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Abstract. For the last decade there has been a generalized trend in Mathematics on the
search for large algebraic structures (linear spaces, closed subspaces, or infinitely genera-
ted algebras) composed of mathematical objects enjoying certain special properties. This
trend has caught the eye of many researchers and has also had a remarkable influence in
Real and Complex Analysis, Operator Theory, Summability Theory, Polynomials in Ba-
nach spaces, Hypercyclicity and Chaos, and general Functional Analysis. This expository
paper is devoted to providing an account on the advances and on the state of the art of
this trend, nowadays known as lineability and spaceability.
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1. Introduction. “Strange” mathematical objects throughout history

Throughout history there have always been mathematical objects that have contradicted
the intuition of the working mathematician. To cite some of these objects, let us recall
the famous Weierstrass’ Monster, Sierpiński’s carpet, discontinuous additive functions (or
Jones’ functions), Peano curves, Cantor functions, or even the more modern differentiable
nowhere monotone functions.

One may think that, once such an object is found, not many more like it can possibly
exist. History has proven this last statement wrong. It is actually so wrong that, at the
present time, the appearance of these exotic mathematical objects no longer comes as a
surprise to mathematicians (for a quite complete account of some of these so-called strange
objects we refer the interested reader to the monographs [161–163,199,264,274]).

A classical, famous, and very powerful technique that one can use to obtain some kinds
of unexpected objects is the very famous Baire category theorem. One version of this
theorem states that, in any complete metric space E, the complement of a first category
subset of E is everywhere dense in E. It usually happens that this complement consists
exactly of strange (in certain sense) elements (for instance, the Baire category theorem
can be applied to showing that “most” real valued C∞ functions are nowhere analytic, as
seen in Section 2.2.2). Unfortunately the Baire category theorem does not apply to many
cases and sometimes one needs to employ a constructive approach when tackling certain
problems.

For the last decade there has been a generalized trend in Mathematics on the search
for large algebraic structures of special objects (and sometimes called pathological in the
literature, [156,254]). Let us introduce some terminology before carrying on. A subset M of
a topological vector spaceX is called lineable (resp. spaceable) inX if there exists an infinite
dimensional linear space (resp. an infinite dimensional closed linear space) Y ⊂ M ∪ {0}.
These notions of lineable and spaceable were originally coined by Vladimir I. Gurariy and
they first appeared in [22, 181, 254]. Prior to the publication of these previous works,
some authors (when working with infinite dimensional spaces) already found large linear
structures enjoying these type of special properties (even though they did not explicitly
use terms like lineability or spaceability, see e.g. [19]). One of the first results illustrating
this was due to Levine and Milman:

Theorem 1.1 (Levine, Milman, 1940, [212]). The subset of C[0, 1] of all continuous func-
tions on [0, 1] of bounded variation is not spaceable.

As usual, by C[0, 1] we have denoted the Banach space of continuous functions [0, 1] →
R endowed with the supremum norm. Later, the following famous result on the set of
continuous nowhere differentiable functions was proved by Gurariy.

Theorem 1.2 (Gurariy, 1966, [178]). The set of continuous nowhere differentiable func-
tions on [0, 1] is lineable.
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Let us also recall that, although the set of everywhere differentiable functions in R is, in
itself, an infinite dimensional vector space, in 1966 Gurariy obtained the following analogue
of Theorem 1.1.

Theorem 1.3 (Gurariy, 1966, [178]). The set of everywhere differentiable functions on
[0, 1] is not spaceable in C[0, 1]. Also, there exist closed infinite dimensional subspaces of
C[0, 1] all of whose members are differentiable on (0, 1).

Somehow, what we are seeing is that what one could expect to be an isolated phenom-
enon can actually even have a nice algebraic structure (in the form of infinite dimensional
subspaces). Unfortunately, and as we mentioned above, the Baire category theorem can-
not be employed in the search for large subspaces like the ones mentioned in the previous
results. Let us now provide a more formal and complete definition for the above concepts
and some other ones.

Definition 1.4 (Lineability and spaceability, [22, 181,254]). Let X be a topological vector
space and M a subset of X. Let µ be a cardinal number.

(1) M is said to be µ-lineable (µ-spaceable) if M ∪ {0} contains a vector space ( resp.
a closed vector space) of dimension µ. At times, we shall be referring to the set M
as simply lineable or spaceable if the existing subspace is infinite dimensional.

(2) We also let λ(M) be the maximum cardinality (if it exists) of such a vector space.1

(3) When the above linear space can be chosen to be dense in X we shall say that M
is µ-dense-lineable.

Moreover, Bernal introduced in [69] the notion of maximal lineable (and those of maximal
dense-lineable and maximal-spaceable), meaning that, when keeping the above notation, the
dimension of the existing linear space equals dim(X). Besides asking for linear spaces one
could also study other structures, such as algebrability and some related ones, which were
presented in [25,27,254].

Definition 1.5. Given a Banach algebra A, a subset B ⊂ A and two cardinal numbers α
and β, we say that:

(1) B is algebrable if there is a subalgebra C of A so that C ⊂ B∪{0} and the cardinality
of any system of generators of C is infinite.

(2) B is dense-algebrable if, in addition, C can be taken dense in A.

1Indeed, this λ(M) might not exist. It is not difficult to provide natural examples of sets which are
n-lineable for every n ∈ N but which are not infinitely lineable. For instance, let j1 ≤ k1 < j2 ≤ · · · ≤
km < jm+1 ≤ . . . be integers and let M = ∪m{

∑km
i=jm

aix
i : ai ∈ R}. Since the sets {

∑km
i=jm

aix
i : ai ∈ R}

(m ∈ N} are pairwise disjoint, M is finitely, but not infinitely, lineable in C[0, 1]. Depending on the choice
of the sequence (jn), M may even be closed in C[0, 1]. For instance, it is shown in [180] that if (jn) is a
lacunary sequence, then {xjnn }n≥1 is a basic sequence in C[0, 1]. On the other hand, no matter what sequence

j1 ≤ k1 < j2 ≤ . . . we take, the corresponding set of complex polynomials M = ∪n{
∑kn
`=jn

a`z
` : a` ∈ C}

is always closed in H∞, the Banach space of holomorphic functions in the open unit disc of C endowed with
the supremum norm.
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(3) B is (α, β)-algebrable if there is an algebra B1 so that B1 ⊂ B∪{0}, dim(B1) = α,
card (S) = β, and S is a minimal system of generators of B1.2

(4) At times we shall say that B is, simply, κ-algebrable if there exists a κ-generated
subalgebra C of A with C ⊂ B ∪ {0}.

We also say that a subset M of a linear algebra L is strongly κ-algebrable if there exists a
κ-generated free algebra A contained in M ∪{0} (see [39]). Other types of structures have
also been considered, such as cones3 or modules4. The links between the previous concepts
are as follows:

(strong) algebrability

��
spaceability

++

moduleability

��

coneability

lineability

44

All the implications in the previous diagram are strict. Specifically, examples of sets that
are lineable but not spaceable, coneable but not lineable, lineable but not moduleable, mo-
duleable but not algebrable, and algebrable but not strongly algebrable, can be respectively
found in [178], [2], [157], [157] and [40].

In this survey paper, we will mainly focus on subspaces and subalgebras in topologi-
cal vector spaces. The paper is arranged in four main sections, dealing with lineability,
spaceability and algebrability within many different frameworks. The text is organized as
follows:

Section 2.- In this part, we focus on real and complex valued functions. In connection
with the existence of strange objects, the classical Mathematical Analysis in real
and complex variables is certainly the largest existing source.

Section 3.- The theory of hypercyclic operators has experienced an exponential develop-
ment since its birth at the end of last century, and it deserves a separate section
itself. The construction of infinite algebraic structures of hypercyclic vectors is still
an ongoing problem nowadays studied by many authors.

Section 4.- The topic of polynomials in Banach spaces and their sets of zeros also deserves
a special place in this survey since it has recently been linked to this theory of
lineability and spaceability. This topic has just recently started to expand and it

2Here, by S is a minimal set of generators of an algebra D we mean that D = A(S) is the algebra
generated by S, and for every x0 ∈ S x0 /∈ A(S \ {x0}).

3A set of functions in RR (or CC) is said to be coneable if it possesses a positive (or negative) cone
containing an infinite linearly independent set, see [2, Definition 1.1].

4Let L be a subset of a Banach algebra (or a topological algebra) X. We say that L is moduleable if
there exists an infinitely generated subalgebra M of X and an infinitely generated additive subgroup G of
X such that G is a (M,K)-bimodule, G is K-infinite dimensional and L ∪ {0} ⊃ G. For more information
on this notion we refer to [157, Definition 1.2].
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has rapidly attracted the interest of many researchers in the area and there are still
several ongoing works on it.

Section 5.- In the last part we shall give some remarks on lineability and several open
problems in Functional Analysis. Moreover, we provide an account on all the
existing techniques that can be applied to general situations in different frameworks
in order to achieve lineability, or even dense-lineability and spaceability.

Throughout this survey, open problems will be given and directions will be also indicated
to tackle new problems in this theory. We believe that the questions and open problems
found here are of interest in many areas of Mathematics, and their answers (either in the
positive or in the negative) would certainly help to develop the recently coined theory of
lineability and spaceability.

Standard symbols and notation that will be used throughout the paper include the
following. The symbols, N, N0, Z, Q, R and C denote, respectively, the set of positive
integers, the set N ∪ {0}, the ring of integers, the field of rational numbers, the real line
and the complex plane. The symbols ℵ0 and c stand for the cardinality of N and the
cardinality of the continuum, respectively. A subset A of a topological space X is called
Gδ (resp. Fσ) if A is a countable intersection of dense open subsets (resp. a countable
union of closed subsets each of them with empty interior). Hence A is a Gδ set if and only
if its complement is an Fσ set. Moreover, a subset A ⊂ X is said to be residual provided
that its complement X \A is of first category, that is, X \A can be written as a countable
union of sets whose closures have empty interiors. Therefore, by Baire’s category theorem,
residual subsets are topologically large in a complete metric space.

2. Special subsets of real and complex functions

2.1. Continuous nowhere differentiable functions (Weierstrass’ Monsters). It
came as a general shock when in 1872, and during a presentation before the Berlin Academy,
K. Weierstrass provided the classical example of a function that was continuous everywhere
but differentiable nowhere. The particular example was defined as

f(x) =

∞∑
k=0

ak cos(bkπx),

where 0 < a < 1, b is any odd integer, and ab > 1 + 3π/2.

The apparent shock was a consequence of the general thought that most mathematicians
shared: that a continuous function must have derivatives at a significant set of points (even
A.M. Ampère attempted to give a theoretical justification for this). Although the first
published example is certainly due to Weierstrass, already in 1830 the Czech mathematician
B. Bolzano exhibited a continuous nowhere differentiable function. Let us make a brief
overview of the appearance throughout history of “Weierstrass’ monsters” (see e.g. [265]
for a thorough study of the citations below):
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Discoverer Year
B. Bolzano ≈1830
M.Ch. Cellérier ≈1830
B. Riemann 1861
H. Hankel 1870
K. Weierstrass 1872

After 1872 many other mathematicians also constructed similar functions. Just to cite
a partial list of these, we have: H.A. Schwarz (1873), M.G. Darboux (1874), U. Dini
(1877), K. Hertz (1879), G. Peano (1890), D. Hilbert (1891), T. Takagi (1903), H. von
Koch (1904), W. Sierpiński (1912), G.H. Hardy (1916), A.S. Besicovitch (1924), B. van der
Waerden (1930), S. Mazurkiewicz (1931), S. Banach (1931), S. Saks (1932), or W. Orlicz
(1947) (we would also like to refer the interested reader to [7, 191] for some recent results
on this class of continuous nowhere differentiable functions).

As a nice application of the Baire category theorem, Banach obtained in 1931 that most
continuous functions are nowhere differentiable, see e.g. [236]. Specifically, the set of all
continuous but nowhere differentiable functions on R is residual in C(R), when endowed
with the topology of uniform convergence in compacta.

Later, at the end of the XX century and nowadays, there are also authors who have, as
well, constructed Weierstrass’ monsters with even additional “pathologies”. The lineability
of this type of functions has been thoroughly studied in the last years. Although the very
first result in this direction was due to V.I. Gurariy in 1966 ([178, 179] and Theorem 1.2
in Section 1), who showed that the set of continuous nowhere differentiable functions on
[0, 1] is lineable. The lineability of this class of functions has been studied in depth, as we
summarize next. V. Fonf, V. Gurariy and V. Kadeč [144], in 1999, showed that the set of
nowhere differentiable functions on [0, 1] is spaceable. But much more is true: L. Rodŕıguez-
Piazza showed that the X in [144] can be chosen to be isometrically isomorphic to any
separable Banach space [246]. Several authors have invested plenty of time on the study of
this special set of functions since the ending of the 20th century. For instance, S. Hencl [184]
showed in 2000 that any separable Banach space is isometrically isomorphic to a subspace
of C[0, 1] whose nonzero elements are nowhere approximately differentiable (recall that if
I ⊂ R is an interval and x0 ∈ R then a function f : I → R is called approximately
differentiable at x0 provided that there is α ∈ R such that, for each ε > 0, the set {x ∈
E : |f(x)−f(x0)

x−x0 − α| < ε} has x0 as a density point) and nowhere Hölder. And Bayart
and Quarta produced the following result, that is related to the algebraic structure of this
special set.

Theorem 2.1 (Bayart, Quarta, 2007, [54]). The set of continuous nowhere Hölder func-
tions on [0, 1] contains (except for the null function) an infinitely generated algebra. More-
over, this algebra can be chosen to be dense in C[0, 1]. In other words, the set of continuous
nowhere Hölder functions on [0, 1] is ℵ0-dense-algebrable.
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From this last assertion one can infer that the set of continuous nowhere differentiable
functions on [0, 1] is dense-lineable and, in particular, ℵ0-lineable. Just recently, the authors
of [191] provided the first constructive proof of the c-lineability of this set.

Finally, and in the vein of Theorem 1.3 by Gurariy, we mention that, if C∞(I) denotes
the space of infinitely differentiable real functions on an interval I ⊂ R then, obviously,
C∞([0, 1]) is not spaceable in C[0, 1]. In spite of this fact, the class C∞((0, 1)) is spaceable in
C((0, 1)). For this, see [68], where, in addition, the use of Müntz sequences allows to prove
that the family of continuous functions on [0, 1] which are analytic in (0, 1) is spaceable in
C[0, 1]. Hence C[0, 1] ∩ C∞((0, 1)) is spaceable as well.

2.2. Differentiable functions and related properties. Clearly, the set of everywhere
differentiable functions on R is linear and, thus, c-lineable since it is itself a vector space. V.
I. Gurariy showed in [178] that this cannot be improved: the set of everywhere differentiable
functions on [0, 1] is not spaceable. In this section we shall discuss some special subsets of
differentiable functions.

2.2.1. Differentiable nowhere monotone functions. The existence of differentiable functions
on R which are nowhere monotone (denoted DNM(R) from now on) is a well-known fact
since the appearance of the example by Katznelson and Stromberg in 1974, [197]. Several
more examples and constructions have followed since. One of the most recent construction,
if not the most, of such a function can be found in [22], where the authors make use of
several technical lemmas in order to achieve two main goals. Firstly, the construction of
one such function and, secondly, the following result.

Theorem 2.2 (Aron, Gurariy, Seoane, 2005, [22]). The set DNM(R) of differentiable
functions on R which are nowhere monotone is ℵ0-lineable in C(R).

The previous result was improved in [20], where the authors proved that the set of
differentiable nowhere monotone function on any compact interval of R is actually dense-
lineable, so showing that the vector space in [22] can be chosen to be dense.

Recall that dim(C[0, 1]) and dim(C(R)) are both equal to c. Thus we could also wonder
whether the set DNM(R) is c-lineable. The answer is yes, and it was obtained in [149],
where the authors use approximately continuous functions and the properties of the density
topology5 to obtain the above statement by means of the following statement. Recall that
if I ⊂ R is an interval then a function f : I → R is said to be approximately continuous
whenever, for every open set U ⊂ R, the set f−1(U) is Lebesgue-measurable and has
Lebesgue density one at each of its points.

Theorem 2.3 (Gámez, Muñoz, Sánchez, Seoane, 2010, [149]). The set of bounded approx-
imately continuous functions on R that are positive in a dense subset of R and negative in
another dense subset of R is c-lineable.

5The density topology can be defined as the initial topology for the approximately continuous functions.
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Next, since every bounded approximately continuous and bounded mappings is the de-
rivative of a differentiable function (see [117, Theorem 5.5(a), p. 21]), they obtain as an
easy consequence of Theorem 2.3 the following assertion.

Theorem 2.4 (Gámez, Muñoz, Sánchez, Seoane, 2010, [149]). The set DNM(R) of dif-
ferentiable functions on R that are nowhere monotone is c-lineable.

Due to the result by Gurariy previously discussed ([178] and Theorem 1.3 in Section 1),
the set DNM[0, 1] cannot be spaceable.

2.2.2. Nowhere analytic functions. As it is standard, a real function is said to be real
analytic if it possesses derivatives of all orders and agrees with its Taylor series in a neigh-
borhood of every point. There exist C∞ functions that are not analytic, as the following
well-known function shows:

f(x) =

{
e−1/x2 if x 6= 0,

0 if x = 0.

Since f (n) = 0 (n ≥ 0), the above function only agrees with its Taylor series expansion at
x = 0. Hence f belongs to C∞(R) but it is not analytic at 0. But more is true: in 1876,
du Bois Reymond constructed a function belonging to S(R), the family of all everywhere
singular functions, that is, the class of C∞-functions on R that are analytic at no point of
R. A nice example is the following one due to Lerch [211]:

f(x) =

∞∑
n=1

cos (anx)

n!
,

where a is an odd positive integer. Other explicit examples can be seen in [188,201].

Again, this phenomenon is topologically generic: in 1955, Salzmann and Zeller [253]
established the residuality of the family S(I) of everywhere singular functions on I in the
space C∞(I), endowed with the topology of uniform converge in compacta of functions and
the derivatives of all orders, where I ⊂ R is an interval. We would also like to refer the
reader to the nice work of Bastin, Esser, and Nikolay [42], where the authors study the
genericity of functions which are nowhere analytic in a measure-theoretic sense.

Concerning lineability, Garćıa, Palmberg, and Seoane [156] demonstrated that there
actually exists an uncountably infinitely generated algebra every nonzero element of which
is in C∞(R) and nonanalytic at x = 0. Cater [121] showed in 1984 that, although the set
of nowhere analytic functions on [0, 1] is clearly not a linear space, there exists a vector
space in S([0, 1]) ∪ {0} of dimension c. Recently Bernal [68] proved that there is a dense
linear subspace in C∞[0, 1] every nonzero element of which is nowhere analytic. Moreover,
he showed [68, Theorem 3.2] that, if PS stands for the set of all smooth functions with a
Pringsheim singularity at every point of [0, 1] (which is nonempty due to a classical result
of Zahorski, [275]) then PS is dense-lineable. Recall that a function f ∈ C∞(I) is said
to have a Pringsheim singularity at a point x0 ∈ I whenever the radius of convergence of
the Taylor series of f at x0 is zero. Obviously, PS ⊂ S([0, 1]), the inclusion being strict.
In fact, Salzmann and Zeller had shown in [253] that PS is residual. In [68] it is also
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proved that S([0, 1]) is maximal dense-lineable and that, if the arrival space is C, then PS
is maximal lineable.

If an entire function has infinitely many zeros with an accumulation point then, by the
Identity Theorem, it must be the zero function (see e.g. [118], for a very accessible work
on uniqueness theorems for analytic functions). For real differentiable functions this no
longer hold. For instance, the differentiable function g : R→ R given by

g(x) =

{
x2 sin(π/x) if x 6= 0,

0 if x = 0,

has the infinite set Z =
{

1
n : n ∈ N

}
∪ {0} as its set of zeros, Z has an accumulation point

(0) but, obviously, g 6= 0. This raises the following natural questions:

Are there real valued C∞ functions with infinitely many zeros, and in ad-
dition being nowhere analytic? And, how big is this set of functions? What
algebraic/linear structure does this set possess?

In [128, Theorem 2.3] the authors provide answers to the above questions by construct-
ing an algebra A of real valued functions enjoying, simultaneously, each of the following
properties:

(i) A is uncountably infinitely generated (that is, the cardinality of a minimal system
of generators of A is uncountable).

(ii) Every nonzero element of A is nowhere analytic.
(iii) A ⊂ C∞(R).
(iv) Every element of A has infinitely many zeros in R.

(v) For every f ∈ A and n ∈ N, the n-th derivative f (n) is also C∞, nowhere analytic,
and possesses infinitely many zeros in R.

Functions with infinitely many zeros in a closed finite interval are known as annulling
functions, see [137, Definition 2.1]. Very recently, Enflo, Gurariy, and Seoane [137, Corol-
lary 3.8] proved that for every infinite dimensional subspace X of C[0, 1] the subset of its
annulling functions contains an infinite dimensional closed subspace; see also Section 2.7.1.
The question of the existence of an algebra of such functions inside of C[0, 1] is also solved
in [128]. The following problems come naturally.

Problems 2.5. 1. Is the class PS c-algebrable in C∞([0, 1])?
2. Can we replace the words “is nowhere analytic” in the property (ii) above by the condition
“belongs to PS”?

Remark 2.6. Within the framework of vector-valued analytic functions we refer the in-
terested reader to the paper [214] by López-Salazar, where large vector spaces of entire
functions of unbounded type are constructed.

2.3. Continuous (and nowhere continuous) functions.

2.3.1. Maxima and minima of functions in R. In [241] it was proved that there exists a
continuous function on R with a proper local maximum at each point of a dense subset of
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R. One could ask whether the set of all functions enjoying this property, denoted CM(R),
is lineable. Apparently this is not true, the problem being that the proper local maxima
become proper local minima for any negative multiple of f , with f ∈ CM(R). If f also
had a dense set of proper local minima then this problem would not arise. Let us denote
by CMm(R) the nonempty (see [135]) set of continuous functions such that both of their
sets of proper local minima and maxima are dense in R.

Theorem 2.7 (Garćıa, Grecu, Maestre, Seoane, 2010, [154]). There exists an infinite
dimensional Banach space of continuous functions on R all of whose nonzero members
have the property that their sets of proper local minima and maxima, respectively, are
dense subsets of R. In other words, CMm(R) is spaceable. Moreover, λ(CMm(R)) = c
and CMm(R) is (c, c)-algebrable.

One of the first results in the topic of lineability was due to Gurariy and Quarta [181].
They considered subsets of continuous functions attaining their maximum at exactly one
point. To our surprise, sometimes one cannot achieve lineability for certain nontrivial sets,
as the following result shows.

Theorem 2.8 (Gurariy, Quarta, 2004, [181]). Let M = {f ∈ C[0, 1] : f attains its
maximum at exactly one point of [0, 1]}.

(1) M is a dense Gδ set in C[0, 1]. In particular, M is residual.
(2) If V ⊂M∪ {0} is a vector space, then dim(V ) ≤ 1.

In [181], the authors provided a number of partial extensions of Theorem 2.8. For
instance, for both C(R) and C0(R) (continuous functions R→ R vanishing at ±∞), there is
a 2-dimensional subspace every nonzero element of which attains its maximum at exactly
one point of R. In the case of C0(R), there is no 3-dimensional subspace having this property
([181]). After all the effort invested in this class of functions, the following problem still
remains open (see also [13]).

Problem 2.9. Is there a n-dimensional vector subspace of C(R), with n > 2, every nonzero
element of which attains its maximum at exactly one point of R?

2.3.2. Sierpiński-Zygmund functions. As a consequence of the classic Luzin’s Theorem we
have that for every measurable function f : R → R, there is a measurable set S ⊂ R, of
infinite measure, such that f |S is continuous. A natural question would be whether similar
results could be obtained for arbitrary functions (not necessarily measurable). In other
words, given any arbitrary function f : R → R, can we find a “large” subset S ⊂ R for
which f |S is continuous? In 1922, Blumberg [94] provided an affirmative answer to this
question.

Theorem 2.10 (Blumberg, 1922, [94]). Let f : R → R be an arbitrary function. There
exists a dense subset S ⊂ R such that the function f |S is continuous.

Blumberg’s proof of his theorem (see e.g. [199, p. 154]) shows that the set S above is
countable. We could wonder whether we can choose the subset S in Blumberg’s theorem to
be uncountable. A (partial) negative answer was given in [262] by Sierpiński and Zygmund.
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Theorem 2.11 (Sierpiński-Zygmund, 1923, [262]). There exists a function f : R→ R such
that, for any set Z ⊂ R of cardinality c, the restriction f |Z is not a Borel map (and, in
particular, not continuous).

From now on, we shall say that a function f : R → R is a Sierpiński-Zygmund function
if it satisfies the condition in Sierpiński-Zygmund’s Theorem, and we denote

SZ = { f : R→ R : f is a Sierpiński-Zygmund function }.
Let us recall some known results about the class SZ. It is known that if the Continuum

Hypothesis (CH) holds then the restriction of a function in SZ to any uncountable set
can not be continuous (see, e.g., [199, pp. 165, 166]). Also, CH is necessary in this frame.
Shinoda proved in 1973 [258] that if Martin’s Axiom and the negation of CH hold then, for
every f : R→ R, there exists an uncountable set Z ⊂ R such that f |Z is continuous. The
functions in SZ are never measurable and, although it is possible to construct them being
injective, they are nowhere monotone in a very strong way: their restriction to any set
of cardinality c is not monotone. In 1997, Balcerzak, Ciesielski, and Natkaniec showed in
[32] that, assuming the set-theoretical condition cov(M) = c (which is true under Martin’s
Axiom or CH), there exists a Darboux function that is in SZ as well. They prove also
that there exists a model of ZFC (Zermelo-Fraenkel-Axiom of Choice) in which there are
no such functions (see also [125, 126, 240]). Later, Gámez, Muñoz, Sánchez, and Seoane
(2010) proved in [149, Theorems 5.6 and 5.10] that the set SZ is c+-lineable and also
c-algebrable. As a consequence, assuming that c+ = 2c (which follows, for instance, from
the Generalized Continuum Hypothesis or GCH), SZ would be 2c-lineable. Also, in 2010
[150, Corollary 2.11], Gámez, Muñoz, and Seoane proved that SZ is actually dc-lineable,
where dc is a cardinal invariant defined as

dc = min{cardF : F ⊂ RR, (∀ϕ ∈ RR) (∃f ∈ F ) (card(f ∩ ϕ) = c) }.
This cardinal can take as value any regular cardinal between c+ and 2c, depending of the set-
theoretical axioms assumed. Later, in [40, Theorem 2.6], Bartoszewicz, G la̧b, Pellegrino,
and Seoane showed that SZ is actually κ-strongly algebrable for some c+ ≤ κ ≤ 2c if there
is in c an almost disjoint family of cardinality κ (see Definition 2.12 below). Assuming
either Martin’s Axiom, or CH, or 2<c = c, this κ can be chosen to be 2c, so we would have
that SZ is 2c-strongly algebrable.

Definition 2.12. Let S a be set of cardinality κ. We say that a family F ⊂ P(S) is an
almost disjoint family in S if the following conditions hold:

(1) If A ∈ F then cardA = κ.
(2) If A,B ∈ F , A 6= B, then card(A ∩B) < κ.

Until very recently, it was not known whether any additional set-theoretical assumptions
were needed or not in order to show the 2c-strongly algebrability (and the 2c-lineability) of
SZ. Nevertheless, in [152] the authors showed the following:

Theorem 2.13 (Gámez, Seoane, 2012, [152]). Let κ be a cardinal number such that c+ ≤
κ ≤ 2c. The following are equivalent:
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(a) SZ is κ-strongly algebrable.
(b) SZ is κ-algebrable.
(c) SZ is κ-lineable.
(d) There exists an additive group G ⊂ SZ ∪{0} of size (i.e., cardinality) κ.
(e) There exists in c an almost disjoint family of cardinality κ.

Now, we review a series of results on almost disjoint families, all of which can be found
in [206]. On the one hand, recall that under ZFC there is an almost disjoint family of
cardinality c = 2ℵ0 in ℵ0. On the other, the existence of an almost disjoint family of
cardinality 2ℵ1 in ℵ1 is undecidable. Also, and under the set-theoretical assumption 2<c = c,
there exists an almost disjoint family of cardinality 2c in c.

Let us point out that, from these previous results, we infer that it is consistent with ZFC
that SZ ∪{0} contains a vector space of dimension 2c. By means of the forcing technique,
in [152] the authors proved that the contrary is also consistent, that is:

Theorem 2.14 (Gámez, Seoane, 2012, [152]). The 2c-lineability (maximal lineability) of
the set of Sierpiński-Zygmund functions is undecidable.

This would be the first time in which one encounters a (highly nontrivial!) undecidable
proposition in this theory of lineability and spaceability.

2.3.3. Surjections, Darboux functions, and related properties. The following concepts, al-
though well-known in Real Analysis, can be found in [145,192].

Definition 2.15. Let f ∈ RR. We say that:

(1) f ∈ ES(R) (f is everywhere surjective) if f(I) = R for every nontrivial interval I.
(2) f ∈ SES(R) (f is strongly everywhere surjective) if f takes all values c times on

any interval.
(3) f ∈ PES(R) (f is perfectly everywhere surjective) if for every perfect set P , f(P ) =

R.
(4) f ∈ AC(R) (f is almost continuous, in the sense of J. Stallings [263]) if every open

set containing the graph of f contains also the graph of some continuous function.
(5) If h : X → R, where X is a topological space, h ∈ Conn(X) (h is a connectivity

function) if the graph of h|C is connected for every connected set C ⊂ X. (If
h ∈ RR, it is equivalent to say that its graph is connected.)

(6) f ∈ Ext(R) (f is extendable) if there is a connectivity function g : R2 → [0, 1] such
that f(x) = g(x, 0) for every x ∈ R.

(7) f ∈ PR(R) (f is a perfect road function) if for every x ∈ R there is a perfect set
P ⊂ R such that x is a bilateral limit point of P and f |P is continuous at x.

(8) f ∈ PC(R) (f is peripherally continuous) if for every x ∈ R and pair of open sets
U, V ⊂ R such that x ∈ U and f(x) ∈ V there is an open neighborhood W of x with
W ⊂ U and f(∂W ) ⊂ V .

(9) f ∈ J(R) (f is Jones function) if its graph intersects every closed subset of R2 with
uncountable projection on the x-axis (see [193]).

(10) f ∈ Q(R) if f is a Q-linear function on R.
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(11) f ∈ Gr(R) (f is a dense-graph function) if its graph {(x, f(x)) : x ∈ R} is dense
in R2.

(12) f ∈ D(R) (f is a Darboux function) if it has the “intermediate value property”,
that is, for any two values a and b in the domain of f , and any y between f(a)
and f(b), there is some c between a and b with f(c) = y.

In order to make all the above definitions clearer to the reader, we can picture some
of them in the following diagram, which links most of the above classes (the proofs of
the below implications are either trivial, or can be found in [145, 149, 150, 192]). In what
follows, A→ B means that the class A is a subset of B.6

J(R) //

%%��

PES(R) // SES(R) //

��

ES(R)

��
RR \ SZ AC(R) // Conn(R) // D(R)

��

Sacks’ model / Iterated Perfect Set Model

CC

Ext(R)

99OO

// PR(R) // PC(R)

Lebesgue [161,163,207] was probably the first to show a somewhat surprising example of
a function in ES(R). In [22] the authors proved that the set of such everywhere surjective
functions is 2c-lineable, which is the best possible result in terms of dimension. One could
think that, in terms of surjectivity, these everywhere surjective functions are in some sense
the most exotic. As the above diagram shows, this is very far from being true.

For the sake of completeness, and for the beauty of the construction, we provide here a
proof of the existence of a function f ∈ ES(R).

Example 2.16 (An everywhere surjective function, [149, Example 2.2]). Let (In)n∈N be
the collection of all open intervals with rational endpoints. The interval I1 contains a
Cantor type set, call it C1. Now, I2 \ C1 also contains a Cantor type set, call it C2. Next,
I3 \(C1∪C2) contains, as well, a Cantor type set, C3. Inductively, we construct a family of

pairwise disjoint Cantor type sets, (Cn)n∈N, such that for every n ∈ N, In\(
⋃n−1
k=1 Ck) ⊃ Cn.

Now, for every n ∈ N, take any bijection φn : Cn → R, and define f : R→ R as

f(x) =

{
φn(x) if x ∈ Cn,
0 otherwise.

6Due to the highly technical set theoretical background that it would require, we refer the interested
reader to [127] for a complete and modern study of the so-called Iterated Perfect Set Model.
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Then f is clearly everywhere surjective (and also zero almost everywhere!). Indeed, let I
be any interval in R. There exists k ∈ N such that Ik ⊂ I. Thus f(I) ⊃ f(Ik) ⊃ f(Ck) =
φk(Ck) = R.

Let us now provide an account on the known lineability and algebrability results of some
of the above classes (under ZFC). In the table below, the letter λ stands for the maximal
(known) dimension of lineability of the given class.

class λ Ref. class λ Ref.
AC(R) 2c [150] PC(R) 2c [22]

Conn(R) 2c [150] DNM(R) c [22, 149]
Ext(R) ≥ c+ [150] PES(R) \J(R) 2c [149]

AC(R) \ Ext(R) 2c [150] SES(R) \PES(R) 2c [149]
PR(R) ≥ c+ [150] ES(R) \ SES(R) 2c [149]
SZ dc (“2c”) [150,152] D(R) \ES(R) 2c [149]
J(R) 2c [148] PC(R) \D(R) 2c [149]

PES(R) 2c [149] ES(R)∩Q(R) 2c [159]
SES(R) 2c [149] Gr(R) ∩Q(R) \ ES(R) 2c [159]
ES(R) 2c [22] ES(R) \Q(R) 2c [159]
D(R) 2c [22] Gr(R) \ (ES(R)∪Q(R)) 2c [159]

The quotation marks above (“2c”, next to the class SZ) refer to Theorem 2.14. Some
of the results above follow from a result involving the concept of additivity [150,192], that
will be presented in detail in Part 5 of this survey.

Notice that some of the above classes are themselves subsets of the set of surjective
functions from R to R and all of these subsets are 2c-lineable. One could think that a
similar result would hold for one to one functions. In [254] a negative answer was given to
this question.

Theorem 2.17 (Seoane, 2006, [149, 254]). The set of injective functions is not lineable.
Moreover, if V is a vector space, every nonzero element of which is an injective function
on R, then dim (V ) = 1.

The algebrability of the above classes (or modifications of them) have also been conside-
red by many authors. As we have mentioned already, to obtain algebrability is highly more
complex than to obtain lineability. For instance, it is out of place to consider algebras of
functions in ES(R), since given any f ∈ RR we have that f2 /∈ ES(R). The same happens
for the classes PES(R), SES(R), J(R), and many others. But sometimes a dual of the
previous classes can be certainly constructed in CC. For instance, and just to cite very
recent results on algebrability, let us look at the following table:
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class algebrability dimension Ref.
ES(C), PES(C) 2c [18, 27], [40]

SES(C) \ PES(C) 2c [37]
EDD(R) 2c [37, 40]
EDF(R) 2c [37]
EDC(R) 2c [37]

In the table above the classes EDD(R), EDF(R), and EDC(R) denote, respectively, the
set of everywhere discontinuous Darboux function, the set of nowhere continuous functions
having finitely many values, and the set of nowhere continuous functions mapping compact
sets to compact sets. These last two classes were also thoroughly studied in [151] (see
Theorem 2.19 from Section 2.3.4 in this survey).

Remark 2.18. Turning to surjectivity, but this time in the setting of families of functions
defined on complex domains, a simple Baire-category argument shows that if X is an
infinite dimensional Banach space and f : D → X is continuous (D := {z ∈ C : |z| < 1},
the open unit disc) then f cannot be surjective. Let H(D, X) := {f : D → X : f is
holomorphic on D}. In 1976, Glovebnik [166] and independently Rudin [249] proved that
the set D := {f ∈ H(D, X) : f(D) is dense in X} is not empty. Very recently, López-
Salazar [215] has been able to demonstrate the lineability of D.

2.3.4. Other properties related to the lack of continuity. It is standard that continuous
functions transform compact or connected sets into compact or connected sets respectively.
It is interesting to ask whether this characterizes continuity or not. In other words, if a
function f : R → R transforms compact sets into compact sets and connected sets into
connected sets, can we expect f to be continuous? This question was positively answered
in the late 1960’s by Hamlett [182] and White [272] (see also Velleman [269, Theorem 2]).
Thus, the fact that f satisfies only one of the following two conditions:

(1) f transforms compact sets into compact sets, or
(2) f transforms connected sets into connected sets

might be very far away from making f continuous, which is what the authors proved in
[151]:

Theorem 2.19 (Gámez, Muñoz, Seoane, 2011, [151]). There exist 2c-dimensional linear
spaces U and V of RR such that:

(a) Every nonzero element of U is nowhere continuous and transforms connected sets
into connected sets.

(b) Every nonzero element of V is nowhere continuous and transforms any set into a
compact set.

Next, one could also study noncontinuous functions focusing on the structure of their
sets of discontinuities. To start with, the set of points at which a function is continuous is
always a Gδ set, so the set of discontinuities is an Fσ set. Moreover, the set of discontinuities
of a monotonic function is at most countable (Froda’s theorem). In this direction, several
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results have been obtained in the last years. Recall that a point x0 ∈ R is called a removable
discontinuity of a function f : R→ R whenever there exists limx→x0 f(x) and is finite.

Theorem 2.20 (Garćıa-Pacheco, Palmberg, Seoane, 2007, [156]). The set M of functions
on R with a dense set of points of removable discontinuity is (c, c)-algebrable and λ(M) ≥ c.

In this same direction, the following battery of results is also related to the set of dis-
continuities of functions in R (see [2, 156]).

Theorem 2.21. (1) Given a closed set F ⊂ R, the set H of all functions R → R
whose set of points of discontinuity is F is lineable with λ (H) ≥ c. Moreover, if
the interior F ◦ 6= ∅ then λ (H) = 2c.

(2) Given any nonclosed Fσ set F , the set of functions whose set of points of disconti-
nuity is F is coneable.

(3) Given a closed set F of measure zero contained in an interval [a, b], the set of all
Riemann-integrable functions whose set of points of discontinuity is F is lineable.

(4) Given any nonclosed Fσ set F of measure zero contained in an interval [a, b], the set
of all Riemann-integrable functions whose set of points of discontinuity is exactly
F is coneable.

(5) Let I be any nontrivial interval and consider a point a ∈ I. Let K denote the set of
all functions from I to R having a removable discontinuity at a. Then, λ (K) = 1.
If L denotes the set of all functions from I to R having a jump discontinuity at
a, then λ (L) = 1. Also, if H denotes the set of all functions from I to R having
either a removable or jump discontinuity at a, then λ (H) = 2.

2.4. Measurability and integration.

2.4.1. Non-measurable functions. The existence of nonmeasurable functions is a direct con-
sequence of the famous Vitali’s set V , for whose construction the Axiom of Choice is used.
Recall that V is defined by choosing one point in each class corresponding to the equiva-
lence relation in [0, 1] given by x ∼ y if and only if x− y ∈ Q. Then χV is “our” example
nonmeasurable function. Let us now move to the search for Banach spaces of nonmeasu-
rable functions. If K stands for either R or C then, for a given a measurable space (Ω,Σ),
N(Ω,K) will denote the set of nonmeasurable functions from Ω to K. By the Axiom of
Choice, we know that N(Ω,K) is not empty.

In 2006, the authors of [160] obtained the best possible result –in terms of dimension
and topological structure– when they provided maximal spaceability of the above set. In
particular, we have the following theorem. Recall that, if X is a topological space and γ is
a cardinal, then X is said to have density character γ if γ is the minimum cardinality of a
dense subset of X.

Theorem 2.22 (Garćıa-Pacheco and Seoane, 2006, [160]). For any cardinal γ there is a
Hausdorff topological space Ω with Borel σ-algebra B such that N(Ω,K) ∪ {0} contains a
subspace isometric to `∞(γ). In particular, N(Ω,K) is spaceable, and any Banach space
with density character γ is isometric to a space consisting, except for zero, of nonmeasurable
functions.
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2.4.2. Lp and `p spaces. The search of algebraic structures inside certain subsets of spaces
of either Lp or `p probably started when H. Rosenthal [248] showed in 1978 that c0 is
quasi-complemented in `∞ (a closed subspace Y of a Banach space X is said to be quasi-
complemented if there is a closed subspace Z of X such that Y ∩ Z = {0} and Y + Z is
dense in X). This clearly implies that `∞ \ c0 is spaceable. Later, Garćıa-Pacheco, Mart́ın
and Seoane proved (2009, [155]) that `∞(Γ) \ c0(Γ) is spaceable for every infinite set Γ,
although it is interesting to recall that J. Lindenstrauss (1968, [213]) proved that, if Γ is
uncountable, then c0(Γ) is not quasi-complemented in `∞(Γ).

In 2008, Muñoz, Palmberg, Puglisi and Seoane [232] proved that if I is a bounded interval
and q > p ≥ 1, then Lp(I) \ Lq(I) is c-lineable. In this same paper it is proved that both,
`p \ `q and Lp(J) \ Lq(J), are c-lineable for any unbounded interval J and for p > q ≥ 1.
One year later, Aron, Garćıa-Pacheco, Pérez-Garćıa and Seoane [20] showed that the linear
subspaces constructed in [232] can be chosen to be dense. In 2010, Bernal [69] provided a
series of conditions from which one can obtain (maximal) lineability (and dense-lineability)
of the set of functions in Lp(X,µ) that are not in Lq(X,µ), where 1 ≤ q 6= p < ∞ and
µ denotes a regular Borel measure on a topological space X. And Garćıa-Pacheco, Pérez-
Eslava and Seoane [157, Theorem 2.6] proved that if (Ω,Σ, µ) is a measure space such that
there exists ε > 0 and an infinite family (An)n∈N ⊂ Σ of pairwise disjoint measurable sets

with µ (An) ≥ ε for all n ∈ N, then
∞⋂
p=1

(L∞(Ω) \ Lp(Ω)) is spaceable in L∞(Ω).

These previous results kept evolving and, in 2011, Botelho, Diniz, Fávaro and Pellegrino
[108] proved that, if X is a fixed Banach space, then for large classes of Banach (and
even quasi-Banach) spaces E of X-valued sequences, the sets E \

⋃
q∈Γ

`q(X) (where Γ ⊂

[0,∞)) and E \ c0(X) are both spaceable in E. Next, and as a consequence of a lecture
delivered by V. Fávaro at an international conference held in Valencia (Spain) in 2010, R.
Aron asked whether the result above [108, Corollary 1.7] would hold for Lp-spaces. This
question was answered in the positive (and independently) in [84, 110]. More precisely, in
[84] Bernal and Ordóñez provided a series of conditions on a measure space (Ω,Σ, µ) to
ensure the spaceability of the sets Lp(Ω) \

⋃
q∈[1,p)

Lq(Ω), Lp(Ω) \
⋃

q∈[p,∞)

Lq(Ω), and Lp(Ω) \⋃
q∈[1,∞)\{p}

Lq(µ,X) (for p ≥ 1); whereas in [110] Botelho, Fávaro, Pellegrino, and Seoane

obtained a quasi-Banach version of this result by proving that Lp[0, 1] \
⋃
q>p

Lq[0, 1] is

spaceable for every p > 0. In this direction it is also crucial to mention a recent paper
[202], where Kitson and Timoney provided a general result from which some of the above
ones (for the normed case) can be inferred. At the opposite side, a celebrated old theorem
due to Grothendieck (see [251, Chap. 6]) asserts that if 0 < p < +∞ and µ is finite then
L∞(Ω) is not spaceable in Lp(Ω).

At this point, and after all the invested effort for the past years in looking for the
“optimal” results on the spaceability of the sets of the form Lp(Ω) \Lq(Ω) with p > q and



18 L. BERNAL-GONZÁLEZ, D. PELLEGRINO, AND J.B. SEOANE-SEPÚLVEDA

Lp(Ω) \
⋃

1≤q<p
Lq(Ω), this ongoing work continued and rather conclusive contributions in

the form of maximal-spaceability have been obtained. Let again (Ω,Σ, µ) denote a measure
space and 0 < p < +∞. Let us recall the following definitions, some of which can be found
in [107].

Definition 2.23. (i) Σfin := {A ∈ Σ : µ(A) < +∞}.
(ii) Two sets A,B ∈ Σfin are equivalent, denoted A ∼ B, if µ((A \B)∪ (B \A)) = 0.

The elements of the quotient set Σfin/∼ are denoted by [B], for B ∈ Σfin.
(iii) The cardinal number #Σfin/∼ is called the entropy of the measure space (Ω,Σ, µ)

and is denoted by ent(Ω).
(iv) Given a cardinal number ζ, the measure space (Ω,Σ, µ) is said to be ζ-bounded if,

for every A ∈ Σfin with positive measure, there are at most ζ subsets of A with
positive measure belonging to different classes of Σfin/∼.

Theorem 2.24 (Botelho, Cariello, Fávaro, Pellegrino, Seoane, 2012, [107]). Let p > 1.
The set Lp(Ω) \

⋃
1≤q<p

Lq(Ω) is maximal spaceable if at least one of the following conditions

holds:

(a) Either Lp(Ω) \ Lr(Ω) 6= ∅ for some 1 ≤ r < p and ℵ0 ≤ ent(Ω) ≤ c,
(b) or the measure space (Ω,Σ, µ) is ζ-bounded for some cardinal number ζ with c ≤

ζ < ent(Ω).

However, the authors also showed that Lp(Ω) \Lq(Ω) may fail to be maximal spaceable
for p > q, see [107, Theorem 4.4]. They were able to show that that there exist (quite
exotic) infinite measure spaces (Ω,Σ, µ) such that the larger set Lp(Ω) \Lq(Ω), q < p, fails
to be maximal spaceable. They did this by developing a hybridization technique allowing
them to prove much more: given 1 ≤ q < p and cardinal numbers κ > ζ ≥ c, the authors
constructed an infinite measure space (Ω,Σ, µ) such that:

(i) dim(Lp(Ω)) = κ;
(ii) ζ is the maximal dimension of a closed subspace of Lp(Ω) contained (except for the

null vector) in Lp(Ω) \ Lq(Ω).

Before finishing this section let us point out that (very recently) some results related
to the problems treated in this section have been obtained by Barroso, Botelho, Fávaro,
and Pellegrino in [36], and by G la̧b, Kaufmann, and Pellegrini [164, 165]. Within the
framework of Orlicz spaces, we also refer the reader to the very recent work by Akbarbaglu
and Maghsoudi [4].

2.4.3. Riemann versus Lebesgue. Given an interval I (bounded or not) we shall denote by
R(I) to the set of Riemann-integrable functions on I, and by L(I) the set of Lebesgue-
integrable functions on I. It is well known the theorem by Lebesgue about Riemann-
integrability that states that if I is a bounded interval and f : I −→ R is a bounded
function, then f is Riemann-integrable if and only if f is almost everywhere continuous.
The proof can be easily adapted to show that a Riemann-integrable function on any arbi-
trary interval (bounded or not) is always almost everywhere continuous.
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One of the key points that led Lebesgue to his theory of integration was the existence of
two examples, one given by Volterra in 1881 and another by Brodén in 1896 which showed
that, at least from the point of view of Riemann integration, the process of obtaining
antiderivatives of a function and the integration theory were not equivalent. In 1881
Volterra gave an example of a differentiable function on R whose derivative is bounded
but not Riemann-integrable (see [154] for a detailed construction of this function). Also, in
1896, Brodén gave an example of a real valued function f being continuous, nonconstant,
differentiable, and with f ′ bounded and zero in a dense subset of R.

Theorem 2.25 (Garćıa, Grecu, Maestre, Seoane, [154], 2010). There exists an infinite
dimensional Banach algebra of (except for 0) Brodén-type functions. In particular, the set
of Brodén-type functions is spaceable and algebrable.

Notice that the derivative of any Brodén-type function is bounded but not Riemann-
integrable. We say that a bounded function f has property (?) if there exists a function
F such that F ′(x) = f(x) for all x ∈ R but f is not Riemann-integrable on any compact
interval of R. In particular, any function enjoying (?) does not satisfy the Fundamental
Theorem of Calculus. In [154] the authors showed the following.

Theorem 2.26 (Garćıa, Grecu, Maestre, Seoane, 2010, [154]). Given an interval [a, b],
a < b, there exists an infinite dimensional Banach space of bounded functions which are
Lebesgue integrable, have antiderivatives at every point of [a, b] but (except for 0 ) are not
Riemann-integrable on [a, b].

Following this direction of results on Lebesgue and Riemann integration, the following
results were also recently obtained [155].

Theorem 2.27 (Garćıa-Pacheco, Mart́ın, Seoane, 2009, [155]). Let I be any arbitrary
unbounded interval, then:

(a) The set of all almost everywhere continuous bounded functions on I which are not
Riemann-integrable contains an infinitely generated closed subalgebra (in particular
this set is spaceable and algebrable) in L(I).

(b) The set of all continuous bounded functions on I which are not Riemann-integrable
is spaceable in C(I).

Recall that if I is an unbounded interval, thenR(I) 6⊆ L(I); a representative and classical
example is given by the function f(x) = sinx

x for every x ∈ R. This function satisfies that∫
R
f(x) dx = π and

∫
R
|f(x)| dx = +∞.

Conversely, on any interval I (bounded or unbounded), there is a bounded Lebesgue-
integrable function which is not equivalent (in the sense of the Lebesgue measure) to any
Riemann-integrable function. An easy example of this type can be found in [163, Example
8.31]. Indeed, in any interval I, take a Cantor set A ⊂ I with positive and finite measure
(see e.g. [163, Example 8.4]); then, the function f = χA is bounded, Lebesgue-integrable,
but it is not equivalent to any Riemann-integrable function, since we can observe that
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f = 0 in I \A, which is dense in I and, moreover, if we change f in a null-set B of I, then
f = 0 in the still dense subset I \ (A∪B), and f = 1 in the set of positive measure A \B.

Within the framework of Lebesgue integration in R, we have the following.

Theorem 2.28 (Garćıa-Pacheco, Mart́ın, Seoane, 2009, [155]). Given any unbounded in-
terval I, the set of Riemann-integrable functions on I that are not Lebesgue-integrable is
lineable. Also, given any interval I, the set of Lebesgue-integrable functions that are not
Riemann-integrable is spaceable.

Observe that the second part of the previous theorem –that is, the spaceability of L(I)\
R(I)– is a consequence of a stronger result ([154, §4], Theorem 2.26 above). Also, notice
that it is not possible to obtain any kind of algebrability of R(I) \ L(I). Indeed, for every
f ∈ R(I), either f2 /∈ R(I) or f2 = |f2| ∈ R(I) and, therefore, f2 ∈ L(I).

2.4.4. The composite function. Most of the examples existing (and presented in this survey)
provide positive cases of high dimension in lineability but, sometimes, nice properties (such
as continuity or Riemann integrability) can be lost, in a linear fashion, via composition of
functions. It is well known that, if f is a continuous function on the interval [a, b], g is
Riemann integrable (resp. Lebesgue measurable) on the interval [α, β], and g([α, β]) ⊂ [a, b],
then f ◦ g is Riemann integrable (resp. measurable) on [α, β]. A well-known fact, on the
other hand, states that f ◦ g might be not Riemann integrable (resp. measurable) when f
is Riemann integrable (resp. measurable) and g is continuous.

In [29] the authors proved that there exists a 2c-dimensional space V and a c-dimensional
space W of, respectively, Riemann integrable functions and continuous functions such that,
for every f ∈ V \{0} and g ∈W \{0}, f◦g is not Riemann integrable. They also proved that
there exists a c-dimensional space W of continuous functions such that for each g ∈W \{0}
there exists a c-space V of measurable functions such that f ◦ g is not measurable for all
f ∈ V \{0}. It would be interesting to prove an analogue of their first result for measurable
functions, that is:

Problem 2.29. Can one construct vector spaces (or even algebras! ) V and W of, respec-
tively, measurable and continuous functions such that dim(V ) = 2c, dim(W ) = c and f ◦ g
is nonmeasurable for every f ∈ V \ {0} and every g ∈W \ {0}?

2.5. Series and summability.

2.5.1. Fourier series. The convergence of Fourier series has been deeply studied in the
past. It came as a considerable surprise when Du Bois-Reymond produced an example of
a continuous function f : T→ C whose Fourier series is divergent at one point of the unit
circle T := {eiθ : θ ∈ [0, 2π]} (see [204, pp. 67–73] for a modern reference). This statement
can be improved by means of an example of a continuous function whose Fourier series
expansion diverges on a set of measure zero ([196, p. 58]). This last result is the best
possible, since by a remarkable result due to Carleson (see e.g. [204, p. 75]) the Fourier
expansion of every continuous function converges almost everywhere. Moreover, by means
of Baire’s theorem, this exotic behavior can be shown to be generic: there exists a Gδ
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dense subset E ⊂ T such that the set of continuous functions whose Fourier expansion
diverges on this set is a Gδ dense subset of C(T), see [250, p. 102]. F. Bayart [44] showed in
2005 that, if FE ⊂ C(T) is the set of continuous functions whose Fourier series expansion
diverges on a prescribed set E of measure zero, then FE is dense-lineable. Later, in [25],
the authors showed that this set FE is actually dense-algebrable. There are functions in
L1(T) with nowhere convergent Fourier series. In 2005, Bayart [43, Theorem 3] proved that
FE is, in addition, spaceable. Lineability properties in C(T) for Fourier series exhibiting
universality phenomena have been recently shown, see [70] and Section 3.2.

2.5.2. Dirichlet series. Another classical family of series is that of Dirichlet series, H∞.
These series are defined as

f(s) =
∑
n∈N

ann
−s,

with convergence and boundedness of f in the half-plane C+ = {s ∈ C : <(s) > 0}; H∞
is a Banach space with the sup norm over C+. It is known (see [50]) that there exists
Dirichlet series f(s) such that ∑

n∈N
ann

−it

diverges for every t ∈ R. In [43] it was proved that the set of these Dirichlet series f(s)
such that f(it) diverges for every t ∈ R is spaceable (for further studies on this type of
series we refer the interested reader to [115,138]).

2.5.3. General summability. Sequence spaces. For some of the results in summability in
sequence spaces of the `p type we refer to Section 2.4.2. Let us now review some recent
results surrounding subsets of scalar series. Let K = R or C. Also, let CC(K) denote the
set of conditionally convergent series (clearly, CC(K)∪{0} is not a vector space in CS(K),
the set of convergent series). Aizpuru, Pérez-Eslava, Seoane (2006, [3]) showed that CS(K)
contains a vector space E satisfying the following properties:

(i) Every x ∈ E \ {0} is a conditionally convergent series,
(ii) dim(E)= c, and

(iii) span{E ∪ c00} is an algebra and its elements are either elements of c00 or condi-
tionally convergent series.

Here, the symbol c00 denotes the set of sequences, each of which has only finitely many
nonzero terms. In the same work, the authors also showed that there exists a vector space
E ⊂ BS(K) (the set of all series with bounded partial sums) such that:

(a) Every x ∈ E \ {0} is a divergent series,
(b) dim(E) = c and E is nonseparable, and
(c) span{E ∪ c00} is an algebra and every element of it is either a divergent series or is

an element of c00.

In the same line of results, it is also proved in [3] that there exists a vector space E ⊂ `∞
such that:

(1) dim(E) = c.
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(2) Every x ∈ E \ {0} is a divergent sequence.
(3) E ⊕ c0 is an algebra.
(4) Every element in E + c0 is either a divergent sequence or a c0-sequence, where E

is the closure of E in `∞.

Recall that if X is a Banach space and
∑

i xi is a series in X, then it is said that
∑

i xi
is unconditionally convergent (UC) provided that, for every permutation π of N, the series∑∞

i=1 xπ(i) converges. And we say that
∑

i xi is weakly unconditionally Cauchy (WUC)

if
∑∞

i=1 |f(xi)| < ∞ for every f ∈ X∗, the dual space of X. It is known [91, 133] that
if X is a Banach space, then there exists a WUC series in X which is convergent but is
unconditionally convergent if and only if X contains a copy of c0. It is a also a well-known
fact that every infinite dimensional Banach space has a series

∑
i xi which is unconditionally

convergent and so that
∑

i ‖xi‖ =∞, see [136]. By lω1 (c0) it will be denoted the space of
all weakly unconditionally Cauchy series in c0.

Theorem 2.30 (Aizpuru, Pérez-Eslava, Seoane, 2006, [3]). There exists a vector space
E ⊂ lω1 (c0) enjoying the following properties:

(a) dim (E) = c, and
(b) If x ∈ E \ {0} then

∑
i xi is not weakly convergent.

The authors also showed in [3] that, given any Banach space X, then there exists a
vector subspace E of the space UC(X) of unconditionally convergent series in X such that
dim(E) = c, and if x ∈ E \ {0} then

∑
i ‖xi‖ = ∞. Notice that, from Theorem 2.30, it

follows that X has a copy of c0 if and only if there exists a vector subspace E of `ω1 (X)
with dim(E) = c, so that every nonzero element of E is a nonweakly convergent series.

Recently, in [38], the authors showed that the set of conditionally convergent real series
considered with the Cauchy product is actually (ℵ0, 1)-algebrable by means of a classical
result due to Pringsheim (1883, [242]). We also refer the interested reader to the recent
work by Bartoszewicz, G la̧b, and Poreda [41], in which they study the algebrability of some
of the above mentioned classes.

2.6. Non-extendable holomorphic functions. In 1884 Mittag-Leffler proved that each
domain in C supports a holomorphic function that is not holomorphically continuable to
any larger domain. This surprising phenomenon can be studied from the generic point of
view, in both topological and algebraic aspects. We start with the precise definitions.

2.6.1. Definitions and topological genericity. Let N ∈ N and consider the space CN = C×
· · ·×C (N -fold), which is a metric space under the distance d(z, w) =

(∑N
k=1 |zk−wk|2

)1/2
,

where z = (z1, . . . , zN ) and w = (w1, . . . , wN ). With respect to d, B(z, r) will denote the
open unit ball with center z ∈ C and radius r. Assume that G is a domain in CN , that is,
G is a nonempty connected open subset of CN . By H(G) it is denoted, as usual, the family
of all holomorphic, or analytic, functions on G. The space H(G) is a Fréchet space under
the topology of uniform convergence on compact subsets of G. If f ∈ H(G) and ξ0 ∈ ∂G
then we say that f is holomorphically extendable through ξ0 whenever there are r > 0,
g ∈ H(B(ξ0, r)) and a connected component A of G∩B(ξ0, r) such that f = g in A. Along
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the pertinent literature, the fact that an f ∈ H(G) is not holomorphically extendable
through any ξ ∈ ∂G is phrased with several synonymous sentences: f is holomorphically
nonextendable beyond ∂G, f is holomorphic exactly on G, G is the domain of holomorphy
of f , ∂G is the natural boundary of f . The set of these functions will be denoted by He(G).

If N = 1 and f ∈ H(G), one has that f ∈ He(G) if and only if R(f, a) = dist (a, ∂G) for
all z ∈ G, where R(f, z) stands for the radius of convergence of the Taylor series of f at
z. If f ∈ He(G) then f has no holomorphic extension to any domain containing G strictly,
but the converse is not true (consider, for instance, G := C\(−∞, 0] and f := the principal
branch of log z). For N = 1, both properties are equivalent if G is a Jordan domain, in
particular if G = D. If N > 1, we may have He(G) = ∅. In fact, the Cartan–Thullen
theorem asserts that He(G) 6= ∅ if and only if G is holomorphically convex (see for instance
[198]).

In 1933, Kierst and Szpilrajn [200] showed that He(G) is residual in H(G) for every
domain G ⊂ C. In 2000, Kahane [195] was able to extend this result to subspaces of H(G).
In fact, the same proof given in [195] allows to weaken the hypotheses on the subspace X,
so as to obtain (see [64]) the following assertion.

Theorem 2.31. (Kahane, 2000, [195]). Let G ⊂ C be a domain and X be a Baire topo-
logical vector space with X ⊂ H(G) such that the next conditions hold:

(a) All evaluation functionals f ∈ X 7→ f (k)(a) ∈ C (a ∈ G; k ∈ N0) are continuous.
(b) For every a ∈ G and every r > dist(a, ∂G) there exists f ∈ X such that R(f, a) < r.

Then X ∩He(G) is residual in X.

For instance, let G = D = {z ∈ C : |z| < 1}, the open unit disc. For 0 < p < ∞ the
Hardy space Hp and the Bergman space Bp are defined as the set {f ∈ H(D) : ‖f‖p <∞},
where ‖f‖p := sup0<r<1

( ∫ 2π
0 |f(reiθ)|p dθ2π

)1/p
for f ∈ Hp, ‖f‖p :=

( ∫ ∫
D |f(z)|p dA(z)

π

)1/p
for f ∈ Bp and dA(z) denotes the normalized area measure on D. They become F-spaces

(i.e. completely metrizable topological vector spaces) with the distance d(f, g) = ‖f−g‖α(p)
p ,

where α(p) = 1 if p ≥ 1 (= p if p < 1). In fact, they are Banach spaces if p ≥ 1. If G ⊂ C is a
domain, consider the space A∞(G) of holomorphic functions on G having highly boundary-

regular behavior, that is, A∞(G) := {f ∈ H(G) : f (k) extends continuously to G for all
k ≥ 0}. It is also an F-space when it is endowed with the topology of uniform convergence of
functions and all their derivatives on each compact set K ⊂ G. Then X ∩He(D) is residual
in X if X = Hp, Bp or A∞(D) (see [64], where further subspaces of H(D) are studied in
this respect). An explicit example of a nonextendable, very well-behaved function in the
boundary is given in [250, Chap. 16]: the function

f(z) :=
∞∑
n=0

anexp(−
√
n)zn, where an =

{
1 if n is a power of 2
0 otherwise,

belongs to A∞(D) ∩ He(D). More generally, let G ⊂ C be a regular domain, that is,

satisfying G = G
0
. In 1980, Chmielowski [123] discovered –as a consequence of an N -

dimensional result, see also [261]– that A∞(G) ∩ He(D) 6= ∅ for every such domain. By
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applying Theorem 2.31 one obtains the residuality of A∞(G) ∩ He(D) in A∞(G) in this
case, see [75].

2.6.2. Vector spaces of nonextendable functions. Plainly, the setHe(G) is not a linear space,
so the study of its lineability makes sense. By using a clever, surprisingly easy approach,
Aron, Garćıa and Maestre settled the problem for any space H(G).

Theorem 2.32. (Aron, Garćıa, Maestre, 2000, [19]). Let G ⊂ CN be a domain of holo-
morphy, that is, He(G) 6= ∅. Then He(G) is dense-lineable, spaceable and algebrable in
H(G).

In fact, the closed infinite dimensional subspace Y ⊂ He(G) ∪ {0} obtained in [19] is
Y = {f ∈ H(G) : f(zn) = 0 for all n ∈ N}, where (zn) ⊂ G is an adequate sequence.
Hence Y is also a closed infinitely generated algebra. Valdivia [267] shows that the dense
subspace contained in He(G) can be chosen to be nearly-Baire. Recall that a locally convex
space E is called nearly-Baire if, given a sequence (Aj) of sum-absorbing balanced closed
subsets covering E, there is j0 such that Aj0 is a neighborhood of 0; and a subset A ⊂ E
is said to be sum-absorbing whenever there is λ > 0 such that λ(A+A) ⊂ A.

In [19] Aron et al. also considered the nonseparable Banach space H∞ := {f ∈ H(D) : f
is bounded on D}, endowed with the supremum norm. Then, with a similar idea, the
authors of [19] proved that (H∞ ∩ He(D)) ∪ {0} contains an infinitely generated algebra
that is nonseparable and closed in H∞. Hence H∞ ∩He(D) is spaceable and algebrable.
In this special domain D, a number of additional results have recently been obtained. For
this, we consider properties (a)–(b) of Theorem 2.31 (for G = D), as well as the following
ones, where X is a (topological) vector space:

(c) For every f(z) =
∑∞

n=0 anz
n ∈ X, the function

∑
n∈Q anz

n ∈ X for every Q ⊂ N0.

(d) Some denumerable subset of H(D) is a dense subset of X.
(e) X 6⊂ H(D).

Here H(D) stands for the space of functions f ∈ H(D) having holomorphic extension to
some open set Ωf ⊃ D. Observe that properties (c) and (e) do not require any topological
or algebraic structure on X.

Theorem 2.33. (Bernal, 2005, [64]). Assume that X is a topological vector space with
X ⊂ H(D). We have:

(1) If X is Baire metrizable and satisfies (a), (b), (c) and (d), then X ∩ He(D) is
dense-lineable in X.

(2) If X is metrizable, X satisfies (d) and there is a subset of X for which (c) and (e)
hold, then X ∩He(D) is dense-lineable in X.

(3) If X is Baire and satisfies (a), (b) and (c), then X ∩He(D) is spaceable in X.
(4) If X satisfies (a) and there is a subset of X for which (c) and (e) hold, then

X ∩He(D) is spaceable in X.

Theorem 2.33, in whose proof Hadamard’s lacunary theorem (see e.g. [250, Chap. 16])
happens to be a main ingredient, applies successfully to the spaces Hp, Bp and A∞(D),
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among others. Turning to general domains in C, the use of the Arakelian approximation
theorem (see e.g. [146]) leads us to an extension of Theorem 2.32 in which the growth of f
near each boundary point is as fast as prescribed.

Theorem 2.34. (Bernal, 2006, [66]). Let G ⊂ C be a domain and ϕ : G → (0,+∞) be a
function. Then the set{

f ∈ He(G) : lim sup
z→ξ

|f(z)|
ϕ(z)

= +∞ for all ξ ∈ ∂G

}
is spaceable and maximal dense-lineable in H(G).

Note that, in particular, He(G) is always maximal dense-lineable. Concerning subspaces
of H(G), it is easy to get lineability if not much more than mere nonvacuousness is assumed;
in addition, the use of the Faber transform allowed the authors of [75] to obtain large closed
manifolds of nonextendable boundary-regular function if ∂G enjoys a soft structure.

Theorem 2.35. (Bernal, Calderón, Luh, 2008, [75]).

(a) Let G ⊂ C be a domain whose boundary does not contain isolated points and X be
a vector space over C with X ⊂ H(G) satisfying X ∩ He(G) 6= ∅ and {ϕf : f ∈
X} ⊂ X for some nonconstant function ϕ ∈ H(G). Then X ∩He(G) is lineable.

(b) Assume that G ⊂ C is a Jordan domain with analytic boundary. Then A∞(G) ∩
He(G) is spaceable in A∞(G).

In particular, A∞(G) ∩He(G) is lineable if G is regular. In [75] it is shown that if, in
addition, C \ G is connected and there is M ∈ (0,+∞) such that for any a, b ∈ G there
exists a curve γ ⊂ G joining a to b for which length (γ) ≤ M , then A∞(G) ∩ He(G) is
dense-lineable. But, as shown in [268], the latter conditions are not at all necessary.

Theorem 2.36. (Valdivia, 2009, [268]). If G ⊂ C is a regular domain, then A∞(G)∩He(G)
is dense-lineable. In fact, there is a dense vector subspace E in A∞(G) such that E \{0} ⊂
He(G) and E is nearly-Baire.

In [268] the problem is posed as to whether “nearly-Baire” can be replaced by “Baire”.

2.6.3. A special case: strongly annular functions. Here we will deal with the special domain
G = D. One way of being nonextendable is to grow fast near the boundary. In this vein,
an interesting family in H(D) is SA, formed by the so-called strongly annular functions.
By definition, a function f ∈ H(D) belongs to SA provided that

lim sup
r→1

min{|f(z)| : |z| = r} = +∞.

Note that SA ⊂ He(D). In 1975, Bonar and Carroll [95] established the residuality of SA.
A lineability result is available.

Theorem 2.37. (Bernal, Bonilla, 2012, [71]). SA is algebrable and maximal dense-lineable
in H(D).
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In fact, weights can be imposed on the growth of functions, see [71]. Turning to subspaces
X of H(D), recall that some criteria for lineability properties of X ∩ He(D) have been
shown in the previous subsection. This raises the question of the lineability of the smaller
set X ∩ SA. But note that SA∩X = ∅ for important spaces X ⊂ H(D). For instance, it
is evident that no f ∈ SA has a continuous extension to ∂D; and SA ∩Hp = ∅ (p > 0)
thanks to the Fatou theorem asserting the existence of finite radial limit almost everywhere
on ∂D for every f ∈ Hp. Nevertheless, the following positive result was provided by Redett
[245]: Bp

α ∩SA 6= ∅ for every p ∈ (0,+∞) and every α ∈ (−1,+∞), where Bp
α denotes the

α-weighted Bergman space, that is, the class of functions f ∈ H(D) for which

‖f‖p,α :=

(∫ ∫
D
|f(z)|p(1− |z|)α dA(z)

π

)min{1,1/p}
< +∞.

It becomes a separable F-space under the F-norm ‖ · ‖p,α. Note that Bp
0 = Bp, the classical

Bergman space. By exploiting Redett’s approach in [245], a lineability assertion can be
obtained.

Theorem 2.38. (Bernal, Bonilla, 2012, [71]). The set SA ∩Bp
α is dense-lineable in Bp

α.

Problem 2.39. Is X ∩ SA spaceable/maximal dense-lineable for X = Bp
α (or even for

other spaces X ⊂ H(D))?

2.7. Miscellaneous.

2.7.1. Annulling functions and sequences with finitely many zeros. A function f ∈ C[0, 1]
is said to be an “annulling function” on [a, b] ⊂ [0, 1] if f has infinitely many zeros in
[a, b] (see [137, Definition 2.1]). As we mentioned in Section 2.2.2, this set of annulling
functions is spaceable (Enflo, Gurariy, and Seoane, [137, Corollary 3.8]). On a totally
different framework, but related to the study of the amount of zeros of functions on a given
interval, let us recall a question originally posed by Aron and Gurariy in 2003, where they
asked whether there exists an infinite dimensional subspace of `∞ every nonzero element of
which has only a finite number of zero coordinates. If we denote by P the set of odd prime

numbers and we call xp =
(

1
p ,

1
p2
, 1
p3
, 1
p4
, · · ·

)
∈ `∞ (p ∈ P ) then it is easy to see that any

nontrivial finite linear combination of {xp : p ∈ P} satisfies the desired property. Some
partial answers to the original problem were recently given (for other sequence spaces) in
[157] where the authors proved, among other results in this direction, the following:

Theorem 2.40 (Garćıa-Pacheco, Pérez-Eslava, Seoane, 2010, [157]). Let X be an infinite
dimensional Banach space with a normalized Schauder basis (en)n∈N. There exists a linear
space V ⊂ X such that:

(a) If a =
∑∞

n=1 a [n] en ∈ V \ {0} then card {n ∈ N : a [n] = 0} <∞.
(b) If a, b ∈ V then

∑∞
n=1 a [n] b [n] en ∈ V .

(c) V is dense and not barrelled.

However, the question originally posed by Aron and Gurariy concerning spaceability for
the `∞ case remains open.
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2.7.2. The Denjoy-Clarkson property. It is well known that derivatives of functions of one
real variable satisfy the Denjoy-Clarkson property: if u : R → R is everywhere differen-
tiable, then the counterimage through u′ of any open subset of R is either empty or has
positive Lebesgue measure. Extending this result to several real variables is known as the
Weil Gradient Problem [270] and, after being an open problem for almost 40 years, was
finally solved (in the negative) for R2 by Buczolich in 2002 [119]. His example was later
simplified by Deville and Matheron [131]. They constructed an everywhere differentiable
function on Q = [0, 1]n and extended it through Zn-periodicity to the whole of Rn obtaining
a bounded, everywhere differentiable function f : Rn → R such that

(1) f and ∇f vanish on the boundary of Q,
(2) ‖∇f‖ = 1 almost everywhere in Rn and ‖∇f(x)‖ ≤ 1 for all x ∈ Rn.

Thus it is clear that f fails the Denjoy-Clarkson property, since (∇f)−1(B(0, 1)) is a
nonempty set of zero Lebesgue measure. In [154] the authors proved that for every n ≥ 2
there exists an infinite dimensional Banach space of differentiable functions on Rn which
(except for 0) fail the Denjoy-Clarkson property.

2.7.3. Non-Lipschitz functions with bounded gradient. A standard result from Real Analy-
sis states that, for any interval I, a differentiable function f : I −→ R is Lipschitz if and
only if it has bounded derivative. One could think if the result still holds under weaker con-
ditions. In [274] it is provided an example of a continuous nonLipschitz function, which is
differentiable almost everywhere and has bounded derivative almost everywhere. Recently,
J́ımenez-Rodŕıguez, Muñoz, and Seoane [190, Theorem 2.1, 3.1] proved the following re-
sults.

(a) The set of continuous functions on [0, 1] which are a.e. differentiable, with a.e. boun-
ded derivative and not Lipschitz is c-lineable.

(b) The set of differentiable functions f : R −→ R2 that do not enjoy the classical
Mean Value Theorem is c-lineable.

(c) The set of differentiable functions f : D → R with bounded gradient, nonLipschitz,
and therefore not satisfying the classical Mean Value Theorem is c-lineable ([190,
Theorem 3.1]), where

D = {(x, y) ∈ R2 : x2 + y2 < 1} \ {(x, y) ∈ R2 : x = 0 and y > 0},

which is a path connected, nonconvex set.

We remark that the above results can be improved to dense-lineability by means of
[20, Theorem 2.2 and Remark 2.5]. Also, just recently [189], item (a) above has been
improved by showing that c0 is isometrically isomorphic to a subspace of Cantor-Lebesgue
functions, that is, continuous non-Lipschitz functions f : [0, 1] → R with f ′ = 0 a.e.
This, in particular, gives spaceability in C[0, 1] of the set defined in (a). Furthermore,
Balcerzak et al. [31] have shown the dense strongly c-algebrability in C[0, 1] of the smaller
set of strongly singular functions. Recall that a function f : [0, 1] → R is called strongly
singular if f ∈ CBV [0, 1] (the space of bounded variation continuous functions on [0, 1]),
f ′ = 0 a.e. and f is not constant on any subinterval of [0, 1]. The spaceability of the
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last set (with nonseparable subspace) in the space CBV [0, 1] (endowed with the norm
‖f‖ = sup[0,1] +Variation[0,1]f) is also shown in [31].

Problem 2.41. Is any of the above sets from (b) or (c) algebrable?

2.7.4. Tamed entire functions and wild behavior near the boundary. In 1924, K. Grandjot
[170] modified Mittag-Leffler’s function to get an entire function C → C receding to 0
along any algebraic curve, so along any (straight) line. This surprising result has been
improved in several ways, for instance, adding boundedness to all derivatives or imposing
integrability on every line, see e.g. [9,276]. The question naturally arises as to whether this
kind of “tamed” entire functions enjoys some sort of lineability. This task was started in
the papers [58,59], whose statements were improved by Armitage (2000, [11]) and Bonilla
(2002, [100]). The main result can be summarized as follows.

Theorem 2.42. Let α ∈ (0,+∞) and let ϕ : [0,+∞)→ (0,+∞) be an increasing function.
There exists a vector subspace M which is dense in H(C) such that lim

z→∞, z∈S
exp(|z|α)f(z) =

0 for every strip or unbounded algebraic curve S and every f ∈M , and

lim
r→+∞

max{|f(z)| : |z| = r}
ϕ(r)

= +∞

for every f ∈M \ {0}.

Notice that one obtains entire functions being small and big simultaneously. Additional
properties enjoying lineability as well can be found in the cited works [11, 58, 59, 100]. A
harmonic version is discussed in [99], where, in addition, it is proved the dense-lineability
in H(B) of the family of harmonic functions f on the euclidean unit ball B of RN having
zero nontangential limit at every point of ∂B.

Concerning domains different from C, Bernal, Calderón and Prado-Bassas [77] gave
in 2004 a linear version of an old theorem due to Kierst and Szpilrajn [200] asserting
the residuality of a family of functions holomorphic in G having wild behavior near the
boundary. Here G is a Jordan domain in C. Specifically, it is shown in [77] the dense-
lineability in H(G) of the set of holomorphic functions f in G satisfying that the cluster
set C(f, γ, ξ) of f along γ at each ξ ∈ ∂G equals C∞ for every f ∈M \ {0}, every ξ ∈ ∂G
and every curve γ ⊂ G tending to ∂G whose closure does not contain ∂G. Recall that if
A ⊂ G then C(f,A, ξ) is defined as the set {w ∈ C∞ : ∃(zn) ⊂ A such that zn → ∂G and
f(zn) → w}. An extension of this assertion to L-analytic functions on domains in RN ,
where L is an elliptic operator, can be found in [72].

Some of the assertions above can be completed so as to include universality properties
(see Section 3.2).

3. Hypercyclic manifolds

In this part, we deal with a class of operators presenting chaotic dynamical behavior.
The topic has been systematically studied during the last three decades.
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3.1. Hypercyclicity and universality: examples and genericity. Traditionally, chao-
tic processes had been associated to nonlinear settings. Surprisingly, in 1929 Birkhoff
[92] showed the existence of an entire function C → C whose sequence of translates
{f( · + an) : n ≥ 1} (a ∈ C \ {0}) approximates uniformly in compacta any prescribed en-
tire function. This entails a rather wild dynamics for such a function f under the action of
a continuous linear self-mapping of H(C), namely, the translation map τag := g( ·+ a). In

1952, MacLane [219] demonstrated the same denseness property for the orbit {f (n) : n ≥ 1}
of some entire function f under the action of the derivative operator Dg := g′. From these
prominent examples, and others that do not necessarily came from iterates of one self-
mapping, many analysts have invested much effort in studying these kinds of phenomena,
mostly during the last thirty years. The adequate abstract framework for these results is
given in the next paragraph.

Let X and Y be two (Hausdorff) topological spaces and Tn : X → Y (n ∈ N :=
{1, 2, . . .}) be a sequence of continuous mappings. Then (Tn) is said to be universal
provided that there exists an element x0 ∈ X, called universal for (Tn), such that the
orbit {Tnx0 : n ∈ N} of x0 under (Tn) is dense in Y . We denote

U((Tn)) := {x ∈ X : x is universal for (Tn)}.

It is evident that the universality of some (Tn) implies that Y is separable. If X and Y
are topological vector spaces and (Tn) ⊂ L(X,Y ) := {continuous linear mappings X →
Y } then the words “universal” and “hypercyclic” are synonymous, although the term
“hypercyclic” (coined by Beauzamy [55]) is mainly used to designate an operator (i.e. a
continuous linear self-mapping T ∈ L(X) := L(X,X)) such that the sequence (Tn) of
its iterates is universal. We denote HC(T ) := {hypercyclic vectors for T} = U((Tn)).
Excellent surveys for the theory of hypercyclicity and universality are [52], [96], [173],
[174], [176] and [203].

Under the last terminology, the mentioned theorems by Birkhoff and MacLane can be
reformulated as follows: both translation and derivation operators are hypercyclic on the
space H(C) endowed with the compact-open topology. In 1941, Seidel and Walsh gave a
noneuclidean version of Birkhoff’s theorem by showing that, if H(D) is endowed with the
compact-open topology and

Cϕ : f ∈ H(D) 7→ f ◦ ϕ ∈ H(D)

denotes the composition operator generated by a noneuclidean translation ϕ(z) = z+a
1+az

(a ∈ D \ {0}), then Cϕ is hypercyclic. And in 1991, Godefroy and Shapiro [167] uni-
fied and strengthened the theorems by Birkhoff and MacLane in the following way: any
T ∈ L(H(C)) that is not a scalar multiple of the identity I and that commutes with the
derivative operator D is hypercyclic. In particular, P (D) is hypercyclic on H(C) for every
nonconstant polynomial P with complex coefficients. In fact (see for instance [167]), an
operator T ∈ L(H(C)) commutes with D if and only if it commutes with translations, and
if and only if T = Φ(D) for some entire function Φ with exponential type, meaning that
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there are positive constants A,B such that |Φ(z)| ≤ AeB|z| for all z ∈ C. Recall that if

Φ(z) =
∑∞

n=0 anz
n in C then Φ(D)f :=

∑∞
n=0 anf

(n) for all f ∈ H(C).

In 1969, Rolewicz [247] provided the first example of a hypercyclic operator on a Banach
space: if X = c0 or `p (1 ≤ p <∞) and

B : (x1, x2, x3, . . . ) 7→ (x2, x3, x4, . . . )

is the backward shift on X, then any scalar multiple λB (|λ| > 1) is hypercyclic. In the
same paper he proves that, in order that a topological vector spaceX supports a hypercyclic
operator, X must be infinite dimensional. Rolewicz posed the problem of whether every
separable infinite dimensional Banach space supports a hypercyclic operator. This was
answered in the affirmative by Ansari [8], Bernal [60] and Bonet and Peris [98]. In [98] the
authors even proved that this result was valid for Fréchet spaces. Recall that an F-space is
a completely metrizable topological vector space, while a Fréchet space is a locally convex
F-space. Recently, Shkarin [260] has shown that every normed space of countable algebraic
dimension supports a hypercyclic operator.

Another remarkable example in the setting of Banach spaces is the following. For p ∈
[1,+∞) consider the Hardy space Hp on the open unit disc D. The automorphisms (i.e. the
bijective holomorphic self-mappings) of D are exactly the fractional linear mappings of the
form ϕ(z) = k z−a

1−az . In Shapiro’s book [256] it is proved that Cϕ is hypercyclic on Hp if and

only if ϕ lacks fixed points in D; see [114] and [147] for extensions. Turning to sequences
of operators, Bernal and Montes [82] showed that the sequence (Cϕn) generated by a
sequence (ϕn) of automorphisms of D is universal on H(D) if and only if supn≥1 |ϕn(0)| = 1;
moreover, if {ψn(z) = anz + bn}n≥1 is a sequence of automorphisms of C, then (Cψn)
is universal on H(C) if and only if the sequence {min{|bn|, |bn/an|}n≥1 is unbounded.
The reader can find extensions of these results to other domains and to other kinds of
self-mappings in [82], [225] and [175]. Moreover, if (Φn(D)) is a sequence of differential
operators, such that each Φn is an entire function with exponential type and there exist
subsets A,B ⊂ C each of them with at least one finite accumulation point, and satisfying
limn→∞Φn(z) = 0 (z ∈ A) and limn→∞Φn(z) = ∞ (z ∈ B), then (Φn(D)) is hypercyclic
on H(C) [62].

Let us now consider the topological size of the set of universal vectors. From now on,
X and Y will stand for topological vector spaces on the same field K (= R or C), and
Tn, T will be linear and continuous. Firstly, for a single hypercyclic operator T ∈ L(X),
since each member Tmx0 of the orbit of a hypercyclic vector x0 ∈ X is also hypercyclic
(because T has dense range), one obtains that HC(T ) is dense in X. Now, a sequence
(Tn) ⊂ L(X,Y ) is said to be densely universal if U((Tn)) is dense in X. If Y is metrizable
and separable and (Uk) is a basis for the topology of Y then

U((Tn)) =
⋂
k≥1

⋃
n≥1

T−1
n (Uk),

showing that U((Tn)) is a Gδ subset. Thus, if in addition X is a Baire space, we get
that (Tn) is densely universal if and only if U((Tn)) is residual. Hence U((Tn)) has large
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size in a topological sense. In particular, the property of being a hypercyclic vector is
topologically generic as soon as T is a hypercyclic operator on an F-space. The sequences
of composition operators (Cϕn), (Cψn) and of differential operators (Φn(D)) considered in
the preceding paragraph (under the conditions specified there) are examples of densely
universal sequences.

Several criteria guaranteeing large topological size for the family of universal vectors
for (Tn) –and even for subsequences of (Tn)– are known, see [176]. By (nk) it will be
denoted a strictly increasing subsequence of N. A sequence (Tn) ⊂ L(X,Y ) is said to be
hereditarily universal if (Tnk) is universal for every (nk) ⊂ N, and hereditarily densely
universal if (Tnk) is densely universal for every (nk) ⊂ N. Assume now that X is an
F-space and Y is metrizable and separable. Then a sequence (Tn) ⊂ L(X,Y ) is said
to satisfy the universality criterion (UC) provided that there are respective dense sets
X0 ⊂ X, Y0 ⊂ Y and a sequence (nk) ⊂ N such that Tnkx → 0 for all x ∈ X0 and, for
every y ∈ Y0, there is a sequence (uk) ⊂ X with uk → 0 and Tnkuk → y. It can be proved
(see [81] and [90]) that, for separable F-spaces X and Y , the sequence (Tn) satisfies the
UC if and only if some subsequence of it is hereditarily densely universal. An operator
L ∈ L(X) is said to satisfy the hypercyclicity criterion (HCC) if the sequence of iterates
(Tn) satisfies the UC. It is elementary that T is hypercyclic if T is weakly mixing, meaning
that T ⊕ T : (x, y) ∈ X ×X 7→ (Tx, Ty) ∈ X ×X is hypercyclic. In 1992, Herrero [186]
posed the problem of whether the reciprocal is true, and some years later León and Montes
[209] raised the question of whether every hypercyclic operator satisfies the HCC. In 1999,
Bès and Peris [90] proved that both problems are in fact equivalent. This question has been
the “great open problem in hypercyclicity” for a long time, and has served as a primary
motivation for a decade-long development of the theory. Finally, De la Rosa and Read
[130] settled the problem in the negative, and several examples of hypercyclic operators T
defined on classical spaces X and not satisfying the HCC have been provided by Bayart
and Matheron in [51].

For instance, if (Cϕn), (Cψn), (Φn(D)) are the sequences of operators considered in the
fifth paragraph, one has that each of the first two of them is hereditarily universal if and
only if it is hereditarily densely universal, and this happens if and only if, respectively,
limn→∞ |ϕn(0)| = 1 and limn→∞min{|bn|, |bn/an|} = +∞. And (Φn(D)) is hereditarily
densely universal if there are subsets A, B satisfying the conditions specified above.

3.2. Hypercyclicity and lineability. After topological genericity has been analyzed, we
study under what conditions the family of universal vectors enjoys algebraic genericity. It
is evident that the set of universal vectors is never a vector space.

3.2.1. Hypercyclity and dense-lineability. An extreme case of lineability is that in which
HC(T ) = X \ {0}. Observe that this happens if and only if X admits no nontrivial
proper closed T -invariant subset. If fact, C. Read [244] solved the invariant subset problem
(analogous to the invariant subspace problem, connected with cyclic operators) for Banach
spaces (it remains unsolved for Hilbert spaces) by exhibiting an operator T on the sequence
space `1 for which any nonzero vector is hypercyclic. (Incidentally, in the recent paper [168]
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Goliński has given examples of operators S without nontrivial proper invariant subspaces
on classical non-Banach spaces X; hence the set of S-cyclic vectors is X \ {0}.)

But the last one is a very special operator. Let us go to a more general situation. In a
chain of successive improvements, Herrero [185], Bourdon [113], Bès [87] and Wengenroth
[271] demonstrated that if T is a hypercyclic operator on an arbitrary topological vector
space X then HC(T ) is dense-lineable. In fact, they proved much more, and their results
are contained in the following theorem.

Theorem 3.1. If T is a hypercyclic operator on a topological vector space X, P is the
family of all polynomials with coefficients in K and x0 is a hypercyclic vector for T , then
M := {P (T )x0 : P ∈ P} is a dense T -invariant vector subspace of X such that M \{0} ⊂
HC(T ).

If X is Banach then HC(T ) is even maximal dense-lineable [63], and the T -invariance
is kept for the corresponding vector subspace. Up to date, the maximal dense-lineability
of HC(T ) for more general topological vector spaces seems to be unknown. It is also
worth mentioning an important result by Grivaux [171] asserting that if X is a Banach
space and (Tj)j∈N is a countable family of hypercyclic operators on X then

⋂∞
j=1HC(Tj)

is dense-lineable. She also proved in [171] that if (Tλ)λ∈Λ is a family of operators on a
separable Fréchet space such that some Tλ0 commutes with each Tλ (λ ∈ Λ) then the set of
common hypercyclic vectors

⋂
λ∈ΛHC(Tλ) is either empty or dense-lineable. As Bayart

[44] showed, ven commutativity is not needed under adequate conditions.

As for sequences of linear mappings, it should be said that the mere residuality of the
set of universal vectors does not entail lineability. For instance, let α = (ak) ∈ CN0 be a

sequence with lim supk→∞ |ak|1/k < +∞, and define the associated diagonal operator ∆α

as

∆α :
∞∑
k=0

fkz
k ∈ H(C) 7→

∞∑
k=0

akfkz
k ∈ H(C).

Consider a sequence {∆αn}n≥1 of diagonal operators on H(C), where αn = (ak,n)k≥0. Then

(see [78]) (∆αn) is universal if and only if {(ak,n)k≥0 : n ∈ N} is dense in CN0 , in which case
U((∆αn)) is residual; but no linear manifold contained in U((∆αn)) ∪ {0} has dimension
≥ 2.

Fortunately, lineability properties hold for the families of universal vectors of sequences
of mappings under not too strong restrictions on the spaces and the mappings. In the
following theorem a number of related results, starting from 1999, due to Bernal, Calderón
and Prado-Tendero [61,74,85] are collected.

Theorem 3.2. Assume that X, Y and Yj (j ∈ N) are topological vector spaces. We have:

(a) If Y is metrizable and (Tn) ⊂ L(X,Y ) is hereditarily universal then U((Tn)) is
lineable. If, in addition, X is metrizable and separable and (Tn) is hereditarily
densely universal then U((Tn)) is dense-lineable.



LINEAR SUBSETS OF NONLINEAR SETS IN TOPOLOGICAL VECTOR SPACES 33

(b) Suppose that X and the Yj’s are metrizable and separable, X is Baire, (Tj,n)n≥1 ⊂
L(X,Yj) for each j ∈ N, and each sequence (Tj,n)n≥1 is hereditarily densely univer-
sal. Then the set

⋂∞
j=1 U((Tj,n)n≥1) of common universal vectors is dense-lineable.

Observe that the conclusions of (a) hold if there is a subsequence of (Tn) that is heredi-
tarily (densely) universal. Analogously, the conclusion of (b) remains valid if each (Tj,n)n≥1

admits a subsequence (which may depend on j) being hereditarily densely universal.

For instance, the sets of functions which are respectively universal for the sequences
(Cϕn), (Cψn), (Φn(D)) considered in Section 3.1 –under the restrictions imposed there– are
dense-lineable (see also [85] for combinations of composition operators with other kinds of
operators). In particular, U((τan)) is dense-lineable provided that (an) is an unbounded
sequence in C. With more sophisticated techniques it can be proved that for a fixed large
set A ⊂ C (belonging to a wide class) the family of Birkhoff-universal entire functions
presenting rapid decay along A is dense-lineable, see [76] for details. In turn, the results
of [76] complete some due to Calderón [120] about universality and vanishing on strips.
Hence rapid decay (see Subsection 2.7.4) is compatible with Birkhoff-universality in order
to generate lineability. Armitage [10] gives a direct proof of the existence of a dense vector
subspace M in the space HN of all harmonic functions on RN –endowed with the compact-
open topology– such that each function f ∈M satisfies a prescribed growth condition and,
if f 6= 0, it is universal with respect to the sequence of partial derivations of all orders. An
explicit construction of a common dense vector space of hypercyclic vectors for a countable
family of weighted backward shifts acting on a Banach space supporting a Schauder basis
is given by Seoane in [255]. As an application of part (b) of Theorem 3.2 we have (see [74])
that the family of holomorphic monsters created by Luh [218] in 1985 and investigated by
Grosse-Erdmann (who proved its residuality, see [172]) is dense-lineable. If G ⊂ C is a
domain, then a function f ∈ H(G) is said to be a holomorphic monster whenever, for each
derivative or antiderivative F of f of any order, each g ∈ H(D) and each ξ ∈ ∂G there
exists a sequence (τn) of affine linear transformations with τn(z)→ ξ uniformly on D such
that τn(D) ⊂ G (n ∈ N) and f(τn(z))→ g(z) compactly in D.

Another outstanding example to which methods close to Theorem 3.2 can be applied is
that of universal series. During the seventies, Chui and Parnes [124] and Luh [217] provided
a holomorphic function in the unit disc which is universal with respect to overconvergence.
More precisely, they constructed a function f(z) =

∑∞
n=0 anz

n ∈ H(D) satisfying that,

given a compact set K with connected complement and K∩D = ∅, a function g continuous
on K and holomorphic in its interior K◦, and ε > 0, there is n ∈ N such that∣∣∣∣∣

n∑
k=0

akz
k − g(z)

∣∣∣∣∣ < ε for all z ∈ K.

The topological generic nature of this property was shown in 1996 by Nestoridis [235] who,
in fact, proved that K can be allowed to meet ∂D (i.e. K ∩ D = ∅). In 2005, Bayart
[44] established the dense-lineability in H(D) of the class of these functions f , which are
known as universal Taylor series. Since 1996, many extensions of these results, for other
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domains and more restrictive classes of functions, have been performed (see the recent
papers [30, 49, 53, 132, 229] and references therein). They can be put into a more general
context. Let X be a metrizable topological vector space over the field K = R or C,
{xn}n≥0 ⊂ X be a fixed sequence, {en}n≥0 be the canonical basis of KN0 and A be a
subspace of KN0 carrying a complete metrizable vector space topology. Assume that the
coordinate projections a = (an) ∈ A 7→ am ∈ K are continuous for any m and that the
set {a = (an) ∈ KN0 : {n : an 6= 0} is finite} is a dense subset of A. Then a sequence
a ∈ A is said to belong to the set UA of restricted universal series in A with respect to
(xn) provided that, for every x ∈ X, there exists a sequence (kn) ⊂ N0 such that

kn∑
j=0

ajxj → x and

kn∑
j=0

ajej → a as n→∞.

In [49], Bayart, Grosse-Erdmann, Nestoridis and Papadimitropoulos characterized (and
applied to a great deal of function spaces) the nonemptyness of UA, and proved that this
is equivalent to its dense-lineability. Koumandos, Nestoridis, Smyrlis and Stefanopoulos
[205] have recently investigated under what conditions dense-lineability holds when A =⋂
p>1 `p, `q (1 < q <∞), c0 or KN0 , endowed with their natural topologies; applications to

trigonometric series in RN and Dirichlet series are furnished.

One can obtain dense-lineable sets of universal Taylor series satisfying, simultaneously,
other universality properties. In particular, some kind of wild behavior near the boundary
(see Subsection 2.7.4) is compatible with the property of being a universal Taylor series. For
instance, Bernal, Bonilla, Calderón and Prado-Bassas [73] showed in 2009 that the family
of universal Taylor series f having maximal (i.e. equal to C∞) cluster set C(f, γ, ξ) at each
ξ ∈ ∂D along any curve γ ⊂ D tending to ∂D whose closure does not contain ∂D is dense-
lineable in H(D). Incidentally, in [80] it has been shown the maximal dense-lineability in
H(G) of the class of functions f ∈ U ((Cϕn)) satisfying that boundary property, where
G is a Jordan domain and (Cϕn) is the sequence of composition operators generated by
adequate holomorphic self-mappings ϕn : G→ G.

3.2.2. Hypercyclicity and spaceability. Regarding to large closed subspaces, the following
assertion (see [83]) seems to be the first result in the setting of universality (if one disregards
the aforementioned “extreme” example by Read [244]). Assume that G ⊂ C is a domain
that is not conformally equivalent to C \ {0}. Suppose also that (ϕn) is a sequence of
automorphisms of G that is runaway, in the sense that, given a compact subset K ⊂ G,
there exists n ∈ N such that K ∩ ϕn(K) = ∅. Then, if the space of holomorphic functions
H(G) is endowed with the compact-open topology, the sequence (Cϕn) of composition
operators defined on H(G) satisfies that HC((Cϕn)) is spaceable.

Montes stated the following criterium on existence of closed subspaces within the set of
hypercyclic vectors. The proof is based on the construction of appropriate basic sequences.
He proved his result in the setting of Banach spaces. For the universality criterion (UC),
we refer the reader to the end of Section 3.1.
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Theorem 3.3. (Montes, 1996, [224]). If X is a separable Banach space, T is an operator
on X such that (Tn) satisfies the UC for some (nk) ⊂ N and there is an infinite dimensional
closed vector subspace M of X for which

Tnkx→ 0 for all x ∈M,

then HC(T ) is spaceable.

For instance, if 1 ≤ p < ∞ and ϕ is an automorphism of D without fixed points then
H(Cϕ) is spaceable in Hp [224]. Also, consider a weight, that is, a bounded sequence
w = (wn) ⊂ K \ {0}, as well as its associated weighted backward shift Bw : x = (xn) ∈
`p 7→ (wnxn+1) ∈ `p. Then HC(Bw) is spaceable provided that supn≥1

∏n
k=1 |wk| =∞ and

supn≥1 limk→∞
∏n
ν=1 |wν+k| <∞ [176, Chap. 10]. As a negative result, in [224] it is shown

that the set HC(T ) for the Rolewicz operator T = λB (|λ| > 1) is not spaceable, although
(Tn) satisfies the UC. León and Montes [208] studied the spaceability of HC(Bw) on `2,
and recently Menet [223] has characterized it on `p and c0: HC(Bw) is spaceable if and
only if supn≥1 infk≥1

∏n
ν=1 |wν+k| <∞.

González, León and Montes characterized the spaceability of HC(T ) for Banach space
operators satisfying the UC. Their findings can be summarized as follows. Recall that an
operator S is called Fredholm provided that S has finite-dimensional kernel and cofinite-
dimensional closed range.

Theorem 3.4. (González, León, Montes, 2000, [169]). Let X be a complex separable
Banach space and T be an operator on X such that (Tn) satisfies the UC. Then the following
are equivalent:

(a) HC(T ) is spaceable.
(b) There exists an increasing sequence (nk) ⊂ N and an infinite dimensional closed

subspace M0 of X such that Tnkx→ 0 for all x ∈M0.
(c) There exists an increasing sequence (mk) ⊂ N and an infinite dimensional closed

subspace M1 of X such that supk≥1 ‖Tmk |M1‖ < +∞.
(d) The essential spectrum σe(T ) := {λ ∈ C : λI−T is not Fredholm} meets the closed

unit disc D.

Complementary criteria of spaceability and non-spaceability of HC(T ) and HC((Tn))
were provided by León and Müller [210] in 2006 for Banach spaces, and recently by Ménet
[223] in the setting of Fréchet spaces. Once it has been proved that a given topological
vector space supports hypercyclic operators, the question of whether HC(T ) is spaceable
for some T among them arises naturally. In 1997, León and Montes [208] gave a positive
answer for every (separable, infinite dimensional) Banach space. In 2006, Petersson [238]
and Bernal [65] independently solved the question in the affirmative for Fréchet spaces
admitting a continuous norm. But nonexistence of continuous norms may be allowed: Bès
and Conejero [89] constructed an operator T on ω := KN for which HC(T ) is spaceable.
Finally, Menet [222] has been able to prove that the assertion holds for every separable
infinite dimensional Fréchet space.

Theorem 3.3 has been improved and extended in several directions, for instance:
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• The sequence of powers (Tn) is replaced by a sequence of continuous linear map-
pings (Tn).
• The arrival space is allowed to be different from X, that is, (Tn) ⊂ L(X,Y ).
• The space X may be a Fréchet space, or even just an F-space.
• It is possible to obtain spaceability for the set of common universal vectors of a

countable family {(Tj,n)n≥1 : j ∈ N} of sequences of continuous linear mappings.
• The condition Tnk → 0 pointwise on M can be replaced by the mere convergence.

These extensions can be found in the papers by Bonet, Mart́ınez-Giménez and Peris
[97], Aron, Bès, León and Peris [14], León and Müller [210], Petersson [238], Bernal [65]
and Bonilla and Grosse-Erdmann [104]. Specifically, by combining the results and the
approaches of the proofs in these papers (for this action, Sections 10.1, 10.2, 10.5 and 11.4
of the book [176], as well of the mentioned equivalence for (Tn) of satisfying the UC and
of being densely hereditarily hypercyclic for some (nk) ⊂ N, will reveal very useful), we
obtain the following assertion. Note that for sequences (Tn) there is no need to introduce
a subsequence (nk) since one may always pass to subsequences.

Theorem 3.5. Let X be a separable F-space with a continuous norm, Yj (j ∈ N) be se-
parable metrizable topological vector spaces, and let (Tj,n)n≥1 ⊂ L(X,Yj) (j ∈ N). Suppose
that the following holds:

(i) For every j ∈ N, (Tj,n)n≥1 is hereditarily densely universal.
(ii) There exists an infinite dimensional closed vector subspace M of X such that the

sequence (Tj,nx)n≥1 converges in Yj for every x ∈M and every j ∈ N.

Then
⋂∞
j=1 U((Tj,n)n≥1) is spaceable.

We furnish some examples, which may be interesting even in the case of a single operator
or of one sequence of operators. In 2010, Shkarin [259] proved for the derivative operator
D that HC(D) is spaceable in H(D) (he also notes that the spectrum σ(D) = ∅, so
Theorem 3.4 breaks down for Fréchet spaces). His proof does not rely on Theorem 3.5,
but it can be extracted from this theorem (see [176, Example 10.13]). By the first result
given in this subsection, the Birkhoff operator τa (a 6= 0) also enjoys spaceability for
its family of hypercyclic functions; see [101] for a corresponding assertion in the space of
harmonic functions on RN . More generally, Petersson [238] showed in 2006 the spaceability
of HC(Φ(D)) in H(C), where Φ is an entire function of exponential type that is not a
polynomial. Recently, Menet [223] has completed the Shkarin–Petersson results by proving
that HC(P (D)) is also spaceable if P is a nonconstant polynomial. If Ω is a domain in
C and ϕ, ψ are two automorphisms of Ω such that Cϕ, Cψ are hypercyclic on H(Ω) then
HC(Cϕ) ∩HC(ψ) is spaceable [176, Chap. 11]. By using Theorem 3.5, it is demonstrated
in [70] the following result, which complements the corresponding “generic” one stated by
Müller [228] in 2009: given a countable set E ⊂ ∂D, the set of continuous functions f
on ∂D whose sequence {Snf |E}n≥1 of partial Fourier sums restricted to E is dense in CE
is spaceable in the space C(∂D) of complex continuous functions on the unit circle; its
maximal dense-lineability is also shown.
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There exist pairs of operators with spaceable sets of hypercyclic vectors, such that the
set of their common hypercyclic vectors is not spaceable. For instance, consider the weights
w = (n+1

n ) and v = (2, 2, . . .), the associated weighted backward shifts Bw, Bv, and the
product maps T1 := Bw ⊕ Bv : (x, y) ∈ `2 ⊕ `2 7→ (Bwx,Bvy) ∈ `2 ⊕ `2, T2 := Bv ⊕ Bw.
In [14] it is shown that HC(T1) and HC(T2) are spaceable, but HC(T1) ∩HC(T2) is not.
In the opposite side, Bayart [45] (see also [176, Chap. 11]) furnished in 2005 some criteria
guaranteeing the spaceability of the set of common hypercyclic vectors of an uncountable
family of operators on a Fréchet space. A corresponding result for dense-lineability of
an uncountable family of sequences of operators on a Banach space, under rather strong
assumptions, was obtained by the same author in [44].

Turning to the universal Taylor series described at the end of the preceding subsection,
Bayart [43] established that the set of universal Taylor series (as described at the end
of the preceding section) is spaceable in H(D). A generalization of this result to simply
connected domains has been stated by Charpentier [122] in 2010. In fact, in [122] the Bayart
et al. result [49] asserting the dense-lineability of UA as soon as UA 6= ∅ is completed
by showing that if X is a Banach space then UA is spaceable as soon as UA 6= ∅. In
2011, Menet [221] has proved the assertion if X is a Fréchet space admitting a continuous
norm, and the same author [222] has recently shown the same result for Fréchet spaces
admitting a continuous seminorm p with codim(ker p) =∞. In [73] and [80], respectively,
the combined properties of maximality of cluster sets in each boundary point with either
universality of Taylor series or compositional universality in H(G) (where G is a Jordan
domain in C) considered there are proved to give spaceability. As a related result, in [79]
it is provided a large family of classical operators (for instance, differential or composition
operators) T : H(G) → H(G) (with G a domain in C) satisfying that, for any subset

A ⊂ G which is not relatively compact in G, the set {f ∈ H(G) : (Tf)(A) = C} is
spaceable. Nevertheless, nothing seems to be known about the spaceability of the family
of holomorphic monsters in G considered in the preceding subsection.

3.2.3. Hypercyclicity and algebrability. In contrast with dense-lineability or spaceability,
not much is known about algebrability in the framework of hypercyclicity. The derivative
operator belongs to the short list of lucky operators.

Theorem 3.6. (Aron, Conejero, Peris, Seoane, 2007, [16] and [17]). Consider the deriva-
tive operator D : H(C) → H(C). Then there is a residual subset M of H(C) such that,
for each f ∈M , the algebra generated by f is contained in HC(D) ∪ {0}.

Nevertheless, the algebrability of HC(D) is still unknown. For composition operators,
the situation is even worse: the translation operator τa does not admit algebras contained,
except for zero, in HC(τa) [17]. In fact, the same argument given in [17] shows that, for
any domain G ⊂ C and any sequence (ϕn) of holomorphic selfmappings of G, the set
HC((Cϕn)) ∪ {0} does not contain any algebra.

In the positive side, Bayart and Matheron [52, Chap. 8] made the following observation,
which is extracted from the approach of [17]. Let X be an F-algebra and T ∈ L(X).
Assume that, for every pair (U, V ) of nonempty open sets in X, any open neighborhood
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W of 0 in X and any m ∈ N, one can find u ∈ U and q ∈ N such that T q(uj) ∈ W for
all j < m and T q(um) ∈ V . Then there is a residual subset M of X such that, for each
f ∈M , the algebra generated by f is contained in HC(T ) ∪ {0}. This can be applied, for
instance, to the Rolewicz operator T := 2B acting on X := `1 if X is endowed with the
convolution product (an) ∗ (bn) = {

∑n
k=0 akbn−k}n≥1.

3.3. Other kinds of linear chaos. Here we briefly focus our attention on weaker and
stronger kinds of hypercyclicity, as well as on a related form of chaos.

3.3.1. Supercyclicity and frequent hypercyclicity. In 1974, Hilden and Wallen [187] intro-
duced the notion of supercyclicity. Let X be a Hausdorff topological vector space over K =
R or C. An operator T ∈ L(X) is said to be supercyclic provided that there is a vector
x0 ∈ X, called supercyclic for T , such that the projective orbit {λTnx0 : n ≥ 0, λ ∈ K} of
x0 under T is dense in X. Again, the separability of X is necessary for supercyclicity. It
is plain that every hypercyclic operator is also supercyclic. The backward shift B on `2 is
an example of a supercyclic operator that is not hypercyclic. As in the hypercyclic case,
it is immediate that the set SC(T ) of supercyclic vectors for T is dense as soon as T is
supercyclic. If X is a separable F-space and (Uk) is an open basis for X then

SC(T ) =
⋂
k≥1

⋃
n≥1

λ∈K\{0}

(Tn)−1(λUk),

showing that if T is supercyclic then SC(T ) is a dense Gδ subset. Hence we have topological
genericity in this case and the question of the algebraic size of SC(T ) arises naturally. In
contrast to the hypercyclic case, dense invariant supercyclic linear manifolds are not always
available.

Theorem 3.7. (Herrero, 1991, [185]). Let X be a complex Banach space and T be a
supercyclic operator on X. Then SC(T )∪{0} contains a T -invariant dense vector subspace
if and only if the set of isolated points in σ(T ) that are not in σe(T ) is empty.

Moreover, with the same approach of [113] it can be proved that if T is supercyclic
and the adjoint T ∗ lacks eigenvalues then SC(T )∪{0} contains a T -invariant dense vector
subspace. As for large closed subspaces within SC(T ), there have been remarkable con-
tributions due to Salas [252] and Montes and Salas [226] (see also [227]). The next two
results keep some similarity to Theorem 3.3.

Theorem 3.8. (Salas, 1999, [252]). Let T be an operator on a complex separable Banach
space X satisfying the following:

(i) There exist an increasing sequence (nk) ⊂ N, dense subsets Y,Z of X, and a map-
ping S : Z → Z such that TS = identity on Z in such a way that ‖Tnky‖ ‖Snkz‖ →
0 for each (y, z) ∈ Y × Z.

(ii) 0 ∈ σe(T ).

Then SC(T ) is spaceable.
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Theorem 3.9. (Montes, Salas, 2001, [226]). Let T be an operator on a complex separable
Banach space X satisfying the following:

(i) There exist a strictly increasing sequence (nk) ⊂ N, a sequence (λk) ⊂ C \ {0},
dense subsets Y,Z of X, and a mapping S : Z → Z such that TS = identity on Z
in such a way that λkT

nky → 0 for every y ∈ Y and λ−1
k Snkz → 0 for every z ∈ Z.

(ii) The sequence (λkα
nk) is bounded for some α ∈ σe(T ).

Then SC(T ) is spaceable.

As a prominent example, a characterization of spaceability of SC(Bw) in `p (1 ≤ p <∞)
in terms of the weights wn is provided in [226]: SC(Bw) is spaceable if and only if there
exist a strictly increasing sequence (mj) ⊂ N and a sequence (q(n)) ⊂ N such that

lim inf
n→∞

(
lim sup
mj>n

∏n
i=1wmj−n+i

minq≤q(n)

∏n
i=1wq+i

)
= 0.

In particular, for the unweighted backward shift B, the set SC(B) is not spaceable. The
last property is also true on c0 (see the survey [227], in which one can find further examples).

In 2006, Bayart and Grivaux [47] introduced the following notion as a quantified, stronger
form of hypercyclicity, connected to ergodic theory. An operator T on a topological vector
space X is said to be frequently hypercyclic provided there exists a vector x0 ∈ X such
that

dens {n ∈ N : Tnx0 ∈ U} > 0 for every nonempty open subset U of X.

In this case, x0 is called a frequently hypercyclic vector for T , and the set of these vectors
will be denoted by FHC(T ). Recall that if A ⊂ N then the lower density and the upper
density of A are respectively defined as dens (A) = lim infn→∞(1/n) card(A ∩ {1, . . . , n})
and dens (A) = lim supn→∞(1/n) card(A ∩ {1, . . . , n}), where card (B) denotes the cardi-
nality of the set B. It turns out that wide families of operators that were hypercyclic
(including, as seen in Section 3.1, composition operators Cϕ on H(D) with ϕ an auto-
morphism without fixed points, nonscalar differential operators Φ(D) on H(C), and the
Rolewicz operator λB with |λ| > 1 on c0 or `p, 1 ≤ p < ∞, among others) are also fre-
quently hypercyclic, see [47], [48], [102] and [103]. But there are hypercyclic operators that
are not frequently hyperyclic. An example of this is the weighted backward shift Bw on `2
with w = ((1 + n−1)1/2), see [47].

Let us consider now the topological size of FHC(T ). Even on F-spaces, there is not a
result analogous to the hypercyclic case. In fact, the more popular operators (derivative
operators, weighted backward shifts, composition operators) satisfy that their respective
sets of frequent hypercyclic vectors are not residual, see [47] and [103]. Nevertheless, by
following the approach of Bourdon [113], we get that dense-lineability is kept for FHC(T ).

Theorem 3.10. (Bayart, Grivaux, 2006, [47]). Let T be a frequently hypercyclic operator
on a separable F-space X. There is a dense T -invariant linear manifold M of X, every
nonzero vector of which is frequently hypercyclic for T .
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In [47] it is raised the question of whether –analogously to the case of simple hypercycli-
city– the set

⋂
k FHC(Tk) is dense-lineable, where all Tk (k ∈ N) are frequently hypercyclic

operators on the same Banach space X.

Similarly to the mere hypercyclicity, the existence of large closed subspaces of frequently
hypercyclic vectors calls for additional assumptions. According to Bayart and Grivaux [47]
–and introducing a modified version due to Bonilla and Grosse-Erdmann [103]– we say
that an operator T on a separable F-space X satisfies the frequent hypercyclicity criterion
(FHCC) if there is a dense subset X0 of X and a map S : X0 → X0 such that, for any
x ∈ X0, TSx = x and both series

∑∞
n=1 T

nx,
∑∞

n=1 S
nx converge unconditionally. Recall

that a series
∑∞

n=1 xn in an F-space X converges unconditionally if for every ε > 0 there
is some N ∈ N such that

∥∥∑
n∈F xn

∥∥ < ε for every finite subset F ⊂ {N + 1, N + 2, . . .}.
Here ‖ · ‖ is an F-norm on X. If T satisfies the FHCC then T is frequent hypercyclic, and
in fact the FHCC is a powerful tool to check the property for the main kinds of operators.

Theorem 3.11. (Bonilla, Grosse-Erdmann, 2012, [104]). Let T ∈ L(X), where X is a
separable F-space with a continuous norm. Suppose that

(i) T satisfies the FHCC, and
(ii) there exists an infinite dimensional closed subspace M0 of X such that Tnx → 0

for all x ∈M0.

Then the set FHC(T ) is spaceable.

As a nice application, Bès [88] has proved that, if G ⊂ C is a simply connected domain
and ϕ : G→ G is a univalent holomorphic function, then the set FHC(Cϕ) is spaceable.

3.3.2. Distributional chaos. Finally, we deal with a related notion of chaos presenting some
similarities with that of hypercyclicity, but revealing deep differences at the same time. The
notion was introduced in 1994 by Schweizer and Smı́tal [257]. According to [257], if X is
a metric space with distance d, a continuous map T : X → X is said to be distributionally
chaotic if there exist an uncountable set Γ ⊂ X and ε > 0 such that for every τ > 0 and
each pair of distinct points x, y ∈ Γ, we have that dens {n ∈ N : d(Tnx, Tny) < τ} = 1
and dens {n ∈ N : d(Tnx, Tny) < ε} = 0. Inspired by this concept and by the notion of
irregular vector coined by Beauzamy [56] (if X is a Banach space and x0 ∈ X, an operator
T ∈ L(X) is called irregular provided that the sequence (Tnx0) is unbounded but it has a
subsequence tending to 0), the authors of [57] presented the following concept. If X is a
Banach space and T ∈ L(X) then a vector x0 ∈ X is said to be distributionally irregular if
there are increasing sequences A = (nk), B = (mk) ⊂ N such that

dens (A) = dens(B) = 1, lim
k
‖Tnkx0‖ = 0 and lim

k
‖Tmkx0‖ =∞.

We denote by DI(T ) the set of distributionally irregular vectors for T . If DI(T ) 6= ∅ then
T is distributionally chaotic [57], but the truth of the converse is unknown up to date.
A number of lineability results have been obtained in [57]. The next theorem gathers a
selection of them.
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Theorem 3.12. (Bermúdez, Bonilla, Mart́ınez-Giménez, Peris, 2011, [57]).

(a) Assume that X is a Banach space, that T ∈ L(X) and that there exists a dense
subset X0 ⊂ X such that limn→∞ T

nx = 0. Then DI(T ) is dense-lineable if at least
one of the following conditions hold:
(i) DI(T ) 6= ∅.

(ii) There exist an increasing sequence A = (nk) ⊂ N and a vector y ∈ X satisfying
dens (A) = 1 and limk→∞ ‖Tnky‖ =∞.

(iii) There exists an increasing sequence A = (nk) ⊂ N with dens (A) = 1 and∑∞
n=1

1
‖Tn‖ <∞.

(b) If X is infinite dimensional and separable, there exists a hypercyclic and distribu-
tionally chaotic operator T such that DI(T ) is dense-lineable.

Recently, the authors of [220] have constructed a hypercyclic operator T and a non-
hyperyciclic operator S such that every nonzero vector is distributionally irregular for each
of them. Concerning Beauzamy’s irregular vectors, in [86] Bernardes et al. have proved,
among other results, that if X is a Fréchet space, T ∈ L(X) and T admits an irregular
vector, then the set of irregular vectors is dense-lineable.

Several corresponding results for strongly continuous semigroups (also called C0-semi-
groups) (Tt)t≥0 –to which the notions of distributionally irregular vectors and distributional
chaos can be extended in a natural way, as well as the notions of hypercyclicity and frequent
hypercyclicity– are provided in [6] by Albanese, Barrachina, Mangino and Peris. The study
of lineability for the set of hypercyclic vectors for a C0-semigroup is virtually closed since
Conejero, Müller and Peris [129] proved in 2007 that, if X is an F-space, then (Tt)t≥0

is hypercyclic if and only if each Tt0 (t0 > 0) is hypercyclic, and if and only if some
Tt0 (t0 > 0) is hypercyclic. In this case, the set of hypercyclic vectors for (Tt) equals
HC(Tt0) for any t0 > 0. The assertion holds if one replaces hypercyclicity by frequent
hypercyclicity. Turning to distributional chaos, it seems that reasonable criteria for the
spaceability of DI(T ) have not been furnished up to date.

4. Zeros of polynomials in Banach spaces

First of all, let us recall the definition of polynomial on a Banach space X. By BX we
denote the open unit ball X.

Definition 4.1. Let n ∈ N. A function P : X → K is said to be an n-homogeneous
polynomial if there is a continuous n-linear mapping A : X × · · · × X → K such that
P (x) = A(x, . . . , x) for all x ∈ X. A polynomial on X is a finite sum of homogeneous
polynomials. A polynomial is a finite sum of homogeneous polynomials.

Note that we will only deal with continuous n-homogeneous polynomials. The usual
notation for the space of n-homogeneous polynomials on X is P(nX), while L(nX) denotes
the space of continuous n-linear functionals on X. Both spaces are Banach spaces when
endowed with the respective natural norms

‖P‖ = sup
x∈BX

|P (x)|, ‖A‖ = sup
x1,...,xn∈BX

|A(x1, . . . , xn)|.
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To each n-homogeneous polynomial P there corresponds a unique symmetric n-linear map-
ping A. Let Ls(nX) denote the space of such symmetric n-linear functionals. By the po-
larization formula, given an n-homogeneous polynomial P, one can recover the associated
A ∈ Ls(nX):

A(x1, . . . , xn) =
nn

n!

∑
εj=±1,j=1,...,n

P (
∑
j

εjxj).

Moreover, ‖P‖ ≤ ‖A‖ ≤ nn

n! ‖P‖. We refer the interested reader to [12, 134, 230, 231] for a
full explanation of these results, as well as many others on polynomials defined on infinite
dimensional spaces.

The study of the zeros of polynomials on complex spaces, due its fundamental nature, has
an ancient origin dating at least from the 1950’s (see e.g. [24] for some references to earlier
work). Nowadays, this investigation can be approached with tools of Algebraic Geometry,
Complex Analysis and Functional Analysis ([177,183,239]). The case of polynomials on Cn
has been widely investigated but the case of polynomials on infinite-dimensional Banach
spaces seems to be an even richer source of challenging questions. The following well-
known result of Plichko and Zagorodnyuk can be viewed as a starting point for in the
infinite-dimensional setting:

Theorem 4.2 (Plichko, Zagorodnyuk, 1998, [239]). If X is an infinite-dimensional com-
plex Banach space and P is an n-homogeneous polynomial on X, then P−1(0) contains an
infinite-dimensional subspace Y .

However for real scalars the situation is radically different as the polynomial P : `2 → R
given by

P (x) =
∞∑
j=1

x2
j

shows. Even in the finite-dimensional case, the field, R or C, makes a big difference. Indeed,
for the 2-homogeneous polynomial P : Cn → C, P (z) = z2

1 + · · ·+ z2
n, we have that P−1(0)

contains a vector space of dimension [n2 ], since the span of {e1 + ie2, e3 + ie4, . . .} ⊂ P−1(0),
where e1 = (1, 0, 0, ..., 0), e2 = (0, 1, 0, 0, ..., 0) and so on. The reader can observe that
nothing interesting can be said for P−1(0) when K = R. As the following theorem reveals,
this example is, in fact, illustrative of the general situation in the case K = C. For works
related to the study of zeros of real polynomials we refer to [15, 21, 142, 143] and the
references therein.

Theorem 4.3 (Plichko, Zagorodnyuk, 1998, [239]). Let X be a complex Banach space.
Given positive integers n and k, there is an integer m(n, k) ∈ N such that, whenever
dim(X) = k and P : X → C is an n-homogeneous polynomial, the set P−1(0) contains a
subspace of dimension at least m(n, k). Moreover, m(n, k)→∞ as k →∞.

To give an idea of how things work in the subject of polynomials in Banach spaces, we
shall now provide a proof (obtained from [26] and from its generalization by Lourenço and
Tocha in [216]) that follows exactly the same lines as that of [239], and which is done by
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induction on the homogeneity n. We shall exhibit the situation for n = 1, 2 and 3. Clearly,
m(1, k) = k− 1. The general case, on the other hand, will require the following well-known
fact from the theory of several complex variables: if f : Ck → C is a holomorphic (complex
analytic) function in k ≥ 2 variables, then f−1(0) is either empty or an unbounded set.

n = 2 Let us now focus on 2-homogeneous polynomials. Let P : X → C be a 2-
homogeneous polynomial, with corresponding symmetric bilinear form A : X×X →
C. As we saw previously, there exists x1 6= 0 such that P (x1) = 0. Consider
S = {x ∈ X : A(x, x1) = 0}. Then S is a subspace of X having dimension at
least k − 1. Since x1 ∈ S, we can write S = S1

⊕
[x1]. Provided that dim(S1) ≥ 2,

we can find x2 ∈ S1 \ {0} with P (x2) = 0. For any x ∈ span{x1, x2},
P (x) = P (a1x1 + a2x2) = A(a1x1 + a2x2, a1x1 + a2x2)

= a2
1P (x1) + 2a1a2A(x1, x2) + a2

2P (x2) = 0,

using the fact that A is symmetric and that x2 ∈ S1 ⊂ S. Thus, provided
dim(X) ≥ 4, every complex-valued 2-homogeneous polynomial on X vanishes on a
2-dimensional subspace. It is clear that the argument continues, giving that every
2-homogeneous polynomial vanishes on a bk2c-dimensional subspace of X.

n = 3 For the case of 3-homogeneous polynomials P , first take x1 ∈ X \ {0} such that
P (x1) = 0. Let A : X × X × X → C be the associated symmetric 3-linear
form. Thus, we can write X = [x1]

⊕
Yk−1, where dim(Yk−1) = k − 1. Now,

consider the subspace S(x1, x1) = {x ∈ Yk−1 : A(x1, x1, x) = 0}, which is a
(k−2)-dimensional subspace. We can now write X = [x1]

⊕
S(x1, x1)

⊕
[y1], where

y1 ∈ Yk−1\S(x1, x1). By the above n = 2 case, there is an bk−2
2 c-dimensional sub-

space S(x1) of S(x1, x1) on which the 2-homogeneous polynomial x 7→ A(x1, x, x)
vanishes. If it happens that bk−2

2 c ≥ 2, i.e. if k ≥ 6 then dim(S(x1)) ≥ 2, and so
there is a nonzero vector x2 ∈ S(x1) such that P (x2) = 0. It is a routine verification
that [x1, x2] is then contained in P−1(0). By now, the method of proof should be
reasonably evident, and in fact one gets m(3, k) ≥ max{n : k ≥ 2n−1(n+ 1)}.

n > 3 Clearly, the same argument can be applied in order to extend the above construc-
tions to all homogeneities n of P .

Corollary 4.4. Let P : Ck → C be an arbitrary (not necessarily homogeneous) polynomial
of degree n. Then there is a subspace V ⊂ Ck, whose dimension depends only on k, such
that dim(V )→∞ as k →∞, satisfying the condition P |V ≡ P (0).

Having in mind the polynomials of the form
∑
x2
j the case of real polynomials needs a

special approach where odd-homogeneous polynomials and even-homogeneous polynomials
are investigated by different fronts.

For the case of odd-homogeneous polynomials we present here a result by R. Aron and
P. Hájek.

Theorem 4.5 (Aron, Hájek, 2006, [24]). Let P : RN → R be an n-homogeneous polyno-
mial, where n is odd. Let k ∈ N. Then there is a subspace X ⊂ RN , dimX = k, such that
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P |X ≡ 0 provided N is so big that

N > k!(log2N)k
(
k + n− 1
k − 1

)
.

Regarding the case of 2-homogeneous polynomial on a real Banach space X, let us recall
that a 2-homogeneous polynomial P : X → R is said to be positive definite if P (x) ≥ 0
for every x ∈ X and P (x) = 0 only for x = 0. It is known (see [139]) that the following
statements are equivalent:

(i) X admits a positive definite 2-homogeneous polynomial.
(ii) There is a continuous injection of X into a Hilbert space.
(iii) There is a 2-homogeneous polynomial P on X whose set of zeros is contained in a

finite dimensional subspace of X.

In particular, there are real positive definite 2-homogeneous on X whenever X is sep-
arable or a C(K) space for some compact, separable K. On the other hand, c0(Γ) and
`p(Γ), p > 2, do not admit positive definite 2-homogeneous polynomials. The following
result is proved via an interesting use of Zorn’s Lemma:

Theorem 4.6 (Aron, Boyd, Ryan, Zalduendo, 2003, [15]). Let X be a real Banach space
which does not admit a positive definite 2-homogeneous polynomial. Then, for every 2-
homogeneous polynomial P : X → R, there is an infinite dimensional subspace of X on
which it is identically zero.

Theorem 4.5 shows that given any k ∈ N and any odd positive integer n, there is some
N ∈ N such that for any n-homogeneous polynomial P : RN → R, there is a k-dimensional
subspace of RN on which P is identically 0. From this, it seems a reasonable question to
wonder whether something “better” happens if we replace RN by an infinite dimensional
real Banach space X:

Given any odd n and any n-homogeneous polynomial P : X → R, is there
an infinite dimensional subspace Y ⊂ X such that P |Y ≡ 0?

The answer is actually no. In fact, one has the following:

Theorem 4.7 (Aron, Hájek, 2007, [23]). Given any real, separable, infinite dimensional
Banach space X and any odd n ∈ N, there is an n-homogeneous polynomial P : X → R
such that P−1(0) does not contain an infinite dimensional subspace.

From Theorem 4.2 a natural step forward is: how “big” is Y ? In view of the previous
results, the following questions arise naturally:

(Q1) Suppose that the complex Banach space X is nonseparable. Does it follow that
there is a nonseparable subspace contained in P−1(0)?

(Q2) For a real Banach space X and an n-homogeneous polynomial P : X → R, are
there situations where P−1(0) does contain an infinite dimensional subspace?

(Q3) Let P : X → K be an n-homogeneous polynomial, where K = R or C, and let
M,N ⊂ X be two maximal subspaces of P−1(0). What can be said about the
relation between M and N? (M ⊂ X is a maximal subspace of P−1(0) means
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that M is a vector subspace of P−1(0) that is not strictly contained in any larger
subspace P−1(0).)

Let us now provide some answers to each of these questions. Below, (Aj) denotes the
answer for the (Qj) above.

(A1) The answer is affirmative for `∞. To be more precise, we have:

Theorem 4.8 (Fernández-Unzueta, 2006, [140]). Let E be a complex Banach space
containing `∞. For every n, every n-homogeneous P : E → C vanishes on a non-
separable subspace of E.

In addition, in [140] is also shown that in the case of real `∞, if P : `∞ → R
vanishes on a copy of c0, then P ≡ 0 on a nonseparable subspace.

On the other hand, and responding to a question of [34] (see also [15]), Avilés
and Todorcevic [28] have shown that the general answer to question (a) is no.

Theorem 4.9 (Avilés, Todorcevic, 2009, [28]). There is a 2-homogeneous polyno-
mial P : `1(ℵ1)→ C such that P−1(0) contains no nonseparable subspace.

(A2) Concerning the second question, partial information has already been noted in
Theorems 4.5, 4.6 and 4.7. Let us assume that P : X → R is a 2-homogeneous
polynomial on a nonseparable Banach space X. In this case, there is some addi-
tional, albeit partial, information available.

Theorem 4.10 (Aron, Boyd, Ryan, Zalduendo, 2003, [15]). (a) Let X be a real
Banach space which does not admit a positive definite 4-homogeneous polyno-
mial. Then for every 2-homogeneous polynomial P on X, there is a nonsepa-
rable subspace of X on which P is identically zero.

(b) Let X be a real Banach space of type 2. Then either X admits a positive definite
2-homogeneous polynomial or every P ∈ P

(
2X
)

has an nonseparable subspace
on which it is identically zero.

It is worth noticing the connection with the geometry of the domain X. The
requirement of type 2 in the above result is necessary for the use of the Extension
Theorem of Maurey.

Still regarding to results related to positive definite polynomials, for the case of
a compact topological Hausdorff space K, the following dichotomy holds:

Theorem 4.11 (Férrer, 2007, [141]). The space C(K) satisfies the following di-
chotomy. Either
(i) It admits a positive definite continuous 2-homogeneous real-valued polynomial,

or
(ii) every continuous 2-homogeneous real-valued polynomial vanishes in a non-

separable closed linear subspace.

When X = c0 (Γ) the following result holds for general polynomials (non neces-
sarily homogeneous):
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Theorem 4.12 (Férrer, 2007, [141]). Let Γ be an uncountable set. If P : c0 (Γ)→
R is a continuous polynomial, then there is a closed linear subspace E of c0 (Γ) such
that E ⊂ P−1 (0) and E is isometric to c0 (Γ) .

(A3) For the last question we actually have a negative answer, as the following result
shows.

Theorem 4.13 (Avilés, Todorcevic, 2009, [28]). There exists a 2-homogeneous
polynomial P : `1(c)→ C such that P−1(0) contains both separable and nonsepara-
ble maximal subspaces.

Also [28] provides new perspectives on the investigation of zeros of complex polynomials,
including new techniques and, specially, connections with results from [266] related to the
existence of certain partitions with special properties.

As a final remark to this section, we would like to emphasize that this particular topic of
study (subsets and subspaces of zeros of polynomials) has just recently started to develop.
Thus, although it has rapidly caught the eye of many researchers in the field, there is still
plenty of ongoing work on it. We believe that, in the years to come, this topic will certainly
experience a large growth.

5. Some remarks and conclusions. General techniques

This last section will be devoted to provide several remarks on very particular results
(not treated earlier) about lineability, operator theory, and the classical problem of the
lineability of the set of norm-attaining functionals. Later, a number of heuristic comments
will be given and, finally, some general techniques will be considered.

Remark 5.1. Besides all the examples shown in the preceding sections, together with the
different areas in which the topic of lineability has had its influence, the theory of absolutely
–and nonabsolutely– summing operators has also attracted the attention of some authors
when working on lineability. We refer the interested reader to [109, 111, 112, 202, 243].
Also, and more particularly, Pellegrino and Teixeira [237] provided some results within
the framework of norm-attaining operators, results that were later generalized in 2011 by
Botelho, Diniz, Fávaro, and Pellegrino [108].

Remark 5.2. Regarding a classical problem on norm-attaining functionals, a well-known
theorem by E. Bishop and R. Phelps (1961, [93]) states that for any Banach space X, the
set NA(X) := {ϕ ∈ X∗ : attains the norm} is a dense subset of X∗. It is natural to ask
about the lineability of the set NA(X). For many specific spaces X, the answer is routine.
For example,

NA(c0) = {x = (xn) ∈ `1 : xn = 0 for all sufficiently large n}.
In this case, NA(c0) is itself a dense vector subspace of c∗0 = `1. However, note that NA(c0)
contains no infinite dimensional closed subspace, so here we have lineability without space-
ability. On the other hand,

NA(`1) = {y = (yn) ∈ `∞ : ‖y‖∞ = max
n
|yn|}
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is not a subspace. Indeed, both y = (−1, 0, 0, . . .) and y′ = (1, 1
2 ,

2
3 , . . . ,

n
n+1 , . . .) are in

NA(`1) although y + y′ /∈ NA(`1). Furthermore, NA(`1) contains both dense vector
subspaces and infinite dimensional closed subspaces. This raises the questions:

When is NA(X) a vector space? When is NA(X) spaceable?

These questions have been deeply studied in [35] by Bandyopadhyay and Godefroy, who
provided, among other results, conditions that ensure that NA(X) is not spaceable; see
also the recent works [1, 153] for more results on the linear structure of NA(X). Very
recently, Garćıa-Pacheco and Puglisi [158] showed that every Banach space admitting an
infinite dimensional separable quotient can be equivalently renormed in such a way that
the set of its norm attaining functionals contains an infinite dimensional linear subspace.
Nevertheless, the general problem of the 2-lineability of the set of norm-attaining functional
in any Banach space is still open.

After the previous remarks, let us make some considerations related to the Baire category
theorem and lineability. Let (X, d) be a complete metric space. A subset E ⊂ X is said to
be porous if there exist a constant a ∈ (0, 1) and a radius r0 > 0 such that for every x ∈ X
and every r ∈ (0 < r < r0) there is y ∈ X with B(y, ar) ⊂ B(x, r) \ E. The set E is said
to be σ-porous if E can be written as a countable union of porous subsets of X. If E is
porous, then it is nowhere dense. Hence σ-porous sets are of first category. The converse is
false. Thus, it is in general a stronger statement to say that a set has σ-porous complement
than to say that it is residual. There is some recent work on this topic. For instance, J.
Borwein and X. Wang [105] show that if X is a separable Banach space, then the set of all
nonexpansive Lipschitz functions with maximal Clarke subdifferentials is not only residual
but has σ-porous complement. In [105] the authors do not mention lineability, but our
guess is that this property is lineable. Let us point out that, just recently, more examples
of cases relating porosity and strong algebrability (in the case of continuous functions on
locally compact groups) were provided in [5].

So far, we have seen many cases in which a set of functions having an exotic property
is residual, so that its complement is first category. We wonder in how many cases it is
true that the complement is σ-porous. For instance, Bayart [46] demonstrated that the set
HC(Cϕ) of hypercyclic functions with respect to the composition operator Cϕ generated by
a nonelliptic automorphism ϕ (recall that this set is residual, dense-lineable and spaceable,
see Section 3) has not σ-porous complement. Also, and as we saw in Theorem 2.8, although
being a residual set is “symptomatic” of containing large subspaces, there is clearly no
immediate implication: recall, for instance, the example of the set U((∆αn)) given in
Subsection 3.2.1. Also, in [33], there is another example in this direction: for any x ∈ `1
define E(x) = {a ∈ R : ∃A ⊂ N such that

∑
n∈A x(n) = a} and let C be the set of all

x ∈ `1 for which E(x) is homeomorphic to the Cantor set. Then C is residual, strongly
c-algebrable, but not spaceable.

Certainly, and after what we have been seeing throughout this paper, one could think
that almost everything is lineable, dense-lineable, or spaceable. This is certainly not the
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case as we have already seen in, for instance, Theorems 2.8 and 2.17. In spite of this, and
in a much more general frame, the following has been established.

Theorem 5.3. (Aron, Garćıa-Pacheco, Pérez-Garćıa, Seoane, 2009 [20]).

(a) Let X be an infinite dimensional Banach space. There exists a subset M ⊂ X such
that M is spaceable and dense, although it is not dense-lineable.

(b) Let X be an infinite dimensional Banach space. There exists a subset M ⊂ X
which is lineable and dense, but which is not spaceable. If X is separable, then M
can also be chosen to be dense-lineable.

One conclusion that we can infer from what we have been presenting in this survey is
that a very common (and possibly the only!) strategy to obtain lineability is the following:
once a mathematical object enjoying a particular property is found, one tries to modify it
in order to construct a basis for the potential candidate to linear space. Thus, almost all
techniques are, up to date, constructive. Only a handful of existence techniques (although
not very general ones) have been obtained in the recent years. Here, and to conclude with
this survey, we will give a brief account on them. It was not until very recently that some
existence results to guarantee the lineability of certain sets were given. These mentioned
results, although not giving the specific linear space, supply the positive answer we look
for in this area. Due to the lack of existence results in this topic, we believe that it is
interesting to have this kind of machine-proving result that, right away, guarantees the
lineability of a given family of functions. In order to do that, we relate the notion of
lineability with that of additivity, introduced by T. Natkaniec in [233,234] and thoroughly
studied by F.E. Jordan in his Ph.D. Dissertation [192].

Definition 5.4. Let F ⊂ RR. The additivity of F is defined as the following cardinal
number:

A(F) = min
(
{ cardF : F ⊂ RR, ϕ+ F 6⊂ F , ∀ϕ ∈ RR } ∪ {(2c)+}

)
,

where (2c)+ stands for the successor cardinal of 2c.

The above definition gives us, roughly, the biggest cardinal number κ for which every
family G, with cardG < κ, can be translated into F . Let us remark that for some families
the additivity is relatively “easy” to compute, whereas lineability is, in general, “hard” to
calculate.

Additivity and lineability have not been related until now. Although it may seem like
this concept has nothing to do with the concept of lineability, it actually has a lot to do
with it:

Theorem 5.5 (Gámez, Muñoz, Seoane, 2010, [150]). Let F ⊂ RR star-like, that is, αF ⊂
F for all α ∈ R. If c ≤ A(F) ≤ 2c, then F is A(F)-lineable.

Theorem 5.5 can be applied to many classes of functions, such as those presented in
Definition 2.15. The result provides a technique that can only be used or applied within
the framework of RR. It would be very interesting if a dual result of Theorem 5.5 above
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could also be found for algebrability, that is: is there any cardinal invariant that relates to
the concept of algebrability as the additivity does with lineability?

On the other hand, a few criteria telling us how to get dense-lineability from the mere
lineability have appeared recently. The idea which is in the core of these results is to obtain
the desired dense subspace by adding small vectors coming from a known lineable set to the
vectors of a dense subset. Such criteria are contained in the next two theorems. According
to [20], if A and B are subsets of a vector space X, then A is said to be stronger than B
provided that A+B ⊂ A.

Theorem 5.6. (Aron, Garćıa, Pérez, Seoane, 2009, [20]). Assume that X is a metrizable
separable topological vector space. If A and B are subsets of X such that A is lineable, B
is dense-lineable and A is stronger than B, then A is dense-lineable.

Theorem 5.7. (Bernal, 2008–2010, [67, 69]). Assume that X is a metrizable separable
topological vector space. Suppose that Γ is a family of vector subspaces of X such that⋂
S∈Γ S is dense in X. We have:

(a) If µ is an infinite cardinal number such that
⋂
S∈Γ(X \ S) is µ-lineable, then it

contains a dense vector subspace of dimension µ.
(b) In particular, if

⋂
S∈Γ(X \S) is lineable then it is dense-lineable. And if

⋂
S∈Γ(X \

S) is maximal lineable then it is maximal dense-lineable.

Some of the lineability results mentioned in the present paper –concerning nowhere dif-
ferentiable functions, nowhere analytic functions, dense hypercyclic manifolds, strict-order
integrable functions, nowhere monotone functions, functions with everywhere unbounded
derivatives and strongly annular functions, among others– and which are contained in
[20,67–69,71], can be deduced by using Theorems 5.6 or 5.7.

Concerning closed subspaces, it should be said that there are not many explicit space-
ability general criteria in the related literature. A nice one in a rather abstract context
is due to Wilansky and Kalton (see [202, 273]): if X is a Fréchet space and Y ⊂ X is a
closed linear subspace, then the complement X \Y is spaceable if and only if Y has infinite
codimension. Kitson and Timoney exploited it to obtain the following theorem.

Theorem 5.8 (Kitson, Timoney, 2011, [202]). Let Zn (n ∈ N) be Banach spaces and X a
Fréchet space. Let Tn : Zn → X be continuous linear mappings and Y the linear span of⋃
n Tn(Zn). If Y is not closed in X then the complement X \ Y is spaceable.

This result can be used, for instance, to prove spaceability of the non-absolutely conver-
gent power series in the disc algebra A(D) and of the non-absolutely p-summing operators
between certain pairs of Banach spaces. Also, some assertions in Subsection 2.4.2 may be
inferred of Theorem 5.8. As the authors of [202] suggest, it would be interesting to know
if this theorem can be extended to allow Zn to be Fréchet spaces. In the less restrictive
setting of function spaces, we have the following statement. Recall that the support of a
function f : Ω→ K is the set σ(f) = {x ∈ Ω : f(x) 6= 0}.
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Theorem 5.9 (Bernal, Ordóñez, 2012, [84]). Let Ω be a nonempty set. Assume that
(X, ‖ · ‖) is a Banach space of K-valued functions on Ω and that S is a nonempty subset
of X satisfying the following properties:

(i) If (gn) ⊂ X satisfies gn → g in E then there is a subsequence (nk) ⊂ N such that,
for every x ∈ Ω, gnk(x)→ g(x).

(ii) There is a constant C ∈ (0,+∞) such that ‖f + g‖ ≥ C‖f‖ for all f, g ∈ X with
σ(f) ∩ σ(g) = ∅.

(iii) αf ∈ S for all α ∈ K and all f ∈ S.
(iv) If f, g ∈ X are such that f + g ∈ S and σ(f) ∩ σ(g) = ∅, then f, g ∈ S.
(v) There is a sequence of functions fn (n ∈ N) with pairwise disjoint supports such

that, for all n ∈ N, fn ∈ X \ S.

Then X \ S is spaceable.

With this statement in hand, one can derive, for instance, some assertions about Lebesgue
spaces, see Subsection 2.4.2. Theorem 5.9 also applies (see [84]) to the space X =
CBV [0, 1] of bounded variation continuous functions on [0, 1], endowed with the norm
‖f‖ = sup[0,1] +Variation[0,1]f , yielding that the set {f ∈ CBV [0, 1] : f is not absolutely

continuous in [0, 1]} is spaceable.

Just recently, it has been developed a new technique, that can be applied to the frame-
work of sequence spaces, see [106]. The authors actually obtain maximal-spaceability by
providing a series of conditions that, once fulfilled, guarantee the existence of a closed infi-
nite dimensional subspace inside sets of certain topological vector sequence spaces. Their
general result [106, Theorem 3.1], which is obtained by making use of the notion of “se-
quence functor” (see [106, Definition 2.1]), applies to a large amount of cases, most of
them never studied before, such as the sets c0(X) \ ∪p>0`

w
p (X), `p(X) \ ∪0<q<p`

w
q (X), or

`up(X) \ ∪0<q<p`
w
q (X) (among many others), where X is any infinite dimensional Banach

space, `wp (X) denotes the Banach (p-Banach if 0 < p < ∞) space of all X-valued weakly
p-summable sequences, and `up(X) stands for the closed subspace of `wp (X) formed by all
unconditionally p-summable sequences, see [106, Corollaries 3.2–3.7].

There is no need in saying that, due to the complexity of many of these lineability
problems, a Baire category theorem-type result –or any general existence technique for
that matter– would be extremely valuable in this recently coined theory.
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[23] R. M. Aron and P. Hájek, Odd degree polynomials on real Banach spaces, Positivity 11 (2007), no. 1,

143–153.
[24] , Zero sets of polynomials in several variables, Arch. Math. (Basel) 86 (2006), no. 6, 561–568.
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[57] T. Bermúdez, A. Bonilla, F. Mart́ınez-Giménez, and A. Peris, Li-Yorke and distributionally chaotic
operators, J. Math. Anal. Appl. 373 (2011), no. 1, 83–93.
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[85] L. Bernal-González and J. A. Prado-Tendero, U-operators, J. Austral. Math. Soc. (Series A) 78 (2005),
no. 1, 59–89.

[86] N. Bernardes, A. Bonilla, V. Müller, and A. Peris, Li-Yorke chaos in Linear Dynamics, Preprint
(2012).

[87] J. P. Bès, Invariant manifolds of hypercyclic vectors for the real scalar case, Proc. Amer. Math. Soc.
127 (1999), no. 6, 1801–1804.

[88] , Dynamics of composition operators with holomorphic symbol, Rev. Real Acad. Cien. Ser. A
Mat., in press.

[89] J. P. Bès and J. A. Conejero, Hypercyclic subspaces in omega, J. Math. Anal. Appl. 316 (2006), no. 1,
16–23.

[90] J. P. Bès and A. Peris, Hereditarily hypercyclic operators, J. Funct. Anal. 167 (1999), no. 1, 94–113.
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[131] R. Deville and É. Matheron, Infinite games, Banach space geometry and the eikonal equation, Proc.
Lond. Math. Soc. (3) 95 (2007), no. 1, 49–68.

[132] E. Diamantopoulos, C. Kariofillis, and C. Mouratides, Universal Laurent series in finitely connected
domains, Arch. Math. 91 (2008), no. 2, 145–154.

[133] J. Diestel, Sequences and series in Banach spaces, Graduate Texts in Mathematics, vol. 92, Springer-
Verlag, New York, 1984.

[134] S. Dineen, Complex analysis on infinite-dimensional spaces, Springer Monographs in Mathematics,
Springer-Verlag London Ltd., London, 1999.

[135] V. Drobot and M. Morayne, Continuous functions with a dense set of proper local maxima, Amer.
Math. Monthly 92 (1985), no. 3, 209–211.

[136] A. Dvoretzky and C. A. Rogers, Absolute and unconditional convergence in normed linear spaces,
Proc. Nat. Acad. Sci. U. S. A. 36 (1950), 192–197.

[137] P. H. Enflo, V. I. Gurariy, and J. B. Seoane-Sepúlveda, Some Results and Open Questions on Space-
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and nonlinear properties, J. Math. Anal. Appl. 370 (2010), no. 1, 159–167.
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[178] V. I. Gurarĭı, Subspaces and bases in spaces of continuous functions, Dokl. Akad. Nauk SSSR 167

(1966), 971–973 (Russian).
[179] , Linear spaces composed of everywhere nondifferentiable functions, C. R. Acad. Bulgare Sci.

44 (1991), no. 5, 13–16 (Russian).
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(2011), no. 2, 181–195.
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60 L. BERNAL-GONZÁLEZ, D. PELLEGRINO, AND J.B. SEOANE-SEPÚLVEDA
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