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Abstract

A monster in the sense of Luh is a holomorphic function on a simply con-

nected domain in the complex plane such that it and all its derivatives and

antiderivatives exhibit an extremely wild behaviour near the boundary. In this

paper the Hardy spaces Hp and the Bergman spaces Bp (1 ≤ p < ∞) on the

unit disk are considered, and it is shown that there are no Luh-monsters in

them. Nevertheless, it is proved that T -monsters (as introduced by the authors

in an earlier work) can be found in each of these spaces for any finite order

linear differential operator T .
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1 Introduction

As soon as the existence of a mathematical entity is established, a natural problem
arises: Do such entities exist with additional (even “more perfect”) properties? This
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has been the line of research which has motivated this paper, this time in the setting
of holomorphic functions with “wild” behaviour in the boundary of the open unit
disk D = {|z| < 1}.

Suppose that G is a domain in the complex plane C; by H(G) we denote as usual
the Fréchet space of all holomorphic functions on G, endowed with the compact-open
topology. If G is simply connected then it has been proved in 1985 by W. Luh [21]
the existence of a dense set of functions –which he called “monsters”– in H(G) such
that all its derivatives and antiderivatives exhibit an extremely wild behaviour near
the boundary of G. Such a chaotic property can be expressed in terms of certain
generalized cluster sets, introduced by Luh himself. In 1987 Grosse-Erdmann [18],
see also [19, Section 4.b], showed that, in fact, there is a residual set of monsters.
Further interesting results on this topic can be seen in [22–24].

With the aim of finding operators which are different from those of differentia-
tion and antidifferentiation under whose action there are holomorphic functions with
boundary wild behaviour, the authors have recently introduced [5] the notions of
T -monsters and strongly omnipresent operators, see Definition 1.1 below.

Let us fix some terminology and notation. By ∂G we denote the boundary of
a domain G ⊂ C in the extended complex plane C∞ = C ∪ {∞}. N is the set of
positive integers, N0 = N ∪ {0} and R is the real line. An operator always refers
to a continuous (not necessarily linear) selfmapping. We denote by O(∂G) the set
of all open subsets of C∞ meeting the boundary of G. If A ⊂ C then A represents
the closure of A, ‖f‖A := supz∈A |f(z)|, where f is a complex function defined in A,
and LT (A) is the set of all affine linear transformations τ , τ(z) = az + b, such that
τ(D) ⊂ A. In the following definition, we are allowing the point of infinity to be a
boundary point of G when G is unbounded (as in [7, 9, 10]). Observe also that the
domain G is allowed to be non-simply connected in (a)–(c).

Definition 1.1. (a) A function f ∈ H(G) is a holomorphic monster whenever the

following universality property is satisfied: For each g ∈ H(D) and each t ∈ ∂G
there exists a sequence (τn) of affine linear transformations with

τn(z)→ t (n→∞) uniformly on D and τn(D) ⊂ G (n ∈ N)

such that

f(τn(z))→ g(z) (n→∞)

locally uniformly in D.
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(b) Let T : H(G) → H(G) be an operator. Then a function f ∈ H(G) is a T–

monster if Tf is a holomorphic monster. The set of T–monsters is denoted by

M(T ).

(c) An operator T : H(G) → H(G) is strongly omnipresent if for all g ∈ H(D),

ε > 0, r ∈ (0, 1) and V ∈ O(∂G) the set

U(T, g, ε, r, V ) := {f ∈ H(G) : there exists some τ ∈ LT (V ∩G)

such that ‖(Tf) ◦ τ − g‖rD < ε}

is dense in H(G).

(d) If G is simply connected, then a function f ∈ H(G) is a Luh–monster whenever

every derivative f (n) (n ∈ N0) and every antiderivative f (−n) (n ∈ N) is a

holomorphic monster.

Observe that f is a holomorphic monster if and only if it is an I-monster (I :=
the identity operator), and that f is a Luh-monster if and only if f is simultaneously
a DN -monster (for all N ∈ N0) and a D−Na -monster (for all N ∈ N and all a ∈ G).
Here DN (N ∈ N0) is the differentiation operator DNf = f (N), D0 = I, and D−Na
is the antidifferentiation operator given by D−Na f := the unique antiderivative F of
order N of f such that F (a) = · · · = F (N−1)(a) = 0.

It happens that an operator T on H(G) is strongly omnipresent if and only if the
set M(T ) is residual (see [5, Theorem 2.2]). Hence Grosse-Erdmann [18, Kapitel 3]
had showed in fact that every DN and every D−Na is strongly omnipresent. He and the
authors have identified several kinds of strongly omnipresent operators, including in-
finite order differential and antidifferential operators, integral operators, composition
and multiplication operators [5, 9, 10].

For other kinds of operators –also introduced by the authors– under whose action
certain functions have some type of boundary chaotic behaviour, the reader is referred
to [1] (omnipresent operators), [2, 6, 14] (DI-operators) and [7] (totally omnipresent
operators), see also [8]. It happens that every totally omnipresent operator is strongly
omnipresent and DI, and that if an operator is either strongly omnipresent or DI then
it is omnipresent. By using totally omnipresent operators, the authors have recently
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proved (see [7]) that there is a dense linear manifold in H(G) all of whose nonzero
functions are Luh-monsters.

We will need some terminology about universality (see [19] for an excellent survey,
updated till 1999). If X and Y are (Hausdorff) topological vector spaces over the
same field K (= R or C) and Tn : X → Y (n ∈ N) is a sequence of continuous linear
mappings, then (Tn) is said to be hypercyclic (or universal) if and only if there is a
vector x ∈ X, called also hypercyclic for (Tn), such that the orbit {Tnx : n ∈ N}
is dense in Y . The sequence (Tn) is called densely hypercyclic whenever the set
HC((Tn)) of hypercyclic vectors for (Tn) is dense. If X = Y and T is a linear
operator on X then T is called hypercyclic if and only if the sequence (T n) of iterates
is hypercyclic. It is easy to see that in such a case (T n) is indeed densely hypercyclic.
The existence of T -invariant dense linear manifolds of hypercyclic vectors for each
hypercyclic linear operator T on a (real or complex) locally convex space was shown
by Herrero, Bourdon and Bès [11, 12, 20] (see also [4] for the additional property of
maximal algebraical cardinality to such manifolds). In 1999 the first author extended
this result to hypercyclic sequences of mappings, see [3] and Theorem 2.6.

For the sake of convenience, we will keep in this work the notion of hypercyclicity
even when the spaces X, Y and the mappings T, Tn are not linear.

The aim of this paper is to study the existence of Luh-monsters and in general of
T -monsters in (not necessarily closed) subspaces of H(G), mainly in the maybe most
emblematic spaces of analytic functions on G = D, namely, the Hardy spaces Hp and
the Bergman spaces Bp (1 ≤ p < ∞). Recall that Hp is the class of all functions
f ∈ H(D) satisfying

‖f‖p := sup
0<r<1

(∫ 2π

0

|f(reiθ)|p dθ
2π

)1/p

<∞,

while Bp is the class of all f ∈ H(D) satisfying

‖f‖p :=

(∫
D
|f(z)|p dA(z)

)1/p

<∞.

Each one becomes a Banach space under the corresponding norm ‖ · ‖p. Recall also
that Hp ⊂ Bp with continuous inclusion. We have denoted by dA(z) the area measure
on D normalized so that the area of D is 1. The existence of dense linear manifolds
of holomorphic monsters in these spaces is also considered.
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2 Monsters in subspaces of H(D)
Up to date, all results about monsters have been addressed to state their existence,

with success except for very special examples. However, in the current setting, we are
on the point to obtain a general statement of non-existence of classical monsters in
function spaces, see Theorem 2.2 below. Before this, we establish an auxiliary lemma
whose content is probably well known. Since we have not been able to find a reference
for it, we provide with an elementary proof.

Lemma 2.1. If f ∈ H(D) and f ′ ∈ Bp for some p ∈ [1,∞) then f ∈ Hp.

Proof. By hypothesis,
∫
D |f

′(z)|p dA(z) < ∞. Passing to polar coordinates, we get∫ 1

0

∫ 2π

0
|f ′(seiθ)|ps dsdθ < ∞. Since |f ′|p is Lebesgue-integrable on a neighbourhood

of the origin, we can drop the factor s, that is,∫ 1

0

∫ 2π

0

|f ′(seiθ)|p dsdθ <∞.

It is evident that we can suppose f(0) = 0. Then f(reiθ) =
∫ r
0
f ′(seiθ)eiθ ds for all

r ∈ [0, 1) and all θ ∈ [0, 2π]. Hence, by the Hölder inequality,

|f(reiθ)|p ≤
(∫ r

0

|f ′(seiθ)| ds
)p

≤ rp−1
∫ r

0

|f ′(seiθ)|p ds ≤
∫ 1

0

|f ′(seiθ)|p ds.

Discarding the terms in the middle, an integration over [0, 2π] yields the desired

result.

Theorem 2.2. There are no Luh-monsters in any Bergman space Bp (1 ≤ p <∞),

so in any Hardy space Hp (1 ≤ p <∞).

Proof. Assume that f ∈ Bp and that F is a holomorphic function on D such that

F ′′ = f . Then F ′ is in Hp by Lemma 2.1, so F is in the disk algebra, that is, it can be

extended continuously on D: this is asserted, for instance, in [16, Chapter 5, Exercise
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9] for p > 1, but in the case p = 1 a well known result of Privalov establishes that for

h ∈ H(D) the function h′ ∈ H1 if and only if h has a continuous extension to D that

is absolutely continuous on ∂D [16, Theorem 3.11]. If f were a Luh-monster then for

some sequence (τn) ⊂ LT (D) with τn → 1 (n→∞) uniformly on D we would have

F (τn(z))→ g(z) (n→∞)

in H(D) for the constant function g ∈ H(D) with g(z) := 1+maxD |F | (z ∈ D), which

is clearly impossible. Thus, f cannot be a Luh-monster, as required.

Observe that according to the last proof the antiderivatives are to blame for the
nonexistence of Luh-monsters. Nevertheless, we will be able to deal with the existence
of DN -monsters in Hp and Bp for any nonnegative integer N . In fact, much more
will be obtained, see Theorem 2.7.

In view of the negative result provided by Theorem 2.2, we now focus our attention
on the search of some suitable condition on an operator T defined on H(G) and on
a subspace X ⊂ H(G) in order that T -monsters can exist in X, i.e., M(T ) ∩X 6= ∅.
We even get that M(T ) ∩X is residual in X under suitable conditions. This will be
made in Lemma 2.3. Afterwards, with the help of a strong theorem due to Bourdon
and Shapiro, this lemma is applied in the proof of Theorem 2.5, in which the existence
of many holomorphic monsters (this is the case T = I) in Hardy and Bergman spaces
is obtained. We also show how having holomorphic monsters plus a (purely set-
theoretic) soft condition on a general operator T is sufficient to have T -monsters in
X, see Theorem 2.6. Before establishing all these results, recall that if G ⊂ C is a
domain and ϕ ∈ H(D) satifies ϕ(D) ⊂ G then the composition mapping Cϕ : f ∈
H(G) 7→ f ◦ ϕ ∈ H(D) is well defined and continuous. In particular, ϕ can be any
member of LT (G). Sometimes, in the case G = D, the composition operator Cϕ maps
continuously an F -space (= a complete linear metric space) X ⊂ H(D) into itself for
every holomorphic selfmapping ϕ on D. For instance, this holds for each Hardy space
Hp and each Bergman space Bp (p > 0) due to Littlewood’s subordination theorem,
see [26, Chapter 10]. See also [15] for a collection of such spaces X.

The following auxiliar statement gives us a positive answer to the problem of ex-
istence of monsters on subspaces in terms of the existence of some kind of hypercyclic
sequences.

Lemma 2.3. Assume that X is an F -space with X ⊂ H(G) and that T is an operator

on H(G) satisfying the following two conditions:
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(a) Convergence in X implies locally uniform convergence.

(b) For every boundary point t ∈ ∂G there is a sequence (τn) ⊂ LT (G) tending to t

uniformly on D such that the sequence of mappings CτnT : X → H(D) (n ∈ N)

is densely hypercyclic.

Then the set {f ∈ X : f is a T -monster} is residual in X.

Proof. Fix two sets U(T, g, ε, r, V ) and BX(h, α), where g ∈ H(D), h ∈ X, ε > 0,

α > 0, 0 < r < 1, V ∈ O(∂G) and BX(h, α) := {f ∈ X : d(f, h) < α} is

an open ball for a translation-invariant distance d compatible with the topology of

X. Note that each set U(T, g, ε, r, V ) is open in H(G) due to the continuity of

T , hence U(T, g, ε, r, V ) ∩ X is open in X by condition (a). On the other hand,

there are countable many sets Un (n ∈ N) of the type U(T, g, ε, r, V ) such that

M(T ) =
⋂
n∈N Un, see [5]. Then M(T ) ∩ X =

⋂
n∈N Un ∩ X, so M(T ) ∩ X is a

Gδ-subset of X. Since X is a Baire space, it suffices to show that every intersection

U(T, g, ε, r, V ) ∩X is dense in X or, equivalently, that

U(T, g, ε, r, V ) ∩BX(h, α) 6= ∅. (1)

Choose any point t ∈ V ∩ ∂G and consider the sequence (τn) ⊂ LT (G) given by

hypothesis (b). By dense hypercyclicity, there is an f ∈ X with d(f, h) < α and a

sequence n1 < n2 < · · · < nk < · · · in N such that

(Tf) ◦ τnk
→ g (k →∞) uniformly on rD.

Since τn(z) → t (n → ∞) uniformly on D, there is k0 ∈ N such that τnk0
(D) ⊂

V ∩ G and ‖(Tf) ◦ τnk0
− g‖rD < ε. Hence f ∈ U(T, g, ε, r, V ) ∩ BX(h, α) and (1) is

fulfilled.

For instance, in the case X = H(G) condition (a) is trivially satisfied and, for
T = I, (b) is even fulfilled for every t ∈ ∂G by any sequence (τn) ⊂ LT (G) tending
to t uniformly on D, see [7].

6



The next assertion is a version for sequences of the Hypercyclicity Comparison
Principle, see [25, p. 111]. Its proof is trivial, so it is dropped. The lemma will be
used in the proof of the second part of Theorem 2.6.

Lemma 2.4. Suppose that X1, X2, X3 are topological spaces in such a way that X3 ⊂
X1, X3 is dense in X1 and the topology of X3 is stronger than that of X1. Assume

also that Sn : X1 → X2 (n ∈ N) is a sequence of continuous mappings with the

property that the sequence Sn|X3 : X3 → X2 (n ∈ N) is densely hypercyclic. Then

(Sn) is densely hypercyclic.

Theorem 2.5. Assume that p ∈ [1,+∞). We have:

(1) The set {f ∈ Hp : f is a holomorphic monster} is residual in Hp.

(2) The set {f ∈ Bp : f is a holomorphic monster} is residual in Bp.

Proof. (1) Conditions (a)–(b) in Lemma 2.3 should be checked for G = D, X = Hp,

T = I. Property (a) follows from the well known estimate

|f(z)| ≤ 21/p‖f‖p(1− |z|)−1/p (z ∈ D),

which holds even for 0 < p < ∞, see for instance [16, Chapter 3]. Property (b) is

more delicate. In order to check it, fix a point t ∈ ∂D and consider the function

ϕ(z) =
z + t

2
.

Trivially, ϕ ∈ LT (D) and ϕ is not an automorphism of D. Moreover, its fixed points

are t (∈ ∂D) and∞ ( 6∈ D), therefore ϕ is a non-parabolic non-automorphism without

fixed points in D. Hence, the Linear Fractional Hypercyclicity Theorem due to Bour-

don and Shapiro (see [25, Chapter 7] and [13]; the result is obtained for p = 2 but

the proof equally works for 1 ≤ p <∞ because it is ultimately based on the fact that

for every α ∈ ∂D the collection of polynomials vanishing at α is dense in Hp, which
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in turn is a consequence of Beurling’s approximation theorem, see [16, pp. 113–114])

tells us that the operator Cϕ : Hp → Hp is hypercyclic, so (Cn
ϕ) is densely hypercyclic

(see Section 1). But Cn
ϕ = Cτn , where τn := ϕ ◦ · · · ◦ ϕ (n-fold), i. e.,

τn(z) =
z + (2n − 1)t

2n
(n ∈ N).

Finally, observe that τn(z)→ t (n→∞) uniformly on D and that Cτn : Hp → H(D)

(n ∈ N) is also densely hypercyclic, because Hp is dense in H(D) and its norm-

topology is stronger than the compact-open one.

(2) Choose again G = D, T = I in Lemma 2.3, with X = Bp this time. Property

(a) is derived from the inequality

(1− |z|)2|f(z)| ≤ ||f ||p (z ∈ D, p ≥ 1),

see [26, p. 48]. As for property (b), it is enough to consider the fact that Cτn :

Hp → H(D) (n ∈ D) is densely hypercyclic (where Cτn is as in the proof of the

first part) together with Lemma 2.4 as applied on X1 = Bp, X2 = H(D), X3 = Hp,

Sn = Cτn : Bp → H(D) (n ∈ N). Note that Hp is dense in Bp because the polynomials

are dense in Bp and Hp contains each polynomial. This finishes the proof.

An inmediate consequence of Theorem 2.5 is that the set {f ∈ Hp : f is a Cϕ-
monster} is residual in Hp for every automorphism ϕ of D. Indeed, the operator
T := Cϕ|Hp maps homeomorphically Hp onto itself due to Littlewood’s subordination
theorem. Now, the latter set isM(Cϕ)∩Hp = C−1ϕ (M(I))∩Hp = T−1(M(I)∩Hp),
which is residual in Hp because M(I) ∩ Hp is. Of course, the same holds if Hp is
replaced to Bp.

For future references, we point out that the proof of the Linear Fractional Hyper-
cyclicity Theorem [25] also works for any subsequence (Cnk

ϕ ) (n1 < n2 < n3 < · · ·) of
(Cn

ϕ).

Theorem 2.6. Assume that X is an F -space with X ⊂ H(G) such that there is

some holomorphic monster in X. Suppose that T is an operator on H(G) satisfying

T (X) ⊃ X. Then there is some T -monster in X.
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Proof. The proof is, like the hypothesis on T itself, purely set-theoretic. By hy-

pothesis, M(I) ∩ X 6= ∅, and it should be shown that M(T ) ∩ X 6= ∅. But

M(T ) ∩X = T−1(M(I)) ∩X, which is nonempty if and only if M(I) ∩ T (X) 6= ∅,
which is true because T (X) ⊃ X.

As an application of the last two theorems, we get in the next statement the
existence in Hardy spaces of monsters with respect to each nontrivial finite order
linear differential operator with constant coefficients. Every of these operators has
the form P (D) = a0I+a1D+ · · ·+aND

N , where P (z) = a0 + · · ·+aNz
N is a complex

nonzero polynomial.

Theorem 2.7. Let 1 ≤ p < ∞ and let P be a complex nonzero polynomial. Then

there is some P (D)-monster in Hp, hence in Bp.

Proof. In view of Theorems 2.5–2.6, we would be done if we were able to show that the

range of the mapping P (D) : Hp → H(D) contains Hp. Since P (D) can be written

as a finite composition of operators aI, D − λI (a, λ ∈ C, a 6= 0), it is sufficient to

demonstrate that aI(Hp) ⊃ Hp (this is trivial) and that (D − λI)(Hp) ⊃ Hp. For

this, fix f ∈ Hp and consider the function

F (z) = eλz
∫ z

0

f(t)e−λtdt.

Since e−λz is entire, the function f(z)e−λz is again in Hp, so the integral in the display

is (extendable to) a continuous function on D by Privalov’s theorem. Hence F has

also this property because eλz is entire. Thus F ∈ Hp and, by a simple calculation,

(D − λI)F = f , which finishes the proof.

Finally, we prove the existence of a dense linear submanifold of Hp all of whose
nonzero members are holomorphic monsters (Theorem 2.9), so proving that not only
topologically but also algebraically the size ofM(I)∩Hp is huge. We will make use of
the following result –whose proof can be seen in [7]– which in turn is an improvement
of a statement due to the first author [3].
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Theorem 2.8. Let X and Y be two metrizable topological vector spaces such that X

is Baire and separable. Assume that, for each k ∈ N and each sequence {n1 < n2 <

n3 < · · ·} ⊂ N, T
(k)
nj : X → Y (j ∈ N) is a densely hypercyclic sequence of continuous

linear mappings. Then there is a dense linear submanifold M ⊂ X such that

M \ {0} ⊂
⋂
k∈N

HC((T (k)
n )).

Theorem 2.9. For each p with 1 ≤ p <∞, there exists a dense linear submanifold of

the Hardy space Hp whose nonzero members are holomorphic monsters. Consequently,

the same holds for the Bergman space Bp.

Proof. Fix a dense countable subset {tk : k ∈ N} of ∂G. Assume that, for each

k ∈ N, ϕ = ϕk is the affine linear transformation given in the proof of Theorem

2.5, that is, ϕk(z) = z+tk
2

. By the remark given after that theorem, each subsequence

(C
nj
ϕk)j is densely hypercyclic on Hp, whence T

(k)
nj : Hp → H(D) (j ∈ N) is also densely

hypercyclic for each k, since Hp is dense in H(D). We have denoted T
(k)
n := Cn

ϕk
.

Choose X = Hp, Y = H(D). It is evident that⋂
k∈N

HC((T (k)
n )) ⊂M(I) ∩X.

Thus, an application of Theorem 2.8 yields the desired result.

3 Concluding remarks and questions

1. We do not know whetherM(P (D))∩Hp is residual (or, equivalently, dense) in
Hp for every nonzero polynomial P , compare Theorem 2.7. If this were true then
each setM(DN)∩Hp (N ∈ N0) would be residual, hence its intersection Hp ∩⋂∞
N=0M(DN) would also be residual. That is, we would obtain the existence of

(many) “Luh-semimonsters” in Hp (Luh-monsters are prohibited by Theorem
2.2). Of course, the same question makes sense for Bp.
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2. More generally, Theorem 2.7 still holds if one replaces P (D) by a finite compo-
sition of operators with each one either of the form Cϕ (ϕ =an automorphism of
D) or of the form D− a(z)I, where a(z) ∈ H∞ := {f ∈ H(D) : f is bounded}.
Indeed, Cϕ(Hp) = Hp ⊃ Hp, and (D − a(z)I)(Hp) ⊃ (D − a(z)I)(H∞) ⊃ Hp,
which is achieved just by changing the function F in the proof of Theorem 2.5
by

F (z) = e
∫ z
0 a(t)dt ·

∫ z

0

f(t)e−
∫ t
0 a(u)dudt.

But we do not know whether there is some Φ(D)-monster in Hp, where Φ(D) is
the infinite order differential operator associated to an entire function Φ(z) =∑∞

0 anz
n of subexponential type. Nevertheless, it is known that every nonzero

operator Φ(D) is strongly omnipresent, see [5].

3. Recently, Gallardo and Montes [17] have characterized the hypercyclicity of
the composition operator Cϕ (ϕ := a Möbius transformation with ϕ(D) ⊂ D)
in terms of ϕ on certain weighted Hardy spaces, so completing some results of
Zorboska [27] which in turn extended Bourdon-Shapiro’s theorems. Specifically,
let Sν (ν ∈ R) be the Hilbert space of all functions f(z) =

∑∞
n=0 anz

n for which
the norm ‖f‖ = (

∑∞
n=0 |an|2(n+ 1)2ν)1/2 is finite (observe that for ν = −1

2
, 0, 1

2

the space Sν is, respectively, the classical Bergman space B2, the Hardy space
H2, the Dirichlet space D). As for what we are concerned, they prove that if
ϕ is a Möbius selfmap of D which is a hyperbolic non-automorphism (like that
used in the proof of Theorems 2.5 and 2.9) then Cϕ is hypercyclic if and only
if ν < 1/2 (so including the Bergman space and the Hardy space, but not the
Dirichlet space). Consequently, the statements of Theorems 2.5 and 2.9 hold if
one replaces Hp to any Sν (ν < 1/2).
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