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Abstract
We develop model-theoretic techniques to obtain conservation results for first order Bounded Arithmetic theories, based on
a hierarchical version of the well-known notion of an existentially closed model. We focus on the classical Buss’ theories Si

2 
and T2

i and prove that they are ∀�i
b conservative over their inference rule counterparts, and ∃∀�i

b conservative over their 
parameter-free versions. A similar analysis of the �i

b-replacement scheme is also developed. The proof method is essentially 
the same for all the schemes we deal with and shows that these conservation results between schemes and inference rules 
do not depend on the specific combinatorial or arithmetical content of those schemes. We show that similar conservation 
results can be derived, in a very general setting, for every scheme enjoying some syntactical (or logical) properties common 
to both the induction and replacement schemes. Hence, previous conservation results for induction and replacement can be 
also obtained as corollaries of these more general results.
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1 Introduction

Existentially closed models (a.k.a. existentially complete structures) are model-theoretic analogous 
of existentially closed fields. Since the early work on model-completeness by Abraham Robinson 
in the 1950s these models have been thoroughly studied for a variety of theories (and/or classes of 
structures) including fields, rings, groups, modules, etc. The introduction of forcing in Model Theory 
by A. Robinson in the 1970s gave powerful tools (finite and infinite forcing, generic models, etc.) 
for the analysis of existentially closed models and a lot of interesting results were obtained with 
applications mainly in the so-called field of Model Theoretic Algebra.

Existentially closed models of fragments of first order Arithmetic were also studied in the early 
1970s (see [6]) but mainly from a purely model-theoretic point of view. More recently, these structures 
have found some interesting applications in Arithmetic theories: alternative proofs of Gödel’s second 
incompleteness theorem (see [1]), and (under the name of Herbrand saturated models) new proofs of 
conservation results between different subsystems of first and second order Arithmetic (see [2]). In 
this article we elaborate on the methods developed by Avigad in [2] and obtain conservation results 
for theories given by inference rules or parameter-free versions of the classical (and also polynomial 
or linear) Induction, Replacement and Comprehension principles considered in Bounded Arithmetic.

Bounded Arithmetic theories are formal systems tailored to capture computational complexity
classes. The foundational work in this area is [4], where Buss introduced the families of theories Si

2
and Ti

2 (i≥0) and showed that they can be considered as formal counterparts of the Polynomial Time



Hierarchy PH . Since then a variety of related systems have been introduced in order to deal with other 
complexity classes. Among the fundamental results on these systems two groups can be isolated:
(a) characterizations of their computational strength, mainly, by determining their �i

b-definable 
functions; and (b) relationship among different axiomatizations, especially, conservation results.

Here, we consider model-theoretic methods to obtain both kinds of results for restricted versions
of Buss’ theories Si

2, Ti
2 as well as for the �b

i -replacement scheme BB�b
i . Systems Si

2 and Ti
2 are

axiomatized over a certain base theory by axiom schemes expressing (respectively) the polynomial
and the usual induction principles restricted to �b

i -formulas. We shall weaken these theories in two
ways: (1) by formalizing the corresponding induction or replacement principle as an inference rule
instead of an axiom scheme, or (2) by restricting the induction schemes to parameter-free formulas.
In the first case we drop the axiom scheme and consider the closure of the base theory under first
order logic and nested applications of the corresponding inference rule. In the second case we still
deal with an axiom scheme but now it is restricted to formulas with no other free variables than the
induction variable.

While the effects of these restrictions have been extensively investigated for fragments of Peano
Arithmetic, it is not the case of Bounded Arithmetic. To our best knowledge, parameter-free systems
have only been systematically studied by Bloch in the second part of his thesis [3]. However, Bloch
only considered parameter-free schemes indirectly, focusing on conservation for parameter-free
inference rules. On the other hand, systems described by inference rules over a Hilbert-style proof
system in the sense above (which are not equivalent to the corresponding axiom schemes) seldom
appear in an explicit manner in the literature. A recent exception is Johannsen and Pollett’s work
[9], where the authors study the�b

1-bit-comprehension rule in connection with the complexity class
TC0 of functions computable by uniform threshold circuit families of polynomial size and constant
depth.

Both in [3] and in [9] the analysis of those systems has been carried out by means of proof-theoretic
methods. Instead, we adopt a model-theoretic approach to the investigation of these restricted systems.
To this end, the key ingredient is the notion of an ∃�̂b

i -closed model, a hierarchical version of the
well-known notion of an existentially closed model. These models allow us to clarify the relationships
between the considered theories and their restricted versions in a particularly simple way. Namely, if
T denotes Si

2, Ti
2 or BB�b

i and TR (resp. T−) denotes its inference rule (resp. parameter free) version,
then (see Theorem 1 and Corollary 2)

- every ∃�̂b
i -closed model of TR is a model of T ,

- every theory extending T− is closed under the corresponding inference rule and
- every ∃�̂b

i -closed model of T− is a model of T .

From these facts we shall derive our main results (see Theorems 3 and 4):

(1) Si
2, Ti

2 and BB�b
i are ∀�b

i -conservative over their inference rule versions; and
(2) Si

2, Ti
2 are ∃∀�b

i -conservative over their parameter-free versions.

As far as we know, these results are new, and the ∃∀�b
i -conservation results for parameter-free

schemes improve previous ∀�b
i -conservation that immediately follows from the work in [3].

The proof method is essentially the same for all the schemes we deal with and, more interestingly, it
suggests that these conservation results between schemes and inference rules have little to do with the
specific combinatorial or arithmetical content of the principles involved (induction or replacement).
Instead, they rest on the logical/syntactical structure of the considered schemes. In Section 5 we show
that similar conservation results can be derived, in a very general setting, for every scheme enjoying



b
1

b
1

some syntactical (or logical) properties common to both induction and replacement schemes. Hence, 
the conservation results for induction and replacement obtained in the previous sections can be 
considered as corollaries of these more general results.

Finally, in Section 6 we apply the results obtained for �1
b-replacement to the analysis of the � -

bit-comprehension rule � -BCR. This rule was introduced in [9] to capture the complexity class TC0

and is the final refinement of a series of theories introduced in [7–9] in the quest for natural theories
for TC0. In [9] it is proved that TC0 coincides with the class of �1

b-definable functions of the system
�b

1-CR given by the closure under�b
1-BCR of a certain base theory; and that�b

0-replacement scheme
BB�b

0 is ∀�b
1-conservative over �b

1-CR. Here, we prove that TC0 also coincides with the class of

�̂b
1-definable functions of the (apparently) weaker system �̂b

1-CR, and reformulate this system in
terms of �b

i -replacement rule, obtaining as a corollary a new proof of the conservation result in [9].
Our analysis is of independent interest in view of the problems on �b

1-CR posed in [9]; however, it
also supports Johannsen–Pollett’s claim on �b

1-CR as a minimal natural theory for TC0 and makes
more transparent the close relationship between �b

1-bit-comprehension and �b
1-replacement.

2 Fragments of Bounded Arithmetic

In what follows we state some definitions and results on BoundedArithmetic that will be used through
this article (we refer the reader to [4, 11] for more information).

The first order language of Bounded Arithmetic L2 comprises the usual language of Peano
Arithmetic {0,S,+, ·,≤} together with five new function symbols: � x

2�, |x|, #, MSP and −• ; where � x
2�

is x divided by two rounded down, |x| is the length of x in binary notation, x#y is 2|x|·|y|, MSP(x,i)
is � x

2i � and x−• y is the subtraction function. Bounded formulas of L2 are classified in a hierarchy of

sets �b
i and�b

i by counting the alternations of bounded quantifiers (∃x≤ t, ∀x≤ t), ignoring sharply
bounded quantifiers (∃x≤|t|, ∀x≤|t|).
The induction axiom for ϕ(x), Iϕ , is the formula

ϕ(0)∧∀x(ϕ(x)→ϕ(Sx)) → ∀xϕ(x)

The length induction axiom forϕ(x), LINDϕ and the double length induction axiom forϕ(x), LLINDϕ ,
are obtained replacing the consequent of Iϕ by ∀xϕ(|x|) and ∀xϕ(||x||), respectively.
The polynomial induction axiom for ϕ(x), PINDϕ , is the formula

ϕ(0)∧∀x(ϕ(�x

2
�)→ϕ(x)) → ∀xϕ(x)

In all cases, ϕ(x) may contain other free variables, which are called parameters. On a par with these
induction axioms, we consider induction inference rules. The induction rule, IR, is

ϕ(0),∀x(ϕ(x)→ϕ(Sx))

∀xϕ(x)

Similarly, PINDR, LINDR and LLINDR are defined.
BASIC denotes a finite set of open (quantifier-free) axioms specifying the interpretations of the

non-logical symbols of L2. Following [9, 13], our base theory will be LIOpen=BASIC+{LINDϕ :
ϕ is open}. As shown there, LIOpen allows for simple definitions of tuple- and sequence-encoding



functions. First, observe that the following L2-terms define useful functions in LIOpen:

2|x| := 1#x mod2(x) := x−• 2·� x
2�

Bit(x,i) := mod2(MSP(x,i)) 2min(x,|y|) := MSP(2|y|,|y|−• x)
LSP(x,i) := x−• 2min(i,|x|) ·MSP(x,i)

In words, Bit(x,i) is the value of the bit in the 2i position of the binary representation of x,
and LSP(x,|i|) returns the number consisting of the low |i| bits of x. The code of a sequence
{b0,b1,...,b|s|} with all its elements less than or equal to some a is the number w<4(a#2s) whose
binary representation consists of a 1 followed by the binary representations of the elements bi
concatenated, each padded with zeroes to length |a| [we shall write bd(a,s) for the bounding
term 4(a#2s)]. Thus, the L2-term βa(w,i) :=MSP(LSP(w,Si ·|a|),i ·|a|) returns the i-th element
of such a sequence. As for tuple-encoding, pairs are coded as 〈x,y〉 := (B+y)·2B+(B+x), where
B=2|max(x,y)|. Then there is an open formula ispair(u) defining the range of the function 〈x,y〉; and
there are terms (u)0, (u)1 returning the left and right coordinates from a coded pair (see [13] for
details). Interestingly, the encoding and decoding functions are all L2-terms so can be used in an
L2-formula without altering its quantifier complexity.

The theories we shall deal with are defined as follows. Let � be a set of formulas and let E denote
one of the schemes: I , PIND, LIND, LLIND and let ER denote the corresponding inference rule.
First, the theory E� is LIOpen+{Eϕ :ϕ∈�}. Second, fragment [T ,�-ER] is the closure of T under
first order logic and unnested applications of the E-rule restricted to formulas in �, where T is an
arbitrary L2-theory extending LIOpen. We define [T ,�-ER]k for every k ∈ω by recursion on k:

[T ,�-ER]0 =T , and [T ,�-ER]k+1 =[[T ,�-ER]k,�-ER]

Then T +�-ER=⋃
k∈ω[T ,�-ER]k denotes the closure of T under first order logic and nested

applications of the E-rule restricted to formulas in �.
Finally, E�− is LIOpen+{Eϕ :ϕ(x)∈�−}, where ϕ(x)∈�− means that x is the only free variable

occurring in ϕ. In accordance with this notation, the parameter-free version of the E-rule is denoted
by �−-ER.

With this terminology, the three classic families of Bounded Arithmetic theories Ti
2, Si

2 and Ri
2

correspond to I�b
i , PIND�b

i and LLIND�b
i , respectively. Let us remark, however, that L2 differs

from the language of Buss’ original theories Si
2 and Ti

2, which does not include the MSP and −•
symbols. In addition, Buss’ theories are axiomatized over BASIC instead of over LIOpen. But these
facts are inessential for sufficiently strong theories since both additional functions are �b

1-definable
in Buss’ S1

2 and this last theory implies LIOpen.
Bounded formulas of L2 are also classified in a hierarchy of sets strict �b

i and strict �b
i . Namely,

�̂b
0 or �̂b

0 denotes the sharply bounded formulas; and, for each i≥0, �̂b
i+1 (resp. �̂b

i+1) is the least

class containing �̂b
i (resp. �̂b

i ) and closed under conjunction, disjunction and bounded existential
(resp. universal) quantification. Each �b

i (resp.�b
i ) formula is equivalent in the standard model to a

�̂b
i (resp. �̂b

i ) formula.
The �̂b

i−1-replacement scheme BB�̂b
i−1 is a natural theory, which proves that equivalence. The

replacement or bounded collection axiom for a formula ϕ(x,y) and a term t(x), BBϕ , is the formula
∀x≤|s|∃y≤ t(x)ϕ(x,y)→

∃w<bd(t∗(|s|),s)∀x≤|s|(βt∗(|s|)(w,x)≤ t(x)∧ϕ(x,βt∗(|s|)(w,x))),



where t∗ denotes an L2-term canonically associated to t so that, provably in LIOpen, t∗ is monotonic
and t ≤ t∗ (see [9, 13] for details).

BB� is LIOpen+{BBϕ :ϕ∈�}. Similarly, the inference rule versions T +�-BBR are defined. In
[13] it is shown that every �b

i formula is provably equivalent in BB�̂b
i−1 to a �̂b

i -formula, and that

PIND�̂b
i implies BB�̂b

i−1 (i≥1). As a consequence, the author obtains the equivalences Ti
2 ≡ I�̂b

i

and Si
2 ≡PIND�̂b

i ≡LIND�̂b
i . Finally, reasoning as in the proof of Proposition 3.2 in [7], it is easy

to show that BB�̂b
i+1 ≡BB�̂b

i , and T +�̂b
i+1-BBR≡T +�̂b

i -BBR.

3 On ∃�̂b
i -closed models and conservation results

In this section we present our methods for proving conservation results. To illustrate these methods,
we prove that Si

2, Ti
2 and BB�b

i are ∀�b
i -conservative over their inference rule versions. The main

idea involves a basic model-theoretic argument: we show that each (countable) model of the weak
theory has a �̂b

i -elementary extension to a model of the strong theory (B is a �-elementary extension
of A, A≺�B, if A⊆B and, for all ϕ(�x)∈� and �a∈A, it holds that A |=ϕ(�a)⇐⇒B |=ϕ(�a)). The
key ingredient for this construction is the notion of an ∃�̂b

i -closed model for a theory T .

Definition 1
Let A be a model of T . We say that A is ∃�̂b

i -closed for T if, for each B |=T , it holds that

A≺
�̂b

i
B �⇒ A≺∃�̂b

i
B.

This notion is a suitably modified version of the general concept of an existentially closed model.
The use of similar notions to prove conservation results for arithmetic systems was presented in a
general setting in Avigad’s [2] (our work is inspired by the methods in that paper). First of all, observe
that ∃�̂b

i -closed models do exist. The proof is an easy modification of the standard iterative argument
to construct existentially closed models.

Proposition 1
Suppose T is ∀∃�̂b

i -axiomatizable and A is a countable model of T . Then there is B |=T such that
A≺

�̂b
i
B and B is ∃�̂b

i -closed for T .

Next, we prove the main property of these models of interest to us: each ∃�̂b
i -closed model for

T +�̂b
i -ER also satisfies the corresponding scheme E�̂b

i . We first need the following result (the
proof is a fairly standard argument and we omit it).

Proposition 2
Let A be ∃�̂b

i -closed for T , �a∈A and ϕ(�x,�v)∈�̂b
i and let �̂b

i -Diag(A) denote the set of all the
�̂b

i -formulas (with parameters in A) valid in A. The following conditions are equivalent.

1. A |=∀�xϕ(�x,�a).
2. There is θ (�a,�b) in �̂b

i -Diag(A) satisfying T +θ (�a,�b)�∀�xϕ(�x,�a).

Theorem 1
(i≥1) Let E denote one of the following schemes: BB, I , PIND, LIND, LLIND. If A is ∃�̂b

i -closed
for T +�̂b

i -ER, then A |=E�̂b
i .

Proof. (Replacement scheme): Assume that A is an ∃�̂b
i -closed model for T +�̂b

i -BBR and A |=
∀x≤|s|∃y≤ t(x)ϕ(x,y,a), where ϕ(x,y,v)∈�̂b

i , a∈A and s,t are L2-terms (for notational simplicity



�̂b
i such thatwe omit the possible parameters in t,s). By Proposition 2 there are b∈A and θ (v,u) in  

A |=θ (a,b), and
(T +�̂b

i -BBR)+θ (a,b)�∀x≤|s|∃y≤ t(x)ϕ(x,y,a).

So, T +�̂b
i -BBR�θ (v,u) → ∀x≤|s|∃y≤ t(x)ϕ(x,y,v). Define δ(x,y,v,u) to be ¬θ (v,u)∨ϕ(x,y,v).

Clearly, δ is �̂b
i and T +�̂b

i -BBR proves the antecedent of the bounded collection axiom for δ(x,y).
Applying �̂b

i -BBR in A and taking v=a and u=b, we get

A |=∃w<bd(t∗(|s|),s)∀x≤|s|(βt∗(|s|)(w,x)≤ t(x)∧δ(x,βt∗(|s|)(w,x),a,b)).

Since A |=θ (a,b), A |=δ(x,y,a,b)→ϕ(x,y,a) and hence the consequent of the bounded collection
axiom for ϕ(x,y,a) is true in A.
(Induction schemes): We only write the proof for the usual induction scheme I , the remaining cases
being analogous. Assume A is ∃�̂b

i -closed for T +�̂b
i -IR. To prove that A |= I�̂b

i , assume A |=
ϕ(0,a)∧∀x(ϕ(x,a)→ϕ(x+1,a)), where ϕ(x,v)∈�̂b

i and a∈A. We must show A |=∀xϕ(x,a). Put
ϕ(x,v) as ∃y≤ t(x,v)ϕ0(x,y,v), where ϕ0(x,y,v)∈�̂b

i−1 and t(x,v) is a term. By prenex operations,
the antecedent of the induction axiom for ϕ can be re-expressed as

∀x∀y[ϕ(0,a)∧ (¬(y≤ t(x,a))∨¬ϕ0(x,y,a)∨ϕ(x+1,a))]

Let us denote byψ(x,y,a) the �̂b
i -formula in brackets [ ] above. Since A is ∃�̂b

i -closed for T +�̂b
i -IR

and A |=∀x,yψ(x,y,a), by Proposition 2 it follows that there are b∈A and θ (v,u)∈�̂b
i satisfying

A |=θ (a,b), and (T +�̂b
i -IR)+θ (a,b)�∀x,yψ(x,y,a). Hence,

T +�̂b
i -IR�θ (v,u) → (ϕ(0,v)∧∀x(ϕ(x,v)→ϕ(x+1,v)))

Now define δ(x,v,u) to be the �̂b
i -formula ¬θ (v,u)∨ϕ(x,v). Clearly, T +�̂b

i -IR proves the antecedent
of the induction axiom for δ(x,v,u). By applying �̂b

i -IR, we get A |=∀x,v,uδ(x,v,u). In particular,
A |=∀x(¬θ (a,b)∨ϕ(x,a)), and hence A |=∀xϕ(x,a) since θ (a,b) is true in A. �
Combining Proposition 1 and Theorem 1, we derive our ∀�b

i -conservation results. The proof is in
two steps. First, we prove this conservation result only for ∀�̂b

i -formulas. Second, we show how to
extend it to general ∀�b

i -formulas.

Theorem 2
(i≥1) Let E denote one of the following schemes: BB, I , PIND, LIND, LLIND and let T be a
∀∃�̂b

i -axiomatizable theory. Then T +E�̂b
i is ∀�̂b

i -conservative over T +�̂b
i -ER.

Proof. By contradiction, assume T +E�̂b
i �ϕ but T +�̂b

i -ER ��ϕ, where ϕ∈∀�̂b
i . Let A be a

countable model of (T +�̂b
i -ER)+¬ϕ. Since T is ∀∃�̂b

i -axiomatizable, so is T +�̂b
i -ER (for E=BB,

recall that �̂b
i -BBR and �̂b

i−1-BBR are equivalent rules). By Proposition 1, there is B |=T +�̂b
i -ER

such that A≺
�̂b

i
B and B is ∃�̂b

i -closed for T +�̂b
i -ER. From Theorem 1, it follows that B |=E�̂b

i .

Hence, B |=T +E�̂b
i +¬ϕ, which is a contradiction. �

Since Ti
2 and Si

2 are ∀�̂b
i+1-axiomatizable, a first application of Theorem 2 is the following

strengthening of the well-known facts that Si+1
2 implies Ti

2 and Ri+1
2 implies Si

2, and of theorem

68 in [13] stating that BB�̂b
i+1 implies Si

2.



Corollary 1
1. LIOpen+�̂b

i+1-BBR implies Si
2.

2. Both LIOpen+�̂b
i+1-LINDR and LIOpen+�̂b

i+1-IR imply Ti
2.

3. LIOpen+�̂b
i+1-LLINDR implies Si

2.

Proof. We only prove (2) for LIND, the remaining cases being similar. First, recall that Ti
2 ≡ I�̂b

i and

LIND�̂b
i+1 ≡Si+1

2 contains I�̂b
i . It is easy to check that I�̂b

i is ∀�̂b
i+1-axiomatizable and hence Ti

2
follows from the ∀�̂b

i+1-consequences of LIND�̂b
i+1. By Theorem 2 for E=LIND and T =LIOpen,

LIND�̂b
i+1 is a ∀�̂b

i+1-conservative extension of LIOpen+�̂b
i+1-LINDR; so, the result follows. �

To extend previous conservation result to ∀�b
i -formulas, we need the following lemma

Lemma 1
(i≥1) Let ϕ(�v)∈�b

i . There exists ϕ̂(�v)∈�̂b
i such that:

(1) BB�̂b
i−1 �ϕ(�v)↔ ϕ̂(�v), and

(2) BB�̂b
i−2 � ϕ̂(�v)→ϕ(�v).

(For i=1, BB�̂b−1 denotes LIOpen.)

Proof. We proceed by induction on the the complexity of the�b
i -formula ϕ(�v). If ϕ(�v)∈�b

i−1, there

exists ϕ̂(�v)∈�̂b
i−1 provably equivalent in BB�̂i−2 to ϕ(�v) (for i=1 it is trivial; for i>1 it follows

from Pollett’s work in [13]). If ϕ(�v) is obtained by conjunction, disjunction or bounded existential
quantification, the induction step is immediate. Now consider the case where ϕ(�v) has the form
∀x≤|s(�v)|ϕ0(x,�v). By the induction hypothesis, there is ϕ̂0(x,�v)∈�̂b

i satisfying the conditions 1 and
2 in the statement of the lemma. Using a pairing function (available in LIOpen), we may assume
that ϕ̂0 is ∃y≤ t(x,�v)ϕ̂1(x,y,�v), where ϕ̂1 is �̂b

i−1. The bounded collection axiom for ϕ̂1 says (for
notational simplicity we omit the parameters in s, t, ϕ):

∀x≤|s|∃y≤ t(x)ϕ̂1(x,y)→
∃w<bd(t∗(|s|),s)∀x≤|s|(βt∗(|s|)(w,x)≤ t(x)∧ϕ̂1(x,βt∗(|s|)(w,x))).

Observe that the converse of the implication above is trivially provable in LIOpen. Moreover,

BB�̂b
i−1 �ϕ0(x,�v)↔∃y≤ t(x)ϕ̂1(x,y,�v); and

BB�̂b
i−2 �∃y≤ t(x)ϕ̂1(x,y,�v)→ϕ0(x,�v).

Now define ϕ̂(�v) to be the formula

∃w<bd(t∗(|s|),s)∀x≤|s|(βt∗(|s|)(w,x)≤ t(x)∧ϕ̂1(x,βt∗(|s|)(w,x),�v)).

Clearly, ϕ̂(�v) is �̂b
i and satisfies the two required conditions. �

Lemma 2
Let Q denote a finite sequence of unbounded quantifiers of the form: ∃∀... or ∀∃.... Suppose that
T1 is Q�̂b

i -conservative over T2, T1 implies BB�̂b
i−1; and, for i>1, T2 implies BB�̂b

i−2. Then T1 is

Q�b
i -conservative over T2.



�Proof. Assume that T1 proves Qv�ϕ(v�), where ϕ(v�) is�i
b. By Lemma 1, there is ϕ̂(v�)∈ ˆ ib satisfying 

(1) T1 �ϕ(v�)↔ ϕ̂(v�), and (2) T2 � ϕ̂(v�)→ϕ(v�). If follows by (1) that T1 �Qv�ϕ̂(v�) and hence T2 �
Q�vϕ̂(�v). By (2), T2 �Q�vϕ(�v). �
Theorem 3
(i≥1) Let E denote one of the following schemes: BB, I , PIND, LIND. Then, LIOpen+�̂b

i -ER
axiomatizes the ∀�b

i -consequences of E�b
i .

Proof. The results follow from Theorem 2, Corollary 1 and Lemma 2 (to apply this lemma for i>1,
notice that Si−1

2 implies BB�b
i−2 by Buss’ [4]). �

To close this section, observe that by Parikh’s theorem we can replace ∀�b
i -consequences by

∀∃�b
i -consequences in the theorem above.

4 Parameter-free systems of Bounded Arithmetic

In this section we use the results obtained in the previous one to show that Si
2 and Ti

2 are ∃∀�b
i -

conservative over their parameter free versions. Notice that there are two natural candidates for
their parameter free counterparts: restricting the axiom scheme to parameter-free �b

i -formulas, or
to strict parameter free �b

i formulas. Since we are interested in conservation results over these

theories, we choose the weakest ones to make the results stronger. That is, we fix Ti,−
2 ≡ I�̂b,−

i and

Si,−
2 ≡PIND�̂b,−

i . We derive the conservation theorems from our previous work on inference rules.

The key observation is the following reduction of �̂b
i -IR and �̂b

i -PINDR to their parameter-free
versions:

Proposition 3
Let T be an extension of LIOpen. Then

1. [T ,�̂b
i -IR] and [T ,�̂b,−

i -IR] are equivalent.

2. (i≥1) [T ,�̂b
i -PINDR] and [T ,�̂b,−

i -PINDR] are equivalent.

Proof.
(1): Assume T proves ϕ(0,v)∧∀x(ϕ(x,v)→ϕ(x+1,v)), where ϕ(x,v) is �̂b

i . We must show

[T ,�̂b,−
i -IR]�∀v∀xϕ(x,v). The idea is to codify the parameter v and the induction variable x in

a single variable u using the pairing function and to apply �̂b,−
i -IR. To this end, define θ (u) to be the

following �̂b
i -formula:

(ispair(u)∧(u)0< (u)1 ∧ispair((u)1)) →ϕ((u)0,(u)1,1)

Trivially, T �θ (0) since ¬ispair(0). Let us see that T �∀u(θ (u)→θ (u+1)). Reasoning in T ,
we assume θ (u) and (ispair(u′)∧(u′)0< (u′)1 ∧ispair((u′)1), where u′ =u+1. We must show
ϕ((u′)0,(u′)1,1).
Case 1: (u′)0 =0. Then ϕ(0,(u′)1,1) since T �∀vϕ(0,v).
Case 2: (u′)0>0. Since (u′)0< (u′)1, max((u′)0 −1,(u′)1)= (u′)1 and hence by the definition of
the pairing function u codifies the pair 〈(u′)0 −1,(u′)1〉 (that is, (u)0 = (u′)0 −1 and (u)1 = (u′)1).
Consequently, from θ (u) it follows ϕ((u′)0 −1,(u′)1,1) and hence ϕ((u′)0,(u′)1,1) since T �ϕ(x,v)→
ϕ(x+1,v).
So, it follows that [T ,�̂b,−

i -IR]�∀uθ (u). To show [T ,�̂b,−
i -IR]�∀v∀xϕ(x,v), observe that ϕ(x,v)

can be inferred from θ (〈x,〈x,v〉〉).



x
2

(2): The proof is similar to that of (1) but now we need to define a new tuple-encoding function
compatible with the PIND rule: roughly speaking, if u codifies the pair (x,v) and x >0, then � u2 � 
must codify the pair (� �,v). In [3] Bloch proposed the following encoding function satisfying that
property:

[x,v,z]=u ≡
{

|v|<z2 ≤|u|< (z+1)2∧
u=Concat(v+2min(z2,|u|),x+2|x|)

where Concat(x,y)=x ·2|y|−•1+y−• 2|y|−•1. In words, we pad v to length z2 and concatenate the result
with x (notice that the Concat function operates on bit-strings rather than on binary numbers, that
is, Concat(1x,1y)=1xy). Observe that the encoding function [x,v,z] itself is not total, but it is total
for all z sufficiently large meeting some additional restrictions. Namely, by adapting Bloch’s work
in [3], we can show that LIOpen proves the following facts (we give only a sketch of the proofs,
reasoning in a model of LIOpen):

(a) |x|≤2z∧|v|<z2 ≤|w| → ∃!u([x,v,z]=u).
Indeed, given x,v,z and w, let u=Concat(v+2min(z2,|w|),x+2|x|). Then

z2 ≤|u|=z2 +|x|≤z2 +2z< (z+1)2

and, since z2 ≤|u|∧z2 ≤|w|→2min(z2,|u|) =2min(z2,|w|), we obtain u=[x,v,z] and the unique-
ness easily follows from this argument.

(b) u>0 → ∃!x,v,z≤u([x,v,z]=u).
Let ψ(z,u) be the open formula z2 ≤|u|. Then it holds that ψ(0,u) and ∃z¬ψ(|z|,u) (since
we have |u+2|2> |u|); hence by LIOpen it holds that ∃z(ψ(z,u)∧¬ψ(z+1,u)). So, it easily
follows that ∀u∃!z(z2 ≤|u|< (z+1)2).
Given u>0, let z be such that z2 ≤|u|< (z+1)2. Define

p=� u

2min(z2,|u|) �, x=LSP(u,|p|) and v=MSP(u,|p|)−• 2|MSP(u,|p|)|−•1

Then [x,v,z]=u. As for uniqueness, it is straightforward to check that z is unique and the
uniqueness of x and v follows from the previous argument.

(c) u=[x,v,z]∧x>0 → �u
2�=[� x

2�,v,z].
Let x=2q+r>0, where r ≤1. Then, |q|=|x|−• 1 and, since z2< |u|, it holds that

[� x
2�,v,z] = Concat(v+2min(z2,|u|),q+2|q|)

= (v+2min(z2,|u|))·2|q+2|q||−•1+(q+2|q|)−• 2|q+2|q||−•1

= (v+2min(z2,|u|))·2|q|+(q+2|q|)−• 2|q|
= (v+2min(z2,|u|))·2|q|+q

and, as a consequence (recall that |x|=|q|+1=|q+2|q||=|x+2|x||−• 1)

2·[� x
2�,v,z]+r = (v+2min(z2,|u|))·2|x|+2q+r

= (v+2min(z2,|u|))·2|x+2|x||−•1+x

= (v+2min(z2,|u|))·2|x+2|x||−•1+(x+2|x|)−• 2|x+2|x||−•1

= Concat(v+2min(z2,|u|),x+2|x|)
= u

Hence, �u
2�=[� x

2�,v,z].



Equipped with this encoding function, we can replace each application of the PIND rule for a �̂b
i -

formula ϕ(x,v) by one application of the PIND rule for the (parameter free) �̂b
i -formula θ (u)≡u>

0→∃x,v,z≤u([x,v,z]=u∧ϕ(x,v)). �
Corollary 2

1. If T implies Ti,−
2 then T is closed under �̂b

i -IR.

2. (i≥1) If T implies Si,−
2 then T is closed under �̂b

i -PINDR.

Observe that from Corollaries 1 and 2 it immediately follows that

Corollary 3
Ti+1,−

2 implies Ti
2, and Si+1,−

2 implies Si
2.

Theorem 4
(i≥1)

1. Ti
2 is ∃∀�b

i -conservative over Ti,−
2 .

2. Si
2 is ∃∀�b

i -conservative over Si,−
2 .

Proof. By Lemma 2 it suffices to show ∃∀�̂b
i -conservation. We only write the proof of (1). Assume

ϕ is an ∃∀�̂b
i -sentence such that Ti

2 �ϕ but Ti,−
2 ��ϕ. Then T =Ti,−

2 +¬ϕ is consistent and ∀∃�̂b
i -

axiomatizable. Let A be an ∃�̂b
i -closed model for T . By Corollary 2, T is closed under �̂b

i -IR. Hence,
A |=T +Ti

2 by Theorem 1. So, A |=Ti
2 +¬ϕ, which is a contradiction. �

Remark 1
These results differ in several aspects from the ones obtained by Bloch in [3]. First of all, the proof-
theoretic methods of Bloch deal with general �b

i formulas while our model-theoretic methods are
well suited to deal with strict �b

i -formulas.
Secondly, Bloch focuses on strongly parameter free systems which in fact are given by parameter-

free inference rules. For each Bounded Arithmetic theory, T , defined by an induction scheme (for
instance Ti

2 or Si
2), he defines a parameter-free counterpart pfT by replacing the corresponding scheme

by nested applications of a parameter-free rule. The considered rule is apparently stronger than the
rule we have dealt with in this article. Namely, for T =Ti

2 Bloch’s rule can be formulated in a
Hilbert-style as follows:

�
b,−
i -IR0 : ∀x(ϕ(x)→ϕ(x+1))

ϕ(0)→∀xϕ(x)

The resulting system pfT i
2 is apparently incomparable w.r.t. inclusion with our theory LIOpen+

�̂
b,−
i -IR. However, using Proposition 3 it can be easily shown that the rules �̂

b,−
i -IR0,

�̂
b,−
i -IR, �̂b

i -IR and �̂b
i -IR0 are equivalent over LIOpen and, by Theorem 3, axiomatize the

∀∃�b
i -consequences of Ti

2. Consequently, parameter-free �̂b
i induction rule axiomatizes the

∀∃�b
i -consequences of Ti

2, whereas parameter-free �̂b
i induction scheme axiomatizes its ∃∀�b

i -
consequences. Similar remarks apply to PIND and Si

2.

5 A general framework for conservativity between schemes and rules

In this section we prove that Theorems 1, 2 and 4 can be obtained as corollaries of very general
conservation results between certain schemes and inference rules associated with them in a



natural way. The proof will make clear that these conservation results rest on the logical/syntactical 
structure of the schemes we deal with and that they can be derived with no use of the specific 
combinatorial or arithmetical content of the schemes.

Let us fix a finite first order language L. We are interested in conservation results between theories 
axiomatized by axiom schemes and theories described by inference rules associated with those 
schemes. The major axiom schemes in Bounded Arithmetic are the different forms of induction and 
replacement; so, in this section we shall deal with an arbitrary scheme enjoying some basic properties 
common to both principles. First of all we state the following general definition.

Definition 2
Ak-ary scheme E is a sentence of the language LP =L∪{P}, where P is a new k-ary predicate symbol. 
For each formula ϕ(x1,...,xk,v�) of L with v� not occurring in E, we denote by Eϕ,x1,...,xk the formula 
obtained by substituting ϕ(t1,...,tk,v�) for each atomic subformula of E of the form P(t1,...,tk), 
where t1,...,tk are terms. Variables x1,...,xk are called the proper variables of Eϕ,x� and v� are called 
parameters.

We are interested in schemes of the form A→B. This is the common form of the usual formulations 
of induction and replacement principles and it allows us to attach an inference rule to each scheme
E in a natural way. Observe that although E is a sentence of LP, the formula Eϕ,x� is not necessarily 
a sentence of L, since the possible parameters v� of ϕ(x�,v�) are free variables of Eϕ,x�. So, if E is 
A→B, then Eϕ,x�(v�) will have the form Aϕ,x�(v�)→Bϕ,x�(v�). Thus, the inference rule associated with 
the scheme E is the rule ER defined by

∀�vAϕ,x�(v�)

∀�vBϕ,x�(v�)

Given a class of formulas of L, � and a theory T of language L, [T ,�-ER] (resp. T +�-ER) denotes 
the closure of T under first order logic and unnested (resp. nested) applications of ER restricted to 
formulas in �. If only parameter-free formulas are allowed then we obtain the theories [T ,�−-ER] 
and T +�−-ER.

In addition, for each scheme E of the form A→B we define three theories obtained by adding to 
T certain axiom scheme:

T +E� is the theory axiomatized by T plus the universal closure of the formula Eϕ,�x for every
ϕ∈�.
T +UE� is the theory axiomatized by T plus the sentence ∀�vAϕ,�x(�v)→∀�vBϕ,�x(�v) for every
ϕ∈�.
T +E�− is the theory axiomatized by T plus the sentence Eϕ,�x for every ϕ(�x)∈�−.

In what follows we consider a fixed class of L-formulas � containing all atomic formulas and
closed under conjunction, disjunction, term substitution and subformulas. We denote by ¬� the set
of formulas {¬ϕ : ϕ∈�} and assume ¬�⊆∃�.

Now we isolate the syntactic properties of induction and replacement schemes that we have used
to derive Theorem 2.

Definition 3
Let T be a theory and � a class of L-formulas. A scheme, E=A→B, is T -monotonic over � and �
if, for each formula θ (�w)∈� and ϕ(�x,�v)∈� such that �w contains no variable in �x, it holds that:

1. Syntactical Conditions:
(S1) θ (�w)→ϕ(�x,�v)∈�,



(S2) Aϕ,�x ∈∀¬� and
(S3) T +�-ER is ∀∃�-axiomatizable.

2. Provability Conditions:
(P1) T � (θ→Aϕ,�x)→Aθ→ϕ,�x , and
(P2) T �Bθ→ϕ,�x → (θ→Bϕ,�x).

The main examples we have in mind are given by �=�̂b
i , �=�̂b

i and one scheme E= I, PIND,
LIND, LLIND or BB. It is easy to check that for every ∀∃�̂b

i -axiomatizable extension of BASIC,
T , every induction scheme E is T -monotonic over �̂b

i and �̂b
i . In turn, for i≥1, BB is T -monotonic

over �̂b
i and �̂b

i , since T +�̂b
i -BBR≡T +�̂b

i−1-BBR.

Our emphasis on strict �b
i -formulas here and in previous sections is motivated by the Syntactical

Conditions. We restrict ourselves to �̂b
i -formulas to fulfil these conditions for induction schemes. As

for general �b
i -formulas we have that every induction scheme is BASIC-monotonic over B(�b

i ) and
B(�b

i ), where B(�b
i ) denotes the class of boolean combinations of �b

i -formulas.
Next definition introduces a straightforward generalization of the notion of an existentially closed

model.

Definition 4
Let A be an L-structure. We say that A is ∃�-closed for T if A |=T and for each B |=T ,

A≺�B �⇒ A≺∃�B.

The usual chain argument for constructing existentially closed models gives us an existence lemma.
To this end, recall that � contains all atomic formulas and it is closed under subformulas and term
substitution; so, it can be showed by a typical induction argument that the union of a chain of
�-elementary structures is a �-elementary extension of every structure in the chain.

Lemma 3
Let T be a ∀∃�-axiomatizable consistent arithmetic theory. Then for each A |=T , there exists an
∃�-closed model for T , B, such that A≺�B.

Our basic device to prove conservation is next lemma, which is a general version of theorem 3.4
in [2].

Lemma 4
Let T be a ∀∃�-axiomatizable theory and let T ′ be a theory such that every ∃�-closed model for T
is a model of T ′. Then T ′ is ∀¬�-conservative over T .

Proof. Let ϕ∈∀¬� be a sentence such that T ′ �ϕ. If T ��ϕ then there exists A |=T +¬ϕ. Since
T +¬ϕ is ∀∃�-axiomatizable, there exists an ∃�-closed model for T , B, such that A≺�B. Then
B |=T ′+¬ϕ, a contradiction. �
The following result is a general version of Proposition 2 relating validity in an ∃�-closed model for
T and provability in the theory T .

Lemma 5
Let A |=T be an ∃�-closed model for T and ϕ(�x)∈∀¬�, �a∈A such that A |=ϕ(�a). Then there exist
�c∈A and θ (�x,�z)∈� such that

A |=θ (�a,�c) and T �θ (�x,�z)→ϕ(�x).



Proof. Let D�(A) denote the �-diagram of A. Since A |=ϕ(�a) and A is ∃�-closed, T +D�(A)+
¬ϕ(�a) is inconsistent. Therefore, T +D�(A)�ϕ(�a) and, since� is closed under conjunctions, there
exist �c∈A and θ (�x,�z)∈� such that θ (�a,�c)∈D�(A) and T �θ (�x,�z)→ϕ(�x). �
Now we are ready to prove our general conservation theorems.

Theorem 5
Let T be a ∀∃�-axiomatizable theory and let E=A→B be a T -monotonic scheme over � and �.
Then T +E� is ∀¬�-conservative over T +�-ER.

Proof. By condition (S3), T +�-ER is ∀∃�-axiomatizable; so, by Lemma 4, it is enough to prove
that every ∃�-closed model for T +�-ER is a model of T +E�.

Let ϕ(�x,�v)∈� and �a∈A such that A |=Aϕ,�x(�a). By condition (S2), Aϕ,�x ∈∀¬� and, therefore, by
Lemma 5, there exist θ (�v,�z)∈� and �c∈A such that A |=θ (�a,�c) and

T +�-ER�θ (�v,�z)→Aϕ,�x(�v)

By condition (P1), it holds that

T +�-ER�Aθ→ϕ,�x

Now, by condition (S1), θ (�v,�z)→ϕ(�x,�z)∈�; so, applying�-ER, we get T +�-ER�Bθ→ϕ,�x . Finally,
by condition (P2), it follows that

T +�-ER�θ (�v,�z)→Bϕ,�x(�v)

Therefore, A |=Bϕ,�x(�a), since A |=T +�-ER and A |=θ (�a,�c). �

Now, Theorem 2 can be derived as a corollary of Theorem 5, since for every ∀∃�̂b
i -axiomatizable

theory, T , the schemes I,PIND,LIND,LLIND,BB are T -monotonic over �̂b
i and �̂b

i , (i≥1).

Theorem 6
Let T and E be as in previous theorem. Then

1. If UE� is ∀∃�-axiomatizable then T +E� is ∃∀¬�-conservative over T +UE�.
2. If UE� is ∃∀¬�-axiomatizable and every ∀∃�-axiomatizable extension of T +E�− is closed

under �-ER, then

T +E�− ≡T +UE�.

Proof. Let us assume that UE� is ∀∃�-axiomatizable. Then part (1) follows from Theorem 5
applied to T ′ =T +UE� and E, since T ′+E� is equivalent to T +E� and T ′ is, obviously, closed
under �-ER.

On the other hand, it is obvious that T +UE� extends T +E�−; so, in order to get part (2) it suffices
to prove the reverse implication. Let us assume that UE� is ∃∀¬�-axiomatizable and let ψ ∈∃∀¬�
be an axiom of UE�. We reason by contradiction. If T +E�− ��ψ then T ′′ = (T +E�−)+¬ψ is a
∀∃�-axiomatizable consistent extension of T +E�−. By hypothesis, T ′′ is closed under �-ER, thus
by Theorem 5, T ′′+E� is ∀∃�-conservative over T ′′. In particular, T ′′+E� is consistent, and this
provides the required contradiction, since T ′′+E� extends UE� and, thus, T ′′+E� proves both ψ
and ¬ψ . �



�

�b � � �b �b

Let us illustrate the content of Theorem 6 by considering the case of ˆ ib-replacement scheme that 
we have omitted in Section 4 on parameter-free schemes. Recall that for i ≥1, BB is BASIC-monotonic 
over ˆ 

i and ˆ 
i
b. Therefore, since UBB ˆ ib ≡UBB ˆ i−1 and this theory is ∀∃ ˆ i -axiomatizable, by 

part 1. of Theorem 6 and Lemma 2, it follows that:

Corollary 4
(i≥1) BB�̂b

i is ∃∀�b
i -conservative over UBB�̂b

i .

Note that the scheme UBBϕ is obtained quantifying universally the parameters of ϕ(x,y) in both

the antecedent and the consequent of BBϕ . The corresponding parameter-free system BB�̂b,−
i , is not

known to be equivalent to UBB�̂b
i .

For �̂b
i -induction the situation is different. First of all, note that the corresponding schemes UI�̂b

i

and UPIND�̂b
i are ∃∀�̂b

i -axiomatizable. Secondly, by Proposition 3, every extension of Ti,−
2 (resp.

Si,−
2 ) is closed under �̂b

i -IR (resp. �̂b
i -PINDR). Hence, by the second part of Theorem 6, it holds

that

Corollary 5
(i≥1) UI�̂b

i and UPIND�̂b
i are equivalent to Ti,−

2 and Si,−
2 , respectively.

6 On replacement and bit-comprehension rules

In this section we shall study an inference rule closely tied to�b
1-replacement:�b

1-bit-comprehension
rule. This rule was defined in [9] as follows:

�b
1-BCR : ϕ(x)↔ψ(x)

∃y<2|u|∀x< |u|(Bit(y,x)=1↔ϕ(x))

where ϕ(x)∈�b
1 and ψ ∈�b

1. We shall consider the (apparently) weaker rule for strict formulas

�̂b
1-BCR and show that, over LIOpen, it is equivalent to �̂b

1-replacement rule. In fact, the four rules

�b
1-BBR, �̂b

1-BBR, �b
1-BCR and �̂b

1-BCR are equivalent over LIOpen and therefore, by Theorem
3, axiomatize the class of ∀�b

1-consequences of BB�b
1 .

In [7],�b
1-replacement and�b

1-bit-comprehension schemes were considered in connection with the
class of functions computable by uniform threshold circuit families of polynomial size and constant
depth, TC0. The main result of [7] states that TC0 is the class of functions�b

1-definable in the system
R̄0

2. This theory was proposed as a fairly natural alternative to the theory TTC0 introduced in [5] in
order to characterize the class TC0. A more elegant axiomatization of R̄0

2 is presented in [8] where it
is proved that R̄0

2 is equivalent to BB�b
0 , denoted there by C0

2 . Finally, in [9], it is proved that C0
2 is a

∀�b
1-conservative extension of LIOpen+�b

1-BCR (this theory is denoted in [9] by �b
1-CR). So the

class of �b
1-definable functions of this last theory is TC0 and the authors argue that it is the weakest

natural theory with this property. Here, we prove that TC0 coincides with the class of �̂b
1-definable

functions of LIOpen+�̂b
1-BCR and show how �̂b

1-replacement rule can be used together with this
fact to prove the conservation result between C0

2 and �b
1-CR obtained by Johannsen and Pollett.

Our analysis is of independent interest; nevertheless, it also supports Johannsen–Pollett’s claim on
�b

1-BCR as a minimal natural theory for TC0 and makes more transparent the close relationship
between �b

1-bit-comprehension and �b
1-replacement. As a by-product our approach also provides a

strict version of the KPT-witnessing result for �b
1-BR obtained in [9].



� �b
1Now we shall prove that LIOpen+ ˆ 1b-BBR and LIOpen+ ˆ -BCR are equivalent, see Theorem

8. In what follows LIOpen+�b
1-BCR and LIOpen+�̂b

1-BCR will be denoted by�b
1-CR and �̂b

1-CR,
respectively. The proof will occupy the most part of this section and it is strongly related to our proof
of Johannsen–Pollett’s conservation theorem. First of all let us observe the following fact:

Lemma 6
Let T be an extension of LIOpen. Then [T ,�̂b

1-BBR] extends [T ,�̂b
1-BCR].

Proof. Let us assume that T �∀x(ϕ(x)↔ψ(x)), where ϕ(x)∈�̂b
1 ,ψ(x)∈�̂b

1. Let θ (x,y) be the �̂b
1

formula (ϕ(x)∧y=1)∨(¬ψ(x)∧y=0). Then T �∀x≤|u|∃y≤1θ (x,y) and, by �̂b
1-BBR,

[T ,�̂b
1-BBR]�∃w<bd(t∗,u)∀x≤|u|(βt∗ (w,x)≤ t∧θ (x,βt∗ (w,x)).

Let w be such that∀x≤|u|(βt∗ (w,x)≤ t∧θ (x,βt∗ (w,x))) and let v=LSP(w,|u|). Then, [T ,�̂b
1-BBR]�

∀x< |u|(ϕ(x)↔Bit(v,x)=1), as required. �
Next three lemmas will allow us to obtain a partial converse of Lemma 6, revealing a close

relationship between both rules.

Lemma 7
Let T be an extension of LIOpen. Then

1. [T ,�̂b
1-BCR] extends [T ,�̂b

1-LINDR].
2. (Extensionality) LIND�b

0 (hence, also [T ,�̂b
1-BCR]) proves

(|v|=|w|∧∀x< |v|Bit(v,x)=Bit(w,x))→v=w.

Proof. The proof is straightforward, see lemma 5 in [9]. �
Next lemma provides a weak form of replacement available in �̂b

1-CR.

Lemma 8
Let T denote an extension of LIOpen. Let ϕ(x,y)∈�̂b

1 and let t and s be terms such that T �∀x≤
|s|∃!y≤ t(x)ϕ(x,y). Then

[T ,�̂b
1-BCR]�∃w<bd(t∗(|s|),s)∀x≤|s|(βt∗(|s|)(w,x)≤ t(x)∧ϕ(x,βt∗(|s|)(w,x)))

Proof. First of all let us observe that

(•) LIOpen�|a|≤|s|·|t∗(|s|)|→∀i≤|a|∃!q≤|s|∃!r< |t∗(|s|)|(i=q|t∗(|s|)|+r)

Fix a=bd(t∗(|s|),s) and θ (i)≡ i=|a|−1∨(i< |a|−1∧δ(i)), where δ(i) is

∃r< |t∗(|s|)|∃q≤|s|∃y≤ t(i)(i=q|t∗(|s|)|+r∧ϕ(q,y)∧Bit(y,r)=1)

Then θ (i) is �̂b
1 in T , since, by (•) and the functional character of ϕ, it is equivalent in T to the

�̂b
1-formula: i=|a|−1∨(i< |a|−1∧σ (i)), where σ (i) is

∀r< |t∗(|s|)|∀q≤|s|∀y≤ t(i)(i=q|t∗(|s|)|+r∧ϕ(q,y)→Bit(y,r)=1)

By �̂b
1-BCR, ∃w<2|a|∀i< |a|(Bit(w,i)=1↔θ (i)). Then, by construction, it holds that ∀x≤

|s|(βt∗(|s|)(w,x)≤ t∧ϕ(x,βt∗(|s|)(w,x))), as required. �



Definition 5
We say that a theory T has �̂b

1-selection if for every formula ϕ(x,y)∈�̂b
1 such that T �∀x∃y≤

t(x)ϕ(x,y), there exists ψ(x,y)∈�̂b
1 such that T proves

(1) ∀x∃!y≤ t(x)ψ(x,y), and (2) ∀x∀y(ψ(x,y)→ϕ(x,y)).

Lemma 9
Let T be an extension of LIOpen such that T has �̂b

1-selection. Then the theories [T ,�̂b
1-BCR] and

[T ,�̂b
1-BBR] are equivalent.

Proof. By Lemma 6 it is enough to prove that [T ,�̂b
1-BCR] extends [T ,�̂b

1-BBR].
Let ϕ(x,y)∈�̂b

1 and t,s be terms such that T �∀x≤|s|∃y≤ t(x)ϕ(x,y). Define θ (x,y)∈�̂b
1 to be

the formula
(x> |s|∧y=0)∨(x≤|s|∧ϕ(x,y)).

Then T �∀x∃y≤ t(x)θ (x,y) and, since T has �̂b
1-selection, there is ψ(x,y)∈�̂b

1 such that T proves

(1) ∀x∃!y≤ t(x)ψ(x,y) and (2) ∀x∀y(ψ(x,y)→θ (x,y)).

By (1) and Lemma 8, it holds that

[T ,�̂b
1-BCR]�∃w<bd(t∗(|s|),s)∀x≤|s|(βt∗(|s|)(w,x)≤ t(x)∧ψ(x,βt∗(|s|)(w,x)))

Hence, [T ,�̂b
1-BCR] also proves

∃w<bd(t∗(|s|),s)∀x≤|s|(βt∗(|s|)(w,x)≤ t(x)∧ϕ(x,βt∗(|s|)(w,x)))

since, by (2) and the definition of θ (x,y), we have T �x≤|s|∧ψ(x,y)→ϕ(x,y). �
Since C0

2 coincides with BB�b
0 , by Theorem 2, C0

2 is ∀�̂b
1 conservative over LIOpen+�̂b

1-BBR.

So, in order to get the equivalence between LIOpen+�̂b
1-BBR and �̂b

1-CR (and, as a consequence,

Johannsen–Pollett’s theorem) it suffices to prove that �̂b
1-CR is closed under �̂b

1-BBR. By the

preceeding lemmas in order to prove that fact it is enough to show that �̂b
1-CR has �̂b

1-selection.

Hence, we need a �̂b
1 witnessing theorem for this last theory. The proof we present here will

require an analysis of the class of �̂b
1-definable functions. A key ingredient in such analysis is a

machine-independent characterization of the complexity class TC0 given by Clote and Takeuti in
[5]:

Let BF be the set of basic functions {o,s0,s1,#, · , |·|}∪{�n
i : 1≤ i≤n}, where o(x)=0, s0(s)=2x,

s1(x)=2x+1, |x|=�log2(x+1)�, x#y=2|x|·|y|, · denotes the usual product and �n
i (x1,...,xn)=xi.

Definition 6
Let g :ωn →ω and h0,h1 :ωn+1 →ω such that h0(n,�x),h1(n,�x)≤1. A function f is defined by
concatenation recursion on notation (CRN) from g, h0 and h1 if

f (0,�x) = g(�x)
f (2n,�x) = 2·f (n,�x)+h0(n,�x), provided n �=0

f (2n+1,�x) = 2·f (n,�x)+h1(n,�x)



�
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Theorem 7
(Clote–Takeuti) TC0 is the smallest class of functions containing BF and closed under composition 
and CRN.

Proposition 4
For each function f ∈TC0 there exist a formula ψ(x�,y,z1,...,zn)∈�0

b and terms 
t(x),t1(x,y),t2(x,y,z1),...,tn(x,y,z1,...,zn−1) such that the ˆ 

1
b-formula ∃z1 ≤ t1 ...∃zn ≤ tnψ(x,y,z�) 

defines f in the standard model and �̂1-CR proves

1. ∀�x∃!y≤ t∃z1 ≤ t1 ...∃zn ≤ tnψ(x,y,�z)
2. ∀�x,y(∃�z≤�tψ(x,y,�z)→∃!�z≤�tψ(x,y,�z))

Proof. The proof proceeds by induction. The result obviously holds for the basic functions and
it is straightforward to check that it holds for f defined by composition from functions verifying
conditions 1 and 2. So, it suffices to prove the result for functions defined by CRN. We adapt the
proof of theorem 4 in [9].

Let us assume that f is defined by CRN from g(�x), h0(u,x) and h1(u,x) and that g, h0 and h1 verify
the claim. Let us define

h(a,x)=
|a|∑
i=0

cond(Bit(a,|a|−• i),h0(i,x),h1(i,x))·2i

where cond(x,y,z)=y, if x=0, and z otherwise. Then f (a,x)=g(x)·2|h(a,x)|+h(a,x). So it is enough
to prove that h can be defined by a �̂b

1 formula verifying the two conditions of the proposition.

Let us consider θ (u,x,y,a,z1,...,zm)∈�b
0 and t1,...,tm terms such that the �̂b

1-formula
∃z1 ≤ t1 ...∃zm ≤ tmθ (u,x,y,a,z1,...,zm) defines in the standard model the function k(u,x,a)=
cond(Bit(a,|a|−• i),h0(i,x),h1(i,x)) and �̂b

1-CR proves

∀u,x,a∃!y≤1∃�z≤�tθ (u,x,y,a,�z) ∧
∀u,x,a,y(∃�z≤�tθ (u,x,y,a,�z)→∃!�z≤�tθ (u,x,y,a,�z))

Using a pairing function and the monotonic terms t∗j we can assume that m=1. Let us work in a

model of �̂b
1-CR. Then, we have ∃z1 ≤ t1θ (u,x,1,a,z1)∈�̂b

1 and, by �̂b
1-BCR,

∃w≤2|a|∀u≤|a|(Bit(w,u)=1↔∃z1 ≤ t1θ (u,x,1,a,z1))

(and w is unique by Extensionality). Let ψ(u,x,a,z1,w)∈�b
0 be the formula

(Bit(w,u)=1∧θ (u,x,1,a,z1))∨(Bit(w,u)=0∧θ (u,x,0,a,z1)).

Since z1 is unique, the formula ∀u≤|a|(Bit(w,u)=1↔∃z1 ≤ t1θ (u,x,1,a,z1)) is equivalent to ∀u≤
|a|∃z1 ≤ t1ψ(u,x,a,z1,w). Hence, by Lemma 8 and uniqueness of z1, ∀u≤|a|∃z1 ≤ t1ψ(u,x,a,z1,w)
is equivalent to ∃w1 ≤Bdϕ(a,x,w1,w), where ϕ(a,x,w1,w)∈�b

0 is

∀u≤|a|(|w1|=|2a|·|t∗1 |+1∧βt∗1 (|a|)(w1,u)≤ t1 ∧ψ(u,x,a,βt∗1 (|a|)(w1,x),w))

and Bd stands for the term bd(t∗1 (|a|),a). Then, by Extensionality, it holds that

∀a∀x∃!w≤2|a|∃!w1 ≤Bd(|w|=|a|∧ϕ(a,x,w1,w)).

Finally, the �̂b
1 formula ∃w1 ≤Bd(|w|=|a|∧ϕ(a,x,w1,w)) defines h in the standard model. �
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Remark 2
It is not difficult to verify that, if f ∈TC0 is defined by CRN from g, h0 and h1 then the proof of 
previous proposition provides ˆ 1b-formulas defining the functions involved and such that the relations
stated by the recursion equations of CRN can be proved in �̂1-CR.

Corollary 6
Every function in TC0 is �̂b

1-definable in �̂b
1-CR.

In order to get �̂b
1-selection we introduce a universally axiomatized extension of LIOpen+

�̂b
1-BCR, denoted by CRNA. The proof we present here is a typical application of Herbrand’s

theorem and it is very similar to the Herbrand analyses of Si
2 developed by Sieg in [14].

Lemma 10
�̂b

1-CR has �̂b
1-selection.

Proof. (Sketch) Let CRNA be the following theory:

- Language: Lcr =⋃
i∈ωLi, where

• L0 =L2 plus a function symbol Bf for each basic function, f ∈BF.
• Lj+1 =Lj plus a function symbol, ft for each term of Lj and a function symbol ft0,t1,t2 for each

terms t0(�x), t1(y,�x), t2(y,�x) of Lj.
- Axioms: (in (4) sg(x) is the term 1−• (1−• x))

(1) BASIC
(2) Bs0 (x)=2x, Bs1 (x)=2x+1, B�n

i
(x1,...,xn)=xi, Bo(x)=0.

(3) ft(�x)= t(�x).
(4) ft0,t1,t2 (�x,0)= t0(�x)

y �=0→ ft0,t1,t2 (2y,�x)=2·ft0,t1,t2 (y,�x)+sg(t1(y,�x))
ft0,t1,t2 (2y+1,�x)=2·ft0,t1,t2 (y,�x)+sg(t2(y,�x)).

(5) Induction: the induction scheme, LIND, for open formulas of Lcr .

The proof of the following result is not hard in view of the techniques in [5].

Claim 1
1. In CRNA the open formulas are closed under sharply bounded quantification.
2. In CRNA, every formula �b

0 is equivalent to an open formula.
3. CRNA supports definition by cases.
4. CRNA is universally axiomatizable.

Since CRNA is a universal theory, a standard argument involving part (2) of Claim 1 and Herbrand’s
theorem proves that

Claim 2
In CRNA, every �̂b

1 formula (of L2) is equivalent to an open formula.

Using Claim 2, Remark 2 and the formal version of CRN available in CRNA by the axiom group
(4), we obtain the following

Claim 3
CRNA is a (conservative) extension of �̂b

1-CR.



Now the result can be proved as follows: We may assume that ϕ(x,y)∈�̂b
1 has the form ∃z≤

t0ϕ0(x,y,z), where ϕ0(x,y,z)∈�b
0 . By Claim 3, CRNA is an (conservative) extension of �̂b

1-CR and,
by Claim 1, there exists an open formula θ (x,y,z) such that

CRNA� (y≤ t∧z≤ t0 ∧ϕ0(x,y,z))↔θ (x,y,z)

Hence, CRNA�∀x∃y∃zθ (x,y,z) and, by Herbrand’s theorem, there exist terms s1(x),..., sk(x) and
t1(x),...,tk(x) such that

CRNA�θ (x,s1(x),t1(x))∨···∨θ (x,sk(x),tk(x)).

Since CRNA admits definitions by cases, there exist terms s(x) and t′(x) such that CRNA�
θ (x,s(x),t′(x)). By Proposition 4 and Remark 2 there exists an extension by (�̂b

1) definitions of

�̂b
1-CR to the language Lcr , which extends CRNA. As a consequence, by Claim 3, there exists

ψ(x,y)∈�̂b
1 in CRNA such that

CRNA�ψ(x,y)↔s(x)=y∧θ (x,y,t′(x)).

Then CRNA proves (1) ∀x∃!y≤ tψ(x,y), and (2) ∀x∀y(ψ(x,y)→ϕ(x,y)). But CRNA is a
conservative extension of �̂b

1-CR so it also proves (1) and (2). �
Now we can derive the main result of this section.

Theorem 8
The theories �̂b

1-CR, �b
1-CR, LIOpen+�̂b

1-BBR and LIOpen+�b
1-BBR are equivalent and

axiomatize the class of all ∀�b
1-consequences of C0

2 .

Proof. Since C0
2 is ∀�b

1 axiomatizable and it is equivalent to BB�̂b
1 the conservation result follows

from Theorem 3, modulo the equivalence of the four theories.
In order to obtain the equivalence of the four theories it is enough to prove that LIOpen+�̂b

1-BCR
and LIOpen+�b

1-BBR are equivalent.

By Lemma 6, LIOpen+�b
1-BBR extends �̂b

1-CR. On the other hand, since �̂b
1-CR has �̂b

1-

selection, by Lemma 9 the theory [�̂b
1-CR,�̂b

1-BBR] is equivalent to [�̂b
1-CR,�̂b

1-BCR] (=�̂b
1-CR).

So, �̂b
1-CR is closed under �̂b

1-BBR and extends LIOpen+�̂b
1-BBR. �

Corollary 7
(Johannsen–Pollett) C0

2 is a ∀�b
1-conservative extension of �b

1-CR.

The proof of Lemma 10 allows us to complete Corollary 6 deriving a characterization of the
�̂b

1-definable functions in �̂b
1-CR.

Theorem 9
TC0 is the class of the �̂b

1-definable functions of �̂b
1-CR.

Proof. By Corollary 6 every function in TC0 is �̂b
1-definable in �̂b

1-CR. The converse is easily
obtained by an application of Herbrand’s Theorem:

By Claim 2 of the proof of Lemma 10, if a function f is �̂b
1-definable in �̂b

1-CR then it can be
defined in CRNA by an open formula. Hence, by Herbrand’s theorem, f can be defined in CRNA
by a term of L2. But, by Clote–Takeuti’s characterization stated in Theorem 7, each term of CRNA
defines in the standard model a function in TC0; so, f ∈TC0. �
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Let us note in passing that the analysis of �̂1-CR we have developed provides a strict version of the 
Johannsen–Pollett KPT-witnessing theorem for �1-CR. The proof relies on Herbrand’s theorem and 
is similar to the first proof given by Krajíček, Pudlák and Takeuti for their own witnessing theorem 
in [10].

Corollary 8
Let ϕ(x,y,z)∈ ˆ in � -CR such that � -CR�∀x∃y∀zϕ(x,y,z). Then there exist k ∈ω and functions

f1,...,fk ∈TC0, which are �̂b
1-definable in �b

1-CR and such that �b
1-CR proves

ϕ(x,f1(x),z1)∨ϕ(x,f2(x,z1),z2)∨···∨ϕ(x,fk(x,z1,...,zk−1),zk).

We conclude with an open problem. In [12], answering a question posed in [9], it is shown
that �b

1-CR is finitely axiomatizable; so, a finite number of nested applications of any of the rules
above axiomatizes the ∀�b

1-consequences of BB�b
1 . In fact, the work in [12] suggests that �b

1-CR
is equivalent to [LIOpen,�b

1-BCR]. However,

Problem 1
Is LIOpen+�̂b

1-BBR equivalent to [LIOpen,�̂b
1-BBR]?

In view of our results, a positive answer to Problem 1 seems to be likely, since this is the case for
the analogous problem for collection rule in the usual language of Peano Arithmetic. On the other
hand, the equivalence between [T ,�̂b

1-BCR] and [T ,�̂b
1-BBR] has been proved only for theories

T having �̂b
1-selection. So, it could be possible to answer Problem 1 in the positive, although the

corresponding question for �̂b
1-BCR could have a negative answer.
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