard length such that Kn+2(A) |=
∀v < lg(a′)((a′)v = a). Then, for each k ∈ ω,

Kn+2(A) |= ∃u ≤ a′ ∀σ ≤ k [(b)σ 6= 0 → SatΠn+1(σ((u)σ))].

Since Kn+2(A) |= IΣn+1, by overspill, there exist c ∈ Kn+2(A) nonstandard and d ∈
Kn+2(A) such that d ≤ a′ and Kn+2(A) |= ∀σ ≤ c [(b)σ 6= 0 → SatΠn+1(σ((d)σ))].
From the proof of Proposition 3.1, it follows that there is p ∈ Dn+1(A) such that
(p)0,0 = d.

Now let B ≺n A such that p ∈ B. Let ∃x θi(x) be a nonlogical axiom of T
and k = pθi(x)q. Then Kn+2(A) |= SatΠn+1(pθi((d)k)q); so, as Kn+2(A) |= IΣ1,
Kn+2(A) |= θi((d)k). Then, by Kn+2(A) ≺n+2 A and θi(x) ∈ Π−n+1, we have A |=
θi((d)k). Now, since B ≺n A and (d)k = (p)0,0,k ∈ B, B |= θi((d)k). So, B |= T, as
required. ¤

Corollary 3.7. Let A |= IΣ−n+1 such that A 6|= ThΠn+2(N ). There exists p ∈ Dn+1(A)
nonstandard such that for every a ∈ A, Kn+1(A, a, p) |= IΠ−n+1.

Proof. Let {ϕi(u) ∈ Σ−n+1 : i ∈ ω} be a recursive enumeration of all the Σn+1

formulas in which only the variable u occurs free. For each i ∈ ω, let θi(x) ∈ Π−n+1
be a formula such that

∃x θi(x) ≡ ∃x (∃uϕi(u) → x = (µu)(ϕi(u))).

Then IΠ−n+1 ⇐⇒ LΣ−n+1 ⇐⇒ P− + {∃x θi(x) : i ∈ ω}. As {θi(x) : i ∈ ω} is
recursive, it is coded in SSy(Kn+2(A)). Since A |= IΠ−n+1 and Kn+1(A) ≺n+1 A,
then for each i ∈ ω it holds that there exists bi ∈ Kn+1(A) such that Kn+1(A) |=
∃x ≤ bi θi(x). Let b ∈ Kn+2(A) such that, for every c ∈ Kn+1(A), c ≤ b. Then, for
each i ∈ ω, Kn+2(A) |= ∃x ≤ b θi(x). Let p ∈ Dn+1(A) as in the proof of Lemma
3.6. Then Kn+1(A, a, p) |= IΠ−n+1. ¤

4. Extensions of bounded complexity

In this section we systematically study the syntactical and descriptive complexity
of extensions of fragments of Arithmetic. We shall see that fragments with param-
eters do not have consistent extensions of syntactical complexity less than that of
their natural formulation, whereas parameter free fragments do. Then we shall study
the descriptive complexity of such extensions of parameter free schemes.

We first establish some elementary properties of extensions of ThΠn+1(N ), the
theory of the Πn+1– sentences true in the standard model. A theory T is said to be
Γ–definable if there exists a formula ϕ(x) ∈ Γ which defines in the standard model
the class of the Gödel numbers of the axioms of T.

Lemma 4.1. Let T be a consistent theory.

(1) If T =⇒ ThΠn+1(N ) then ThΠn+1(T) = ThΠn+1(N ).
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(2) If ThΠn+1(N ) is recursively enumerable in T, then ThΠn+1(N ) is recursive
in T.

Proof. (1): Let ϕ ∈ Πn+1 such that T ` ϕ and A |= T. Then A |= ThΠn+1(N );
hence, N ≺n+1 A. So, as A |= ϕ, N |= ϕ.
(2): By the complementary theorem it is enough to prove that ThΣn+1(N ) is recur-
sively enumerable in T. We shall proceed by induction on n ∈ ω.

(n = 0): Trivial, ThΣ1(N ) is recursively enumerable.
(n =⇒ n+1): Since ThΣn+2(N ) is a Σ0

n+2 set and ThΠn+1(N ) is a Π0
n+1–complete

set, the first one is recursively enumerable in the second one. By the induction
hypothesis, ThΠn+1(N ) is recursive in T; so, ThΣn+2(N ) is recursively enumerable
in T. ¤

Lemma 4.2. Let T1 be a Σn+1–definable theory and let T2 be a Σn+1–axiomatized
theory such that T1 + T2 is consistent. Then T1 + T2 does not imply ThΠn+1(N ).

Proof. Assume that T1 + T2 =⇒ ThΠn+1(N ). Let A |= T1 + T2. Then A |=
ThΠn+1(N ); so, N ≺n+1 A. Since T2 is Σn+1–axiomatized, ThΠn(N ) =⇒ T2; so,
T1 + ThΠn(N ) =⇒ ThΠn+1(N ). Then, by Lemma 4.1, ThΠn+1(T1 + ThΠn(N )) =
ThΠn+1(N ). Contradiction, the first set is Σ0

n+1 and the second one is Π0
n+1–

complete. ¤

4.1. Syntactical complexity. (A) Extensions of IΣn+1, BΣn+1 and I∆n+1

All these theories are Πn+3–axiomatized; so, obviously, they have Πn+3–extensions.
We shall see that for n ≥ 1 this result is best possible; that is, they do not have
Σn+3–extensions. Next result extends a theorem of D. Leivant [16] who (essentially)
proved, using uniform Σn+2–reflection in IΣn+1, that IΣn+1 does not have Σn+3–
extensions.

Proposition 4.3. BΣn+1 + exp does not have Σn+3–extensions.

Proof. Assume that BΣn+1+exp has a Σn+3–extension, T say. Since BΣn+1+exp is
finitely axiomatized, there is ϕ ∈ Σn+3 such that T ` ϕ and ϕ =⇒ BΣn+1+exp. Let
θ(x) ∈ Π−n+2 such that ϕ ≡≤ x θ(x), A |= T and a ∈ A such that A |= θ(a). Let b ∈ A
nonstandard and p = 〈a, b〉. Then Kn+1(A, p) |= ϕ; so, Kn+1(A, p) |= BΣn+1 + exp.
Which contradicts Theorem 3.5–(1). ¤

Note that by the same argument as before, but taking the initial segment In+1(A, p)
in place of Kn+1(A, p), it follows that there is no class of Σn+3–sentences, Γ, such
that BΣn+1 + Γ is a consistent extension of IΣn+1.

Theorem 4.4.

(1) IΣn+1 does not have Σn+3–extensions.
(2) (n ≥ 1) BΣn+1, and so I∆n+1, does not have Σn+3–extensions.
(3) BΣ1 and I∆1 do not have Σ3–extensions consistent with exp.
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Proof. The results follow by Proposition 4.3, Slaman’s Theorem and the facts that
IΣn+1 =⇒ BΣn+1 + exp and, for n ≥ 1, BΣn+1 ` exp. ¤

To obtain optimal results, it only remains to find out if for extensions of BΣ1 and
I∆1 the condition of being consistent with exp can be omitted.

Question 2. Do BΣ1 and I∆1 have Σ3–extensions?

This question is related to Problem 3. In [20] it is proved that there exists a Π1–
sentence, ϕ, provable in I∆0 + exp but not in I∆0. Hence, it holds that I∆0 + ¬ϕ
is a consistent extension of I∆0 + ¬exp. So, as I∆0 is Π1–axiomatized, we have:

Corollary 4.5. If Problem 3 has an affirmative answer, then BΣ1 has recursively
axiomatized ∪1–extensions.

Therefore, optimal results for the case n = 0 imply a negative answer to Problem 3.

(B) Extensions of IΣ−n+1, BsΣ−n+1, BΣ−n+1, and UI∆n+1

Fragment IΣ−n+1 is a sound
∨

n+2–axiomatized theory, so ThΠn+2(N ) is an extension
of IΣ−n+1; hence,

ThΠn+2(N ) =⇒ IΣ−n+1 =⇒ BsΣ−n+1 =⇒ BΣ−n+1 =⇒ UI∆n+1 =⇒ IΣn.

Consequently, from Theorem 4.4–(1), we obtain the following result.

Theorem 4.6. IΣ−n+1, BsΣ−n+1, BΣ−n+1 and UI∆n+1 have Πn+2–extensions, and, for
n ≥ 1, they do not have Σn+2–extensions.

Let us see what happens in the second part of the above result for n = 0. To
this end, we first establish a result relating the syntactical complexity of a theory
with the rate of growth of the recursive functions which are provably total in that
theory. Proposition 4.7 below extends Claim 2.5.1 in [8] and generalizes theorems of
R. Parikh and Bigorajska [5] on recursive functions provably total in I∆0 and IΠ−1 ,
respectively.

Proposition 4.7. Let T be a theory and ϕ(x, y) ∈ Σ1 such that T + BΣ1 `
∀x∃y ϕ(x, y).

(1) If T is Π1–axiomatized, there is m ∈ ω such that

T + I∆0 ` ∀x∃y ≤ (x+ 2)m ϕ(x, y).

(2) If T is Σ2–axiomatized, there is m ∈ ω such that

T + I∆0 ` ∃z ∀x [z < x→ ∃y ≤ (x+ 2)m ϕ(x, y)].

Proof. (1): Assume that for all m ∈ ω, T + I∆0 6` ∀x∃y ≤ (x + 2)m ϕ(x, y). Let c
be a new constant and

T′ = T + I∆0 + {∀y ≤ (c + 2)m ¬ϕ(c, y) : m ∈ ω}.
15



If m1 < m2, then I∆0 ` (x + 2)m1 < (x + 2)m2 ; so, by compactness, there exists
A |= T′. Let d be a new constant and T1 = ED(A) + {a < d : a ∈ A} (where
ED(A) is the elementary diagram of A). By compactness, there exists B |= T1.
Then B is a proper elementary extension of A. Let C be the substructure of B with
domain

{b ∈ B : there exists m ∈ ω such that B |= b < (c + 2)m}.
Since C is an initial segment in B closed under function (x+2)2 = y, then it follows
that B is a proper Σ0–elementary end extension of C. Hence, C |= T + BΣ1. So,
C |= ∀x∃y ϕ(x, y). Let b ∈ C such that C |= ϕ(c, b). Since ϕ(x, y) ∈ Σ1, B |= ϕ(c, b).
Let m ∈ ω such that b ≤ (c + 2)m. Since A ≺ B, A |= ∃y ≤ (c + 2)m ϕ(c, y).
Contradiction, since A |= T′.
(2): Since T is a Σ2–axiomatized theory, there exists θ(u) ∈ Π−1 such that T `
∃u θ(u) and BΣ1 +∃u θ(u) ` ∀x∃y ϕ(x, y). Assume that for every m ∈ ω, T+I∆0 6`
∃z ∀x [z < x→ ∃y ≤ (x+ 2)m ϕ(x, y)]. Let c,d be new constants and

T′ = I∆0 + θ(d) + d < c + {∀y ≤ (c + 2)m ¬ϕ(c, y) : m ∈ ω}.
By compactness, there is A |= T′. Let B and C as in the proof of part (1). Since
C |= ∃u θ(u), reasoning as before we get the desired contradiction. ¤

Theorem 4.8.

(1) I∆0 + exp and IΣ−1 do not have Σ2–extensions.
(2) BsΣ−1 , BΣ−1 and UI∆1 do not have Π1–extensions; so, they do not have

sound Σ2–extensions.

Proof. (1): Assume that I∆0+exp has a Σ2–extension, T say. Then, by Proposition
4.7, there exists m ∈ ω such that T ` ∃z ∀x > z (2x ≤ (x + 2)m). Which gives the
desired contradiction.
(2): Since every Π1–extension of P− is a sound theory, it is enough to show that
ThΠ1(N ) does not imply UI∆1. By Lemma 4.2, there exists A |= IΣ1 + ThΠ1(N )
such that A 6|= ThΠ2(N ). So, by Corollary 3.3, there exists p ∈ M1(A) nonstan-
dard. Since K1(A, p) ≺1 A, K1(A, p) |= ThΠ1(N ) + exp. Towards a contradiction,
assume that K1(A, p) |= UI∆1. By the Claim in the proof of Theorem 3.5–(3),
K2(K1(A, p)) = K1(A, p), so by Lemma 3.4–(2.b), K1(A, p) |= I∆1 + exp. By Theo-
rem 2.2, K1(A, p) |= BΣ1 + exp, which contradicts Theorem 3.5. ¤

Notice that part (1) of the above theorem follows from a result of Wilkie and Paris
stating that I∆0 + exp proves uniform Π2–reflection principle for I∆0 with respect
to tableau provability (see [20]). Part (2) is essentially proved by Beklemishev in [4]
(see the proof of corollary 4 there).

Nota 4.9. In [11] it is shown that, for each n ≥ 1, there is a Πn–formula, y = Kn(x),
which satisfies the corresponding hierarchical versions of those properties of the
formula y = (x+ 2)2 necessary for the proof of Proposition 4.7, namely:

(a) IΣn ` ∀x ∃!y (y = Kn(x)); and
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(b) initial segments of B |= IΣn closed under function y = Kn(x) are Σn–
elementary substructures of B.

Moreover, in [8] for each n ≥ 1 it is presented a Πn–formula, y = Kz
n(x), which

expresses the iteration of the function y = Kn(x) and it is established that (see
section 3 in [8] for details):

(c) IΣn ` z1 < z2 → Kz1
n (x) < Kz2

n (x); and IΣn ` ∀x ∃!y (y = Km
n (x)), for all

m ∈ ω.
Therefore, by repeating the arguments in the proof of Proposition 4.7, we obtain the
following generalization of that result. Let us denote by y = K0(x) the ∆0–formula
y = (x+ 2)2.

Proposition Let T be a theory and ϕ(x, y) ∈ Σn+1 such that T+BΣn+1 `
∀x∃y ϕ(x, y).

1. If T is Πn+1–axiomatized, there is m ∈ ω such that

T + IΣn ` ∀x∃y ≤ Km
n (x)ϕ(x, y).

2. If T is Σn+2–axiomatized, there is m ∈ ω such that

T + IΣn ` ∃z ∀x [z < x→ ∃y ≤ Km
n (x)ϕ(x, y)].

In [8] it is also proved that IΣ−n+1 ` ∀x∃y (y = Kx+1
n (x+2)). Hence, an argument

similar to that of part (1) of Theorem 4.8 shows that there is no class of Σn+2–
sentences, Γ, such that BΣn+1 + Γ is a consistent extension of IΣ−n+1. This fact
can be also obtained from the results of [3]. There it is shown (see theorem 1)
that IΣ−n+1 proves uniform Πn+2–reflection principle for IΣn. Since BΣn+1 is a
Πn+2–conservative extension of IΣn, IΣ−n+1 also proves Πn+2–reflection principle for
BΣn+1 and, as a consequence, there is no class of Σn+2–sentences, Γ, such that
BΣn+1 + Γ is a consistent extension of IΣ−n+1.

(C) Extensions of IΠ−n+1, L∆−
n+1 and I∆−

n+1

All these theories are Σn+2–axiomatized; so, as they are sound, we have

ThΠn+1(N ) =⇒ IΠ−n+1 =⇒ L∆−
n+1 =⇒ I∆−

n+1.

Let us now consider the existence of Σn+1–extensions.

Theorem 4.10.

(1) IΠ−n+1, L∆−
n+1 and I∆−

n+1 have Πn+1–extensions, and, for n ≥ 1, they do
not have Σn+1–extensions.

(2) IΠ−1 does not have Σ1–extensions.
(3) I∆−

1 and L∆−
1 do not have Σ1–extensions consistent with exp.

Proof. (1): The results follow from Theorem 4.6 for n > 1 and from Theorem 4.8
for n = 1, since all these fragments imply IΣ−n .
(2): Assume that there exists a Σ1–extension of IΠ−1 , T say. By Lemma 4.2, there
exists A |= T such that A 6|= ThΠ1(N ) and, therefore, K1(A) is nonstandard. Since

17



K1(A) ≺1 A and T is a Σ1–axiomatized theory, K1(A) |= T; so, K1(A) |= IΠ−1 .
Then, from the fact that all elements of K1(A) are Σ1–definable, we deduce that
K1(A) |= IΠ1(⇐⇒ IΣ1). In particular, K1(A) |= BΣ1 + exp. Which contradicts
Theorem 3.5.
(3): Assume that there is a Σ1–extension of I∆−

1 consistent with exp, T say. By
Lemma 4.2, there exists A |= T + exp such that A 6|= ThΠ1(N ); so, K1(A) is
nonstandard. Since T is Σ1–axiomatized and K1(A) ≺1 A, K1(A) |= T + exp; so,
K1(A) |= I∆−

1 + exp. Which contradicts Theorem 3.5. ¤

4.2. Descriptive complexity. (A) Πn+2–extensions of IΠ−n+1, L∆−
n+1 and I∆−

n+1

As we have noticed before, in [15] Kaye–Paris–Dimitracopoulos proved that for any
Πn+1–extension of IΠ−n+1, T, it holds that T ⇐⇒ ThΠn+1(N ). Here we extend that
result to any Πn+2–extension. We also answer (partially) Problem 5.5 in [10].

Lemma 4.11. Let T be a Πn+2–extension of I∆−
n+1 such that for every A |= T,

Kn+1(A) |= exp. Then ThΠn+1(T) = ThΠn+1(N ).

Proof. Assume that ThΠn+1(T) 6= ThΠn+1(N ). By Lemma 4.1, T does not extend
ThΠn+1(N ); so, there is A |= T such that A 6|= ThΠn+1(N ) and, therefore, Kn+1(A)
is nonstandard. Since T is Πn+2–axiomatized and Kn+1(A) ≺n+1 A, Kn+1(A) |= T.
Hence, Kn+1(A) |= I∆−

n+1 + exp. Which contradicts Theorem 3.5. ¤

Theorem 4.12.

(1) L∆−
n+1 + exp and I∆−

n+1 + exp are of type n+ 2 → n+ 1.

(2) IΠ−n+1 is of type n+ 2 → n+ 1.

Proof. (1): Immediate from Lemma 4.11.
(2): Let T be a Πn+2–extension of IΠ−n+1 and A |= T. Then Kn+1(A) |= T; so,

Kn+1(A) |= IΠ−n+1. Since all elements of Kn+1(A) are Σn+1–definable, Kn+1(A) |=
IΠn+1; so, Kn+1(A) |= exp. Hence, the result follows from Lemma 4.11. ¤

The above result is best possible for IΠ−n+1 and, when n ≥ 1, also for L∆−
n+1 and

I∆−
n+1. However, it remains to eliminate the exponential function in the case n = 0.

Question 3. Are L∆−
1 and I∆−

1 of type 2 → 1, or 1 → 1?

Notice that this question is related to Problem 3. In fact, if Problem 3 has an
affirmative answer, then, by Corollary 4.5, L∆−

1 has recursively axiomatized ∪1–
extensions; so, neither L∆−

1 nor I∆−
1 is of type 2 → 1. Nevertheless, we prove a

weak version of previous question.

Proposition 4.13. L∆−
1 and I∆−

1 are of type 1 w−→ 1.
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Proof. Let T be a Π1–extension of I∆−
1 . Then T is sound; so, T + exp is a consis-

tent Π2–extension of I∆−
1 + exp. By Theorem 4.12, ThΠ1(T + exp) = ThΠ1(N ).

This gives that ThΠ1(N ) is recursively enumerable in ThΠ1(T + exp); so, also in
ThΠ1(T). Hence, by Lemma 4.1, ThΠ1(N ) is recursive in ThΠ1(T). So, I∆−

1 (and,
consequently, also L∆−

1 ) is of type 1 w−→ 1, as required. ¤

(B) Πn+2–extensions of IΣ−n+1, BsΣ−n+1, BΣ−n+1 and UI∆n+1

Since ThΠn+2(N ) =⇒ IΣ−n+1 =⇒ BsΣ−n+1 + exp =⇒ BΣ−n+1 + exp =⇒ UI∆n+1 +
exp =⇒ I∆−

n+1 + exp, then, by Theorem 4.12, we have the following result.

Proposition 4.14. IΣ−n+1, BsΣ−n+1 + exp, BΣ−n+1 + exp and UI∆n+1 + exp are of
type n+ 2 → n+ 1.

Now we shall improve this result: we shall see that IΣ−n+1 is of type n+ 2 → n+ 2
and a weaker version for BΣ−n+1 + exp and UI∆n+1 + exp, namely, these theories
are of type n+ 2 w−→ n+ 2.

Lemma 4.15. Let T be Πn+2–axiomatized and ϕ a Σn+2–sentence such that IΣ−n+1+
T + ϕ is consistent.

(1) If T + ϕ =⇒ BΣ−n+1, then IΣ−n+1 + T + ϕ⇐⇒ ThΠn+2(N ).
(2) If IΣn + IΠ−n+1 + T + ϕ =⇒ BΣ−n+1, then IΣ−n+1 + T + ϕ⇐⇒ ThΠn+2(N ).

Proof. Even though it is enough to prove part 2, we shall prove both parts. Let θ(x)
be a Π−n+1 formula such that ϕ ≡ ∃x θ(x).
(=⇒): Assume that there is A |= IΣ−n+1 + T + ϕ such that A 6|= ThΠn+2(N ). Since
A |= LΠ−n+1(⇐⇒ IΣ−n+1), there exists a ∈Mn+1(A) such that A |= a = (µx)(θ(x)).
(1): By Corollary 3.3, there exists b ∈ Mn+1(A) nonstandard. Take p = 〈a, b〉.
Since Kn+1(A, p) |= T +ϕ, by hypothesis, Kn+1(A, p) |= BΣ−n+1. Which contradicts
Theorem 3.5 since p ∈Mn+1(A).
(2): By Corollary 3.7, there exists b ∈ Dn+1(A) nonstandard such thatKn+1(A, a, b) |=
IΠ−n+1. Let p = 〈a, b〉. Then Kn+1(A, p) |= IΣn + IΠ−n+1 + T + ϕ; so, by hypothesis,
Kn+1(A, p) |= BΣ−n+1. Which contradicts Theorem 3.5 since p ∈Mn+1(A).
(⇐=): It is enough to prove that T + ϕ is a sound theory. Let A be a model of
IΣ−n+1 + T + ϕ. By part =⇒, it holds that A |= ThΠn+2(N ); hence, N ≺n+2 A. So,
N |= T + ϕ. ¤

Theorem 4.16.

(1) IΣ−n+1 is of type n+ 2 → n+ 2.

(2) BΣ−n+1+exp (and, consequently, also BsΣ−n+1+exp) is of type n+2 w−→ n+2.

Proof. (1): Immediate from Lemma 4.15.
(2): Let T be a Πn+2–extension of BΣ−n+1 + exp. Then T =⇒ L∆−

n+1 + exp. By
Theorem 4.12, ThΠn+1(T) = ThΠn+1(N ) and N |= T; so, IΣ−n+1 + T is consistent.
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By Lemma 4.15, ThΠn+2(IΣ
−
n+1 + T) = ThΠn+2(N ). Then ThΠn+2(N ) is recur-

sively enumerable in ThΠn+2(T). Hence, by Lemma 4.1, ThΠn+2(N ) is recursive in
ThΠn+2(T). ¤

Our result on descriptive complexity of extensions of IΣ−n+1 is best possible; however,
the following questions are left unanswered for the collection scheme.

Question 4.
(1) Is BΣ−n+1 + exp of type n+ 2 → n+ 2?
(2) Is BΣ−1 of type 2 → 2, or 2 w−→ 2, or 2 → 1, or 2 w−→ 1?

Part (2) is connected with Problem 3. Note that by Corollary 4.5, if Problem 3 has
an affirmative answer, then BΣ−1 has recursively axiomatized ∪1-extensions; so, it
is not of type 2 w−→ 1. We shall see now that part (1) is related to the existence of
nonstandard Πn+1–definable elements in models of BΣn+1.

Proposition 4.17. If Question 1 has an affirmative answer, then BΣ−n+1 + exp is of
type n+ 2 → n+ 2.

Proof. Let T be a Πn+2–extension of BΣ−n+1+exp. Let us see that T =⇒ ThΠn+2(N ).
Since BΣn+1 is a Σn+3–conservative extension of BΣ−n+1 (see Theorem 2.4 in [15]),
it suffices to prove that T + BΣn+1 =⇒ ThΠn+2(N ). Assume that there ex-
ists A |= T + BΣn+1 such that A 6|= ThΠn+2(N ). By the hypothesis, there is
p ∈ Dn+1(A) nonstandard. Since T is Πn+2–axiomatized, Kn+1(A, p) |= T; so,
Kn+1(A, p) |= BΣ−n+1 + exp. Which contradicts Theorem 3.5. ¤

For the uniform ∆n+1–induction scheme, we have obtained that UI∆n+1 +exp is of
type n+2 → n+1 from the fact that this fragment is an extension of I∆−

n+1 +exp.
Since UI∆n+1 + exp and BΣ−n+1 + exp are equivalent (see Theorem 2.4), it is
immediate that UI∆n+1 + exp is of type n + 2 w−→ n + 2. However, by Lemma
3.4–(2.b), we can apply the same reasoning as in Lemma 4.15 and Theorem 4.16 to
show, independently of the equivalence between UI∆n+1 + exp and BΣ−n+1 + exp,
that

Proposition 4.18. UI∆n+1 + exp is of type n+ 2 w−→ n+ 2.

5. On ∆n+1–schemes

In this section, we make use of results in the previous section in order to deter-
mine quantifier complexity, (non)finite axiomatizability and relative strength of the
fragments studied in this work. We focus on fragments for ∆n+1–formulas and the
scheme BsΣ−n+1 since the properties of these theories are not well known. First we
state general conditions for a theory T to establish its axiomatization properties.
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Lemma 5.1. If ThΠn+2(N ) =⇒ T =⇒ I∆−
n+1, then T is not finitely axiomatized.

Proof. Assume T is finitely axiomatized. Then there exists ϕ ∈ ThΠn+2(N ) such
that ϕ =⇒ T and hence ϕ+exp =⇒ I∆−

n+1+exp. Since I∆−
n+1+exp is of type n+

2 → n+1 (Theorem 4.12), it holds that ϕ+exp =⇒ ThΠn+1(N ). Contradiction. ¤

Lemma 5.2. Let T be a theory consistent with exp.

(1) If T is Σn+1–definable and extends I∆−
n+1, then T is not Πn+2–axiomatized.

(2) If T is a sound Σn+2–definable extension of UI∆n+1, then T is not ∪n+2–
axiomatized.

Proof. (1): Assume T is Πn+2–axiomatized. Then T + exp is a Πn+2–extension of
I∆−

n+1 +exp and hence, by Theorem 4.12, it follows that T+exp =⇒ ThΠn+1(N ).
Which is impossible since T is Σn+1–definable.
(2): Assume that T ⇐⇒ T1 + T2 where T1 is Σn+2–axiomatized and T2 is Πn+2–
axiomatized. Since T1 is sound, ThΠn+1(N ) =⇒ T1 . Let T3 = T + IΣn+1 +
ThΠn+1(N ). Since T3 is consistent and Σn+2–definable, T3 ×=⇒ThΠn+2(N ); so,
there exists A |= T3 such that A 6|= ThΠn+2(N ). By Corollary 3.3, there exists
p ∈ Mn+1(A) nonstandard. Then Kn+1(A, p) |= ThΠn+1(N ) + T2 and; hence,
Kn+1(A, p) |= UI∆n+1 + exp. By the Claim in the proof of Theorem 3.5–(3),
Kn+2(Kn+1(A, p)) = Kn+1(A, p), so by Lemma 3.4–(2.b), Kn+1(A, p) |= I∆n+1. By
Theorem 2.2, Kn+1(A, p) |= BΣn+1 + exp. Which contradicts Theorem 3.5. ¤

Now we apply both lemmas to obtain the basic information on the quantifier
complexity of the considered ∆n+1–schemes and fragment BsΣ−n+1. First, let us
observe that all these fragments are recursively axiomatized and, consequently, Σ1–
definable.

Theorem 5.3.

(1) L∆−
n+1, I∆−

n+1, UI∆n+1 and BsΣ−n+1 are not finitely axiomatized.

(2) L∆−
n+1 and I∆−

n+1 are not Πn+2–axiomatized.

(3) BsΣ−n+1 and UI∆n+1 are not ∪n+2–axiomatized.

Finally, from the obtained results, we can deduce the following properties on the
relative strength of the considered fragments.

Theorem 5.4.

(1) I∆n+1 |=⇒ UI∆n+1 |=⇒ I∆−
n+1 |=⇒ IΣn.

(2) L∆−
n+1 does not imply UI∆n+1, and UL∆n+1 does not imply I∆n+1.

(3) (Answer to problem 4 in [4]) There is no recursively enumerable set of true
Πn+2–sentences which extends I∆−

n+1. In particular, I∆0 + exp does not

extend I∆−
1 .
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Proof. By Theorem 5.3–(2) and the fact that IΣn is Πn+2–axiomatized, it follows
that IΣn does not imply I∆−

n+1. By Lemma 5.2–(3) and the fact that I∆−
n+1 and

L∆−
n+1 are Σn+2–axiomatized, it follows that neither I∆−

n+1 nor L∆−
n+1 implies

UI∆n+1. By Theorem 4.4, it follows that I∆n+1 + exp does not have Σn+3–
extensions; so, neither UI∆n+1 nor UL∆n+1 implies I∆n+1 since UI∆n+1 and
UL∆n+1 are

∨
n+2–axiomatized. Finally, observe that part (3) follows by the fact

that I∆−
n+1 + exp is of type n+ 2 → n+ 1. ¤

Concerning to the scheme BsΣ−n+1 the following question on its quantifier com-
plexity remains unanswered.

Question 5. Is BsΣ−n+1 a
∨

n+2–axiomatized theory?

Using the same reasoning as for its parameter counterpart, it is easy to check
that BsΣ−n+1 is a Πn+3–axiomatized theory. However, we do not even know if it is
a Σn+3–axiomatized theory. In fact, we have the following result.

Proposition 5.5. The following conditions are equivalent.

(1) BΣ−n+1 ⇐⇒ BsΣ−n+1.

(2) BsΣ−n+1 is
∨

n+2–axiomatized.

(3) BsΣ−n+1 is Σn+3–axiomatized.

Proof. Since BΣ−n+1 is
∨

n+2–axiomatized, (1) =⇒ (2) is immediate. The implication
(2) =⇒ (3) is trivial and (3) =⇒ (1) follows from the fact that BΣn+1 is Σn+3–
conservative over BΣ−n+1. ¤
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