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COMMON HYPERCYCLIC FUNCTIONS FOR MULTIPLES OF

CONVOLUTION AND NON-CONVOLUTION OPERATORS

LUIS BERNAL-GONZÁLEZ

Abstract. We prove the existence of a residual set of entire functions, all of

whose members are hypercyclic for every nonzero scalar multiple of T , where

T is the differential operator associated to an entire function of order less than
1/2. The same result holds if T is a finite-order linear differential operator

with non-constant coefficients.

1. Introduction

In this paper, we are concerned with the existence of vectors having dense
orbit with respect to each member of a non-denumerable family of operators. Speci-
fically, we deal with the problem of the existence of entire functions that are simul-
taneously hypercyclic with respect to all nonzero scalar multiples either of a con-
volution operator or of a linear differential operator with non-constant coefficients.
Precise definitions are given below, in this section or in the next one. See [22] and
[23] for excellent surveys about hypercyclicity.

Assume that X is a Hausdorff topological vector space and that T : X → X is a
(linear, continuous) operator in it. Then T is said to be hypercyclic provided that
there is a vector x ∈ X, called hypercyclic for T , whose orbit {T kx : k = 0, 1, 2, . . . }
under T is dense in X. By HC(T ) we denote the subset of all hypercyclic vectors for
T . Note that the separability ofX is a necessary condition in order thatHC(T ) 6= ∅.

It is easy to see that HC(T ) is dense in X if T is hypercyclic. If in addition, X
is an F-space (that is, X is a completely metrizable topological vector space), then
HC(T ) is a dense Gδ subset of X; in particular, HC(T ) is residual in X. Denote
N = {1, 2, . . . }. By Baire’s category theorem, if {Tn : n ∈ N} is a denumerable
family of hypercyclic vectors on an F-space X, then

⋂∞
n=1HC(Tn) is still residual

(hence nonempty) in X. But Baire’s theorem is no longer at our disposal when we
are facing a non-denumerable family of dense open subsets. Hence the problem is:
Given a non-denumerable family {Tλ : λ ∈ Λ} of hypercyclic operators satisfying
appropriate conditions, is

⋂
λ∈ΛHC(Tλ) nonempty?

During the last seven years, much effort has been devoted to this matter, see [1],
[5], [6], [7], [8], [12], [13], [14], [15], [16], [20], [27]. Several authors have provided
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with criteria for the existence of common hypercyclic vectors for uncountable fam-
ilies {Tλ : λ ∈ Λ} of operators and, especially, some of the mentioned references
deal with the interesting case of a family {λT : λ ∈ A}, where T is a fixed operator
and A is a non-denumerable subset of K := R (the real line) or C (the complex
field).

For instance, Abakumov and Gordon [1] and independently Peris [27] proved
that the set

⋂
|λ|>1HC(λB) is residual in l2, the space of square summable se-

quences, where B is the backward shift (xn) 7→ (xn+1). Gallardo and Partington
[20] demonstrated the existence of a residual set of common hypercyclic vectors for
the scalar multiples λM∗φ (|λ| > ‖1/φ‖L∞(T)) of the adjoint of the multiplier Mφ in
the Hardy space, where φ is a bounded non-outer function and T is the unit circle.
Costakis and Sambarino [16, Corollary 3] (see also [8, Example 4.6]) proved that⋂
λ∈C\{0}HC(λD) is residual in the space H(C) of entire functions (endowed with

compact convergence), where D : f ∈ H(C) 7→ f ′ ∈ H(C) is the differentiation
operator.

We focus our attention on the last finding. Costakis and Mavroudis [15, Theorem
1.1] have improved this result by showing that, in fact, the set

⋂
λ∈C\{0}HC(λp(D))

is residual in H(C) if p is any non-constant polynomial. Observe p(D) is an operator
on H(C) commuting with translations Ta (a ∈ C) and, in addition, it is not a scalar
multiple of the identity. Each translation operator Ta is defined as (Taf)(z) =
f(z + a) (f ∈ H(C), z ∈ C). In 1991, Godefroy and Shapiro [21] prove that every
operator T on H(C) that is not a scalar multiple of the identity and that commutes
with translations is hypercyclic. Their result unifies and covers both theorems by
Birkhoff [10] (T = Ta, a ∈ C\{0}) and MacLane [25] (T = D). We wonder whether
Costakis-Mavroudis’ statement extends to some “Godefroy-Shapiro” operators.

In Section 3 of this paper, we prove that the answer is affirmative, at least when
T is the differential operator associated to an entire function with not too fast
growth. By using a different approach, the statement is also extended to finite-
order linear differential operators whose coefficients are entire functions. Observe
that the last operators do not commute, in general, with translations. Finally, in
Section 4, we will discuss how these results may be extended to a simply connected
domain.

2. Preliminary results

In order to settle the class of operators we will deal with, we bring here the
following assertion, which can be found in [21].

Proposition 2.1. Let T be an operator on H(C). Then the following conditions
are equivalent:

(a) T commutes with translations, i.e. TTa = TaT (a ∈ C).
(b) T commutes with differentiation, i.e. TD = DT .
(c) T is a convolution operator, that is, there exists a finite complex Borel

measure µ on C with compact support such that

(Tf)(z) =

∫
C
f(z + w) dµ(w) (z ∈ C, f ∈ H(C)).

(d) There exists an entire function Φ of exponential type such that T = Φ(D).
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Let us explain the last property. That Φ is of exponential type means that
there are constants A,B ∈ (0,+∞) such that |Φ(z)| ≤ AeB|z| for all z ∈ C.
Recall that the (growth) order of a function Φ ∈ H(C) is defined as ρ(Φ) :=

lim supr→∞
log logM(r,Φ)(r)

log r , where M(r,Φ) := max{|f(z)| : |z| = r} (see [11]). If

α ∈ [0,+∞), the α-type of Φ is τα(Φ) := lim supr→∞
logM(r,Φ)(r)

rα . The exponen-
tial type of Φ is τ(Φ) := τ1(Φ). Then Φ is of exponential type if and only if
τ(Φ) < +∞ (necessarily, ρ(Φ) < +∞ in this case). Observe that, in general, we
have: ρ(Φ) < α⇒ τα(Φ) = 0⇒ τα(Φ) < +∞⇒ ρ(Φ) ≤ α. Finally, Φ is said to be
of subexponential type if τ(Φ) = 0.

Assume that Φ is an entire function of exponential type having Taylor expansion
Φ(z) =

∑∞
n=0 anz

n. Then for each f ∈ H(C) the series Φ(D)f :=
∑∞
n=0 anD

nf =∑∞
n=0 anf

(n) converges compactly in C so defining on H(C) an (in general, infinite-
order) linear differential operator Φ(D) =

∑∞
n=0 anD

n, where D0 = I = the iden-
tity operator (see [9]).

By the Malgrange-Ehrenpreis theorem (see [9], [18] or [26]), any non-zero dif-
ferential operator Φ(D) is surjective. The following statement, which will be used
in the proof of the first of our main results, characterizes the injective convolution
operators on the space of entire functions.

Lemma 2.2. Let T be an operator on H(C) that commutes with translations. Then
the following properties are equivalent:

(a) T is injective or, equivalently, T is an onto isomorphism.
(b) T is a non-zero constant multiple of a translation.
(c) T = Φ(D), where Φ is an entire function of exponential type having no

zeros in C.

Proof. By Proposition 2.1, we have T = Φ(D), where Φ is an entire function of
exponential type. It is clear that (b) implies (a). If (c) holds, then Φ(z) = eaz+b

for certain constants a, b ∈ C, since the Weierstrass product corresponding to the
zeros of Φ reduces to the constant 1 and, by Hadamard’s factorization theorem (see
[2]), genus(Φ) ≤ ρ(Φ) ≤ 1. Therefore T = Φ(D) = eaD+b = λTa (with λ = eb),
a multiple of a translation. Hence (c) implies (b). Finally, assume that (a) is
satisfied but Φ has some zero α ∈ C. Define eα(z) = eαz. Then eα is entire and
Teα = Φ(D)eα = Φ(α)eα = 0, so T is not injective, a contradiction. Thus, (a)
implies (c) and the proof is finished. �

Note that in part (b) of Lemma 2.2 the case T = λI is possible.

In the proof of Theorem 1.1 in [15], a variant of a general criterion for simulta-
neous hypercyclicity due to Bayart and Matheron [8, Proposition 4.2] was needed.
We also need it, but in a slightly improved form, see Lemma 2.3. Since its proof is
a trivial modification of the one in [8, Proposition 4.2], we omit it.

Lemma 2.3. Let X be a separable Fréchet space and let T : X → X be an operator.
Assume that the following properties are satisfied:

(i) There exists a subset A ⊂
⋃∞
n=1 KerTn such that A is dense in X and each

iterate Tn has a right inverse Sn : A → X (i.e. TnSnx = x for all x ∈ A)
satisfying TnSm = Sm−n for all m,n with m > n.

(ii) There exists λ0 ≥ 0 such that for each λ > λ0 and each u ∈ A, the set
{λ−nSnu : n ∈ N} is bounded in X.
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Then
⋂
λ>λ0

HC(λT ) is a dense Gδ subset of X.

Remark 2.4. In [8, Proposition 4.2] the set A is the whole generalized kernel⋃∞
n=1 KerTn and it is assumed the existence of a right inverse S : A → X for T

such that {λ−nSnu : n ∈ N} is bounded (λ > λ0, u ∈ A). In Lemma 2.3 we are
not supposing that Sn = Sn necessarily.

Assume that f is an entire function with τ = τ(f) < +∞. The Borel transform
of f is the function given by the series

(Bf)(z) =

∞∑
n=0

n!an
zn+1

, (1)

provided that f(z) =
∑∞
n=0 anz

n. Since lim supn→∞ |f (n)(0)|1/n = τ (see [11,
pp. 11–12]), the series in (1) defines an analytic function in {z : |z| > τ}. The
following property, usually known as Polya’s representation, can be found in [11,
pp. 73–74].

Lemma 2.5. Suppose that f is an entire function of exponential type. Then, for
every R > τ(f) and every z ∈ C, we have

f(z) =
1

2πi

∮
|t|=R

ezt (Bf)(t) dt.

The next assertion (see [11, p. 30] for a proof), which will be used in the proof
of Theorem 3.1, establishes that in the “first half” of the growth range of functions
with exponential type, the minimum modulus is unbounded as a function of the
radius. If f ∈ H(C) and r > 0, we denote m(r, f) = min{|f(z)| : |z| = r}.

Lemma 2.6. If f is entire and τ1/2(f) = 0, then lim supr→∞m(r, f) = +∞.

The next lemma contains a theorem by León and Müller [24] about rotations
of hypercyclic operators. As noticed in [15], the theorem in [24] was stated in the
setting of complex Banach spaces, but it still works on complex topological vector
spaces.

Lemma 2.7. Let T : X → X be an operator acting on a complex topological vector
space X. If T is hypercyclic then for every complex number µ with |µ| = 1 the
operator µT is hypercyclic and in addition HC(T ) = HC(µT ).

The following deep result, that is due to Delsarte and Lions [17], will be used in
our non-convolution result.

Lemma 2.8. Assume that T : H(C)→ H(C) is a differential operator of the form
T = DN +aN−1(z)DN−1 +· · ·+a0(z)I, where a0, a1, . . . , aN−1 are entire functions.
Then there exists an onto isomorphism U : H(C)→ H(C) such that UT = DNU .

The next, well known result states that hypercyclicity remains unaltered under
conjugation. We omit its easy proof.

Lemma 2.9. Let T,R : X → X be two operators on a topological vector space
X. Suppose that there exists an onto homeomorphism ϕ : X → X such that
T = ϕ−1Rϕ. Then T is hypercyclic if and only if R is hypercyclic. Moreover,
HC(R) = ϕ(HC(T )).
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Finally, we bring here an important statement due to S. Ansari [3] about stability
of hypercyclicity under powers. Similarly to Lemma 2.7, the assertion was originally
established in the setting of Banach spaces, but it holds on any topological vector
spaces (see [28]).

Lemma 2.10. Let N ∈ N and T : X → X be an operator on a topological vector
space X. Then T is hypercyclic if and only if TN is hypercyclic. Even more, we
have HC(T ) = HC(TN ).

3. Common hypercyclic entire functions

We will state here the two promised results about existence of common hy-
percyclic functions. They concern respectively to convolution and non-convolution
operators.

Since every polynomial p satisfies τα(p) = 0 for all α > 0, the following theorem
extends Theorem 1.1 in [15].

Theorem 3.1. (a) Let T be a nonzero non-injective convolution operator on
H(C). Then there exists λ0 ∈ [0,+∞) such that the set

⋂
|λ|>λ0

HC(λT )

is residual in H(C).
(b) If Φ is a non-constant entire function with τ1/2(Φ) = 0, then the set⋂

λ∈C\{0}HC(λΦ(D)) is residual in H(C). In particular, this holds if

ρ(Φ) < 1/2.

Proof. By using Lemma 2.7, we obtain as in the proof of Theorem 1.1 in [15]
that, if T is an operator on H(C), then HC(rT ) = HC(rµT ) for all r > 0 and
all µ with |µ| = 1. Therefore

⋂
λ>λ0

HC(λT ) =
⋂
|λ|>λ0

HC(λT ) for all λ0 ≥ 0.

Then it suffices to prove the residuality in H(C) of
⋂
λ>λ0

HC(λT ) (in (a)) and of⋂
λ>0HC(λΦ(D)) (in (b)).

Assume that T is an operator as in (a). Then by Proposition 2.1 and Lemma
2.2, there exists Φ ∈ H(C) with T = Φ(D), Φ 6≡ 0, τ(Φ) < +∞ and Z(Φ) := {zeros
of Φ} 6= ∅. Define

λ0 = λ0(Φ) := inf

{
sup
|t|=r

1

|Φ(t)|
: r > dist (0, Z(Φ))

}
. (2)

If we show that
⋂
λ>λ0

HC(λT ) is residual for λ0 defined by (2), then (b) is derived

because, from Lemma 2.6, λ0 = 0 if Φ is non-constant with τ1/2(Φ) = 0 (note that
Z(f) 6= ∅ if ρ(f) < 1 and f is non-constant).

Consequently, it is enough to demonstrate the residuality of
⋂
λ>λ0

HC(λT )

provided that T is as in (a) and λ0 is as in (2).

Put T = Φ(D) as before. Take α ∈ Z(Φ) with minimum modulus. Following the
proof of Proposition 2.2 in [15], we will try to apply Lemma 2.3. Since Φ(α) = 0,
there is a nonzero entire function Ψ with exponential type such that

Φ(z) = (z − α)Ψ(z) (z ∈ C).

Observe that Φ(D)n = (D−αI)nΨ(D)n for all n ≥ 1. As in [15], a direct calcu-
lation gives that (D−αI)n(eαzq(z)) = 0 for every polynomial q with degree(q) < n.
Consider the set

A := {eαzq(z) : q polynomial}.
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From the denseness of the set of polynomials in H(C) and from the fact that eαz

never vanishes in C, we derive that A is dense in H(C). Moreover,

A ⊂
∞⋃
n=1

Ker (D − αI)n ⊂
∞⋃
n=1

Ker Φ(D)n =

∞⋃
n=1

KerTn.

Note that every function in A is of exponential type. In fact, τ(f) ≤ |α| for all
f ∈ A. Fix R > |α|. According to Lemma 2.5, we have

f(z) =
1

2πi

∮
|t|=R

ezt (Bf)(t) dt (f ∈ A, z ∈ C).

Let h(z) =
∑∞
n=0 hnz

n be any entire function with exponential type and R > |α|
be such that h(t) 6= 0 for all t with |t| = R. If f ∈ A, define the entire function

g(z) :=
1

2πi

∮
|t|=R

ezt
(Bf)(t)

h(t)
dt (z ∈ C).

Then we obtain that

h(D)g(z) =

∞∑
n=0

hnf
(n)(z) =

∞∑
n=0

hn
2πi

∮
|t|=R

tnezt
(Bf)(t)

h(t)
dt

=
1

2πi

∮
|t|=R

( ∞∑
n=0

hnt
n

)
ezt

(Bf)(t)

h(t)
dt

=
1

2πi

∮
|t|=R

ezt(Bf)(t) dt = f(z),

that is, g is a solution of the equation h(D)g = f . Note that, in order to get
the interchange of integration and summation at the third equality, we have used∑∞
n=0

∮
|t|=R |

hn
2πi t

nezt (Bf)(t)
h(t) | dt < +∞, which follows easily from h

1/n
n → 0, that in

turn holds because h is entire.

For fixed µ > λ0, we can select R(µ) > |α| such that

|Φ(t)| > 1/µ if |t| = R(µ). (3)

We define the maps Sn : A→ H(C) (n ∈ N) by

(Snf)(z) =
1

2πi

∮
|t|=R(µ)

ezt
(Bf)(t)

Φ(t)n
dt. (4)

Observe that from the previous calculation and from the fact that each power Φn

is also of exponential type, we get

TnSnf = Φ(D)nSnf = Φn(D)Snf = f (f ∈ A).

Consequently, Sn is a right inverse for Tn. Moreover, if m > n, one obtains by an
analogous calculation that

TnSmf(z) = Φn(D)
1

2πi

∮
|t|=R(µ)

ezt
(Bf)(t)

Φ(t)m
dt

=
1

2πi

∮
|t|=R(µ)

ezt
(Bf)(t)

Φ(t)m−n
dt = Sm−nf(z)

for all f ∈ A and z ∈ C. Consequently, condition (i) of Lemma 2.3 is fulfilled.
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Now, fix λ > µ and f ∈ A. Then (3) and (4) drive us to

|λ−nSnf(z)| =

∣∣∣∣∣λ−n 1

2πi

∮
|t|=R(µ)

ezt
(Bf)(t)

Φ(t)n

∣∣∣∣∣
≤ (µ/λ)nR(µ) · sup

|t|=R(µ)

|(Bf)(t)| · eR(µ)|z| (z ∈ C).

The right hand side tends compactly to zero in C. Therefore λ−nSnf → 0 (n→∞)
for every f ∈ A. Thus, condition (ii) of Lemma 2.3 is satisfied for µ instead of λ0.

Consequently, the set
⋂
λ>µHC(λT ) is a dense Gδ subset of H(C) for each

µ > λ0. But
⋂
λ>λ0

HC(λT ) =
⋂∞
n=1

⋂
λ>λ0+ 1

n
HC(λT ), a countable intersection

of dense Gδ subsets of H(C), so it is also a dense Gδ set. This finishes the proof. �

Remark 3.2. It is well known that H(C) is a non-normable space. By the
Malgrange-Ehrenpreis theorem, our operators Φ(D) in the last theorem are onto.
They also satisfy that

⋃∞
n=1 Ker Φ(D)n is dense in H(C). This should be com-

pared with Corollary 4.5 in [8], where it is stated that if T is an onto operator on
a Banach space X with

⋃∞
n=1 KerTn dense in X, then

⋂
λ>λ0

HC(λT ) is dense in

X for some λ0 ∈ [0,+∞).

Next, we establish our assertion on non-convolution differential operators. It
also covers Theorem 1.1 in [15].

Theorem 3.3. Assume that T : H(C) → H(C) is a differential operator of the
form

T = DN + aN−1(z)DN−1 + · · ·+ a1(z)D + a0(z)I,

where N ∈ N and a0, . . . , aN−1 are entire functions. Then the set⋂
λ∈C\{0}HC(λT ) is residual in H(C).

Proof. By Lemma 2.8, there is an onto isomorphism U : H(C) → H(C) such
that UT = DNU . Then T = U−1DNU , so λT = U−1(λDN )U for all λ ∈ C.
From Lemma 2.9, we obtain HC(λT ) = U−1(HC(λDN )). For every λ ∈ C \ {0},
select a Nth-root µ, i.e. µN = λ. Note that µ ∈ C \ {0}. Thanks to Lemma
2.10, we get HC(λDN ) = HC(µD). Therefore, for every λ ∈ C \ {0} there ex-
ists µ ∈ C \ {0} with HC(λT ) = U−1(HC(µD)). Hence

⋂
λ∈C\{0}HC(λT ) ⊃⋂

µ∈C\{0} U
−1(HC(µD)) = U−1(

⋂
µ∈C\{0}HC(µD)). But the set

⋂
µ∈C\{0}HC(µD)

(hence, its image under U−1) is residual in H(C) by [16, Corollary 3]. Consequently,⋂
λ∈C\{0}HC(λT ) is residual, as required. �

4. Extension to simply connected domains and open problems

Assume that Ω is a domain, that is, a nonempty connected open subset of
C. Consider the space H(Ω) of holomorphic functions on Ω, endowed with the
compact-open topology. Suppose that Φ is an entire function of subexponential
type. Then Φ(D) is a well-defined operator, not only on H(C) but even on H(Ω)
(see [9]).

Assume that T is an operator defined either T = Φ(D) (where Φ is a non-constant
and τ(Φ) = 0) or T = DN + aN−1(·)DN−1 + · · · + a0(·)I (N ∈ N; a0, . . . , aN−1

entire). By Theorems 3.1 and 3.3, there is C ≥ 0 (C = 0 for the second kind of
operators, and also for the case T = Φ(D) provided that τ1/2(Φ) = 0) and an entire
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function (hence f ∈ H(Ω)) whose orbit under each multiple λT (|λ| > C) is dense in
H(C). If Ω is simply connected (i.e. its complement in the extended complex plane
is connected) then H(C) is dense in H(Ω) by Runge’s theorem (see [19]). Therefore,
f ∈

⋂
|λ|>C HC(λT ). Moreover, since the set of such functions f is residual (so

dense) in H(C), we obtain, again by Runge’s theorem, that
⋂
|λ|>C HC(λT ) ie

dense in H(Ω).

But this does not prove the residuality of the last set in H(Ω), because H(C)
is not residual in H(Ω). In fact, for any pair of domains Ω1,Ω2 with Ω1 ⊂ Ω2,
Ω1 6= Ω2, we have that H(Ω2) is of the first category in H(Ω1). For the sake of
completeness, we provide a proof of this assertion. Take a point a ∈ (∂Ω1) ∩ Ω2

and consider the sets An,k := {f ∈ H(Ω1) : |f(z)| ≤ n for all z ∈ Ω1 ∩ B(a, 1/k)}
(n, k ∈ N), where B(z0, r) is the disk {z : |z − z0| < r}. It is easy to see that each
An,k is closed in H(Ω1) and that H(Ω2) ⊂

⋃
n,k An,k. It is enough to show that,

for fixed n, k, the set An,k has empty interior. For this, fix any nonempty open
subset U of H(Ω1). Then there are a function f ∈ H(Ω1), a compact set K ⊂ Ω1

and a number ε > 0 for which {g ∈ H(Ω1) : |g(z)− f(z)| < ε for all z ∈ K} ⊂ U .
Select a point b ∈ Ω1 ∩B(a, 1/k) \K. Consider the compact set L := K ∪ {b} and

define f̃ : L→ C as f̃(z) =

{
f(z) if z ∈ K
2n if z = b.

By Runge’s approximation theorem,

there exists a rational function g with poles outside Ω1 (hence g ∈ H(Ω1)) such

that |g(z) − f̃(z)| < min{ε, 1} (z ∈ L). Therefore g ∈ U but |g(b) − 2n| < 1, so
|g(b)| > 2n − 1 ≥ n. Consequently, g /∈ An,k, which proves that An,k has empty
interior.

The comments of this section together with the results in this paper raise the
following questions, that conclude this manuscript:

(a) If T is any non-scalar convolution operator on H(C), is
⋂
λ∈C\{0}HC(λT )

nonempty/residual?
(b) Does Theorem 3.3 hold for a simply connected domain Ω of C, assuming

only that a0, . . . , aN−1 ∈ H(Ω) (i.e., not necessarily entire)?
(c) Is

⋂
|λ|>C HC(λT ) residual in H(Ω) for some C ≥ 0, assuming that Ω is

simply connected and T is as described in the beginning of this section?
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et des équations de convolution, Ann. Inst. Fourier (Grenoble) 6 (1955/1956), 271–355.

[27] A. Peris, Common hypercyclic vectors for backward shifts, Operator Theory Seminar, Michi-

gan State University, 2000-2001.
[28] J. Wengenroth, Hypercyclic operators on non-locally convex spaces, Proc. Amer. Math. Soc.

131 (2003), 1759–1761.
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