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HYPERCYCLIC SEQUENCES OF DIFFERENTIAL

AND ANTIDIFFERENTIAL OPERATORS

By

LUIS BERNAL–GONZÁLEZ*

Abstract. In this paper, we provide some extensions of earlier
results about hypercyclicity of some operators on the Fréchet space
of entire functions of several complex variables. Specifically, we gene-
ralize in several directions a theorem about hypercyclicity of certain
infinite order linear differential operators with constant coefficients and
study the corresponding property for certain kinds of “antidifferential”
operators which are introduced in the paper. In addition, the existence
of hypercyclic functions for certain sequences of differential operators
with additional properties, for instance, boundedness or with some
nonvanishing derivatives, is established.

1. INTRODUCTION AND NOTATION

In this paper we denote by N the set of positive integers, by C the field of

complex numbers and by N0 the set N0 = N ∪ {0}. Let X, Y be two topological

spaces, Tn : X → Y (n ∈ N) a sequence of continuous mappings and x ∈ X.

Then x is said to be hypercyclic (or universal) for {Tn} if its orbit {Tnx : n ∈ N}

under {Tn} is dense in Y . The sequence {Tn} is hypercyclic whenever it has a

hypercyclic element. It is clear that, in order that {Tn} can be hypercyclic, Y must
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be separable. If T : X → X is a continuous selfmapping, then an element x ∈ X is

said to be hypercyclic for T if and only if it is hypercyclic for the sequence {Tn},

where Tn = T ◦ T ◦ ... ◦ T (n times). T is hypercyclic when there is a hypercyclic

element for T . A subset A ⊂ X is invariant under T when TA ⊂ A. It is evident

that x is hypercyclic for T if and only if there is no proper, closed, invariant subset in

X containing x. So, hypercyclicity is connected with the problem of the invariant

subspace. If X is a linear topological space, we say that T is an operator on X

whenever T is a continuous linear transformation taking X into itself.

We now furnish a sufficient condition for a sequence {Tn} to be hypercyclic.

Its proof is an easy application of the Baire Category Theorem and is left to the

reader. Several versions of this result have earlier appeared in [13, Section 2], [14,

Section 1], [15, Satz 1.2.2], [16] and [19, Theorem 2.1]. Note that, in a Baire space

X, a dense Gδ subset is “very large” in X. A subset A ⊂ X is residual if and only

if it contains a dense Gδ subset.

THEOREM 1. Let X be a linear topological space that is a Baire space, Y a

metrizable separable (linear topological space, D ⊂ X dense in X, E ⊂ Y dense

in Y and Tn : X → Y (n ∈ N) a countable family of continuous linear mappings

satisfying the following condition:

For every d ∈ D and every e ∈ E there is a sequence {xk} ⊂ X

and a subsequence {nk} of positive integers such that xk → d and
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Tnk
(xk) → e (k → ∞).

Then {Tn} has a dense Gδ subset of hypercyclic vectors.

The existence of hypercyclic operators on any separable Fréchet space has been

recently proved in [1] (see also [7]). B. Beauzamy [2, 3, 4] has constructed examples

of linear operators on Hilbert spaces having dense, invariant linear manifolds all of

whose nonzero elements are hypercyclic. P. S. Bourdon [11] proved in 1993 that

any hypercyclic operator on a complex Banach space has a dense, invariant linear

manifold consisting, except for zero, entirely of hypercyclic vectors. In fact (see [1])

this result holds in a more general setting. We state it for future references.

THEOREM 2. Let T be a hypercyclic operator on a complex, separable, locally

convex space X. Then there is a dense T -invariant linear manifold of X consisting

entirely, except for zero, of vectors that are hypercyclic for T .

Let G be a nonempty open subset of CN (N ∈ N). G is said to be a domain

when, in addition, it is connected. A domain G ⊂ CN is said to be a Runge domain

if each analytic function on G can be approximated uniformly by polynomials on

every compact subset of G (see [18, pp. 52-59] and [20, Chapter 5]). When N = 1,

the Runge domains are precisely the simply connected domains. Denote by H(G),

as usual, the Fréchet space of analytic functions on G endowed with the compact-

open topology. G. D. Birkhoff [10] showed in 1929 that every translation operator
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τa (that is, τaf(z) = f(z + a), where a ∈ C \ {0} is fixed) is hypercyclic on the

space H(C) and G. R. MacLane [23] obtained the same conclusion in 1952 for the

operator of differentiation f 7→ f ′. G. Godefroy and J. H. Shapiro [14, Section 5]

demonstrated in 1991 the following strong generalization of the theorems of Birkhoff

and MacLane:

THEOREM 3. If L is an operator on the space H(CN ) of entire funcions on

CN that commutes with each of the translation operators τa (a ∈ CN ), and is not a

scalar multiple of the identity, then L has a dense, invariant vector manifold each

of whose non-zero elements is hypercyclic for L.

See also [5, 8, 9, 15 and 22] for other generalizations of Birkhoff-MacLane’s

theorems. Several works have been made in connection with additional prop-

erties imposed to hypercyclicity. For instance, Grosse-Erdmann [16] proved in

1990 that there is no hypercyclic entire function f for the differentiation oper-

ator D satisfying max|z|=r |f(z)| = O(er/r1/2) (r → ∞), while there is a D-

hypercyclic entire function f such that max|z|=r |f(z)| = O(φ(r) ·er/r1/2) (r → ∞),

φ : (0,+∞) → (0,+∞) being a prefixed function such that φ(r) → ∞ (r → ∞).

G. Herzog [17] showed in 1994 that there is a D-hypercyclic function f such that f

and f ′ are zero-free. This result has been recently improved by the author [6], which

proves that, if q ∈ N0 and a nonconstant entire function Φ of subexponential type
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are given, then the set A = {f ∈ H(C) : f (q) and f (q+1) are zero-free} contains

a residual subset of Φ(D)-universal functions. The result is sharp in terms of the

growth and the type of Φ.

In this paper we extend Theorem 3 and the result of the latter paragraph

about zero-free derivatives to more general domains and sequences of operators

and introduce and study a new kind of operators related to antiderivatives. The

existence of bounded hypercyclic functions is established for certain domains. We

also provide a rather general “eigenvalue test” in order to prove the hypercyclicity

of certain kinds of operators and sequences of operators.

2. DIFFERENTIAL AND ANTIDIFFERENTIAL OPERATORS

In order to generalize in Section 4 Godefroy-Shapiro’s result stated in Section

1, we adopt the notation of [14, Section 5] and transcribe some preliminaries from

it. For 1 ≤ j ≤ N let Dj denote complex partial differentiation with respect to the

jth coordinate. A multi-index is an N -tuple p = (p1, ..., pN ) of nonnegative integers.

Denote |p| = p1 + ... + pN , p! = p1! · ... · pN !, Dp = Dp1

1 ◦ ... ◦DpN

N (D0 = I = the

identity operator) and zp = zp1

1 · ... · zpN

N if z = (z1, ..., zN ). An entire function

Φ(z) =
∑

|p|≥0 apz
p on CN is said to be of exponential type whenever there exist

positive constants A and B such that |Φ(z)| ≤ AeB|z| (z ∈ CN ). This happens if
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and only if there is R ∈ (0,+∞) for which

|ap| ≤
R|p|

p!
(|p| ≥ 0).

It is shown in [14] that, if Φ is of exponential type, then the mapping Φ(D) =∑
|p|≥0 apD

p is a well-defined operator on H(CN ). Note that if Φ is an entire

function and L = Φ(D), then Ln = Φn(D) for all n ∈ N (Ln =  L ◦ L ◦ . . . ◦ L but

Φn = Φ · Φ · . . . · Φ, n times).

Trivially, every linear differential operator with constant coefficients commutes

with translations. In [14] it is shown that the operators on H(CN ) commuting with

translations behave as “infinite order” differential operators.

THEOREM 4. Let L be an operator on H(CN ). The following conditions are

equivalent:

a) L commutes with every translation operator τa (a ∈ CN ).

b) L commutes with each of the differentiation operators Dk (1 ≤ k ≤ N).

c) L = Φ(D), where Φ is an entire function on CN of exponential type.

Some additional notations and results are needed in order to prove our theo-

rems. If a = (a1, ..., aN ) ∈ CN and r > 0, we denote by D(a, r) the closed polydisc

D(a, r) = {z ∈ CN : |zj − aj | ≤ r, 1 ≤ j ≤ N}. We consider in CN the dis-

tance d(z, a) = max{|z1 − a1|, ..., |zN − aN |}. If g is a function defined on a subset

B ⊂ CN , then ||g||B will stand for sup{|g(z)| : z ∈ B}. We say that an entire func-
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tion Φ(z) =
∑

|p|≥0 apz
p on CN is of subexponential type whenever, given ε > 0,

there exists a positive constant K = K(ε) such that |Φ(z)| ≤ Keε|z| (z ∈ CN ).

A straightforward computation with power series and the Cauchy inequalities [18,

p. 27] shows that Φ is of subexponential type if and only if, given ε > 0, there is a

positive constant A = A(ε) such that

|ap| ≤ A · ε
|p|

p!
(|p| ≥ 0).

Note that, if N = 1, then Φ is of subexponential type if and only if Φ is either

of growth order less than one or of growth order one and growth type zero. Each

entire function of subexponential type is obviously of exponential type.

THEOREM 5. If G ⊂ CN is a nonempty open subset and Φ(z) =
∑

|p|≥0 apz
p

is an entire function of subexponential type, then the series Φ(D) =
∑

|p|≥0 apD
p

defines an operator on H(G).

Proof. If G = CN , the result is a particular case of the above considerations.

So, we may suppose that G ̸= CN . Fix f ∈ H(G) and a compact subset K ⊂ G.

Let ε = 1
2d(K,CN \ G). Then there is A ∈ (0,+∞) such that |ap| ≤ A · (ε/2)|p|

p!

(|p| ≥ 0). Fix a point a ∈ K. The Cauchy formula for derivatives [18, p. 27, Formula

2.2.3] tells that

|Dpf(a)| ≤
p!||f ||D(a,ε)

ε|p|
≤ p!||f ||K1

ε|p|
,

where K1 is the compact set {z : d(z,K) ≤ ε}. Note that K ⊂ K1 ⊂ G. Therefore
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||Dpf ||K ≤ p!||f ||K1
/ε|p| and

∑
|p|≥0 ||apDpf ||K ≤

∑
|p|≥0 A · (ε/2)|p|

p! · p! ||f ||K1

ε|p|
=

2NA·||f ||K1 , so the series
∑

|p|≥0 apD
pf converges uniformly on K and Φ(D) defines

a mapping from H(G) into itself. The linearity is trivial and, since ||Φ(D)f ||K ≤

2NA · ||f ||K1 for every f ∈ H(G), we obtain that Φ(D) is continuous on H(G). ////

We now introduce a (as far as we know) new kind of operators for CN = C,

namely, the “infinite order antidifferential operators”. They are defined in Theorem

6, after a number of definitions and considerations.

Firstly, assume that G ⊂ C is a simply connected domain and that a is a fixed

point in G. If j ∈ N and f ∈ H(G), denote by D−jf the unique antiderivative g

of order j of f (i.e., g(j) = f) such that g(k)(a) = 0 (k = 0, 1, ..., j − 1). In fact, we

have

D−jf(z) =

∫ z

a

f(t) · (z − t)j−1

(j − 1)!
dt (z ∈ G) (1)

where the integral is taken along any rectifiable curve γ ⊂ G joining a to z. It is

easy to verify that each D−j is an operator on H(G). We denote D−0 = I = the

identity operator. If δ ∈ [0,+∞), then we denote by S(δ) the set of formal complex

power series Ψ(z) =
∑∞

j=0 cjz
j such that

lim sup
j→∞

( |cj |
j!

)1/j ≤ δ.

Note that even for δ = 0 there may be Ψ ∈ S(δ) with empty convergence disk:

take, e.g., Ψ(z) =
∑∞

j=1 j
j/2zj . Define the number ∆(a,G) = supz∈G inf{r >
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0 : a is in the connected component of D(z, r)∩G containing z} (see [5]). In order

to understand the geometric meaning of ∆(a,G), note that 0 < d(a,C \ G) ≤

supz∈G |z − a| ≤ ∆(a,G) ≤ diameter (G) and that G is bounded if and only if

∆(a,G) is finite. We agree that d(a, ∅) = +∞. Note also that if G is starlike with

respect to a, then ∆(a,G) = supz∈G |z − a|. Furthermore, d(a,C \ G) = ∆(a,G)

if and only if G is C or an open disk with center a; in this last case, the common

value is the radius of G.

THEOREM 6. If G ⊂ C is a simply connected domain, a ∈ G and Ψ(z) =∑∞
j=0 cjz

j ∈ S(1/∆(a,G)), then the series Ψ(D−1) =
∑∞

j=0 cjD
−j defines

an operator on H(G).

Proof. Given z ∈ G, there exists a rectifiable arc γz ⊂ G joining a to z such

that |z − t| < ∆(a,G) for all t ∈ γz. Fix a compact set K ⊂ G. Then we may

choose a compact set L and the arcs γz in such a way that
∪

z∈K γz ⊂ L ⊂ G,

supz∈K length (γz) = σ < +∞ and |z − t| ≤ M = a constant < ∆(a,G) forall

t ∈ γz and all z ∈ K. Fix M1 ∈ (M,∆(a,G)). Since Ψ ∈ S(1/∆(a,G)), there is

a constant A ∈ (0,+∞) such that |cj |/(j − 1)! ≤ A/M j−1
1 whenever j ∈ N. Fix

f ∈ H(G). Let us show that the series Ψ(D−1) =
∑∞

j=0 cjD
−j converges uniformly

on K. By (1) we have

|D−jf(z)| =

∣∣∣∣ 1

(j − 1)!
·
∫
γz

(z − t)j−1f(t) dt

∣∣∣∣ ≤ 1

(j − 1)!
·M j−1 · ||f ||L · length (γz).

11



Therefore ||D−jf ||K ≤ σMj−1||f ||L
(j−1)! and

∞∑
j=0

||cjD−jf ||K ≤
∞∑
j=0

|cj | ||D−jf ||K ≤ |c0| ||f ||K

+
∞∑
j=1

|cj | ||D−jf ||K ≤ |c0| ||f ||L +
∞∑
j=1

A · (M/M1)j−1 · σ · ||f ||L,

where we have used that K ⊂ L. Summarizing,
∑∞

j=0 ||cjD−jf ||K ≤ B · ||f ||L,

where B is the constant B = |c0| + AσM1

M1−M . So
∑∞

j=0 cjD
−jf converges uniformly

on K and Ψ(D−1) defines a mapping from H(G) into itself. The linearity is trivial

and, since ||Ψ(D−1)f ||K ≤ B · ||f ||L for every f ∈ H(G), we obtain that Ψ(D−1) is

continuous on H(G). ////

3. AN EIGENVALUE CRITERION FOR HYPERCYCLICITY

The core of the proof of Theorem 3 (see Section 1) in [14, Section 5] is to

provide a good supply of eigenvectors of the corresponding operator. We furnish

here a rather general criterion of hypercyclicity of sequences of operators based upon

the existence of sufficiently many eigenvectors. Recall that, in a linear topological

space, a subset is said to be total whenever its linear span is dense. If T is an operator

and e is an eigenvector, then we denote by λ(T, e) its corresponding eigenvalue.

THEOREM 7. 1) Let X be a separable Fréchet space and {Tn} a sequence of

operators on X. Assume that there are two subsets A,B of X satisfying:
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a) For every pair of finite subsets F1 ⊂ A and F2 ⊂ B there is a subsequence

{nk} of positive integers such that every element in F1 or in F2 is an eigen-

vector for each Tnk
in such a way that lim

k→∞
λ(Tnk

, a) = 0 for all a ∈ F1 and

lim
k→∞

λ(Tnk
, b) = ∞ for all b ∈ F2.

b) A and B are total in X.

Then there is a dense Gδ subset of hypercyclic vectors for {Tn}.

2) Let X be a separable complex Fréchet space and T an operator on X. Assume

that there are two subsets A,B of X satisfying:

a) Every element in A or in B is an eigenvector for each T in such a way

that |λ(T, a)| < 1 for all a ∈ A and |λ(T, b)| > 1 for all b ∈ B.

b) A and B are total in X.

Then there is a dense Gδ subset M of hypercyclic vectors for T . In addition, M

contains all nonzero vectors of a dense, T -invariant, linear submanifold of X.

Proof. Part 2) is obviously an application of Theorem 2 together with part 1)

for Tn = Tn (n ∈ N), as soon as we realize that λ(Tn, e) = (λ(T, e))n (n ∈ N)

whenever e is an eigenvector for T .

We now prove part 1). Let us try to apply Theorem 1. Take X = Y = the

Fréchet space given in the hypothesis, D = spanA, E = spanB. Then D and E

are dense in X. Fix d ∈ D and e ∈ E. Then there are scalars α1, ..., αm, β1, ..., βq

and two finite sets of vectors F1 = {a1, ..., am} ⊂ A, F2 = {b1, ..., bq} ⊂ B such
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that d = α1a1 + . . . + αmam and e = β1b1 + . . . + βqbq. By hypothesis, there is

a subsequence {nk} of positive integers such that λ(Tnk
, aj) → 0 (k → ∞) for all

j ∈ {1, . . . ,m} and λ(Tnk
, bj) → ∞ (k → ∞) for all j ∈ {1, . . . , q}. We may assume

that λ(Tnk
, bj) ̸= 0 for all k and all j. Define, for every k ∈ N, the vector

xk = d +

q∑
j=1

βj

λ(Tnk
, bj)

bj =
m∑
j=1

αjaj +

q∑
j=1

βj

λ(Tnk
, bj)

bj .

Then the term
βj

λ(Tnk
,bj)

bj → 0 (k → ∞) for every j ∈ {1, . . . , q}, so xk → d

(k → ∞). Finally,

Tnk
(xk) =

m∑
j=1

αjλ(Tnk
, aj) aj +

q∑
j=1

βj

λ(Tnk
, bj)

· λ(Tnk
, bj) bj

=

m∑
j=1

αj λ(Tnk
, aj) aj + e → e (k → ∞),

because λ(Tnk
, aj) → 0 (k → ∞) for all j ∈ {1, ...,m}. Consequently, the condition

in Theorem 1 is fulfilled and the proof is finished. ////

4. HYPERCYCLIC SEQUENCES

In this Section we deal with the hypercyclicity of the operators introduced in

Section 2. Results by Godefroy and Shapiro (Theorem 3) and by Herzog [17] and

the author [6] (see Section 1) are extended, and some new others are proved.

Before stating our first two results, we point out some ideas about density of

certain families of functions. Let ea(z) = exp(a1z1+. . .+aNzN ) if a = (a1, ..., aN ) ∈
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CN and z = (z1, ..., zN ) ∈ CN . If S ⊂ CN , denote by HS the linear manifold

HS = span {ea : a ∈ S}.

It is well known that the set of all finite linear combinations of functions ea (a ∈

CN ) is dense in H(CN ) [18, p. 97]. In fact, a joint application of Hahn-Banach

Theorem, Riesz Representation Theorem and Analytic Continuation Principle (see

[14, pp. 259-260]) shows that HS is dense in H(CN ) for each nonempty open subset

S ⊂ CN . The same argument would yield the same result for the case N = 1 just

by assuming that S ⊂ C is a subset with at least one finite accumulation point.

For future references, we state here four conditions that may or may not be

satisfied by a sequence {Φn}∞1 of entire functions on CN . Recall that if Φ(z) =∑
|p|≥0 apz

p ∈ H(CN ) and Φ is not identically zero, then its multiplicity for the

zero at the origin is m(Φ) = min{|p| : ap ̸= 0}.

(P) There are two nonempty open subset A, B of CN such that for

every pair of finite subset F1 ⊂ A and F2 ⊂ B there exists a sub-

sequence {nk} of positive integers such that lim
k→∞

Φnk
(a) = 0 for all

a ∈ F1 and lim
k→∞

Φnk
(b) = ∞ for all b ∈ F2.

(P’) There are two subsets A, B of CN each of them with at least

one finite accumulation point such that for every pair of finite subsets

F1 ⊂ A and F2 ⊂ B there exists a subsequence {nk} of positive integers
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such that lim
k→∞

Φnk
(a) = 0 for all a ∈ F1 and lim

k→∞
Φnk

(b) = ∞ for all

b ∈ F2.

(Q) m(Φn) → ∞ (n → ∞) and there is a nonempty open subset B ⊂

CN such that for every finite subset F ⊂ B there exists a subsequence

{nk} of positive integers satisfying limk→∞ Φnk
(b) = ∞ for all b ∈ F .

(Q’) m(Φn) → ∞ (n → ∞) and there is a subset B ⊂ CN with at

least one finite accumulation point such that for every finite subset

F ⊂ B there exists a subsequence {nk} of positive integers satisfying

limk→∞ Φnk
(b) = ∞ for all b ∈ F .

Trivially (P) implies (P’) and (Q) implies (Q’). For instance, the sequence Φn(z) =

zn (z ∈ C; n ∈ N) satisfies all four properties; the sequence Φn(z) = nnzn satisfies

(Q) but does not (P) (nnzn → ∞ as n → ∞ for every z ∈ C \ {0}); the sequence

Φn(z) = nenz + zn

n2 satisfies (P) (take A = {z : |z| < 1, Re z < 0} and B = {z :

|z| < 1, Re z > 0}) but not (Q).

THEOREM 8. Suppose that G is a Runge domain of CN and Φ, Φn (n ∈ N)

are entire functions on CN . Assume that Φ is not a constant and denote Ln =

Φn(D) (n ∈ N).

a) Suppose that every Φn is of subexponential (exponential, resp.) type and the se-

quence {Φn} satisfies (P). Then there is a dense Gδ subset of H(G) (H(CN ), resp.)
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all of whose elements are hypercyclic functions for {Ln}.

b) For N = 1 the statement of a) still holds if (P) is changed to (P’).

c) Suppose that Φ is of subexponential type and let L = Φ(D). Then there is a

dense Gδ subset M of H(G) all of whose elements are hypercyclic functions for

L. In addition, M contains all nonzero functions of a dense, L-invariant, linear

submanifold of H(G).

d) Suppose that L is an operator on H(CN ) that commutes with each of the trans-

lation operators τa (a ∈ CN ), and is not a scalar multiple of the identity. Then

L has a dense Gδ subset M of hypercyclic functions. In addition, M contains all

nonzero functions of a dense, L-invariant, linear submanifold of H(CN ).

Proof. a) Firstly, by Theorem 5 and the initial considerations of Section 2,

every Ln is an operator defined on H(G) (even on H(CN ) if Φn is of exponential

type). From now on, G may be CN or not. Note that Djea = ajea for each

j ∈ {1, ..., N} and each a ∈ CN , so Dpea = apea for every multi-index p. Then

Lnea = Φn(D)ea = Φn(a)ea (a ∈ CN , n ∈ N). Observe that each function ea is an

eigenvector for every Ln with eigenvalue Φn(a).

Consider the open subsets A and B provided by the condition (P). Fix a com-

pact subset K ⊂ G, a funcion f ∈ H(G) and ε > 0. Since G is a Runge do-

main, a polynomial P (z) of N complex variables can be found in such a way that

|f(z) − P (z)| < ε/2 for all z ∈ K. There exists h ∈ HS (S = A or B) with
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|P (z) − h(z)| < ε/2 for all z ∈ K. Therefore |f(z) − h(z)| < ε for all z ∈ K. This

shows that HA and HB are also dense subsets of H(G). It now suffices to apply

part 1) of Theorem 7 on X = H(G), A = {ea : a ∈ A}, B = {eb : b ∈ B} and

Tn = Ln (n ∈ N).

b) This part is obvious from a), together with the remark for the case N = 1

at the beginning of this section. We would have anew that HA and HB are dense

in H(C), so in H(G) as well.

c) By Theorem 5, L is an operator defined on H(G). Since Φ is a nonconstant

entire function, the sets A = Φ−1(|z| < 1) and B = Φ−1(|z| > 1) are nonempty

open subsets. Now use part 2) of Theorem 7 with X = H(G), T = L = Φ(D),

A = {ea : a ∈ A} and B = {eb : b ∈ B}. Note that, like in part a), every function

ea (a ∈ CN ) is an eigenvector for T with eigenvalue λ(T, ea) = Φ(a).

d) This is essentially Theorem 3. It has been put here for the sake of complete-

ness. It is derived as c) (G = CN here) by using Theorem 4. It should be noted

that, if L = Φ(D), then Φ is nonconstant if and only if L is not a scalar multiple of

the identity. ////

For instance, we have that there is a dense Gδ subset of entire functions f on

C such that each entire function can be uniformly approximated on compact sets

by functions of the form nf(z + n) + f(n)(z)
n2 (n ∈ N). Indeed, it suffices to consider
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the sequence Φn(z) of the third example just before the latter theorem. Note that

eaD = τa for every a ∈ C.

In view of the result on growth of Grosse-Erdmann [16] for entire functions

(see Section 1), it is natural to ask what is the minimal growth allowed for a D-

hypercyclic function on a bounded domain in C. The answer for Runge domains

is almost trivial and is provided in Corollary 2. We denote, as usual, by g|S the

restriction of a function g to a subset S.

COROLLARY 1. Assume that G ⊂ CN is a Runge domain and that L is

an operator on H(CN ) that commutes with each of the translation operators τa

(a ∈ CN ), and is not a scalar multiple of the identity. Then the set

M = {f |G : f is entire and {(Lnf)|G}∞1 is dense in H(G)}

is dense in H(G).

Proof. The assertion is evident from part d) of Theorem 8 and from the fact

that H(CN ) is dense in H(G). ////

COROLLARY 2. If G ⊂ CN is a bounded Runge domain, then there exists a

dense subset M in H(G) such that, for every f ∈ M , each derivative f (n) (n ∈ N0)

is bounded and the orbit {f (n)}∞1 is dense in H(G).

Proof. Just apply Corollary 1 with L = D. ////
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THEOREM 9. Suppose that G is a Runge domain of CN and Φ, Φn (n ∈ N)

are entire functions on CN . Denote Ln = Φn(D) (n ∈ N).

a) Suppose that every Φn is of subexponential (exponential, resp.) type and the

sequence {Φn} satisfies (Q). Then there is a dense Gδ subset of H(G) (H(CN ),

resp.) all of whose elements are hypercyclic functions for {Ln}.

b) For N = 1 the statement of a) still holds if (Q) is changed to (Q’).

Proof. We can also apply part 1) of Theorem 7. Take X = Y = H(G),

Tn = Ln (n ∈ N), A = {zp : p ∈ N0
N}, B = {eb : b ∈ B} where the set

B is furnished by hypothesis (Q) (or by (Q’) if N = 1). Observe that spanA

(= {polynomials}) is dense in H(G). Each function eb is an eigenvector for every

Tn with eigenvalue λ(Tn, b) = Φn(b). Fix two finite subsets F1 = {zp1 , ..., zpr} ⊂ A

and F2 = {eb1 , ..., ebs} ⊂ B. From (Q) (or (Q’)), a subsequence {nk} of positive

integers can be found for the finite set F = {b1, ..., bs} ⊂ B in such a way that

limk→∞ λ(Tnk
, bj) = limk→∞ Φnk

(bj) = ∞ for all j ∈ {1, ..., s}. On the other hand,

if α = max{|p1|, ..., |pr|}, there is n0 ∈ N such that m(Φn) > α for all n > n0, so

Φn(D) zpj = 0 for all j ∈ {1, ..., r} because Dpzpj = 0 for all j ∈ {1, ..., r} and for

every multi-index p with |p| > α. Consequently, each zpj is an eigenvector for Tnk

(we can assume nk > n0 for all k) with eigenvalue λ(Tnk
, zpj ) = 0, which trivially

tends to zero as k → ∞. ////

20



Unfortunately, one cannot expect any hypercyclicity result for an antidifferen-

tial operator Ψ(D−1).

THEOREM 10. Assume that G ⊂ C is a simply connected domain. Fix a point

a ∈ G and consider the corresponding antiderivative operator D−1. Suppose that Ψ

and Ψn (n ∈ N) are in S(1/∆(a,G)) and that Ψn(z) =
∑∞

j=0 c
(n)
j zj. Let L, Ln be

the operators L = Ψ (D−1), Ln = Ψn (D−1) (n ∈ N). We have:

a) If {Ln} is hypercyclic, then the sequence {c(n)0 : n ∈ N} is dense in C.

b) L is not hypercyclic.

Proof. L and Ln (n ∈ N) are well defined operators by Theorem 6. If f ∈ H(G)

is hypercyclic for {Ln} then, given b ∈ C, some subsequence {Lnk
f} of {Lnf}

must approximate the constant function g(z) ≡ b on the compact set {a}. But

(Lnf)(a) = (
∑∞

j=0 c
(n)
j D−jf)(a) = c

(n)
0 f(a) because D−jf(a) = 0 for all j ∈ N.

This implies that c
(nk)
0 f(a) → b (k → ∞), so {c(n)0 : n ∈ N} is dense in C.

This proves a). Part b) is an unpleasant consequence of a): indeed, assume that

Ψ(z) =
∑∞

j=0 cjz
j and put Ln = Ln. Then c

(n)
0 = cn0 and for each c0 ∈ C the

sequence {cn0} is not dense in C. ////

Nevertheless, a sort of “pseudo-hypercyclicity” is true, as our next theorem

shows. For this, let us cite the following result of W. Luh [21]: For every simply

connected domain G ⊂ C there exists a sequence {Cn}∞1 ⊂ C with the property

21



that for every φ ∈ H(G) the set {Qn(z) = D−nφ(z) +
∑n−1

j=0
Cn−j

j! zj : n ∈ N} is

dense in H(G). Note that the coefficients Cn’s do not depend upon φ.

Just a remark before the theorem. Let G ⊂ C be a simply connected domain

and fix a point a ∈ G. If Ψ(z) =
∑∞

j=0 cjz
j is a formal power series, then Ψ ∈

S(1/∆(a,G)) if and only if α(Ψ, δ) is finite for all δ ∈ (0,∆(a,G)), where we have

set

α(Ψ, δ) = |c0| + sup
j∈N

|cj | δj−1

(j − 1)!
.

THEOREM 11. Assume that G ⊂ C is a simply connected domain. Fix a

point a ∈ G and consider the corresponding antiderivative operator D−1. Then

there exists a sequence {Cn}∞1 ⊂ C satisfying the following property: For every

f ∈ H(G) and every sequence {Ψn(z)}∞1 ⊂ S(1/∆(a,G)) of formal power series for

which

α(Ψn, δ) → 0 (n → ∞) for all δ ∈ (0,∆(a,G)),

the sequence {Ψn(D−1) f(z) +
∑n−1

j=0
Cn−j

j! zj : n ∈ N} is dense in H(G).

Proof. Denote Ln = Ψn(D−1) and assume that Ψn(z) =
∑∞

j=0 c
(n)
j zj (n ∈ N).

From Theorem 6 we have that every Ln is an operator on H(G). We apply the

mentioned result of Luh [21] to the domain G and the function φ = 0. We obtain

that there is a sequence {Cn}∞1 ⊂ C such that the set {Hn}∞1 given by Hn(z) =∑n−1
j=0

Cn−j

j! zj is dense in H(G). Fix a function f ∈ H(G) and a compact set K ⊂ G.
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If the final steps of the proof of Theorem 6 are watched then one sees that there

are a compact set L ⊂ G and positive constants σ, M, M1 with M1 ∈ (M,∆(a,G))

such that ||Lnf ||K ≤ Bn · ||f ||L, where

Bn = |c(n)0 | +
σM1

M1 −M
· sup
j∈N

|c(n)j |M j−1
1

(j − 1)!
for all n ∈ N.

But α(Ψn,M1) → 0 (n → ∞) by hypothesis, so limn→∞ Bn = 0 and ||Lnf ||K → 0

(n → ∞). Hence {Lnf}∞1 converges uniformly to zero on compact sets. Since

{Hn}∞1 is dense in H(G), we have that {Lnf + Hn}∞1 is also dense in H(G), as

required. ////

By using [21, Lemma 3] one can easily establish that for every compact set B ⊂

C with connected complement and every function g which is continuous on B and

holomorphic in the interior of B, there is a subsequence of {Lnf +Hn}∞1 converging

to g uniformly on B and, in addition, for every Lebesgue-measurable set E ⊂ G

and every Lebesgue measurable function g : E → C ∪ {∞}, there is a subsequence

of {Lnf + Hn}∞1 converging almost everywhere to g on E. Theorem 11 together

with this remark generalizes [5, Theorem 5]: in fact there we dealt with the case

Ψn(z) = cnz
n, where {cn}∞1 ⊂ C is a sequence such that lim supn→∞( |cn|

n! )1/n ≤

1/∆(a,G).

We propose here as an open problem to give conditions on {Ψn} which guar-

antee the hypercyclicity of {Ψn(D−1)}. Note that this sequence can certainly be
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hypercyclic. Indeed, for a = 0 the constant function f ≡ 1 is {Ψn(D−1)}-universal

if and only if the set {
∑∞

j=0(c
(n)
j /j!)zj : n ∈ N} is dense in H(G). Appropriate

c
(n)
j can always be found.

To finish, we establish a result about hypercyclicity of functions with the addi-

tional property that certain derivatives do not vanish on the domain. Notice that

there is no D-hypercyclic entire function f such that f · f ′ · f ′′ is zero-free, since

{f ∈ H(C) : f · f ′ · f ′′ is zero-free} = {eαz+β : α, β ∈ C, α ̸= 0} (see [12, p. 433]

and [24]). If q ∈ N0, let us denote A(q) = {f ∈ H(G) : f (q)(z)f (q+1)(z) ̸= 0 for all

z ∈ G}. Since exp ∈
∩

q∈N0
A(q), every A(q) is nonempty. If L = {Ln : n ∈ N} is

a sequence of continuous mappings from X into Y , then we denote by HC(L) the

set of hypercyclic elements for L. If A ⊂ X, denote L|A = {Ln|A : n ∈ N}. We are

now ready to state our theorem on hypercyclicity. Herzog’s result [17] is the special

case q = 0, G = C, L = {Dn : n ∈ N} while the result of the author in [6] is the

special case G = C, L = {Ln : n ∈ N} with L = Φ(D).

THEOREM 12. Assume that G ⊂ C is a simply connected domain and that

{Φn : n ∈ N} is a sequence of entire functions of subexponential type satisfying (P’)

or (Q’). Fix q ∈ N0 and set A = A(q), L = {Ln : n ∈ N}, where Ln is the operator

on H(G) given by Ln = Φn(D) (n ∈ N). Then the set HC(L|A) is residual in A.

Proof. The proof is very similar to that in [6], so we merely indicate some
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necessary changes. The closed discs D(0, k) (k ∈ N) in the proof of Theorem

5 of [6] should be replaced to the closure Gk of Gk, where {Gk : k ∈ N} is a

sequence of simply connected domains such that every Gk is compact, Gk ⊂ Gk+1

and G =
∪∞

k=1 Gk. The metric d(f, g) in that paper is here changed to

d(f, g) =
∞∑
j=1

1

2j
||f − g||j

1 + ||f − g||j
(f, g ∈ H(G)),

where ||h||j = maxz∈Gj
|h(z)|. From Theorems 8 and 9, HC(L) is residual in H(G)

and an adequate application of Theorem 2.1 of [17] will give the result if one takes

into account that A =
∩∞

k=1 Ak where Ak = {f ∈ H(G) : minGk
|f (q) ·f (q+1)| > 0}.

If k ∈ N is fixed, then there is a simply connected subdomain U ⊂ G such that

Gk ⊂ U and f (q)(z)f (q+1)(z) ̸= 0 for all z ∈ U . The existence of an approximating

sequence {Pm} of polynomials on D(0, k + ε) in [6, Theorem 5] is here guaranteed

by Runge’s theorem, which should be applied on V , V being a simply connected

domain such that V is compact and Gk ⊂ V ⊂ V ⊂ U . We left the details to the

reader, which should find no difficulty if he follows step by step the proof of the

cited reference. ////
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sont hypercyclic, C. R. Acad. Sci. Paris, Sér. I Math. 303 (1986), 923-927.

3. B. Beauzamy, An operator in a separable Hilbert space with many hypercyclic

vectors, Studia Math. 87 (1987), 71-78.

4. B. Beauzamy, An operator on a separable Hilbert space with all polynomials

hypercyclic, Studia Math. 96 (1990), 81-90.
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